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Abstract

The starting point of this thesis is the following observation of Atiyah and Bott [4]:
The curvature of a connection on a bundle over a surface can be understood as a
moment map for the action of the gauge group. Moreover, the moduli space of flat
connections, or more generally of Yang–Mills connections, is closely related to the
moduli space of holomorphic bundles obtained from geometric invariant theory. We
discuss the various implications of this observation to the Yang–Mills equations and
the symplectic vortex equations over Riemann surfaces. As main results, we obtain
the analogue of the Ness uniqueness theorem, the Kempf-Ness theorem, the Hilbert-
Mumford criterion and the moment-weight inequality in both settings. The main
technical ingredients are long-time existence and convergence of the Yang–Mills and
the Yang–Mills–Higgs heat flow. These are the parabolic flows associated to the
corresponding moment map squared functionals in both setups.

Donaldson introduced in [35, 38] various extensions of the Atiyah–Bott picture to
actions of the diffeomorphism group. We begin with a self-contained exposition of
his moment map framework in [38] and its applications to Teichmüller theory. This
is the starting point for the following three projects, discussed in the remainder of
this thesis.

The first one generalizes Donaldson’s construction of Teichmüller space to the
moduli spaces of tuples of holomorphic differentials of mixed degree. These moduli
spaces are closely related to Hitchin’s higher Teichmüller components [59]. A distant
hope is, that this might lead to a new construction of the Hitchin component using
the diffeomorphism group instead of the gauge group.

The second project is joint work with Dietmar Salamon and Oscar Garćıa-Prada.
We show that the Ricci form yields a moment map for the action of the group
of exact volume preserving diffeomorphisms on the space of almost complex struc-
tures. This yields an extended Weil–Petersson symplectic form on the Calabi–Yau
Teichmüller space of isotopy classes of complex structures with first Chern class zero
and nonempty Kähler cone.

The third project is joint work with Oscar Garćıa-Prada, Luis Álvarez-Consul
and Mario Garcia-Fernandez. We investigate variants of the Hitchin equations [58]
where the complex structure is not fixed and the gauge group is extended by the
Hamiltonian diffeomorphism group. This leads to moduli spaces which naturally fiber
over Teichmüller space with fibre being the corresponding Hitchin moduli space.
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Zusammenfassung

Der Ausgangspunkt dieser Arbeit ist die folgende Beobachtung von Atiyah und Bott
[4]: Die Krümmung eines Zusammenhangs auf einem Bündel über einer Fläche kann
als Momentum-Abbildung für die Wirkung der Eichgruppe verstanden werden. Zu-
dem ist der Modulraum der flachen Zusammenhänge, oder allgemeiner der Yang–Mills
Zusammenhänge, eng mit dem Modulraum der holomorphen Bündel aus der ge-
ometrischen Invariantentheorie verbunden. Wir diskutieren die Auswirkungen dieser
Beobachtung auf die Yang–Mills Gleichungen und die symplektischen Wirbelgleichun-
gen über Riemannschen Flächen. Als Hauptresultate erhalten wir Varianten des
Ness–Eindeutigkeitssatzes, des Kempf–Ness Theorems, des Hilbert–Mumford Kriteri-
ums und der Momentum–Gewichts Ungleichung in beiden Fällen. Ein zentrales tech-
nisches Resultat ist die Existenz und Konvergenz des Yang–Mills und Yang–Mills–
Higgs Wärmeflusses. Diese sind die parabolischen Differentialgleichungen, welche aus
der Gradientengleichung der normquadrierten Momentum-Abbildungen hervorgehen.

Donaldson führte in [35, 38] verschiedene Erweiterungen für Wirkungen der Dif-
feomorphismengruppe ein. Wir beginnen mit einer eigenständigen Darstellung seiner
Momenten-Abbildung in [38] und deren Anwendungen auf die Teichmüller Theorie.
Dies ist der Ausgangspunkt für die folgenden drei Projekte, welche im restlichen Teil
der Arbeit diskutiert werden.

Das erste Projekt verallgemeinert Donaldson’s Konstruktion des Teichmüller-
Raums zu den Modulräumen von Tupeln von holomorphen Differentialen gemischten
Grades. Diese Modulräume sind eng mit Hitchin’s Teichmüller-Komponenten [59]
verbunden. Eine entfernte Hoffnung ist, dass dies zu einer neuen Konstruktion der
Hitchin-Komponente führen könnte, die die Diffeomorphismengruppe anstelle der
Eichgruppe verwendet. Das zweite Projekt ist eine gemeinsame Arbeit mit Dietmar
Salamon und Oscar Garćıa-Prada. Wir zeigen, dass die Ricci Form eine Momentum-
Abbildung für die Wirkung der Gruppe der exakten volumenerhaltenden Diffeomor-
phismen auf dem Raum der fastkomplexen Strukturen liefert. Dies führt zu einer
erweiterten Weil–Petersson symplektischen Form auf dem Calabi–Yau Teichmüller-
Raum von Isotopieklassen komplexer Strukturen mit verschwindender reeller erster
Chern–Klasse und nicht leerem Kähler-Kegel. Das dritte Projekt ist eine gemeinsame
Arbeit mit Oscar Garćıa-Prada, Luis Álvarez-Consul and Mario Garcia-Fernandez.
Wir untersuchen Varianten der Hitchin Gleichung [58], bei denen die komplexe Struk-
tur auf der Fläche nicht festgehalten wird und die Eichgruppe um die Gruppe der
Hamiltonischen Diffeomorphismen erweitert wird. Dies liefert Modulräume, welche
auf natürliche Weise Faserungen über dem Teichmüller-Raums bilden. Als Fasern
erhält man dabei die entsprechenden Hitchin-Modulräumen.

v



vi



Acknowledgements

First and foremost, I want to thank my advisor Dietmar Salamon. I am deeply
grateful for his constant support, patience and for sharing his knowledge and passion
for mathematics with me over the last years. Without his guidance, this thesis would
not have been possible.

Furthermore, I am thankful for the financial support provided by the Swiss Na-
tional Science Foundation (grant number 200021-156000).

Besides my advisor, I would like to express my great appreciation to my co-
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Chapter 1

Introduction

The concept of moment or momentum maps in symplectic geometry has a long his-
tory. They appeared first in Hamiltonian mechanics as conservation laws associated
to symmetries and provided a formalism to reduce the degrees of freedom. Since then
they turned out to be a powerful conceptual framework for many modern differential
geometry questions and as such have led to various spectacular results, see [83] for
an historic overview. In modern language, a moment map, associated to the action
of a Lie group G with Lie algebra g on a symplectic manifold X, is a map

µ : X → g∗ (1.1)

such that for every ξ ∈ g the Hamiltonian function Hξ := 〈µ(·), ξ〉 generates its
infinitesimal action. In addition, one often requires that µ is equivariant for the
coadjoint action. Marsden and Weinstein [82] observed that the quotient µ−1(0)/G,
assuming that it is again a manifold, carries a canonical symplectic structure. This
process is called symplectic reduction and µ−1(0)/G is the Marsden–Weinstein quo-
tient of X for the action of G.

Many important questions in differential geometry admit a description in terms
of moment maps. Atiyah and Bott [4] observed that the curvature can be viewed as
a moment map on the space of connections for the action of the gauge group. This
observation has been extended to various gauge theoretical moduli problems, includ-
ing the study of Hermitian Yang–Mills connections [31, 32, 118], Hitchin’s equation
[58, 102], Bradlow pairs [12] and the symplectic vortex equations [89]. Another beau-
tiful observation due to Quillen and then generalized by Fujiki [48] and Donaldson [34]
shows, that the scalar curvature provides a moment map on the space of compatible
almost complex structures on a symplectic manifold for the action of the Hamiltonian
diffeomorphism group. This is by no means intended to be a complete list and there
are many more situations where moment maps occur naturally. All these examples
have in common that the underlying symplectic manifold and the acting symmetry
group are infinite dimensional. While some of them are very different in flavour, they
rest on a conceptually unified framework provided by the moment map point of view
which comes along with a package of standard theory.

Another important observation is the close connection between symplectic reduc-
tion and geometric invariant theory. This became apparent in the work of Atiyah
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2 CHAPTER 1. INTRODUCTION

and Bott [4] and has subsequently been explored in greater detail by Ness [92] and
Kirwan [69]. Suppose G acts on a Kähler manifold X by Kähler isometries and the
action is generated by a moment map µ : X → g∗. When the action of G extends to a
holomorphic action of its complexification Gc then µ−1(0)/G is naturally isomorphic
to the GIT quotient X//Gc introduced by Mumford [88]. The orbit space X/Gc is
generally very badly behaved and the construction of the GIT quotient relies on a
suitable notion of stability. It is defined as

X//Gc := (Xss/Gc)/ ∼ (1.2)

where Xss ⊂ X is the locus of semistable points and two orbits Gc(x1) ∼ Gc(x2)
are identified if and only if Gc(x1) ∩ Gc(x2) ∩ Xss 6= ∅. Here, the key observation
is that every semistable orbit contains a unique G-orbit of solutions to the equation
µ(x) = 0 in its closure.

There are many remarkable infinite dimensional examples of geometric invariant
theory. In these situations, the equation µ(x) = 0 usually corresponds to difficult
partial differential equations and one is interested in finding suitable stability cri-
teria which characterize the existence of solutions. Examples are the Donaldson–
Uhlenbeck–Yau correspondence [31, 32, 118] which relates stable holomorphic vector
bundles to Hermitian Yang–Mills connections, the Kobayashi–Hitchin correspondence
[89], or the recent work of Donaldson–Chen–Sun [20, 21, 22] relating K-stability to
the existence of Kähler Einstein metrics on Fano manifolds.

1.1 Outline
The first part of this thesis investigates the GIT picture for the Yang–Mills and
symplectic vortex equations over Riemann surfaces. In the second part, we provide
an expository account on Donaldson’s moment map framework for the diffeomorphism
group [38] and its application to Teichmüller theory. We then present three projects
based on these ideas: A construction of the moduli space of tuples of holomorphic
differentials fibering over Teichmüller space, a new construction of the extended Weil–
Petersson symplectic form on Calabi–Yau Teichmüller space, and a construction of
universal Hitchin moduli spaces.

In the following, we give a detailed outline of this thesis. All theorems mentioned
in this overview are new results proven in this thesis with the following exceptions:
Theorem 1, Theorem 2, and Theorem 3 in Chapter 2 are mostly known, at least in
special cases, and we present new proofs for these theorems which arise from a new
perspective on the subject. Theorem 8, Theorem 9 and Theorem 10 in Chapter 4
are due to Donaldson [38] and Uhlenbeck [117]. We include detailed proofs of these
results in order to have precise references when we consider generalizations of these
constructions and for completeness of the exposition. The proofs of Theorem 14,
Theorem 15, and Theorem 16 in Chapter 6 are only sketched in this thesis and full
details are given in the joint paper [50]. Chapter 7 reports on work in progress and
most of the material has not yet been explored in full detail.

A more comprehensive and detailed introduction of the various results and a re-
view of the relevant existing literature can be found at the beginning of the respective
chapters.



1.1. OUTLINE 3

Chapter 2: The GIT picture for the Yang–Mills equation over
Riemann surfaces
This chapter provides a self-contained exposition of the Atiyah–Bott picture for the
Yang–Mills equation over Riemann surfaces [4]. In this overview we formulate three
theorems that are mostly known (at least in the unitary case) and can be found in var-
ious places in the literature and were proved by different authors in different degrees
of generality. The purpose of this chapter is to develop a new unified approach based
on GIT and in the course of this we also give new proofs of the theorems. The fact
that the Atiyah–Bott moment weight inequality in Theorem 3 can be proved along
these lines was hinted at by Donaldson in [39]. We carefully study the semistable and
unstable orbits and the main results are an analogue of the Ness uniqueness theo-
rem for Yang-Mills connections, the Hilbert-Mumford criterion, and a sharp moment
weight inequality. A central ingredient in our discussion is the Yang–Mills flow for
which R̊ade [97] proved longtime existence and convergence. This chapter has been
published in [114].

Let Σ be a Riemann surface, G a compact Lie group and P → Σ a principle G-
bundle. We fix a Riemannian structure on Σ and an invariant inner product on the
Lie algebra g of G. Atiyah and Bott [4] observed that the curvature yields a moment
map for the action of the gauge group G(P ) on the space of connections A(P ). By
Chern–Weil theory, there is a unique central element τ ∈ Z(g) with∫

Σ
α(τ) =

∫
Σ
α(FA) for all α ∈ g∗ and A ∈ A(P ). (1.3)

In particular, it follows that every projectively flat connection A ∈ A(P ) has constant
central curvature τ . We call this the central type of P and the Marsden–Weinstein
quotient associated to the shifted moment ∗FA− τ yields the moduli space of projec-
tively flat connections on P . The complexified gauge group G(P )c := G(P c) is defined
as the gauge group of the complexified bundle. Its action on the space A(P ) can be
understood by identifying the space of connections A(P ) with the space J (P c) of
holomorphic structures on the complexified bundle.

A central theorem in this theory relates the algebraic geometric notion of stable
holomorphic principle bundles (see Definition 2.3.2) to the existence of projectively
flat connections in a given complexified gauge orbit.

Theorem 1 (Narasimhan-Seshadri, Ramanathan [91, 95]). Every A ∈ A(P )
determines a unique holomorphic structure JA on the complexified bundle P c :=
P ×G Gc and the following holds:

1. (P c, JA) is stable if and only if there exists g ∈ Gc(P ) such that ∗FgA = τ and
the kernel of LA : Ω0(Σ, ad(P )⊗C)→ Ω1(Σ, ad(P )), LA(ξ+iη) := dAξ+∗dAη,
contains only constant central sections.

2. (P c, JA) is polystable if and only if there exists g ∈ Gc(P ) with ∗FgA = τ .

3. (P c, JA) is semistable if and only if infg∈Gc(P ) || ∗ FgA − τ ||L2 = 0.

4. (P c, JA) is unstable if and only if infg∈Gc(P ) || ∗ FgA − τ ||L2 > 0.
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Proof. This is reformulated as Theorem C in the introduction of Chapter 2 and proved
in Theorem 2.3.10.

