Filmati Matematici // Mathematical Movies
Questi filmati sono stati creati con FractalStream, con Mathematica o forniti per gentile concessione da Gian Marco Todesco // These movies have been created with FractalStream, with Mathematica or kindly provided by Gian Marco Todesco
Cliccando sul nome si vede il filmato corrispondente // Clicking on the name starts the corresponding movie
- Basins of attractions for the Newton method of z^3-1 (8 sec, 48 MB)
- Inside the Mandelbrot set (26 sec, 150.9 MB)
- Inside maps tangent to the identity in C^2 (3 sec, 34.7 MB)
- Inside maps tangent to the identity in C^2 (3 sec, 26.9 MB)
- Vector field on a sphere (6 sec, 6.2 MB)
- Impossible vector field on a sphere (6 sec, 5.6 MB)
- Vector field on a torus (6 sec, 3.5 MB)
- The Gauss map for a paraboloid (6 sec, 2 MB)
- The image of the Gauss map for a paraboloid (6 sec, 2.4 MB)
- The Gauss map for a saddle (6 sec, 2.8 MB)
- The image of the Gauss map for a saddle (6 sec, 937 KB)
- Squared torus (6 sec, 1.4 MB)
- Squared 2-torus (6 sec, 2 MB)
- Tetrahedron (7 sec, 498 KB)
- Cube (7 sec, 1.8 MB)
- Octahedron (7 sec, 931 KB)
- Dodecahedron (7 sec, 1.5 MB)
- Icosahedron (7 sec, 2 MB)
- Paraboloid (6 sec, 5.9 MB)
- Saddle surface (6 sec, 6.5 MB)
- Sphere (6 sec, 7.5 MB)
- Torus (6 sec, 5 MB)
- Birth of a golden ratio sunflower (1 min, 3.6 MB)
- Birth of a 1/4-sunflower (20 sec, 270 KB)
- Birth of a 2/13-sunflower (20 sec, 592 KB)
- Birth of a pi sunflower (40 sec, 1.1 MB)
- From circle to ellipse (1 sec, 53 KB)
- From circle to ellipse via a square (6 sec, 131 KB)
- Travelling through the 3-sphere via 2-spheres, by Gian Marco Todesco (20 sec, 5.8 MB)
- Travelling through the 3-sphere via tori, by Gian Marco Todesco (20 sec, 5.3 MB)
- Geodesics for a quadratic vector field (Case 3) changing the real part of one residue (3 sec, 1.2 MB)