Appelli invernali di Elementi di Analisi Complessa

Gli appelli della sessione invernale dell'insegnamento di Elementi di Analisi Complessa saranno
13 gennaio 2023 ore 9:00 Sala Seminari, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 01/12/2022 - 11/01/2023. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/nwe-lcv-usd
13 febbraio 2023 ore 9:00 Sala Seminari, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 01/12/2022 - 11/02/2023. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/ckp-prw-yhn

Ricordo che e' necessario iscriversi all'esame tramite il sito https://esami.unipi.it, compilando prima il questionario di valutazione dell’insegnamento.

L'esame di Elementi di analisi complessa consiste principalmente in un seminario su un argomento scelto dallo studente fra uno di quelli elencati qui di seguito. Il seminario deve durare 20-30 minuti, può svolgersi in italiano o in inglese, e deve contenere la dimostrazione di almeno un risultato principale. Al termine del seminario ci saranno anche delle domande per verificare la comprensione di argomenti trattati a lezione in qualche modo collegati al contenuto del seminario. Il seminario può svolgersi alla lavagna oppure prevedere la proiezione di slide. Per ogni argomento ho indicato fra parentesi quadre una possibile fonte bibliografica (con referenze complete indicate alla fine), ma e' possibile usare anche altri testi.

1. Schottky theorem and little Picard theorem [A1, Section 4] or [R1, Chapter 16, Theorem 16.22]
2. Bieberbach theorem and Koebe (1/4)-theorem [A1, Section 5] or [R1, Chapter 14, Theorem 14.14]
3. Mergelyan theorem [R1, Chapter 20]
4. Fatou theorem [R1, Chapter 11, Theorem 11.20]
5. Zeroes of bounded holomorphic functions [R1, Chapter 15, Theorems 15.18, 15.21, 15.23]
6. Boundary extension of the Riemann map [R1, Chapter 14, Theorems 14.18, 14.19] or [C, Section 14.5]
7. Cartan uniqueness theorems and automorphisms groups [K, Section 10.1] or [R2, Chapter 2]
8. Schwarz's lemma in the unit ball and fixed point sets [R2, Sections 8.1, 8.2]
9. Lindelof-Cirka theorems [R2, Section 8.4]
10. Cousin problems [K, Section 6.1]
11. Wollf-Denjoy theorem in the unit ball [A2, Sections 2.2.1, 2.2.2, 2.2.5]
12. Proper holomorphic maps [R2, Sections 15.1 and/or 15.2]

[A1] M. Abate, Note per un secondo corso di Analisi Complessa in una variabile. link
[A2] M. Abate, Iteration theory of holomorphic maps on taut manifolds. link
[C] J.B. Conway, Functions of one complex variable II, Springer
[K] S.G. Krantz, Function theory of several complex variables, Wiley.
[R1] W. Rudin, Real and complex analysis, McGraw-Hill
[R2] W. Rudin, Function theory in the unit ball of Cn, Springer.

Appello novembrino di Elementi di Analisi Complessa

L'appello di novembre 2022 dell'insegnamento di Elementi di Analisi Complessa sara' il
10 novembre 2022 ore 9:00 Sala Riunioni, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 10/10/2022 - 08/11/2022. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/tyt-yfo-fpy

Ricordo che e' necessario iscriversi all'esame tramite il sito https://esami.unipi.it, compilando prima il questionario di valutazione dell’insegnamento.

L'esame di Elementi di analisi complessa consiste principalmente in un seminario su un argomento scelto dallo studente fra uno di quelli elencati qui di seguito. Il seminario deve durare 20-30 minuti, può svolgersi in italiano o in inglese, e deve contenere la dimostrazione di almeno un risultato principale. Al termine del seminario ci saranno anche delle domande per verificare la comprensione di argomenti trattati a lezione in qualche modo collegati al contenuto del seminario. Il seminario può svolgersi alla lavagna oppure prevedere la proiezione di slide. Per ogni argomento ho indicato fra parentesi quadre una possibile fonte bibliografica (con referenze complete indicate alla fine), ma e' possibile usare anche altri testi.