The stable case is a reformulation of a theorem of Narasimhan-Seshadri [91] in
the case G = U(n) and Ramanathan [95] in the general case. They formulated the
theorem in terms of irreducible representations instead of projectively flat connections
and used entirely algebraic geometric methods for the proof. Analytic proofs of the
stable case were found by Donaldson [30] in the case G = U(n) and by Bradlow
[12] and Mundet [89] for more general moduli problems. The polystable case is
deduced from the stable case by induction on the dimension of G. The unstable and
semistable cases have not been explicitly formulated in the literature to the best of
our knowledge, but they are certainly known to the experts. The proof given here for
the semistable and unstable case in Theorem 1 is new and based on the Yang-Mills
flow, which we discuss next. The Yang–Mills functional is defined by

YM : A(P )→ R, YM(A) := 1
2

∫
Σ
|FA|2 dvolΣ. (1.4)

R̊ade [97] showed that for every initial data A0 ∈ A(P ) the gradient flow

∂tA(t) = −∇YM(A(t)) = −d∗A(t)FA(t), A(0) = A0 (1.5)

has a unique solution which exists for all time, remains in a single complexified orbit
and converges in the W 1,2-topology to a critical point, satisfying the Yang–Mills
equation d∗AFA = 0. This is the key ingredient in proving the following analogue of
the Ness-Uniqueness theorem for Yang–Mills connections:

Theorem 2 (Uniqueness of Yang-Mills connections). Let A0 ∈ A(P ) and let
A∞ be the limit of the Yang-Mills flow (1.5) starting at A0. Then

YM(A∞) = inf
g∈Gc(P )

YM(gA) =: m. (1.6)

Moreover, for every connection B ∈ Gc(A0) in the W 1,2-closure of Gc(A0) with
YM(B) = m, it holds G(B) = G(A∞).

Proof. This is reformulated as Theorem A in the introduction of Chapter 2 and
proved in Theorem 2.4.14 and Theorem 2.4.15.

This has been proven by Daskalopoulos [27] in the case G = U(n) using slightly
different methods. The general case has not been established in the literature, al-
though we believe that it should be possible to reduce it to the unitary case by
algebraic methods. We present an alternative proof which works directly for all Lie
groups G and uses ideas of Chen–Sun [23] given in the context of extremal Kähler
metrics.

The Hilbert–Mumford weight associated to a connection A ∈ A(P ) and an in-
finitesimal gauge action ξ ∈ Ω0(Σ, ad(P )) is defined by

wτ (A, ξ) := lim
t→∞
〈∗FeitξA − τ, ξ〉 ∈ R ∪ {∞} (1.7)
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where τ ∈ Z(g) is given by (1.3) as before. These weights are closely related to
parabolic reductions of the holomorphic bundle (P c, JA) and we show that positivity
of these weights is equivalent to the algebraic notion of stability. We also give a new
proof of the moment weight inequality following an approach outlined by Donaldson
[39]. Together with the dominant weight theorem, this yields the following result.

Theorem 3 (Atiyah-Bott [4]). For all A ∈ A(P ) and 0 6= ξ ∈ Ω0(Σ, ad(P )) it
holds

−wτ (A, ξ)
||ξ||

≤ inf
g∈Gc(P )

|| ∗ FA − τ ||2. (1.8)

When the right-hand-side is positive, then there exists up to scaling a unique 0 6= ξ0 ∈
Ω0(Σ, ad(P )) which yields equality. Moreover, it agrees up to scaling with u(∗FA∞ −
τ)u−1, where u ∈ G(P ) and A∞ is the limit of the Yang-Mills flow starting at A0.

Proof. This is reformulated as Theorem B in the introduction of Chapter 2 and proved
in Theorem 2.5.12 and Theorem 2.7.1.

The proof of the general case is only sketched by Atiyah and Bott. They use
some deep results from Lie theory to reduce the general case to the unitary case. We
give a different argument for the general case which relies on Theorem 2. This relies
heavily on the Yang–Mills flow whose analytic properties had not been established
when Atiyah and Bott wrote their paper. In other words, we use analysis to avoid
the algebraic difficulties in their argument.

Chapter 3: Convergence of the Yang–Mills–Higgs flow and ap-
plications
This chapter extends the discussion of the previous chapter to the symplectic vortex
equations. In doing so we fill several gaps in the literature on the Yang–Mills–Higgs
functional and the characterization of stability for gauged holomorphic maps. In par-
ticular, we extend Mundet’s Kobayashi–Hitchin correspondence and the Kempf–Ness
theorem to the semistable and unstable case, establish a sharp moment–weight in-
equality and prove the analogue of the Ness uniqueness theorem. The main analytic
result in our work is a  Lojasiewicz gradient inequality and uniform convergence of
the Yang–Mills–Higgs flow under suitable technical assumptions. This chapter has
been published in [115].

Let Σ be a Riemann surface, G a compact Lie group and P → Σ a principle
G-bundle. We fix an area form and hence a Riemannian structure on Σ, and an
invariant inner product on the Lie algebra g. The latter allows us to identify g with
its dual space. Let X be a Kähler manifold equipped with an Hamiltonian action of
G which is generated by a moment map µ : X → g. Denote by S(P,X) the space of
sections of the associated Kähler fibration P ×GX. The symplectic vortex equations
for a pair (A, u) ∈ A(P )× S(P,X) are given by

∂̄Au = 0, ∗FA + µ(u) = 0. (1.9)
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We view the first equation as integrability condition, which formally defines the
Kähler submanifold of holomorphic pairs

H(P,X) := {(A, u) ∈ A(P )× S(P,X) | ∂̄Au = 0}. (1.10)

The second equation in (1.9) is a moment map for the action of the gauge group
G(P ) on A(P )× S(P,X). We assume in the following, that the action of G extends
to a holomorphic action of its complexification Gc on X. This gives rise to a natural
action of the complexified gauge group G(P )c on A(P ) × S(P,X) which preserves
H(P,X). The moment map squared functional

F : H(P,X)→ R, F(A, u) := 1
2

∫
Σ
|| ∗ FA + µ(u)||2 dvo`Σ (1.11)

agrees up to topologoical terms with the Yang–Mills–Higgs functional

YMH(A, u) := 1
2

∫
Σ
||FA||2 + ||dAu||2 + ||µ(u)||2 dvo`Σ (1.12)

on holomorphic pairs (A, u) ∈ H(A, u). Its negative gradient flow on H(P,X) is

A(0) = A0, u(0) = u0, ∂̄A(u) = 0
∂tA = − ∗ dA(∗FA + µ(u)), ∂tu = JLu(∗FA + µ(u))

(1.13)

Longtime existence of this flow has been proved by Venugopalan [119] in the case
of vector bundles. We slightly generalize her proof and show that assumption (C)
below suffices to obtain longtime existence. The proof of convergence relies on a new
 Lojasiewicz gradient inequality for the Yang–Mills–Higgs functional. For this we need
to make the following assumptions:

(A) The Kähler metric on X and the moment map µ : X → g are both analytic.

(B) X is holomorphically aspherical.

(C) µ is proper and X is equivariantly convex at infinity, i.e. there exists a proper
G-invariant function f : X → [0,∞) and c0 > 0 such that

f(x) ≥ c0 =⇒ 〈∇v∇f(x), v〉+ 〈∇Jv∇f(x), Jv〉 ≥ 0
df(x)JLxµ(x) ≥ 0 (1.14)

for every x ∈ X and v ∈ TxX.

Theorem 4 (Convergence). Assume (C) and let (A0, u0) ∈ H(P,X) be given.
Then there exists a unique solution (A, u) : [0,∞)→ H(P,X) of (1.13) which exists
for all times t ≥ 0. If in addition (A) and (B) are satisfied, then there exists a
critical point (A∞, u∞) ∈ A1,2(P ) × S2,2(P,X) of Sobolev class W 1,2 × W 2,2 and
T,C, ε > 0 such that for all t > T the pointwise distance between u(t) and u∞ is
smaller then the injectivity radius of X along u∞(P ) and

||A(t)−A∞||W 1,2 + || exp−1
u∞ u(t)||W 2,2 ≤ Ct−ε.
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Proof. This is reformulated as Theorem A in the introduction of Chapter 3 and
proved in Theorem 3.4.3 and Theorem 3.4.8.

This theorem is the key ingredient which allows us to extend many of the analytic
arguments from Chapter 2 to the present setting. As a first application, we get the
following analogue of the Ness–Uniqueness theorem.

Theorem 5 (Uniqueness of critical points). Assume (A), (B) and (C). Let
(A0, u0) ∈ H(P,X) and let (A∞, u∞) be the limit of the gradient flow (1.13) starting
at (A0, u0). Then

|| ∗ FA∞ + µ(u∞)||L2 = inf
g∈Gc(P )

|| ∗ FgA0 + µ(gu0)||L2 =: m.

Moreover, for every (B, v) ∈ Gc(A0, u0) in the W 1,2×W 2,2-closure of Gc(A0, u0) with
|| ∗ FB + µ(v)||L2 = m, it holds G(B, v) = G(A∞, u∞).

Proof. This is reformulated as Theorem B in the introduction of Chapter 3 and proved
in Theorem 3.5.1.

The Hilbert–Mumford weight associated to a pair (A, u) ∈ H(P,X) and an in-
finitesimal gauge action ξ ∈ Ω0(Σ, ad(P )) is defined by

w((A, u), ξ) := lim
t→∞

〈
∗FeitξA + µ(eitξu), ξ

〉
L2 ∈ R ∪ {∞}. (1.15)

In order to prove the moment weight inequality in this context, we need to assume
the following property for pairs (A, u) ∈ H(P,X):

(H) w((A, u), ξ) ≤ 0 =⇒ sup
t>0
||µ(eitξu)||L2 <∞

for all ξ ∈ Ω0(Σ, ad(P )). When w((A, u), ξ) < ∞, then the corresponding property
for the curvature term supt>0 ||FeitξA||L2 < ∞ is automatically satisfied. This is
the reason why such an assumption did not occur in our previous discussion of the
Yang–Mills equations.

Theorem 6 (Sharp moment-weight inequality). Suppose that (A, u) ∈ H(P,X)
satisfies (H). Then for all ξ ∈ Ω0(Σ, ad(P ))\{0} it holds

−w((A, u), ξ)
||ξ||L2

≤ inf
g∈Gc(P )

|| ∗ FgA + µ(gu)||L2 . (1.16)

If in addition (A), (B), (C) are satisfied and the right hand side is positive, then
there exists a unique ξ0 ∈ Ω0(Σ, ad(P )) with ||ξ0||L2 = 1 which yields equality.

Proof. This is reformulated as Theorem E in the introduction of Chapter 3 and proved
in Theorem 3.6.3.

This is a crucial ingredient in our extension of Mundet’s Kobayashi–Hitchin cor-
respondence [89] to the semistable and polystable case. Consider the following prop-
erties for a pair (A, u) ∈ H(P,X):



8 CHAPTER 1. INTRODUCTION

(SS) For all ξ ∈ Ω0(Σ, ad(P )) it holds w((A, u), ξ) ≥ 0.

(PS) For all ξ ∈ Ω0(Σ, ad(P )) with exp(ξ) = 1 and w((A, u), ξ) = 0 the limit
limt→∞ eitξ(A, u) ∈ (Gc)2,2(A, u) exists in W 1,2 ×W 2,2 and remains in the
Sobolev completion of the complex group orbit.

Theorem 7 (Polystable and semistable correspondence). Assume (A), (B),
(C) and suppose that (A, u) ∈ H(P,X) satisfies (H).

1. (A, u) is polystable if and only if it satisfies (SS) and (PS).

2. (A, u) is semistable if and only if it satisfies (SS).

Proof. This is reformulated as Theorem D in the introduction of Chapter 3 and
proved in Theorem 3.6.5 and Theorem 3.6.4.

Mundet’s Kobayashi–Hitchin correspondence [89] establishes this correspondence
for stable pairs in greater generality.

Chapter 4: Donaldson’s moment map approach to Teichmüller
theory
This chapter provides a self-contained exposition of a general moment map found by
Donaldson [38] for the diffeomorphism group. The main applications considered in
this chapter is the construction of a hyperkähler moduli space M associated to a
closed oriented surface Σ with genus(Σ) ≥ 2. This embeds naturally into the cotan-
gent bundle T ∗T (Σ) and can be viewed as the Feix–Kaledin hyperkähler extension
of the Weil–Petersson metric on Teichmüller space. Donaldson outlined various re-
markable properties of this moduli space for which we provide complete proofs: The
moduli space M parametrizes the class of almost-Fuchsian 3-manifolds. These are
quasi-Fuchsian 3-manifolds which contain a unique minimal surface with principal
curvatures in (−1, 1). The area of this minimal surface then provides a Kähler poten-
tial for the hyperkähler metric. Moreover, the moduli spaceM embeds naturally into
the SL(2,C)-representation variety of Σ and the hyperkähler structure onM extends
the Goldman holomorphic symplectic structure on the representation variety. The
various identifications are obtained using the work of Uhlenbecks [117] on germs of
hyperbolic 3-manifolds, an explicit map from M to T (Σ) × T (Σ) found by Hodge
[61], the simultaneous uniformization theorem of Bers [8], and the theory of Higgs
bundles introduced by Hitchin [58].
Another motivation for such a detailed account on Donaldson’s framework is the fact
that there are several interesting variants and extensions of the theory. We will ex-
plore some of these in the remaining three chapters of this thesis building upon the
discussion in this chapter.

Let (M,ρ) be a closed manifold equipped with a volume form ρ and denote by P →
M its SL(n,R)-frame bundle. Let (X,ω) be a symplectic manifold with Hamiltonian
SL(n,R) action generated by a moment map µ : X → sl(n,R)∗ and denote by
S(P,X) the space of section of the associated bundle P ×SL(n,R) X. The group
Diff(M,ρ) of volume preserving diffeomorphisms acts naturally on the frame bundle
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P and thus also on the space of S(P,X). This action preserves the natural symplectic
structure and the main result of Donaldson asserts that the subgroup of exact volume
preserving diffeomorphisms Diffex(M,ρ) acts in a Hamiltonian fashion. Its Lie algebra
is the space of exact divergence free vector fields and its dual space can be identified
with the space of exact 2-forms on M . The moment map µ in the Theorem 8 below
takes only values in the space of closed 2-forms. It is therefore not a moment map in
the strict sense, but Theorem 8 asserts that it nevertheless satisfies the moment map
equation. When dim(M) = 2, one can fix this by subtracting a suitable multiple of
the area form from the moment map. In higher dimensions there is no easy way to
fix this without destroying equivariance.

