RICE

Rays of polynomial maximal surfaces in $A d S_{3}$

Chumeng Di, Ethan Levin \& Arie Ogranovich

INTRODUCTION

A key object of study in mathematical physics is anti de-Sitter space, a class of manifolds the provides important theoretical framework for several prominent fields.
Previous research [1] has established a homeomorphism between the space of maximal surfaces in anti-de Sitter space and polynomial quadratic differentials over \mathbb{C}. In this project we studied the limiting behavior of this correspondence by fixing a polynomial $p(z)$, and studying the surface associated with $\operatorname{tp}(z) d z^{2}$ as $t \in \mathbb{R}$ tends to infinity.
Theorem A Let $q=p(z) d z^{2}$ be a polynomial quadratic differential. There exists a nonnegative integer k so that the surface associated with $t q$ converges to the surface associated with $w^{k} d w^{2}$ as $t \in \mathbb{R}$ tends to infinity.

ANTI-DE SITTER GEOMETRY

We begin by endowing \mathbb{R}^{4} with the bilinear form

$$
<x, y>=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}
$$

for all $x, y \in \mathbb{R}^{4}$. Anti-de Sitter Space is then defined as the quadric

$$
\widehat{A d S_{3}}=\left\{x \in \mathbb{R}^{4} \mid<x, x>=-1\right\}
$$

This is brought into three dimensions by being mapped to $\mathbb{R} \mathbb{P}^{3}$, where we say that two vectors $v, w \in \mathbb{R}^{4}$ map to the same point iff there is a nonzero real scalar λ such that $v=\lambda w$. We can then define the projective mapping

$$
\mathbb{P}: \mathbb{R}^{4} \backslash\{0\} \longrightarrow \mathbb{R P}^{3}
$$

where the image of the restriction of \mathbb{P} to $A \hat{d} S_{3}$ can be called $A d S_{3}$. If we then look at the set of points $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{3} \mid x_{4} \neq 0\right\}$, then there is a unique representative such that $x_{4}=1$, and thus we can identify it with \mathbb{R}^{3} via the mapping

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(\frac{x_{1}}{x_{4}}, \frac{x_{2}}{x_{4}}, \frac{x_{3}}{x_{4}}\right)
$$

giving us a representation of $A d S_{3}$ that fills the interior of the quadric $x^{2}+y^{2}-z^{2}=1$ in \mathbb{R}^{3}, which looks like:

MaXIMAL SURFACES IN $\widehat{A d S}_{3}$

Maximal surfaces in $\widehat{A d S}_{3}$ are surfaces with zero mean curvature. We can define such surfaces using the first I and second fundamental forms II. Given a parameterization f of a maximal surface S in $A d S_{3}$, we set

$$
I=\left(\begin{array}{ll}
\left\langle f_{x}(p), f_{x}(p)\right\rangle & \left\langle f_{x}(p), f_{y}(p)\right\rangle \\
\left\langle f_{x}(p), f_{y}(p)\right\rangle & \left\langle f_{y}(p), f_{y}(p)\right\rangle
\end{array}\right)
$$

We will restrict our attention to conformal surfaces, i.e where I is equal to $2 e^{2 u}$ times the identity matrix (the notation $2 e^{2 u}$ will be important). We define the second fundamental form as

$$
I I=\left(\begin{array}{ll}
\left\langle f_{x x}(p), N\right\rangle & \left\langle f_{x y}(p), N\right\rangle \\
\left\langle f_{y x}(p), N\right\rangle & \left\langle f_{y y}(p), N\right\rangle
\end{array}\right)
$$

where N is defined as the unit orthogonal to f, f_{x}, and f_{y} so that the determinant of the matrix $\left(f_{x}, f_{y}, N, f\right)$ is $2 e^{2 u}$. The surface is maximal when $\operatorname{trace}(I I)=0$. There, the second fundamental form is the real part of a holomorphic quadratic differential $q=h(z) d z^{2}$:

$$
I I=2 \operatorname{Re}(q)=\left(\begin{array}{cc}
2 \operatorname{Re}(h) & -2 \operatorname{Im}(h) \\
-2 \operatorname{Im}(h) & -2 \operatorname{Re}(h)
\end{array}\right)
$$