1. Schottky theorem and little Picard theorem [A1, Section 4] or [R1, Chapter 16, Theorem 16.22]
2. Bieberbach theorem and Koebe (1/4)-theorem [A1, Section 5] or [R1, Chapter 14, Theorem 14.14]
3. Mergelyan theorem [R1, Chapter 20]
4. Fatou theorem [R1, Chapter 11, Theorem 11.20]
5. Zeroes of bounded holomorphic functions [R1, Chapter 15, Theorems 15.18, 15.21, 15.23]
6. Boundary extension of the Riemann map [R1, Chapter 14, Theorems 14.18, 14.19] or [C, Section 14.5]
7. Cartan uniqueness theorems and automorphisms groups [K, Section 10.1] or [R2, Chapter 2]
8. Schwarz's lemma in the unit ball and fixed point sets [R2, Sections 8.1, 8.2]
9. Lindelof-Cirka theorems [R2, Section 8.4]
10. Cousin problems [K, Section 6.1]
11. Wollf-Denjoy theorem in the unit ball [A2, Sections 2.2.1, 2.2.2, 2.2.5]
12. Proper holomorphic maps [R2, Sections 15.1 and/or 15.2]

[A1] M. Abate, Note per un secondo corso di Analisi Complessa in una variabile. link
[A2] M. Abate, Iteration theory of holomorphic maps on taut manifolds. link
[C] J.B. Conway, Functions of one complex variable II, Springer
[K] S.G. Krantz, Function theory of several complex variables, Wiley.
[R1] W. Rudin, Real and complex analysis, McGraw-Hill
[R2] W. Rudin, Function theory in the unit ball of Cn, Springer.

Appelli estivi ed autunnali di Elementi di Analisi Complessa

Gli appelli estivi dell'insegnamento di Elementi di Analisi Complessa saranno
07 giugno 2022 ore 9:00 Sala Seminari, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 15/05/2022 - 05/06/2022. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/ymv-vcs-sfa
12 luglio 2022 ore 9:00 Sala Seminari, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 15/05/2022 -10/07/2022. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/fsy-lcs-ajb
13 settembre 2022 ore 9:00 Sala Seminari, Dipartimento di Matematica. Periodo d'iscrizione all'esame: 01/06/2022 -11/09/2022. Agenda per prenotare l'orario dell'esame: https://agende.unipi.it/vdq-hdm-wri

Ricordo che e' necessario iscriversi all'esame tramite il sito https://esami.unipi.it, compilando prima il questionario di valutazione dell’insegnamento.

L'esame di Elementi di analisi complessa consiste principalmente in un seminario su un argomento scelto dallo studente fra uno di quelli elencati qui di seguito. Il seminario deve durare 20-30 minuti, può svolgersi in italiano o in inglese, e deve contenere la dimostrazione di almeno un risultato principale. Al termine del seminario ci saranno anche delle domande per verificare la comprensione di argomenti trattati a lezione in qualche modo collegati al contenuto del seminario. Il seminario può svolgersi alla lavagna oppure prevedere la proiezione di slide. Per ogni argomento ho indicato fra parentesi quadre una possibile fonte bibliografica (con referenze complete indicate alla fine), ma e' possibile usare anche altri testi.

1. Schottky theorem and little Picard theorem [A1, Section 4] or [R1, Chapter 16, Theorem 16.22]
2. Bieberbach theorem and Koebe (1/4)-theorem [A1, Section 5] or [R1, Chapter 14, Theorem 14.14]
3. Mergelyan theorem [R1, Chapter 20]
4. Fatou theorem [R1, Chapter 11, Theorem 11.20]
5. Zeroes of bounded holomorphic functions [R1, Chapter 15, Theorems 15.18, 15.21, 15.23]
6. Boundary extension of the Riemann map [R1, Chapter 14, Theorems 14.18, 14.19] or [C, Section 14.5]
7. Cartan uniqueness theorems and automorphisms groups [K, Section 10.1] or [R2, Chapter 2]
8. Schwarz's lemma in the unit ball and fixed point sets [R2, Sections 8.1, 8.2]
9. Lindelof-Cirka theorems [R2, Section 8.4]
10. Cousin problems [K, Section 6.1]
11. Wollf-Denjoy theorem in the unit ball [A2, Sections 2.2.1, 2.2.2, 2.2.5]
12. Proper holomorphic maps [R2, Sections 15.1 and/or 15.2]