Theorem 8 (Donaldson [38]). Fix a torsion free SL(n,R) connection ∇ on M and
define µ : S(P,X)→ Ω2(M) by

µ(s) := ω(∇s ∧∇s)− 〈µs, R〉 − dc(∇µs) (1.17)

where µs ∈ Ω0(M,End0(TM)∗) is obtained by composing the equivariant lift s̃ : P →
X of s with the moment map µ : X → sl(n,R)∗ and c(∇µs) ∈ Ω1(M) is defined as
the contraction (µs)ij;i of ∇µs. Then the following holds:

1. The map µ is Diff(M,ρ)-equivariant and µ(s) ∈ Ω2(M) is closed and indepen-
dent of the connection ∇ used to define it.

2. Let v ∈ Vect(M) be an exact divergence free vector field and choose a primitive
αv ∈ Ωn−2(M) with dαv = ι(v)ρ. Then

∂t

∫
M

µ(s(t)) ∧ αv =
∫
M

ω(ṡ(t),Lvs(t))ρ (1.18)

for any smooth curve s : R → S(X,P ), where Lvs denotes the infinitesimal
action of v on s for the right action.

Proof. This is reformulated as Theorem A in the introduction of Chapter 4 and proved
in Theorem 4.2.4. (Note that the formula for the moment map in [38] contains some
obvious typos regarding the signs which we corrected in formula stated above.)

Suppose Σ is a 2-dimensional surface with genus(Σ) ≥ 2 and X = H2 the hy-
perbolic plane. In this case, X can be identified with the space of linear complex
structures on R2, compatible with the standard orientation, and S(P,X) can be
identified with the space of complex structures on Σ, compatible with the orientation
determined by ρ. In this case, Theorem 8 yields that the Gaussian curvature form
yields a moment map for the action of the Hamiltonian diffeomorphism group. After
taking the action of the Flux group into account, this provides a construction of the
Teichmüller space of Σ equipped with the Weil–Petersson metric.

Next, suppose X ⊂ T ∗H2 is the unit disc bundle in the cotangent bundle of the
hyperbolic plane. This carries a unique S1 × SL(2,R)-invariant hyperkähler metric,
which extends the hyperbolic metric along the zero section and blows up when ap-
proaching the boundary of the disc bundle. The space of sections S(P,X) can be
identified with the space Q1(Σ) of pairs (J, σ) where J ∈ J (Σ) is a complex structure



10 CHAPTER 1. INTRODUCTION

and σ ∈ Ω0(Σ, S2(T ∗Σ ⊗J C)) a quadratic differential satisfying the pointwise con-
straint |σ|J < 1. Then, Theorem 8 yields a hyperkähler moment map for the action
of the Hamiltonian diffeomorphism group.

Theorem 9 (Donaldson [38]).

1. The action of Ham(Σ, ρ) on Q1(Σ) admits a hyperkähler moment map given by

µ1(J, σ) = |∂̄σ|
2 − |∂σ|2√
1− |σ|2

ρ+ 2
√

1− |σ|2KJρ+ 2i∂̄∂
√

1− |σ|2 − 2cρ

µ2(J, σ) + iµ3(J, σ) = −2i∂̄r(∂̄σ)
(1.19)

where c := 2π(2 − 2genus(Σ))/vol(Σ, ρ) and r : Ω0,1(Σ, S2(T ∗Σ ⊗J C)) →
Ω1,0(Σ) is the contraction defined by the metric ρ(·, J ·).

2. The action of Symp0(Σ, ρ) on Q1(Σ) is Hamiltonian for the second and third
symplectic form with moment maps

〈µ̃2(J, σ), v〉+ i〈µ̃3(J, σ), v〉 = −2i
∫

Σ
ι(v)r(∂̄Jσ)ρ (1.20)

for any symplectic vector field v ∈ Vect(Σ) satisfying dι(v)ρ = 0.

Proof. This is reformulated as Theorem C in the introduction of Chapter 4 and proved
in Theorem 4.5.13.

We give an alternative proof of the second statement, since we found it difficult
to translate the conceptual arguments given by Donaldson into a rigorous proof. We
proceed by generalizing the proof of Theorem A where we use that the canonical
holomorphic symplectic form ω2 + iω3 on X is exact. The methods employed in the
proof of this result are the starting point for our discussion of holomorphic differentials
of arbitrary degree in Chapter 5.

After carefully taking the action of the flux group into account and suitable rescal-
ing of the quadratic differential, Theorem 9 gives rise to a hyperkähler structure on
the moduli space

M :=
{

(g, σ) ∈ Met(Σ)×Q(g)
∣∣∣∣ ∂̄σ = 0, |σ| < 1,
Kg − c

2 |σ|
2 = c

2

}/
Diff0(Σ) (1.21)

where c := 2π(2 − 2genus(Σ))/vol(Σ, ρ) as above. This takes a particularly simple
form when we scale the volume of Σ such that c = −2. Donaldson proposed the
following three geometric interpretations:

1. M embeds into T ∗T (Σ) and the hyperkähler metric on M yields the Feix–
Kaledin extension of the Weil–Petersson metric on T (Σ).

2. M parametrizes the class of almost-Fuchsian hyperbolic 3-manifolds. These are
quasi-Fuchsian 3-manifolds which possess an incompressible minimal surface
with principal curvatures in (−1, 1). This surface is then unique and its area
provides a Kähler potential for the hyperkähler metric.
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3. M embeds as an open subset into the smooth locus of the SL(2,C) repre-
sentation variety RSL(2,C)(Σ) := Hom (π1(Σ),SL(2,C)) /SL(2,C). The hy-
perkähler structure onM is compatible with the natural holomorphic symplec-
tic structure introduced by Goldman [52], where the natural complex structure
coincides with the second complex structure on M.

The class of almost-Fuchsian manifolds is strictly smaller the the class of quasi-
Fuchsian manifold: There are examples of quasi-Fuchsian manifolds which admit
more then one minimal surface (see [121, 63, 57]) and these cannot be almost-
Fuchsian (see Lemma 4.6.5). The isomorphism between M and the space of almost-
Fuchsian manifolds follows from Uhlenbeck’s theory of minimal surfaces in hyperbolic
3-manifolds [117]. Her result gives rise to the following theorem in our context.

Theorem 10 (Uhlenbeck [117]). Let g ∈ Met(Σ) and σ ∈ Q(g) satisfy the equations
Kg + |σ|2 = −1, ∂̄σ = 0, and |σ|g < 1. For every such pair we define an almost-
Fuchsian metric on Y := Σ× R by

gY = gYg,σ =
(
g
(
cosh(t)1− sinh(t)g−1Re(σ)

)2 0
0 1

)
. (1.22)

This is the unique almost-Fuchsian metric which restricts to g along Σ × {0} and
such that Re(σ) is the second fundamental form of Σ× {0} ⊂ Y .

Proof. This is reformulated as Theorem C in the introduction of Chapter 4 and proved
in Theorem 4.6.4.

Let (Y := Σ × R, gY ) be an almost Fuchsian manifold. Its boundary at infinity
is the disjoint union of two disjoint unions of Σ, which are both equipped with an
induced conformal structure. This gives rise to an embedding of the space of al-
most Fuchsian metrics into the product space T (Σ) × T (Σ) and we show that the
second complex structure on M corresponds to the complex structure (Ĵ1, Ĵ2) 7→
(−J1Ĵ1, J2Ĵ2) on T (Σ) × T (Σ). With this understood, we then verify the following
remarkable observation suggested by Donaldson.

Theorem 11. Let A : AF(Σ)→ R be the area functional, which assigns to an almost
Fuchisan manifold Y the area of its unique minimal surface. Then

2i∂̄J2∂J2A = ω2. (1.23)

Hence A provides a Kähler potential with respect to the natural complex structure on
AF(Σ) which agrees (up to sign) with the second complex structure on M.

Proof. This is reformulated as Theorem D in the introduction of Chapter 4 and
proved in Theorem 4.6.9.

By the Cartan–Ambrose–Higgs theorem, one can express every complete hyper-
bolic 3-manifold as quotient of hyperbolic space H3. This gives rise to a natural
embedding of the almost Fuchsian moduli space into RPSL(2,C)(Σ). A classical result
of Bers [9] asserts that the restriction of this complex structure to M corresponds
to the standard complex structure on T (Σ) × T (Σ) which differs by a sign from



12 CHAPTER 1. INTRODUCTION

our conventions. In particular, the second complex structure on M corresponds to
multiplication by −i on RPSL(2,C)(Σ).

The representation associated to an almost-Fuchisan manifold lifts to SL(2,C) and
a corresponding embedding ofM into RSL(2,C)(Σ) can be constructed directly using
the theory of Higgs bundles [58]. This has been suggested by Donaldson [38] and
goes as follows: Let g ∈ Met(Σ) and σ ∈ Q(g) be given. Choose a holomorphic line
bundle L → Σ with L2 = TΣ and define E = L ⊕ L−1. The Levi-Civita connection
for g induces a unique U(1)-connection a ∈ A(L). Then consider the pair

A =
(
a σ̄

2
−σ2 −a

)
∈ A(E) and φ = 1

2

(
0 1
0 0

)
∈ Ω1,0(End(E)) (1.24)

where σ ∈ Ω1,0(L−2) = Ω1,0(Hom(L,L−1)) and 1 ∈ Ω0(End(TΣ)) = Ω1,0(L2) =
Ω1,0(Hom(L−1, L)).

Theorem 12. Let g ∈ Met(Σ) and σ ∈ Q(g) satisfy the equations Kg + |σ|2 = −1,
∂̄σ = 0, and |σ|g < 1. The corresponding pair (A, φ) defined by (1.24) satisfies the
Hitchin equation

∂̄Aφ = 0, FA + [φ ∧ φ∗] = 0.

and B := A + φ + φ∗ ∈ Ac(E) is a flat SL(2,C) connection. The holonomy rep-
resentation ρB : π1(Σ) → SL(2,C) agrees up to conjugation with the representation
associated to the almost Fuchian metric gYg,σ defined in Theorem 10.

Proof. This is reformulated as Theorem D in the introduction of Chapter 4 and
proved in Theorem 4.6.12).

Finally, we show that the natural map ofM into T ∗T (Σ) is a well-defined embed-
ding (see Theorem 4.6.14). This follows by a standard application of the continuation
method and the proof is due to Uhlenbeck [117].

Chapter 5: Moduli spaces of holomorphic differentials over Rie-
mann surfaces
We describe a generalization of Donaldson’s construction of Teichmüller space and its
Feix–Kaledin hyperkähler extension to moduli spaces of tuples of holomorphic differ-
entials of mixed degree. These moduli spaces are closely related to Hitchin’s higher
Teichmüller components [59]. We hope that this might lead to a new construction
of the Hitchin component using the diffeomorphism group instead of the gauge group.

Let (Σ, ρ) be a closed 2-dimensional surface with fixed area form ρ ∈ Ω2(Σ).
Assume genus(Σ) ≥ 2 and denote by P → Σ its SL(2,R)-frame bundle. For k ≥ 2,
we define

Xk =
{

(z, w) ∈ H× C
∣∣ Im(z)k|w|2 < 1

}
(1.25)

which we view as unit disc bundle in (T ∗H)k/2. This can naturally be identified with
the space of pairs (J, γ) where J ∈ J (R2) is a linear complex structure on R2 and
γ : (R2, J)k → C is a complex symmetric multilinear form with |γ| < 1. The space of
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sections of the associated bundle P ×SL(2,R) Xk then admits a natural identification
with

D1
k(Σ) :=

{
(J, τ) | J ∈ J (Σ), τ ∈ Ω0(Σ, Sk(T ∗Σ⊗J C)), |τ |J < 1

}
(1.26)

which parametrizes complex structures and complex differentials of order k. In order
to obtain a symplectic structure on D1

k(Σ) we need to define a SL(2,R)-invariant
symplectic structure on the total space of Xk ⊂ (T ∗H)k/2. In the case k = 2 there
is a natural choice, namely the Feix–Kaledin hyperkähler extension of the hyperbolic
metric on H. For k > 2 we do not expect that there exists a hyperkähler setup. In-
stead we obtain a family of symplectic forms on Xk parametrized by a single functions
f : [0, 1)→ [0, 1) with f(0) = 0 and f ′ > 0: There exists a unique SL(2,R)-invariant
symplectic form ωf ∈ Ω2(Xk) satisfying

ωf (i, w) = − i
2
(
1− f(|w|2) + k|w|2f ′(|w|2)

)
dz̄ ∧ dz

− 2i
k
f ′(|w|2) dw̄ ∧ dw + f ′(|w|2) (w̄dz̄ ∧ dw − wdw̄ ∧ dz) .

(1.27)

Here is a more geometric description of these forms: (1) The symplectic connections
of ωf yields the standard connection on (T ∗H)k/2 obtained from the Levi–Civita
connection on the hyperbolic plane and (2) the S1 action which rotates the fibres is
Hamiltonian with H(z, w) = − 2

kf(Im(z)k|w|2) and the Marsden-Weinstein quotient
H−1(− 2

k r
2)/S1 is symplectomorphic to the hyperbolic plane scaled by (1 − f(r2)).

None of these symplectic forms extends over the whole space (T ∗H)k/2 and the re-
striction to a disc bundle is necessary. After calculating the moment map for the
SL(2,R)-action on the fibre Xk and simplifying the resulting equations we deduce
from Theorem 8 the following moment map.

Theorem 13 (Moment map on D1
k(Σ)). The action of Ham(Σ, ρ) on the space

{(J, τ) ∈ D1
k(Σ) | ∂̄Jτ = 0} is Hamiltonian with respect to ωf and generated by the

moment map

µ
f
(J, τ) =

(
2KJ + ∆F (|τ |2J)− 2c

)
ρ (1.28)

where c := 2π(2− genus(Σ))/vol(Σ, ρ), F : [0, 1)→ R is defined by

F (t) :=
∫ t

0

f(s)
ks

+ f ′(s) ds

and ∆ = d∗d is the positive Laplacian of the metric ρ(·, J ·).