The functions u and h are related by the PDE

$$
\Delta u=-\frac{1}{2} e^{2 u}\left(\Pi_{1,1}^{2}+\Pi_{1,2}^{2}\right)+2 e^{2 u}
$$

for u, which arises as integrability condition of the ODEs

$$
\begin{aligned}
\partial_{x} \mathcal{F} & =\mathcal{F}\left(\begin{array}{cccc}
0 & u_{y} & \left(e^{-u} / \sqrt{2}\right) \Pi_{1,1} & e^{u} \sqrt{2} \\
-u_{y} & 0 & \left(e^{-u} / \sqrt{2}\right) \Pi_{1,2} & 0 \\
\left(e^{-u} / \sqrt{2}\right) \Pi_{1,1} & \left(e^{-u} / \sqrt{2}\right) \Pi_{1,2} & 0 & 0 \\
e^{u} \sqrt{2} & 0 & 0 & 0
\end{array}\right) \\
\partial_{y} \mathcal{F} & =\mathcal{F}\left(\begin{array}{cccc}
0 & -u_{x} & \left(e^{-u} / \sqrt{2}\right) \Pi_{1,2} & 0 \\
0 & 0 & -\left(e^{-u} / \sqrt{2}\right) \Pi_{1,1} & e^{u} \sqrt{2} \\
u_{x} & \left.e^{-u} / \sqrt{2}\right) \Pi_{1,2} & \left(e^{-u} / \sqrt{2}\right) \Pi_{1,1} & 0 \\
0 & e^{u} \sqrt{2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

Therefore, we can construct a surface with given quadratic differential by solving the PDE first, then the ODE, and then taking the last column of the solution of the ODE.

References

[1] Andrea Tamburelli. Polynomial quadratic differentials on the complex plane and light-like polygons in the Einstein Universe. Adv. Math., 352C:483-515, 2019.

POLYGONS FROM POLYNOMIALS

As we take $t \rightarrow \infty$ and consider the maximal surface associated with the polynomial quadratic differential $q_{t}=t q=t h(z) d z^{2}$, we see that the surface eventually behaves like that of a monomial. To see this, note that we can change variables to $w=a z+b$ for fixed $a, b \in \mathbb{R}$, and the resulting surface is equivalent up to a transformation in $S O(2,2)$. From this, we can show there is a unique $\alpha>0$ such that in the coordinate $w=\left(a_{k} t\right)^{\alpha} z$ we have $q_{t}=\hat{q_{t}}(w) d w^{2} \rightarrow w^{k} d w^{2}$ as $t \rightarrow \infty$.
Using the sub/super solution technique for PDEs, we are able to prove that this convergence of differentials passes to a convergence of solutions to u.

$\begin{array}{ll}\text { (A) Boundary for } p(z)=z^{5}+1 & \text { (B) Boundary for } p(z)=30000\left(z^{5}+1\right)\end{array}$

[^0](B) Boundary for $p(z)=30000\left(z^{5}+z\right)$

Program Details

To produce these images, the program solves for the PDE

$$
\Delta u_{t}=2 e^{2 u_{t}}-2 e^{-2 u_{t}}\left|q_{t}\right|^{2}
$$

by perturbation of the test function $\frac{1}{4} \log \left(|q|^{2}\right)$. To center the polynomial at the origin, it is transformed to eliminate the z^{n-1} term, where n is the degree of q, as described in the previous section. It then solves the ODE's in the "Maximal Surfaces in $\widehat{A d S_{3}}$ " section, where the maximal surface is extrapolated as the last column of \mathcal{F} and the vertices of the polygon on the boundary are the eigenvectors with the highest associated eigenvalues along the directions $\frac{k \pi}{n+2}$.

Acknowledgment

The authors acknowledge support from the NSF through grant DMS2005501.

[^0]: (A) Boundary for $p(z)=z^{5}+z$

