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INTRODUCTION
A key object of study in mathematical physics is anti de-Sitter space,
a class of manifolds the provides important theoretical framework for
several prominent fields.
Previous research [1] has established a homeomorphism between the
space of maximal surfaces in anti-de Sitter space and polynomial
quadratic differentials over C. In this project we studied the limit-
ing behavior of this correspondence by fixing a polynomial p(z), and
studying the surface associated with tp(z)dz2 as t ∈ R tends to infinity.

Theorem A Let q = p(z)dz2 be a polynomial quadratic differential. There
exists a nonnegative integer k so that the surface associated with tq converges
to the surface associated with wkdw2 as t ∈ R tends to infinity.

POLYGONS FROM POLYNOMIALS
As we take t → ∞ and consider the maximal surface associated with
the polynomial quadratic differential qt = tq = th(z)dz2, we see that
the surface eventually behaves like that of a monomial. To see this, note
that we can change variables to w = az + b for fixed a, b ∈ R, and the
resulting surface is equivalent up to a transformation in SO(2, 2). From
this, we can show there is a unique α > 0 such that in the coordinate
w = (akt)

αz we have qt = q̂t(w)dw2 → wkdw2 as t→∞.
Using the sub/super solution technique for PDEs, we are able to prove
that this convergence of differentials passes to a convergence of solu-
tions to u.
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PROGRAM DETAILS
To produce these images, the program solves for the PDE

∆ut = 2e2ut − 2e−2ut |qt|2

by perturbation of the test function 1
4 log(|q|2). To center the polyno-

mial at the origin, it is transformed to eliminate the zn−1 term, where
n is the degree of q, as described in the previous section. It then solves
the ODE’s in the "Maximal Surfaces in ÂdS3" section, where the max-
imal surface is extrapolated as the last column of F and the vertices
of the polygon on the boundary are the eigenvectors with the highest
associated eigenvalues along the directions kπ

n+2 .

ANTI-DE SITTER GEOMETRY

We begin by endowing R4 with the bilinear form

< x, y >= x1y1 + x2y2 − x3y3 − x4y4

for all x, y ∈ R4. Anti-de Sitter Space is then defined as the quadric

ÂdS3 = {x ∈ R4| < x, x >= −1}

This is brought into three dimensions by being mapped to RP3, where
we say that two vectors v, w ∈ R4 map to the same point iff there is a
nonzero real scalar λ such that v = λw. We can then define the projec-
tive mapping

P : R4\{0} −→ RP3

where the image of the restriction of P to ˆAdS3 can be called AdS3. If
we then look at the set of points {(x1, x2, x3, x4) ∈ RP3| x4 6= 0}, then
there is a unique representative such that x4 = 1, and thus we can
identify it with R3 via the mapping

(x1, x2, x3, x4) −→
(
x1
x4
,
x2
x4
,
x3
x4

)
giving us a representation of AdS3 that fills the interior of the quadric
x2 + y2 − z2 = 1 in R3, which looks like:

MAXIMAL SURFACES IN ÂdS3

Maximal surfaces in ÂdS3 are surfaces with zero mean curvature. We
can define such surfaces using the first I and second fundamental
forms II . Given a parameterization f of a maximal surface S in AdS3,
we set

I =

(
〈fx(p), fx(p)〉 〈fx(p), fy(p)〉
〈fx(p), fy(p)〉 〈fy(p), fy(p)〉

)
.

We will restrict our attention to conformal surfaces, i.e where I is equal
to 2e2u times the identity matrix (the notation 2e2u will be important).
We define the second fundamental form as

II =

(
〈fxx(p), N〉 〈fxy(p), N〉
〈fyx(p), N〉 〈fyy(p), N〉

)
where N is defined as the unit orthogonal to f, fx, and fy so that the
determinant of the matrix (fx, fy, N, f) is 2e2u. The surface is maximal
when trace(II) = 0. There, the second fundamental form is the real
part of a holomorphic quadratic differential q = h(z)dz2:

II = 2Re(q) =

(
2Re(h) −2Im(h)
−2Im(h) −2Re(h)

)
The functions u and h are related by the PDE

∆u = −1

2
e2u(II21,1 + II21,2) + 2e2u

for u, which arises as integrability condition of the ODEs
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Therefore, we can construct a surface with given quadratic differential
by solving the PDE first, then the ODE, and then taking the last column
of the solution of the ODE.