Proof. This is reformulated as Theorem A in the introduction of Chapter 5 and
proved in Theorem 5.2.9.

It is natural to ask if there exists a preferred symplectic structure ωf ∈ Ω2(Xk).
In the case k = 2 this is answered by the Feix–Kaledin hyperkähler metric. For
k > 2 we were unable to find a satisfactory answer. However, we show that there
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are functions fk for which the resulting moduli spaces admits a particularly simple
description, namely

Mfk(k) ∼=
{

(g, τ)
∣∣∣∣ g ∈ Met(Σ), (Jg, τ) ∈ D1

k(Σ)
∂̄τ = 0, Kg − c

k |τ |
2
g = ck−1

k

}/
Diff0(Σ) (1.29)

where c := 2π(2− 2genus(Σ))/vol(Σ, ρ) and for g ∈ Met(Σ) we denote by Jg ∈ J (Σ)
the unique complex structure compatible with g. In the case k = 2 this corresponds
to the Donaldson’s hyperkähler extension of Teichmüller space.

The discussion so far extends naturally to tuples (J, τ1, . . . , τn) of complex differ-
entials of mixed order. For k = (k1, . . . , kn) ∈ Zn≥2 define

D1
k(Σ) := {(J, τ1, . . . , τn) | (J, τi) ∈ Dki(Σ) for i = 1, . . . , n} . (1.30)

Then, the main observation is that D1
k(Σ) embeds naturally into the product manifold∏n

i=1D1
ki

(Σ) as a symplectic submanifold.

Chapter 6: The Ricci form and Calabi–Yau Teichmüller space
This chapter summarizes joint work with Oscar Garcia–Prada and Dietmar A. Sala-
mon [50]. We show that the Ricci form yields a moment map for the action of the
group of exact volume preserving diffeomorphims on the space of almost complex
structures. This gives rise to an extended Weil–Petersson symplectic form on the
Calabi–Yau Teichmüller space of isotopy classes of complex structures with real first
Chern class zero and nonempty Kähler cone. We also discuss variants of the theory
for Kähler–Einstein pairs which have not been included into our joint paper. The pre-
sentation in this chapter is rather brief and we only sketch the arguments for the more
technical results. Full detail and complete proofs can be found in our joint article [50].

Let (M,ρ) be a closed 2n-dimensional manifold with fixed volume form ρ. We
define the Ricci form Ricρ,J ∈ Ω2(M) associated to the volume form ρ and an almost
complex structure J ∈ J (M) by

Ricρ,J(u, v) := 1
4tr ((∇uJ)J(∇vJ)) + 1

2tr
(
JR∇(u, v)

)
+ 1

2dλ
∇
J (1.31)

for u, v ∈ Vect(M), where ∇ is a torsion free ρ-connection on M and the 1-form λ∇J
is defined by λ∇J (u) := tr ((∇J)u) for u ∈ Vect(M). The next theorem can be derived
as a special case of Donaldson’s moment map in Theorem 8. In [50] we give a direct
and independent proof of this result.

Theorem 14 (Ricci form, [50]). The Ricci form Ricρ,J ∈ Ω2(M) does not depend
on the choice of the connection ∇ used to define it, represents the cohomology class
2πc1(TM, J) and agrees with the usual definition of the Ricci form on Kähler man-
ifolds. The map J 7→ 2Ricρ,J satisfies the moment map equation for the action of
the exact volume preserving diffeomorphism group on the space of almost complex
structures.

Proof. This is reformulated as Theorem A in the introduction of Chapter 6 and
proved in Theorem 6.2.1.
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A useful generalization of the moment map equation involves the 1-form Λρ ∈
Ω1(J (M),Ω1(M)) defined by

Λρ(J, Ĵ)(u) := tr
(

(∇Ĵ)u+ 1
2 ĴJ∇uJ

)
(1.32)

for u ∈ Vect(M), where∇ is a torsion free ρ-connection on M . Then, the linearisation
of Ricρ,J when varying J in direction Ĵ is given by 1

2dΛρ(J, Ĵ) and∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
2

∫
M

tr
(
ĴJLvJ

)
ρ (1.33)

for all v ∈ Vect(M). This setup leads to a new construction of the Weil–Petersson
symplectic form on the Calabi–Yau Teichmüller space

T0(M) :=
{
J ∈ Jint(M)

∣∣∣∣ c1(TM, J) = 0 ∈ H2(M,R)
and J admits a Kähler form

}/
Diff0(M). (1.34)

This moduli space has been studied extensively in the polarized cased [64, 90, 98]
and for K3-surfaces, see [44] Chapter 16. The Bogomolov–Tian–Todorov Theorem
[11, 111, 113] asserts that T0(M) is a smooth manifold. However, it is not Hausdorff
in general [54, 120]. The construction of the Weil–Petersson metric involves three
main steps:

1. The natural inclusion of

T0(M,ρ) := {J ∈ Jint,0(M) |Ricρ,J = 0} /Diff0(M,ρ) (1.35)

into Teichmüller space T0(M) is a bijection.

2. The group Diff0(M,ρ)/Diffex(M,ρ) acts trivially on

T ex
0 (M,ρ) := Jint,0(M,ρ)/Diffex(M,ρ). (1.36)

Hence, T0(M,ρ) = T ex
0 (M,ρ) embeds into the Marsden–Weinstein quotient of

J (M) and carries a natural closed 2-form.

3. The subspace of integrable structures Jint(M) ⊂ J (M) is not a symplectic
submanifold and it is not obvious that the closed 2-form on T0(M,ρ) is non-
degenerated. We give a complete characterization of the kernel of the restriction
of the symplectic form which then proves non-degeneracy of the Weil–Petersson
symplectic form on the quotient.

The tangent spaces at the space of integrable complex structures are

TJJint(M) = ker
(
∂̄J : Ω0,1

J (M,TM)→ Ω0,2
J (M,TM)

)
. (1.37)

If Ricρ,J = 0 and ∂̄J Ĵ = 0 then there exist smooth functions f, g : M → R such that

Λρ(J, Ĵ) = −df ◦ J + dg (1.38)

Moreover, for every J ∈ Jint(M) with vanishing real first Chern class and non-empty
Kähler cone, there exists a unique volume form ρJ with RicρJ ,J = 0 and

∫
M
ρJ = V .
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Theorem 15 (Weil–Petersson symplectic form, [50]). The Weil–Petersson sym-
plectic form on T0(M,ρ) is given by

ΩJ(Ĵ1, Ĵ2) =
∫
M

(
1
2 tr
(
Ĵ1JĴ2

)
− f1g2 + f2g1

)
ρJ (1.39)

for J ∈ Jint(M) with vanishing real first Chern class and non-empty Kähler cone,
Ĵi ∈ Ω0,1(M,TM) with ∂̄J Ĵi = 0 and fi, gi defined by (1.38). This symplectic
form is Diff0(M) equivariant and thus the mapping class group acts on T0(M) by
symplectomorphism.

Proof. This is reformulated as Theorem B in the introduction of Chapter 6 and the
proved in Theorem 6.3.5.

The Weil–Petersson symplectic form gives rise to a symplectic connection on the
bundle E0(M) of isotopy classes of Ricci-flat Kähler structures over the space B0(M)
of symplectic forms with vanishing first Chern class.

Theorem 16 (A symplectic connection, [50]). The projection E0(M) → B0(M)
is a submersion and for every Ricci flat Kähler structure (ω, J) on M and for every
closed 2-form ω̂, there exists a unique element Ĵ = Aω,J(ω̂) ∈ Ω0,1

J (M,TM) satisfying

ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ ′ = 0 and Ĵ ′ = (Ĵ ′)∗

and the tangency conditions

∂̄J Ĵ = 0, Λρ(J, Ĵ) = −d〈ω̂, ω〉 ◦ J, ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉.

This connection is Diff0(M)-equivariant and satisfies Aω,J(dι(v)ω) = LvJ for all
v ∈ Vect(M) with dι(Jv)ρ = 0.

Proof. This is reformulated as Theorem C in the introduction of Chapter 6 and
Theorem 6.3.5.

The final section discusses variants of the theory for Kähler–Einstein manifolds
which have not been included into our joint paper. Fix a volume form ρ ∈ Ω2n(M)
and cohomology classes a, c ∈ H2(M) such that 2πc = κa for some κ ∈ R. Denote by
Sa(M,ρ) ⊂ Ω2(M) the space of symplectic forms on M with volume form ωn/n! = ρ
and denote by Jc(M) the space of almost complex structures with c1(TM, J) = c. We
call a ∈ H2(M,R) a Lefschetz class when · ∪ an−1 : H1(M,R)→ H2n−1(M,R) is an
isomorphism. Then Sa(M,ρ) is a symplectic manifold with the Lefschetz symplectic
form

Ωω(ω̂1, ω̂2) :=
∫
M

λ1 ∧ λ2 ∧
ωn−1

(n− 1)! (1.40)

for ω ∈ Sa(M,ρ) and exact 2-forms ω̂ ∈ Ω2(M) with ω̂∧ωn−1 = 0, where λi ∈ Ω1(M)
satisfy dλi = ω̂ and λi∧ωn−1 is exact. The motivation for this symplectic form comes
from a moment map description of the equation ωn/n! = ρ.
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Theorem 17 (Kähler–Einstein pairs). The action of Diffex(M,ρ) on the product
space Jc(M)× Sa(M,ρ) is Hamiltonian for the product symplectic form

ΩJ,ω((Ĵ1, ω̂1), (Ĵ2, ω̂2)) :=
∫
M

1
2 tr
(
Ĵ1JĴ2

)
ρ− 2κλ1 ∧ λ2 ∧

ωn−1

(n− 1)! (1.41)

where λi ∈ Ω1(M) satisfy dλi = ω̂ and λi ∧ ωn−1 is exact. A moment map for this
action is µ : Jc(M)× Sa(M,ρ)→ Ω2

ex(M) defined by

µ(J, ω) = 2(Ricρ,J − κω). (1.42)

Proof. This is reformulated as Theorem D in the introduction of Chapter 6 and
proved in Theorem 6.4.3.

This leads to a Weil–Petersson metric on the Teichmüller space of Kähler–Einstein
manifolds with a fixed symplectic form ω ∈ Sa(M). Although this yields a new
perspective on the subject, the symplectic form has been studied extensively, see
[71, 98, 105] and the references therein.

Chapter 7: Universal Hitchin moduli spaces
This chapter contains joint work with Oscar Garcia–Prada, Luis Álvarez-Consul and
Mario Garcia-Fernandez. We investigate variants of Hitchin’s equations [58] on a
Riemann surface Σ. In contrast to the classical theory, we do not fix the complex
structure on the surface and investigate moment maps for the action of the extended
gauge group. This yields various universal Hitchin moduli spaces which fibre natu-
rally over Teichmüller space with fibre being the corresponding Hitchin moduli space.
Most of the material is still work in progress and has not yet been explored in full
detail.

Let (Σ, ρ) be a closed 2-dimensional surface equipped with an area form ρ. For
a principal bundle P → Σ the extended gauge group G̃(P ) of P consists of bundle
isomorphisms covering Hamiltonian diffeomorphisms of Σ. Every connection A ∈
A(P ) defines a splitting

Lie(G̃(P )) ∼= Ω0(Σ, ad(P ))⊕ {v ∈ Vect(Σ) | dι(v)ρ is exact} (1.43)

which we denote by ṽ 7→ (A(ṽ), π∗ṽ). This is given by decomposing Lie(G̃(P )) ⊂
Vect(P ) into its A-horizonal and A-vertical component.

Real reductive groups. Suppose G = (G,H, θ,B) is a real reductive group, i.e.
a quadruple consisting of a real Lie group G with reductive Lie algebra g, a maximal
compact subgroup H ⊂ G, a Cartan involution θ : g → g which defines a splitting
g = h ⊕ m and a θ- and G-invariant bilinear form B : g × g → R. The adjoint
representation of G restricts to the so-called isotropy representation ι : H → Aut(m).
Now let P → Σ be a principal H bundle and denote by P (m) := P×ιm the associated
m-bundle. In this setting, the holomorphicity condition of the Higgs field has no
interpretation in terms of moment maps and we consider the configuration space

X1 :=
{

(J,A, φ)
∣∣∣∣ J ∈ J (Σ), A ∈ A(P )
φ ∈ Ω1,0

J (Σ, P (m)⊗ C), ∂̄A,Jφ = 0

}
. (1.44)
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This carries a natural symplectic structure obtained from B.
Theorem 18. The natural G̃(P )-action on X1 is Hamiltonian with moment map

〈µ(J,A, φ), ṽ〉 = −
∫

Σ
B (A(ṽ), FA − [φ∗ ∧ φ]) +

∫
Σ
H (2KJ − 2c) ρ

where ṽ ∈ Lie(G̃(P )), with π∗ṽ ∈ Vect(Σ) and A(ṽ) ∈ Ω0(Σ, ad(P )) defined by (1.43)
and π∗ṽ = vH is the Hamiltonian vector field for H : Σ → R, and c := 2π(2g −
2)/vol(Σ, ρ).
Proof. This is reformulated as Theorem A in the introduction of Chapter 7 and
proved in Proposition 7.3.2 and Theorem 7.3.1.

Complex reductive groups. Assume that G is a compact group and P → Σ a
principal G bundle. We consider the space

X2 := J (Σ)×A(P )× Ω1(Σ, iad(P )). (1.45)

For every fixed J , there is a natural isomorphism

A(P )× Ω1(Σ, iad(P )) ∼= A(P )× Ω0,1
J (Σ, iad(P )) (1.46)

and both spaces can be identified with T ∗A(P ). The later model carries a natural
hyperkähler structure which gives rise to three symplectic forms on X2.
Theorem 19. The action of G̃(P ) on X2 is Hamiltonian for all three symplectic
forms with moment maps

µ1(J,A, ψ) =
((

FA + 1
2[ψ ∧ ψ]

)
, (2KJ − 2c)ρ+ dtr (ψΛρ(dAψ))

)
µ̂2(J,A, ψ) = (idA ∗ ψ, (2KJ − 2c)ρ+ id ∗ tr (ψΛρ(FA)))

µ3(J,A, ψ) =
(

idAψ, (2KJ − 2c)ρ+ idtr
(
ψΛρ

(
FA + 1

2[ψ ∧ ψ]
)))

where c := 2π(2genus(Σ)− 2)/vol(Σ, ρ) and

Λρ : Ω2(Σ, ad(P )⊗ C)→ Ω0(Σ, iad(P )⊗ C)

is the natural map induced by ρ. All three moment maps take values in the space
Ω2(Σ, ad(P ))⊕ Ω2

ex(Σ) which is the dual space of Lie(G̃(P )) by (1.43).
Proof. This is reformulated as Theorem B in the introduction of Chapter 7 and proved
in Theorem 7.4.5.