[A1] M. Abate, Note per un secondo corso di Analisi Complessa in una variabile. link
[A2] M. Abate, Iteration theory of holomorphic maps on taut manifolds. link
[C] J.B. Conway, Functions of one complex variable II, Springer
[K] S.G. Krantz, Function theory of several complex variables, Wiley.
[R1] W. Rudin, Real and complex analysis, McGraw-Hill
[R2] W. Rudin, Function theory in the unit ball of Cn, Springer.

Appello straordinario di Elementi di Analisi Complessa

L'appello straordinario dell'insegnamento di Elementi di Analisi Complessa sara'
26 aprile 2022 ore 09:00 Sala Seminari, periodo d'iscrizione all'esame: 14/03/2022-24/04/2022 ATTENZIONE: per scegliere l'orario dell'esame occorre collegarsi al sito https://agende.unipi.it/mif-ypc-fsi

Ricordo che e' necessario iscriversi all'esame tramite il sito https://esami.unipi.it, compilando prima il questionario di valutazione dell’insegnamento.

L'esame di Elementi di analisi complessa consiste principalmente in un seminario su un argomento scelto dallo studente fra uno di quelli elencati qui di seguito. Il seminario deve durare 20-30 minuti, può svolgersi in italiano o in inglese, e deve contenere la dimostrazione di almeno un risultato principale. Al termine del seminario ci saranno anche delle domande per verificare la comprensione di argomenti trattati a lezione in qualche modo collegati al contenuto del seminario. Il seminario può svolgersi alla lavagna oppure prevedere la proiezione di slide. Per ogni argomento ho indicato fra parentesi quadre una possibile fonte bibliografica (con referenze complete indicate alla fine), ma e' possibile usare anche altri testi.

1. Schottky theorem and little Picard theorem [A1, Section 4] or [R1, Chapter 16, Theorem 16.22]
2. Bieberbach theorem and Koebe (1/4)-theorem [A1, Section 5] or [R1, Chapter 14, Theorem 14.14]
3. Mergelyan theorem [R1, Chapter 20]
4. Fatou theorem [R1, Chapter 11, Theorem 11.20]
5. Zeroes of bounded holomorphic functions [R1, Chapter 15, Theorems 15.18, 15.21, 15.23]
6. Boundary extension of the Riemann map [R1, Chapter 14, Theorems 14.18, 14.19] or [C, Section 14.5]
7. Cartan uniqueness theorems and automorphisms groups [K, Section 10.1] or [R2, Chapter 2]
8. Schwarz's lemma in the unit ball and fixed point sets [R2, Sections 8.1, 8.2]
9. Lindelof-Cirka theorems [R2, Section 8.4]
10. Cousin problems [K, Section 6.1]
11. Wollf-Denjoy theorem in the unit ball [A2, Sections 2.2.1, 2.2.2, 2.2.5]
12. Proper holomorphic maps [R2, Sections 15.1 and/or 15.2]

[A1] M. Abate, Note per un secondo corso di Analisi Complessa in una variabile. link
[A2] M. Abate, Iteration theory of holomorphic maps on taut manifolds. link
[C] J.B. Conway, Functions of one complex variable II, Springer
[K] S.G. Krantz, Function theory of several complex variables, Wiley.
[R1] W. Rudin, Real and complex analysis, McGraw-Hill
[R2] W. Rudin, Function theory in the unit ball of Cn, Springer.

