

INTRODUCTION

A key object of study in mathematical physics is anti de-Sitter space, a class of manifolds the provides important theoretical framework for several prominent fields.

Previous research [1] has established a homeomorphism between the space of maximal surfaces in anti-de Sitter space and polynomial quadratic differentials over \mathbb{C} . In this project we studied the limiting behavior of this correspondence by fixing a polynomial p(z), and studying the surface associated with $tp(z)dz^2$ as $t \in \mathbb{R}$ tends to infinity.

Theorem A Let $q = p(z)dz^2$ be a polynomial quadratic differential. There exists a nonnegative integer k so that the surface associated with tq converges to the surface associated with $w^k dw^2$ as $t \in \mathbb{R}$ tends to infinity.

ANTI-DE SITTER GEOMETRY

We begin by endowing \mathbb{R}^4 with the bilinear form

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3 - x_4 y_4$$

for all $x, y \in \mathbb{R}^4$. Anti-de Sitter Space is then defined as the quadric

$$\widehat{AdS_3} = \{ x \in \mathbb{R}^4 | < x, x \ge -1 \}$$

This is brought into three dimensions by being mapped to \mathbb{RP}^3 , where we say that two vectors $v, w \in \mathbb{R}^4$ map to the same point iff there is a nonzero real scalar λ such that $v = \lambda w$. We can then define the projective mapping

$$\mathbb{P}: \mathbb{R}^4 \setminus \{0\} \longrightarrow \mathbb{RP}^3$$

where the image of the restriction of \mathbb{P} to $A\hat{d}S_3$ can be called AdS_3 . If we then look at the set of points $\{(x_1, x_2, x_3, x_4) \in \mathbb{RP}^3 | x_4 \neq 0\}$, then there is a unique representative such that $x_4 = 1$, and thus we can identify it with \mathbb{R}^3 via the mapping

$$(x_1, x_2, x_3, x_4) \longrightarrow \left(\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4}\right)$$

giving us a representation of AdS_3 that fills the interior of the quadric $\tilde{x}^2 + \tilde{y}^2 - z^2 = 1$ in \mathbb{R}^3 , which looks like:

AYS OF POLYNOMIAL MAXIMAL SURFACES IN AdS_3

CHUMENG DI, ETHAN LEVIN & ARIE OGRANOVICH

MAXIMAL SURFACES IN AdS_3

Maximal surfaces in \widehat{AdS}_3 are surfaces with zero mean curvature. We can define such surfaces using the first *I* and second fundamental forms II. Given a parameterization f of a maximal surface S in AdS_3 , we set

$$I = \begin{pmatrix} \langle f_x(p), f_x(p) \rangle & \langle f_x(p), f_y(p) \rangle \\ \langle f_x(p), f_y(p) \rangle & \langle f_y(p), f_y(p) \rangle \end{pmatrix}$$

We will restrict our attention to conformal surfaces, i.e where *I* is equal to $2e^{2u}$ times the identity matrix (the notation $2e^{2u}$ will be important). We define the second fundamental form as

$$I\!I = \begin{pmatrix} \langle f_{xx}(p), N \rangle & \langle f_{xy}(p), N \rangle \\ \langle f_{yx}(p), N \rangle & \langle f_{yy}(p), N \rangle \end{pmatrix}$$

where N is defined as the unit orthogonal to f, f_x , and f_y so that the determinant of the matrix (f_x, f_y, N, f) is $2e^{2u}$. The surface is maximal when trace(II) = 0. There, the second fundamental form is the real part of a holomorphic quadratic differential $q = h(z)dz^2$:

$$I\!I = 2Re(q) = \begin{pmatrix} 2Re(h) & -2Im(h) \\ -2Im(h) & -2Re(h) \end{pmatrix}$$

The functions *u* and *h* are related by the PDE

 $\Delta u = -\frac{1}{2}e^{2u}(I\!I_{1,1}^2 + I\!I_{1,2}^2) + 2e^{2u}$

for *u*, which arises as integrability condition of the ODEs

$$\partial_x \mathcal{F} = \mathcal{F} \begin{pmatrix} 0 & u_y \\ -u_y & 0 \\ (e^{-u}/\sqrt{2}) I\!\!I_{1,1} & (e^{-u}/\sqrt{2}) I\!\!I_{1,2} \\ e^u \sqrt{2} & 0 \end{pmatrix}$$

$$\partial_{y} \mathcal{F} = \mathcal{F} \begin{pmatrix} 0 & -u_{x} \\ u_{x} & 0 \\ (e^{-u}/\sqrt{2}) I\!\!I_{1,2} & (e^{-u}/\sqrt{2}) I\!\!I_{1,1} \\ 0 & e^{u}\sqrt{2} \end{pmatrix}$$

Therefore, we can construct a surface with given quadratic differential by solving the PDE first, then the ODE, and then taking the last column of the solution of the ODE.

REFERENCES

Andrea Tamburelli. Polynomial quadratic differentials on the complex plane and light-like polygons in the Einstein Universe. Adv. Math., 352C:483–515, 2019.

$$\begin{array}{cccc} (e^{-u}/\sqrt{2}) I\!\!I_{1,1} & e^{u}\sqrt{2} \\ (e^{-u}/\sqrt{2}) I\!\!I_{1,2} & 0 \\ & 0 & 0 \\ 0 & 0 & \end{array}$$

$$\begin{array}{ccc} (e^{-u}/\sqrt{2})I\!\!I_{1,2} & 0\\ -(e^{-u}/\sqrt{2})I\!\!I_{1,1} & e^{u}\sqrt{2}\\ & 0 & 0\\ 0 & 0 \end{array}$$

POLYGONS FROM POLYNOMIALS

 $w = (a_k t)^{\alpha} z$ we have $q_t = \hat{q_t}(w) dw^2 \to w^k dw^2$ as $t \to \infty$. tions to u.

(A) Boundary for $p(z) = z^5 + 1$

(A) Boundary for $p(z) = z^5 + z$

PROGRAM DETAILS

To produce these images, the program solves for the PDE

$$\Delta u_t = 2$$

by perturbation of the test function $\frac{1}{4}\log(|q|^2)$. To center the polynomial at the origin, it is transformed to eliminate the z^{n-1} term, where *n* is the degree of *q*, as described in the previous section. It then solves the ODE's in the "Maximal Surfaces in $\widehat{AdS_3}$ " section, where the maximal surface is extrapolated as the last column of \mathcal{F} and the vertices of the polygon on the boundary are the eigenvectors with the highest associated eigenvalues along the directions $\frac{k\pi}{n+2}$.

ACKNOWLEDGMENT

The authors acknowledge support from the NSF through grant DMS-2005501.

As we take $t \to \infty$ and consider the maximal surface associated with the polynomial quadratic differential $q_t = tq = th(z)dz^2$, we see that the surface eventually behaves like that of a monomial. To see this, note that we can change variables to w = az + b for fixed $a, b \in \mathbb{R}$, and the resulting surface is equivalent up to a transformation in SO(2,2). From this, we can show there is a unique $\alpha > 0$ such that in the coordinate

Using the sub/super solution technique for PDEs, we are able to prove that this convergence of differentials passes to a convergence of solu-

(B) Boundary for $p(z) = 30000(z^5 + 1)$

(B) Boundary for $p(z) = 30000(z^5 + z)$

 $2e^{2u_t} - 2e^{-2u_t}|q_t|^2$