Note that this theorem does not quite yield a hyperkähler moment map. Never-
theless, we have

(J,A, ψ) ∈ µ−1
1 (0) ∩ µ̂−1

2 (0) ∩ µ−1
3 (0) ⇐⇒

 dAψ = 0, d∗Aψ = 0
FA + 1

2 [ψ ∧ ψ] = 0
2KJ = c

After taking the action of the flux group into account, this yields a moduli space
which fibres over Teichmüller space with the corresponding Hitchin moduli space as
fibre.
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Fibrations over Donaldson’s moduli space. Consider the configuration space

X3 := Q1(Σ)×A(P )× Ω1(Σ, iad(P )). (1.47)

where Q1(Σ) denotes the space of pairs (J, σ) consisting of a complex structure
J ∈ J (Σ) and a quadratic differential σ ∈ Ω0(Σ, S2(T ∗Σ ⊗J C)) with pointwise
norm |σ|J < 1. Donaldson [38] observed that the space Q1(Σ) carries a hyperkähler
structure whose hyperkähler quotient (after taking the action of the flux group into
account) yields the Feix–Kaledin hyperkähler extension M of Teichmüller space. It
is reasonable to expect that the space X3 carries three symplectic forms for which the
action of the extended gauge group is Hamiltonian. This should give rise to a moduli
space which fibres overM with fibres being the corresponding Hitchin moduli spaces.

This is still work in progress and has not yet been written up. There are two
intriguing aspects which we would like to mention: First, there is a construction of
Donaldson [38] which associates to every element inM a solution of the SU(2) Hitchin
equations over Σ and thus M really parametrizes pairs of solutions to Hitchin’s
equation. Second, the resulting moduli space is naturally a hyperkähler fibration
over the hyperkähler space M. It is probably too optimistic to expect that they
combine to a hyperkähler structure on the whole moduli space, but this is certainly
something to be investigated more closely.
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Chapter 2

The GIT picture for the
Yang-Mills equations over
Riemann surfaces

The content of this chapter has been published in [114]. We give a self-contained
exposition of the Atiyah-Bott picture [4] for the Yang-Mills equation over Riemann
surfaces with an emphasis on the analogy to finite dimensional geometric invariant
theory. The main motivation is to provide a careful study of the semistable and
unstable orbits: This includes the analogue of the Ness uniqueness theorem for Yang-
Mills connections, the Kempf-Ness theorem, the Hilbert-Mumford criterion and a new
proof of the moment-weight inequality following an approach outlined by Donaldson
[39]. A central ingredient in our discussion is the Yang-Mills flow for which we assume
longtime existence and convergence (see [97]).

2.1 Introduction
The aim of this chapter is threefold: The first goal is to provide a self-contained and
essentially complete exposition of the geometric invariant theory for the Yang-Mills
equation over Riemann surfaces from the differential geometric point of view. We
follow closely the line of arguments of finite dimensional GIT (e.g. as it is explained
in [51]) and emphasize this analogy throughout.

The second goal is to include a careful study of the semistable and unstable
orbits. This is in contrast to most of the developments after the landmark paper [4]
of Atiyah and Bott, which deal with the characterization of stable objects in more
general moduli problems, i.e. the analogue of the Narasimhan-Seshadri theorem.
In the unitary case Daskalopoulos [27] established the Morse theoretic picture of
Atiyah and Bott. A direct corollary of this stratification is the analogue of the
Ness uniqueness theorem and the moment limit theorem (see Theorem A below).
We present an alternative proof of this result following the arguments discovered
by Calabi-Chen [17] and Chen-Sun [23] in a different infinite dimensional setting.
This argument does not depend on the Harder-Narasimhan filtration or on other

21
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aspects from the holomorphic point of view and works for general structure groups.
Following an approach outlined by Donaldson [39], we also carry out a new proof of
the moment-weight inequality which is essentially contained in the work of Atiyah
and Bott.

The third goal is to provide a transparent exposition of the central ideas used
in gauge theoretical moduli problems. While several results are known in greater
generality, the key ideas are still immanent in our treatment. We hope that this
enables non experts to explore the beauty of this subject without having to worry
about the technical difficulties which come along with more general moduli problems.

We concentrates on the stability questions in Yang–Mills theory and do not dis-
cuss the topology of the resulting moduli space, which is one of the main topics in the
work of Atiyah and Bott. There is no claim of originality (except to my knowledge
Theorem A has only been proven in the case G = U(n) in the existing literature).
However, the various results and underlying ideas are spread over the literature and
the present paper provides a unified exposition. The main technical ingredients in
our discussion are long time existence and convergence of the Yang–Mills flow. The
presented arguments allow for various generalizations to moduli problems in gauge
theory, where the main obstacles are again long time existence and convergence of the
relevant parabolic gradient flow. These obstructions can be overcome for the Yang–
Mills–Higgs flow under suitable assumptions and the results of this article can be
carried over to the symplectic vortex equation over Riemann surfaces, see Chapter 3
and [119]. For the extension of the theory to bundles over higher dimensional Kähler
manifolds, the situation is more delicate and various known results are discussed at
the end of the introduction.

There are two essentially different perspectives on GIT - the algebraic geometric
and the symplectic point of view. The recent survey of Thomas [109] provides some
background from both perspectives and explores several finite and infinite dimen-
sional examples. Originally, Mumford [87] introduced GIT as a method to construct
quotients and moduli spaces in algebraic geometry. The work of Atiyah-Bott [4] and
the thesis of Kirwan [69] have shown that GIT is closely related to moment maps
and symplectic reduction, where the link between both theories lies in the Morse-
Bott stratification of the moment map squared functional. This leads to an entirely
differential geometric version of GIT. Another important ingredient in this approach
is the Kempf-Ness function: Let (X, J, ω, µ) be a closed Kähler manifold with Hamil-
tonian G-action and moment map µ. Here G denote a (real) compact Lie group with
complexification Gc. For a given point x ∈ X there exists a G-invariant function

Φx : Gc/G→ R

such that the gradient flow of Φx intertwines with the gradient flow of the moment
map squared functional under the map g 7→ g−1x. The global analytic properties of
Φx are related to the algebraic weights of x and to the solvability of the equation
µ(gx) = 0 by the Kempf-Ness theorem.

We follow throughout this survey the differential geometric approach. For a mod-
ern algebraic treatment we refer to [3] and the references therein. The new edition
of [88] also contains a discussion of the GIT picture for the Yang-Mills equations.
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Nevertheless, it leaves some refined question open: What are the appropriate ana-
loguos versions of the Ness uniqueness theoerem, the Kempf-Ness theorem or the
Hilbert-Mumford criterion? The analog of the Kempf-Ness functional has been used
to provide analytic proofs for various generalizations of the Narasimhan-Seshadri
theorem, but it has seen little discussion beyond these applications in the literature.
The recent work of Calabi, Chen, Donaldson and Sun [17, 39, 18, 19, 23] has shown
that the underlying geometric properties of the Kempf-Ness functional can be used
to provide analytic proofs for the Ness uniqueness theorem and the Kempf-Ness the-
orem. We follow their ideas and obtain new proofs of the corresponding results in
the Yang-Mills case. The exposition [51] provides a finite dimensional discussion of
these arguments.

Main results

Let G be a compact connected Lie group and let Σ be a closed Riemann surface. Fix
a volume form on Σ, compatible with the orientation, and let P → Σ be a principal
G bundle. Atiyah and Bott [4] observed that the curvature

µ(A) := ∗FA ∈ Ω0(Σ, ad(P ))

defines a moment map for the action of the gauge group G(P ) on the space of con-
nections A(P ). For any constant central section τ , the symplectic quotient

A(P )//G(P ) := µ−1(τ)/G(P )

yields the moduli space of projectively flat connections on P with constant central
curvature τ .

Let Gc be the complexification of G and P c := P ×G Gc the associated principal
Gc bundle. The complexification of the gauge group is Gc(P ) := G(P c). The space
A(P ) can naturally be identified with the space J (P c) of holomorphic structures on
P c (see Lemma 2.2.5) and the complexified gauge group Gc(P ) acts naturally on this
space. The corresponding GIT quotient

Ass(P )//Gc(P )

of A(P ) by Gc(P ) is obtained in two steps. First, one defines a dense and open subset
Ass(P ) ⊂ A(P ) of semistable connections or holomorphic structures on P and sec-
ond, one identifies two semistable orbits in the quotient if they cannot be separated
in Ass(P ). The restriction to semistable orbits is necessary to obtain a good quotient
in the sense of algebraic geometry. There are two approaches to define semistable ob-
jects. In the symplectic approach, one chooses a moment map for the gauge action on
A(P ) to define semistable objects. In the algebraic geometric approach, one defines
a notion of semistability J ss(P c) ⊂ J (P c) on the space of holomorphic structures
on P c. A classical result due to Narasimhan and Seshadri [91] in the case G = U(n)
and due to Ramanathan [95] for general G shows that both of these notions agree if
one restricts to further open subsets of stable objects.
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The Yang-Mills picture introduced by Atiyah and Bott [4] shed new light on this
result and inspired Donaldson [30] to an analytic proof of the Narasimhan-Seshadri
theorem. The Yang-Mills functional is given by the formula

YM : A(P )→ R, YM(A) := 1
2

∫
Σ
||FA||2 dvolΣ.

Standard arguments from Chern-Weil theory show that there exists a unique central
element τ ∈ Z(g) such that

YM(A) = inf
B∈A(P )

YM(B) ⇐⇒ ∗FA = τ. (2.1)

We shall consider in the following connections of Sobolev class W 1,2 and gauge trans-
formations of Sobolev class W 2,2. R̊ade [97] showed in this setting that for every
initial data A0 ∈ A(P ) the negative gradient flow of the Yang-Mills functional

∂tA(t) = −∇YM(A(t)) = −d∗A(t)FA(t), A(0) = A0 (2.2)

has a unique (weak) solution which exists for all time. Moreover, this solution remains
in a single complexified Gc(P )-orbit and converges in the W 1,2-topology to a Yang-
Mills connection A∞ ∈ Gc(A0). The following is the analogue of the Ness uniqueness
theorem in finite dimensional GIT.

Theorem A (Uniqueness of Yang-Mills connections). Let A0 ∈ A(P ) and let
A∞ be the limit of the Yang-Mills flow (2.2) starting at A0. Then

1. YM(A∞) = infg∈Gc(P ) YM(gA).

2. If B ∈ Gc(A0) is contained in the W 1,2-closure of Gc(A0) and

YM(B) = inf
g∈Gc(P )

YM(gA)

then G(B) = G(A∞).

In the case G = U(n) one can replace P by a hermitian vector bundle E → Σ.
Daskalopoulos [27] established in this case the convergence of the Yang-Mills flow
over Riemann surfaces by different methods. He proves a suitable slice theorm near
Yang-Mills connections and shows that the limiting Yang-Mills connection A∞ is
determined up to a unitary gauge transformation by the isomorphism class of the
Harder-Narasimhan filtration of (E, ∂̄A0). This proves Theorem A in the unitary case
and it should be possible to deduce the general result from this using the methods
in [10]. We present a different proof of Theorem A in Theorem 2.4.14 and Theorem
2.4.15 by following the line of arguments from finite dimensional GIT ([51], Chapter
6). These arguments were originally given by Calabi-Chen [17] and Chen-Sun [23] in
the context of extremal Kähler metrics.

A connection A ∈ A(P ) is called µτ -semistable resp. µτ -unstable if

inf
g∈Gc(P )

|| ∗ FgA − τ ||L2 = 0 resp. inf
g∈Gc(P )

|| ∗ FgA − τ ||L2 > 0
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where τ is defined by (2.1). Moreover, A is called µτ -polystable if there exists g ∈
Gc(P ) with ∗FgA = τ and it is called µτ -stable if gA is in addition irreducible. Then
Theorem A implies that the map which sends A0 ∈ A(P ) to the limit A∞ of the
Yang-Mills flow starting at A0 yields the identifications

Ass(P )//Gc(P ) ∼= Aps(P )/Gc(P ) ∼= µ−1(τ)/G(P ).

Conversely, the µτ -unstable orbits converge to higher critical points of the Yang-Mills
functional. More details on this correspondence are given in Theorem 2.4.18.

The theory has greatly evolved since the paper [4] of Atiyah and Bott. The main
goal in those developments has been the characterization of stable objects in more
general moduli problems (e.g. [31], [32], [118], [58], [102], [12]). The characterization
of unstable orbits is in general much more difficult as it refers to higher critical points
of the Yang-Mills functional. Given a connection A ∈ A(P ) and ξ ∈ Ω0(Σ, ad(P ))
the weight wτ (A, ξ) is defined by

wτ (A, ξ) := lim
t→∞
〈∗FeitξA − τ, ξ〉 ∈ R ∪ {∞}.

The first part of the following theorem is the analogue of the moment-weight inequal-
ity and the last two claims are the analogue of the Kempf existence and uniqueness
theorem in finite dimensional GIT.

Theorem B (Atiyah-Bott). Let A ∈ A(P ) and let τ ∈ Z(g) be defined by (2.1).
Then

1. For all 0 6= ξ ∈ Ω0(Σ, ad(P )) it holds

−wτ (A, ξ)
||ξ||

≤ inf
g∈Gc(P )

|| ∗ FA − τ ||2.

2. If the right-hand-side is positive, then there exists up to scaling a unique 0 6=
ξ0 ∈ Ω0(Σ, ad(P )) such that

−wτ (A, ξ0)
||ξ0||

= inf
g∈Gc(P )

|| ∗ FA − τ ||2.

Moreover, ξ0 is rational in the sense that it generates a closed one parameter
subgroup of G(P ).