Appelli autunnali e invernali di Elementi di Analisi Complessa

Gli appelli autunnali e invernali dell'insegnamento di Elementi di Analisi Complessa saranno
12 novembre 2021 ore 09:00 Sala Seminari, periodo d'iscrizione all'esame: 13/09/2021-05/11/2021 ATTENZIONE: per scegliere l'orario dell'esame occorre collegarsi al sito https://agende.unipi.it/cbm-kdc-qvj
10 gennaio 2022
ore 09::00 Sala Seminari, periodo d'iscrizione all'esame: 22/11/2021-06/01/2022 ATTENZIONE: per scegliere l'orario dell'esame occorre collegarsi al sito https://agende.unipi.it/ygw-whn-wen
21 febbraio 2022 ore 09:00 Sala Seminari, periodo d'iscrizione all'esame: 23/12/2021-17/02/2022 ATTENZIONE: per scegliere l'orario dell'esame occorre collegarsi al sito https://agende.unipi.it/plq-qwy-oyu

Ricordo che e' necessario iscriversi all'esame tramite il sito https://esami.unipi.it, compilando prima il questionario di valutazione dell’insegnamento.

L'esame di Elementi di analisi complessa consiste principalmente in un seminario su un argomento scelto dallo studente fra uno di quelli elencati qui di seguito. Il seminario deve durare 20-30 minuti, può svolgersi in italiano o in inglese, e deve contenere la dimostrazione di almeno un risultato principale. Al termine del seminario potrei fare una-due domande per verificare la comprensione di argomenti trattati a lezione in qualche modo collegati al contenuto del seminario. Il seminario può svolgersi alla lavagna oppure prevedere la proiezione di slide.
Per ogni argomento ho indicato fra parentesi quadre una possibile fonte bibliografica (con referenze complete indicate alla fine), ma e' possibile usare anche altri testi.

1. Schottky theorem and little Picard theorem [A1, Section 4] or [R1, Chapter 16, Theorem 16.22]
2. Bieberbach theorem and Koebe (1/4)-theorem [A1, Section 5] or [R1, Chapter 14, Theorem 14.14]
3. Mergelyan theorem [R1, Chapter 20]
4. Fatou theorem [R1, Chapter 11, Theorem 11.20]
5. Zeroes of bounded holomorphic functions [R1, Chapter 15, Theorems 15.18, 15.21, 15.23]
6. Boundary extension of the Riemann map [R1, Chapter 14, Theorems 14.18, 14.19] or [C, Section 14.5]
7. Cartan uniqueness theorems and automorphisms groups [K, Section 10.1] or [R2, Chapter 2]
8. Schwarz's lemma in the unit ball and fixed point sets [R2, Sections 8.1, 8.2]
9. Lindelof-Cirka theorems [R2, Section 8.4]
10. Cousin problems [K, Section 6.1]
11. Wollf-Denjoy theorem in the unit ball [A2, Sections 2.2.1, 2.2.2, 2.2.5]
12. Proper holomorphic maps [R2, Sections 15.1 and/or 15.2]

[A1] M. Abate, Note per un secondo corso di Analisi Complessa in una variabile. link
[A2] M. Abate, Iteration theory of holomorphic maps on taut manifolds. link
[C] J.B. Conway, Functions of one complex variable II, Springer
[K] S.G. Krantz, Function theory of several complex variables, Wiley.
[R1] W. Rudin, Real and complex analysis, McGraw-Hill
[R2] W. Rudin, Function theory in the unit ball of Cn, Springer.

Lezioni di Elementi di Analisi Compessa

Le lezioni di Elementi di Analisi Complessa iniziano venerdì 26 febbraio alle ore 9:00 nell'aula virtuale di Teams (non di Meet) dedicata a questo insegnamento, che si raggiunge anche tramite questo link.

Ricevimento studenti

A causa dell'emergenza coronavirus, il ricevimento studenti (originariamente previsto per il venerdì dalle 14:00 alle 16:00) avverrà solo previo appuntamento via mail, in modo da evitare la presenza contemporanea di un numero eccessivo di persone.

Prima lezione di Elementi di Analisi Complessa

Sono via dal 5 al 15 gennaio

Dal 5 al 15 gennaio saro’ in missione (Cile e Roma), per cui in quel periodo il ricevimento studenti e’ sospeso; rimango comunque raggiungibile per posta elettronica.

Sono via dal 18 novembre al 6 dicembre

Dal 18 novembre al 6 dicembre saro’ in missione (Uzbekistan), per cui in quel periodo il ricevimento studenti e’ sospeso; rimango comunque raggiungibile per posta elettronica.