3. Let A∞ be the limit of the Yang-Mills flow starting at A0. Then there exists
u ∈ G(P ) such that ξ0 agrees up to scaling with u(∗FA∞ − τ)u−1.

This is essentially contained in the work of Atiyah and Bott ([4], Prop. 8.13
and Prop. 10.13). A connection A ∈ A(P ) induces a holomorphic structure on the
complexified bundle P c := P ×G Gc and its Lie algebra bundle ad(P c). Atiyah and
Bott explicitly determine the infimum of the Yang-Mills functional over Gc(A) in
terms of the Harder-Narasimhan filtration of ad(P c). The analogous result has been
shown by Calabi, Chen, Donaldson and Sun [17, 39, 18, 19, 23] in the context of
extremal Kähler metrics. Donaldson [39] compares the Atiyah-Bott picture in the
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vector bundle case G = U(n) with their results on the Calabi functional and mentions
that their methods should lead to a new proof of the moment-weight inequality in
the Atiyah-Bott case. We carry out this proof in Theorem 2.5.12. We reformulate
and prove the last two claims in Theorem 2.7.1. The case G = U(n) follows along
the line of arguments of Atiyah and Bott from the Harder-Narasimhan filtration and
the Narasimhan-Seshadri theorem. The general case can be reduced to this by the
use of Theorem A. For this, choose a faithful representation G ↪→ U(n). Then any
G-connection A can be considered as U(n)-connection and Theorem A implies

inf
g∈Gc(E)

YM(gA) = inf
g∈GL(E)

YM(gA).

It now remains to compare the weights for the gauge action with respect to the two
structure groups G and U(n) to conclude the proof. We would also like to mention
the work of Bruasse and Teleman [15, 14]. They prove for more general gauge the-
oretical moduli problems that whenever the supremum over the normalized weights
is positive, then it is attained in a unique direction corresponding to the Harder-
Narasimhan filtration.

There is a classical algebraic geometric notion of stability for holomorphic prin-
cipal bundles (see Definition 2.3.2). In the vector bundle case G = U(n) this corre-
sponds to the notion of (slope-)stable holomorphic vector bundles, which are easier
to define: A holomorphic vector bundle E is called stable (semistable) if

c1(F )
rk(F ) <

c1(E)
rk(E)

(
c1(F )
rk(F ) ≤

c1(E)
rk(E)

)
holds for every proper holomorphic subbundle 0 6= F ⊂ E. Moreover, E is called
polystable if it decomposes as the direct sum of stable vector bundles all having the
same slope and E is called unstable if it is not semistable.

Theorem C (Generalized Narasimhan-Seshadri-Ramanathan theorem). Let
A ∈ A(P ) and define τ by (2.1). Then A induces a holomorphic structure JA on the
complexified bundle P c := P ×G Gc and the following holds true:

1. (P c, JA) is stable if and only if A is µτ -polystable and the kernel of the infinites-
imal action LA : Ω0(Σ, ad(P c))→ Ω1(Σ, ad(P ))

LA(ξ + iη) := −dAξ − ∗dAη

contains only constant central sections.

2. (P c, JA) is polystable if and only if A is µτ -polystable.

3. (P c, JA) is semistable if and only if A is µτ -semistable.

4. (P c, JA) is unstable if and only if A is µτ -unstable.

Proposition 2.5.9 characterizes the stability of (P c, JA) in terms of the weights
wτ (A, ξ) and shows that this theorem is the appropriate analog of the Hilbert-
Mumford criterion in finite dimensional GIT. The first claim is the Narasimhan-
Seshadri-Ramanathan theorem. We present an analytic proof of this classical result
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in Theorem 2.6.5 which was originally given by Bradlow [12] and Mundet [89] for more
general moduli problems. The main step in their proof is to establish the analogue
of the Kempf-Ness theorem (see Theorem 2.6.2) in the stable case. The polystable
case is deduced from the stable case by induction on the dimension of G. The un-
stable and semistable case follow directly from Theorem B by Proposition 2.5.9. We
reformulate and prove Theorem C in Theorem 2.3.10.

Outline

In Section 2 we review the necessary preliminaries. The first part deals with the
relevant background on gauge theory. Besides fixing notation, the main goals are to
provide an explicit description of the complexified gauge action in both the vector
bundle and principal bundle case and to describe the moment map picture of Atiyah
and Bott. We show that this picture remains valid if one considers connections and
gauge transformations in suitable Sobolev completions. The second part discusses
parabolic subgroups of complex reductive Lie groups. These play a crucial role in
the algebraic geometric definition of stability and the geometric description of the
weights.

In Section 3 we discuss the algebraic and symplectic definitions of stability. The
main result in this section is the generalized Narasimhan-Seshadri-Ramanathan the-
orem (Theorem 2.3.10) which states that these definitions are essentially equivalent.
The proof of this theorem is based on the whole remainder of the exposition.

In Section 4 we review the analytical properties of the Yang-Mills flow which R̊ade
[97] established in his thesis. We prove Theorem A in Theorem 2.4.14 and Theorem
2.4.15 and close this section with Theorem 2.4.18 which characterizes the µτ -stability
of a connection A ∈ A(P ) in terms of the limit A∞ of the Yang-Mills flow starting
at A.

In Section 5 we introduce the weights wτ (A, ξ) and show that they are closely
related to holomorphic parabolic reductions of the complexified bundle (P c, JA).
Proposition 2.5.9 shows that the weights provide an alternative describes of the alge-
braic notion of stability. We close this section with the proof of the moment weight
inequality (Theorem 2.5.12) following the approach outlined by Donaldson [39].

In Section 6 we describe a general procedure which associates to a given con-
nection A ∈ A(P ) a G(P )-invariant functional ΦA : Gc(P ) → R. We call this the
Kempf-Ness functional of A. The slope of this functional at infinity agrees with the
weights discussed in Chapter 5 and hence relates to the algebraic notion of stabil-
ity by Proposition 2.5.9. The analogue of the Kempf-Ness theorem (see Theorem
2.6.2) relates the global behavior of ΦA to the symplectic µτ -stability of A. This
provides a link between the algebraic and symplectic notions of stability and leads
to an analytic proof of the Narasimhan-Seshadri-Ramanathan theorem in Theorem
2.6.5. These arguments are given by Bradlow [12] and Mundet [89] in more general
settings.

In Section 7 we establish the analogue of the Kempf existence and uniqueness
theorem (see Theorem 2.7.1). We include a self-contained account on the Harder-
Narasimhan filtration for the convenience of the reader.
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Higher dimensional base manifolds

We restrict our discussion to the case where Σ is a Riemann surface, although several
results remain valid in greater generality. The main reason for this is to simplify the
presentation. Let us indicate in the following to which degree the discussion could
be generalized.

Replace Σ by a closed Kähler manifold (X, J, ω) and denote by

Λ : Ω1,1(X)→ Ω0(X)

the adjoint operator of f 7→ fω. The Hermitian Einstein equation is given by

ΛFA = τ

for some constant central element τ ∈ Ω0(X, ad(P )). Denote by A1,1 the space of
connections on P whose curvature FA is of type (1, 1). This space can be given a
Kähler structure and µ(A) = ΛFA yields a moment map for the gauge action. In the
vector bundle case, the Narasimhan-Seshadri theorem has been generalized to this
setting by Donaldson [31, 32] in the algebraic framework and by Uhlenbeck and Yau
[118] in the analytic framework over arbitrary Kähler manifolds. We would like to
point out an observation by Anouche and Biswan [2]. They show that a holomorphic
principal bundle P c is polystable (resp. semistable), if and only if the associated
holomorphic vector bundle ad(P c) is polystable (resp. semistable). Further general-
izations involving more complicated moduli problems have been studied by Hitchin
[58], Simpson [102] and Bradlow [12]. In his thesis [89], Mundet generalizes this
correspondence to a very general moduli problem.

Our discussion of the Yang-Mills flow in Chapter 4 relies heavily on the fact that
Σ is a Riemann surface. In particular, the group of W 2,2 gauge transformations
acts no more continuously on the space of W 1,2 connections for higher dimensional
base manifolds. To avoid this issue, one could consider the flow directly on the
space of smooth connections. Donaldson showed in [31] that the Yang-Mills flow
starting at smooth A1,1 connections admits a smooth solution which exists for all
time. In the stable case, Donaldson used this flow to prove his extension of the
Narasimhan-Seshadri theorem. See [106] for a survey on this approach. The main
issue is the complicated limiting behavior of solutions which yields profound technical
difficulties. Bando and Siu ([6], Theorem 4) showed that the limit ”breaks up”
into Hermitian-Einstein sheaves in the unstable case and conjectured that the limit
corresponds essentially to the Harder-Narasimhan filtration. This is very similar
to our discussion in Chapter 7. The Bando-Siu conjecture has been confirmed by
Daskalopoulos-Wentworth [28] in the case of Kähler surfaces and by Sibling [100]
and Jacob [65, 66] for general Kähler manifolds. This yields the analogue of Theorem
C for vector bundles over Kähler manifolds.

Our calculation of the weights in Chapter 5 remains valid over arbitrary Kähler
manifold. However, the weakly holomorphic filtration yields in this case only a fil-
tration by torsion-free subsheaves. The proof of the moment-weight inequality gen-
eralizes ad verbatim to this case. The proof which we present for the Narasimhan-
Seshadri-Ramanathan theorem remains valid in this setting as well (see [89]).

The Harder-Narasimhan filtration is well defined for holomorphic vector bundles
over Kähler manifolds, but consists of torsion-free subsheaves instead of holomorphic
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subbundles. It corresponds again to the supremum over the normalized weights. This
is shown by Bruasse [14] and we present part of his argument in Chapter 7. It is a
nontrivial result that the infimum of ||ΛFgA|| over the (smooth) complexified gauge
orbit yields the same value and follows from the Bando-Siu conjecture. Bruasse gives
an alternative and direct argument to prove that the supremum is in fact attained.

General assumptions

Let G be a compact connected (real) Lie group, Σ a closed Riemann surface and
P → Σ a principal G bundle. We fix a volume form dvo`Σ on Σ and assume for
convenience that the volume form is scaled such that

vol(Σ) = 1.

Note that the volume form also induces a fixed Riemannian metric on Σ.
Unless stated otherwise, all Lie groups are assumed to be connected. When G is

a compact connected Lie group, then its complexification Gc, its parabolic subgroups
Q(ζ) and their Levi subgroups L(ζ) are automatically connected (see Lemma 2.2.12).

As a general rule, we consider connections of Sobolev class W 1,2 and gauge trans-
formations of Sobolev class W 2,2. The gauge action extends smoothly over these
Sobolev spaces, since the base manifold is a Riemann surface. These regularity as-
sumptions do not affect the overall picture and we shall discuss them in more detail
in the preliminaries below.

2.2 Preliminaries
First, we review the underlying notions from gauge theory and set up our notation.
The main goal is to describe the complexification of the gauge action and the mo-
ment map picture of Atiyah and Bott. We also discuss the regularity assumptions
which are crucial for our further analytic discussion. In the second subsection, we
describe parabolic subgroups of complex reductive Lie groups. We also include a brief
discussion of the root space decomposition of semisimple Lie algebras for the sake of
completeness.

2.2.1 Gauge theory
We consider throughout this section fiber bundles over a closed connected Riemann
surface Σ.

Basic gauge theory

We start with the general framework of fiber bundles and specialize our discussion
afterwards to the cases of vector bundles and principal bundles.

Fiber bundles. Let E, F and B be smooth manifolds. The manifold E together
with a projection map π : E → B is called a fiber bundle over B with fiber F , if for
every x ∈ B there exists a neighborhood x ∈ U ⊂ B and a diffeomorphisms

ψ : π−1(U)→ U × F
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such that pr1 ◦ ψ = π|U . Here pr1 : U × F → U denotes the projection onto the
first factor. The map ψ is called a local trivialization of the fiber bundle E. Suppose
ψα and ψβ are local trivializations over Uα and Uβ . Then there exists a unique map
gβα : Uα ∩ Uβ → Diff(F ) satisfying

ψβα(x, u) := (ψβ ◦ ψ−1
α )(x, u) = (x, gβα(x)u)

for all x ∈ Uα∩Uβ and u ∈ F . A reduction of the structure group of E to a subgroup
G ⊂ Diff(F ) consists of an open cover {Uα} of B together with local trivializations
ψα such that all transition maps gβα take values in G. The bundle E together with
a fixed choice of such trivialization is called a fiber bundle with structure group G.

The tangent bundle TE contains a canonical vertical subbundle V := ker dπ. A
connection on E is a splitting of the exact sequence

0→ V → TE → TE/V → 0

and corresponds to a horizontal distribution H ⊂ TE satisfying TE = H ⊕ V .
Identifying H with the projection of TE onto V , we can describe a connection by
a V -valued 1-form A ∈ Ω1(E, V ). The curvature of a connection is the 2-form
FA ∈ Ω2(E, V ) defined by

FA(x; v, w) := Ax ([v −Ax(v), w −Ax(w)]) = [vhor, whor]vert.

It measures the integrability of the horizontal distribution HA ⊂ TE.

Affine connections and vector bundles. A vector bundle is a fiber bundle E
whose fiber F = V is a vector space and whose structure group G ⊂ GL(V ) is linear.
In this case every fiber Ez := π−1(z) has a canonical structure of a vector space and
we have well-defined maps

∀λ ∈ C : Sλ : E → E, x 7→ λx

a : E ⊕ E → E, (x, y) 7→ x+ y.

A connection on E is a connection A ∈ Ω1(E, V ) of the underlying fiber bundle
which is compatible with the linear structure on the fibers: Denote by HA ⊂ TE
the horizontal distribution corresponding to A and by H̃A ⊂ T (E ⊕ E) the induced
horizontal distribution consisting of pairs (v, w) ∈ H ⊕H satisfying dπ(v) = dπ(w).
Then one requires

dSλ(H) ⊂ H ∀λ ∈ C and da(H̃) ⊂ H. (2.3)

Alternatively, one can think of a connection as a covariant derivation

dA : Ω0(Σ, E) d−→ Ω1(Σ, TE) A−→ Ω1(Σ, V ) ∼= Ω1(Σ, E)

where the last map comes from the canonical identification of the vertical bundle
with the vector bundle itself. The linearity condition (2.3) says precisely that this
defines an affine connection.
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Definition 2.2.1. Let E → Σ be a complex vector bundle. An affine connection
on E is a linear operator D : Ω0(Σ, E)→ Ω1(Σ, E) which satisfies the Leibniz rule

D(fs) = df ⊗ s+ f ⊗Df

for all f : Σ→ C and s ∈ Ω0(Σ, E).

We denote by A(E) the space of affine connections on E. Let ψα : E|Uα → Uα×V
be a local trivialization and denote for a local section s : Uα → E with respect to
this trivialization sα := pr2 ◦ ψα. Then an affine connection D has the shape

(Ds)α = dsα +Aαsα

for some Aα ∈ Ω1(Uα,End(V )). These Aα are called connection potentials for the
affine connection D. If all connection potentials take values in the Lie algebra g ⊂
End(V ) of the structure group G ⊂ GL(V ), then the affine connection D is called a
G-connection. We denote by AG(E) the space of all G-connections on E.

An affine connection D induces higher covariant derivations by the formula

D : Ωk(Σ, E)→ Ωk+1(Σ, E), D(τ ⊗ s) = dτ ⊗ s+ (−1)kτ ∧Ds

for τ ∈ Ωk(Σ) and s ∈ Ω0(Σ, E). The curvature FD ∈ Ω2(Σ,End(E)) is the unique
tensor satisfying

(D ◦D)s = FD · s

for all s ∈ Ω0(Σ, E). It is the obstruction to D2 = 0 and not directly related to
the curvature of the horizontal distribution defined by D. It rather corresponds to
curvature of the induced horizontal distribution in the frame bundle of E as we shall
see below.

Connections on principal bundles. Let G be a Lie group with Lie algebra g.
A principal G bundle over Σ is a fiber bundle π : P → Σ together with a fiber
preserving right action P × G → P which is free and transitive on the fibers. In
particular, the fibers are isomorphic to G and using the right action we can always
construct equivariant local trivializations of P . For p ∈ P and ξ ∈ g the infinitesimal
action of ξ is defined by

pξ := d

dt

∣∣∣∣
t=0

p exp(tξ) ∈ TpP.

The collection of these tangent vectors defines the vertical subbundle

V = ker dπ = {pξ | p ∈ P, ξ ∈ g} ⊂ TP.

A connection on P is an equivariant connection of the underlying fiber bundle and
corresponds to an equivariant horizontal distributionH ⊂ TP satisfying TP = V ⊕H.
Identifying H with the projection Π : TP = V ⊕ H → V , we can describe such a
connection by a g-valued 1-form A ∈ Ω1(P, g) via the relation Πp(p̂) = pAp(p̂) for all
p ∈ P and p̂ ∈ TpP . The connection 1-Form A satisfies the conditions

Ap(pξ) = ξ and Apg(p̂g) = g−1Ap(p̂)g (2.4)
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for all g ∈ G, ξ ∈ g, p ∈ P and p̂ ∈ TpP . Conversely, the kernel of any A ∈ Ω1(P, g)
satisfying (2.4) gives rise to an equivariant horizontal distribution H ⊂ TP . We
define by

A(P ) := {A ∈ Ω1(P, g) |A satisfies (2.4)}

the space of connections on P .
The curvature of a connection A ∈ A(P ) is defined as

FA := dA+ 1
2[A ∧A] ∈ Ω2(P, g)

where [A ∧ A] is given by the usual formula for the exterior product with multipli-
cation replaced by the Lie bracket. This curvature is linked to the curvature of the
corresponding horizontal distribution by the relation

[X,Y ]vert = [Xhor, Y hor]vert = pFA(p;X,Y )

for p ∈ P and X,Y ∈ TpP .

Associated bundles. Let P → Σ be a principal G bundle as above. A smooth
manifold F together with a representation ρ : G→ Diff(F ) gives rise to the associated
fiber bundle P ×ρ F with fiber F which is defined by

P ×ρ F := (P × F )/G

where G acts diagonally by g(p, x) = (pg, ρ(g)−1x). We denote the orbit of (p, x) ∈
P × F under this action by [p, x]. A connection A ∈ A(P ) induces a connection on
the fiber bundle P ×ρ F , which is given by the image of the horizontal distribution
under TP ⊂ TP × TF → T (P ×ρ F ).

Important examples arise from the action of G on itself by inner automorphism
and from the adjoint action of G on its Lie algebra. We denote the associated bundles
for these actions by

Ad(P ) := P ×G G and ad(P ) := P ×ad g.

Note that the bundle Ad(P ) is a fiber bundle with fiber G but not a principal bundle.
The fibers of ad(P ) inherit from g a well-defined Lie algebra structure.

The difference a := A1 −A2 of two connection 1-forms A1, A2 ∈ A(P ) satisfies

ap(pξ) = 0 and apg(p̂g) = g−1ap(p̂)g

for all p ∈ P , p̂ ∈ TpP , ξ ∈ g and g ∈ G. Hence a corresponds to a ad(P )-valued
1-form ā on Σ by the formula ā(π(p); dπ(p)p̂) = [p, a(p; p̂)]. This describes A(P ) as
an affine space with underlying linear space Ω1(Σ, ad(P )) and with respect to any
reference connection A0 ∈ A(P ) it holds

A(P ) = {A0 + a | a ∈ Ω1(Σ, ad(P )}.

Similarly, the curvature FA of a connection A is an equivariant and horizontal 2-form
on P and can thus be identified with an element FA ∈ Ω2(Σ, ad(P )).
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Let H be a Lie group and let ρ̃ : G → H be a homomorphism of Lie groups.
Then left-multiplication ρ(g) := Lρ̃(g) ∈ Diff(H) yields a representation of G and the
associated bundle PH := P ×ρ H is a principal H bundle. If A ∈ A(P ), then A
induces a connection ρ(A) ∈ A(PH) by the formula

ρ(A)([p, h]; [p̂, ĥ]) := h−1ĥ+ h−1ρ̇(A(p; p̂))h

where ρ̇ := dρ(1) : g → h denotes the induced homomorphism of Lie algebras. The
curvature of the induced connection is given by

Fρ(A) = ρ̇(FA)

where ρ̇ denotes the induced bundle map ad(P )→ ad(PH).

From principal bundles to vector bundles and back. Let V be a vector space
and let ρ : G ↪→ GL(V ) be a faithful representation. The associated bundle E := P×ρ
V is then a vector bundle and the trivialization maps of P yield a natural reduction
of the structure group of E to G. For a connection A ∈ A(P ), the induced connection
on E is compatible with the linear structure and defines an affine G-connection in
AG(E). The bundles Aut(E) and End(E) can be described as associated bundles

Aut(E) = P ×Ad(ρ) GL(V ) and End(E) = P ×Ad(ρ) End(V )

where Ad(ρ) : G → GL(End(V )) is defined as the composition of ρ and the adjoint
action of GL(V ) on End(V ). The induced map ρ̇ : g→ End(V ) provides an inclusion
ad(P )→ End(E) and with respect to this map holds

FdA = ρ̇(FA)

for any connection A ∈ A(P ).
Conversely, let E → Σ be a vector bundle with structure group G ⊂ GL(n). The

frame bundle of E is defined by

Fr(E) := {(z, e) | z ∈ Σ, e : V → Ez such that pr2 ◦ ψα ◦ e ∈ G}

where ψα : E|Uα → Uα × V is any trivialization of E with z ∈ Uα. It follows
directly from the definition that Fr(E) is a principalG bundle. An affineG-connection
D ∈ AG(E) induces a connection AD ∈ A(Fr(E)) as follows: Let γ : [0, 1] → Σ be
a curve. We call e ∈ Ω0([0, 1], γ∗Fr(E)) a horizontal lift of γ if for every v ∈ V the
section

ev ∈ Ω0([0, 1], γ∗E), ev(t) := e(t)v ∈ Eγ(t)

satisfies Dt(ev) := Dγ̇(t)(ev(t)) = 0. In a local trivialization this condition is equiva-
lent to the ODE

ėα +Aα(γ)eα = 0.

This shows that horizontal lifts exist when the connection potentials Aα take values
in g. The tangent vector along horizontal lifts trace out an equivariant horizontal
distribution in Fr(E) and hence determine a connection A ∈ A(Fr(E)).
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The frame bundle construction is inverse to the construction of associated bundles
in the sense that

Fr(P ×G V ) ∼= V and Fr(E)×G V ∼= E

whenever G ⊂ GL(V ). This also provides a one-to-one correspondence between A(P )
and AG(E).

The Gauge group. The Gauge group of a principal G bundle P is defined as

G(P ) := Ω0(Σ,Ad(P )).

This group is isomorphic to the group Aut(P ) of fiber preserving equivariant auto-
morphism of P under the map

ψ : Ω0(Σ,Ad(P )) ∼= Aut(P ), ψg(p) := pg(p).

It is useful think of G(P ) as an infinite dimensional Lie group with Lie algebra

Lie(G(P )) = Ω0(Σ, ad(P ))

where all Lie theoretic operations are performed fiberwise. The Gauge group acts
naturally on the space of connections via pull back

g(A) := ψ∗g−1A = −(dg)g−1 + gAg−1.

The Gauge group of a vector bundle E with structure group G is the group

G(E) := Ω0(Σ, G(E)) ⊂ Ω0(Σ,GL(E))

which consists of all automorphisms of E taking values in G in any trivialization. We
think of G(E) again as Lie group with Lie algebra Ω0(Σ, g(E)). The Gauge group
acts naturally on the space of affine G-connection AG(E) via pullback

(g−1)∗D = g ◦D ◦ g−1.

This action is more explicitly described in terms of the connection potential by

(gA)α = −dgαg−1
α + gαAαg

−1
α

where gα := (pr2 ◦ ψα)∗g : Uα → G.
Suppose that ρ : G ↪→ GL(V ) is a faithful representation and E := P ×ρ V is an

associated vector bundle. Then ρ induces an isomorphism Ad(P ) ∼= G(E) and hence
G(P ) ∼= G(E). The derivative ρ̇ := dρ(1) : g ↪→ End(V ) yields an isomorphism of
ad(P ) ∼= g(E) and hence an identification of the Lie algebras of G(P ) and G(E). From
the naturality of the gauge action it is clear that the identification A(P ) ∼= AG(E) is
equivariant with respect to the action of G(P ) and G(E).



2.2. PRELIMINARIES 35

The moment map picture. Fix an invariant inner product 〈·, ·〉 on g. This
induces an inner product on the fibers of ad(P ) and hence an invariant inner product
on Lie(G(P )) = Ω0(Σ, ad(P )) by the formula

〈ξ, η〉 :=
∫

Σ
〈ξ, η〉 dvo`Σ.

This provides a natural hermitian structure on the space A(P ) as follows. Since A(P )
is an affine space, it suffices to define the hermitian structure on the underlying linear
space Ω1(Σ, ad(P )). For a, b ∈ Ω1(Σ, ad(P )) we define

ωA(a, b) :=
∫

Σ
〈a ∧ b〉, 〈a, b〉 :=

∫
Σ
〈a ∧ ∗b〉, JAa := ∗a = −a ◦ jΣ.

The following observation is due to Atiyah and Bott [4].
Lemma 2.2.2. The action of the Gauge group is Hamiltonian with moment map
µ(A) := ∗FA. More explicitly, for every ξ ∈ Ω0(Σ, ad(P )) the infinitesimal action on
A ∈ A(P ) is given by

LAξ := d

dt

∣∣∣∣
t=0

exp(tξ)(A) = −dAξ.

The function A(P ) → R, A 7→ 〈∗FA, ξ〉L2 , is differentiable and its differential is the
1-form

TAA(P )→ R, a 7→
∫

Σ
〈LAξ ∧ a〉 = ωA(LAξ, ·).

Proof. Let ξ ∈ Ω0(Σ, ad(P )) be given and think of it as an equivariant map ξ : P → g.
We then compute

d

dt

∣∣∣∣
t=0

exp(tξ)(A) = d

dt

∣∣∣∣
t=0

d exp(tξ)−1 exp(tξ) + exp(tξ)A exp(−tξ)

= d

dt

∣∣∣∣
t=0

(
d exp(tξ)−1)+ [ξ, A]

= −dξ − [A, ξ]

The last expression agrees with −dξ along horizontal vectors in P and vanishes along
vertical vectors. Hence it coincides with −dAξ for the induced affine connection dA
on ad(P ) and this proves the formula for the infinitesimal action.

From the formula
FA+a = FA + dAa+ 1

2[a ∧ a]

we see that the variation of FA in the direction a ∈ Ω1(Σ, ad(P )) is given by dAa.
This yields

〈dµ(A)[a]; ξ〉 =
∫

Σ
〈dAa, ξ〉 =

∫
Σ
〈a ∧ dAξ〉 = ωA(LAξ, a).

Here we used integration by part in the penultimate step and the formula

d〈a, ξ〉 = 〈dAa, ξ〉 − 〈a ∧ dAξ〉

which follows from the G-invariance of the inner product.
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The complexified gauge action

Let G be a compact connected Lie group and let P → Σ be a principal G bundle. We
denote by Gc the complexification of G and call P c := P ×GGc the complexification
of P . The complexified gauge group of P is defined as

Gc(P ) := G(P c).

One can think of elements in Gc(P ) as G-equivariant maps from P to Gc. The Lie
algebra bundle ad(P c) is the complexification of the bundle ad(P ) and since all Lie
theoretic operations on the gauge group are defined fiberwise, it is reasonable to think
of Gc(P ) as the complexification of G(P ). By the Peter-Weyl theorem, G admits a
faithful representation G ↪→ U(n). Identifying G with its image in U(n), we can
describe its complexification Gc ⊂ GL(n) explicitly as the image of G× g under the
diffeomorphism

U(n)× u(n)→ GL(n), (u, η) 7→ u exp(iη).

In terms of the associated bundle E := P ×G Cn the complexification of the gauge
group is then given by

Gc(E) = Ω0(Σ, Gc(E)).

The goal of this section is to explain how the G(P )-action on A(P ) extends naturally
to a holomorphic action of Gc(P ).

Proposition 2.2.3. There exists a natural action of Gc(P ) on A(P ) whose infinites-
imal action satisfies

LA(ξ + iη) = LAξ + ∗LAη = −dAξ − ∗dAη (2.5)

for all ξ, η ∈ Ω0(Σ, ad(P )) and A ∈ A(P ).

Proof. See page 39.

Holomorphic principal bundles. An almost complex structure J on a manifold
M is an endomorphism J ∈ End(TM) satisfying J2 = −1. It is called an integrable
or holomorphic structure if it endows M with the structure of a complex manifold. A
holomorphic structure on the principal bundle P c = P ×G Gc is an almost complex
structure J ∈ End(TP c) of the total space, which is Gc invariant and coincides with
the canonical complex structure on the vertical subbundle, i.e. J(pζ) = p(iζ) for any
p ∈ P c and ζ ∈ gc. We denote by J (P c) the space of all holomorphic structures on
P c. The next lemma justifies this notation.

Lemma 2.2.4. Every J ∈ J (P c) is integrable.

Proof. The Newlander-Nirenberg theorem states that an almost complex structure J
on a manifold M is integrable if and only if the Nijenhuis-tensor NJ : TM ⊗ TM →
TM given by

NJ(v, w) := [v, w] + J [Jv,w] + J [v, Jw]− [Jv, Jw]
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vanishes. We apply this to M = P c. If v, w ∈ T vertp (P c) are both in the vertical
bundle, we have NJ(v, w) = 0 as the fiber is a complex manifold. If v ∈ T vertp (P c)
and w ∈ Thorp (P c) the Lie bracket [v, w] = Lv(w) vanishes, since the horizontal distri-
bution is equivariant. In particular NJ(v, w) = 0 as all four terms vanish separately.
Let finally v, w ∈ Thorp (P c) be horizontal vectors. We may assume that p ∈ P and
denote by v̄ := dπ(p)v and w̄ := dπ(p)w the projections onto TΣ. By definition of
the curvature, we obtain the vertical component of the Nijenhuis tensor by

Ap(NJ(v, w)) = FA(v̄, w̄) + iFA(jΣv̄, w̄) + iFA(v̄, jΣw̄)− FA(jΣv̄, jΣw̄)
= 4F 0,2

A (v̄, w̄) = 0.

In the last step we use that Σ is a complex one-dimensional manifold and thus
Ω0,2(Σ) = 0. The horizontal part of NJ(v, w) gets identified under dπ(p) with
NJ(v̄, w̄) and vanishes as Σ is a complex manifold. This completes the proof of
NJ = 0.

As a consequence, every holomorphic principal bundles admits holomorphic local
trivializations with holomorphic transition maps. The next lemma is due to Singer
[104].

Lemma 2.2.5. There exists a one to one correspondence between connections A ∈
A(P ) and holomorphic structures J ∈ J (P c).

Proof. A connection A ∈ A(P ) induces a connection on P c and thus determines
for every p ∈ P c a splitting Tp(P c) = Thorp (P c) ⊕ T vertp (P c). The vertical part
is isomorphic to gc and has a canonical complex structure. The differential of the
projection π : P c → Σ restricts to an isomorphism dφ(p) : Thorp (P c) → Tπ(p)Σ and
induces a complex structure on Thorp (P c).

Conversely, let J ∈ J (P c) be given and think of P ⊂ P c as a subbundle. For
p ∈ P we define Hp := TpP ∩ Jp(TpP ) and claim that TpP + Jp(TpP ) = Tp(P c).
Indeed, since T vertp P ∼= g, the sum clearly contains the vertical fiber T vertp (P c) ∼= gc

and dπ(p) maps TpP already onto Tπ(p)Σ. It is immediate from the construction
that Hp is invariant under Jp and defines a (real) two dimensional complement of
T vertp (P c) in Tp(P c). As p varies over P we obtain an equivariant distribution along
P and hence a connection A ∈ A(P ).

Let A ∈ A(P ), g ∈ G(P ) and let JA ∈ J (P c) be the holomorphic structure
induced by A. Then g(A) induces the holomorphic structure (ψg−1)∗JA, since the
construction above is clearly functorial. The action of G(P ) on J (P c) has a natural
extension to the complexified gauge group via

Gc(P )× J (P c)→ J (P c), g(J) := (ψg−1)∗J

where ψg−1 ∈ Aut(P c) is the automorphism corresponding to g−1. Using the identi-
fication of J (P c) with A(P ) this yields the desired action of Gc(P ) on A(P ) and the
quotientA(P )/Gc(P ) parametrizes the isomorphism classes of holomorphic structures
on P c.
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Holomorphic vector bundles. We consider the special case G = U(n) and denote
by E := P ×U(n) Cn the associated vector bundle. A holomorphic structure on E is
an almost complex structure J ∈ End(TE) of the total space which restricts to the
linear complex structure on the fibers. Similarly as in the case of principal bundles,
one shows that every such structure is indeed integrable and that every holomorphic
vector bundle admits holomorphic trivializations. It is then easy to see that every
holomorphic vector bundle E carries a natural operator

∂̄E : Ω0(Σ, E)→ Ω0,1(Σ, E)

which in any holomorphic trivialization agrees with the usual ∂̄ operator on Cn. This
operator is a particular Cauchy-Riemann operator on E.

Definition 2.2.6. Let E → Σ be a complex vector bundle. A Cauchy Riemann
operator on E is a linear operator

D′′ : Ω0(Σ, E)→ Ω0,1(Σ, E)

which satisfies the Leibniz rule

D′′(fs) = ∂̄f ⊗ s+ f ⊗D′′s

for all f : Σ→ C and s ∈ Ω0(Σ, E).

The converse is also true: Every Cauchy-Riemann operator determines a holo-
morphic structure on the complex bundle E, whose local holomorphic sections are
solutions of the Cauchy-Riemann equation D′′s = 0. This is another instance of the
Newlander-Nirenberg theorem. In the case of Riemann surfaces a simpler proof of
this result is given by Atiyah and Bott ([4], Section 5).

Note that the associated vector bundle E carries a canonical hermitian metric,
which in any trivialization coincides with the standard hermitian metric on Cn. We
claim that there is a one to one correspondence between unitary connections on E
and Cauchy-Riemann operators. For a unitary connection D we obtain a Cauchy-
Riemann operator by the formula

D′′s := (Ds)0,1 := 1
2 (Ds+ i(Ds) ◦ jΣ) = 1

2 (Ds− i ∗ (Ds)) .

To show that this correspondence is bijective, it suffices to examine this correspon-
dence locally. In a unitary trivialization ψ : E|U → U ×Cn the connection D can be
described in terms of a 1-form A ∈ Ω1(U, u(n)) such that

Ds := ds+As, D′′s := ∂̄s+A0,1s

holds for any section s ∈ Ω0(U,Cn) with A0,1 := 1
2 (A + iA ◦ jΣ). In particular,

we recover A as twice the skew-hermitian part of A0,1 and therefore it is uniquely
determined by A0,1. Conversely, any Cauchy Riemann operator D′′ is given in this
local trivialization by

D′′s := ∂̄s+Bs

for some B ∈ Ω0,1(U, gl(n)). Since B satisfies B(jΣv) = −iB(v) for any tangent
vector v ∈ TΣ|U , the skew-hermitian and hermitian part of B interchange if we
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compose B with jΣ. This shows that B has the form B = 1
2 (A + iA ◦ jΣ) for some

A ∈ Ω1(U, u(n)) and this proves the claim.
On the level of Cauchy-Riemann operators the complexified Gauge group Gc(E) =

Ω0(Σ,GL(E)) acts naturally via

g(∂̄A) := g ◦ ∂̄A ◦ g−1 = ∂̄A − ∂̄A(g)g−1.

The next lemma summarizes the discussion above and provides an explicit formulas
for this action on A(E).
Lemma 2.2.7. Let E → Σ be a complex vector bundle.

1. For every holomorphic structure ∂̄E and hermitian metric H exists a unique
connection

D := D(∂̄E , H) =: D′ +D′′ ∈ A1,0(E)⊕A0,1(E)

such that D is unitary with respect to H and D′′ = ∂̄E.

2. Let g ∈ Ω0(Σ,GL(E)) and denote h := g∗g (with respect to H). Then

D(g(∂̄E), H) = g
(
D + h−1D′(h)

)
g−1

F (g(∂̄E), H) = g
(
F +D′′(h−1D′(h))

)
g−1.

Proof. For the first part, note that there is a one to one correspondence between
hermitian metrics H and reductions of the structure group of E to U(n): Using
the Gram-Schmidt process we can always find local trivializations which identify H
with the standard hermitian product on Cn and the transition map between such
trivializations are clearly unitary. The second part follows from the formula

D(g(∂̄E), H) = g(D) = g ◦D′′ ◦ g−1 + (g−1)∗ ◦D′ ◦ g∗

and F = D ◦D.

Remark 2.2.8. Consider the general case and assume that G ⊂ U(n) is a compact
connected subgroup. The structure group of E is then contained in G and the explicit
formula in the lemma above shows that the subspace AG(E) of G-connections is
preserved by the action of Gc(E) = Ω0(Σ, Gc(E)). Since holomorphic structures on
E and its frame determine one another, it is clear that this action corresponds to the
action described on holomorphic principal bundles above.

We may now deduce the formula for the infinitesimal action (2.5).

Proof of Proposition 2.2.3. As in Lemma 2.2.2 one calculates
d

dt

∣∣∣∣
t=0

exp(tζ)(∂̄A) = −∂̄Aζ

for ζ ∈ Ω0(Σ, gc(E)). Write ζ = ξ + iη with ξ, η ∈ Ω0(Σ, g(E)) and use the formula
∂̄A(iη) = ∗∂̄Aη to deduce

LAζ = −∂̄Aζ + (∂̄Aζ)∗ = −(∂̄Aξ − (∂̄Aξ)∗)− ∗(∂̄Aη − (∂̄Aη)∗)
= −dAξ − ∗dAη = LAξ + ∗LAη.
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Regularity assumptions

Let G be a compact connected Lie group and let P → Σ be a principal G bundle. We
shall always consider connections of Sobolev class W 1,2 and gauge transformations
of Sobolev class W 2,2. More precisely, the space of W 1,2 connections on P is defined
with respect to some smooth reference connection A0 as

A(P ) := {A0 + a | a ∈W 1,2(Σ, T ∗Σ⊗ ad(P ))}

and the W 2,2 completion of the gauge group and its complexification are

G(P ) := W 2,2(Σ,Ad(P )), Gc(P ) := W 2,2(Σ,Ad(P c)).

We use the same notation as for the smooth groups, since all the results from the
previous section carry over. In particular, the action of the gauge group and its
complexification extend smoothly over these Sobolev completions, since W 2,2 ↪→ C0

is in the good range of the Sobolev embedding. A connection still determines a
holomorphic structure up to isomorphism due to the following regularity result.

Lemma 2.2.9. For every W 1,2 connection A ∈ A(P ) exists a complex W 2,2 gauge
transformation g ∈ Gc(P ) such that g(A) is smooth.

Proof. This is Lemma 14.8 in [4]. By Proposition 2.2.3, the infinitesimal action of
the complex gauge group is given by

LA : W 2,2(Σ, ad(P c))→W 1,2(Σ, T ∗Σ⊗ ad(P ))
LA(ξ + iη) = −dAξ − ∗dAη

For any smooth reference connection A0, this is a compact perturbation of LA0 which
is a Fredholm operator. Hence LA is also Fredholm and in particular its cokernel is
finite dimensional.

It follows from the implicit function theorem in Banach spaces that we can choose
a finite dimensional slice N orthogonal to the Gc-orbit through A. Say dim(N) = r
and fix r+1 connections B0, . . . , Br ∈ N which span an r-simplex containing A in its
interior. A small perturbation of the vertices yields smooth connections B̃0, . . . , B̃r
and the simplex spanned by these connections will still intersect the orbit Gc(A).
This intersection point yields a smooth connection in the Gc orbit of A.

2.2.2 Parabolic subgroups
Let G be a compact connected Lie group with Lie algebra g and denote its complex-
ification by Gc. Fix an invariant inner product on g. This induces a (real valued)
inner product on gc = g ⊕ ig where we define both factors to be orthogonal. We
define parabolic subgroups of Gc first by using toral generators of gc. Then we recall
briefly the root space decomposition of reductive Lie algebras and give an alternative
intrinsic definition of parabolic subgroups. The first definition occures naturally in
the geometric description of the weights in Chapter 5. The intrinsic version turns
out to be useful in the proof of Proposition 2.5.9 which relates the algebraic notion
of stability with the weights.
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Toral generators

An element ζ ∈ gc is called a toral generator if

Tζ := {exp(tζ) |t ∈ R} ⊂ Gc

is a compact torus. We denote by T c the set of toral generators. Certainly g ⊂ T c.
Since any maximal compact subgroup of Gc is conjugated to G, for every ζ ∈ T c
exists g ∈ Gc such that g−1Tζg

−1 ⊂ G. The relation gTζg
−1 = Tgζg−1 then yields

gζg−1 ∈ g and hence

T c = Ad(Gc)(g) = {gξg−1 | g ∈ Gc, ξ ∈ g}.

Definition 2.2.10. A parabolic subgroup of Gc is a subgroup of the form

Q(ζ) := {g ∈ Gc | the limit lim
t→∞

eitζge−itζ exists in Gc}

for some ζ ∈ T c. The Levi subgroup of Q(ζ) is defined by

L(ζ) := {g ∈ Gc | eiζge−iζ = g}.

Remark 2.2.11. We consider Gc = Q(0) as parabolic subgroup of itself.

Lemma 2.2.12. Consider the setting described above and let ζ ∈ T c.

1. Q(ζ) is a closed connected Lie subgroup of Gc with Lie algebra

q(ζ) := {ρ ∈ gc | the limit lim
t→∞

eitζρe−itζ exists in gc}.

2. L(ζ) is a closed connected Lie subgroup of Gc with Lie algebra

l(ζ) := {ρ ∈ gc | eitζρe−itζ = ρ}

3. L(ζ) is a maximal reductive subgroup of Q(ζ).

4. Q(ζ) = Gc if and only if ζ is contained in the center of gc.

Proof. Since Q(gζg−1) = gQ(ζ)g−1 and L(gζg−1) = gL(ζ)g−1, we may assume ζ =
ξ ∈ g. By the Peter-Weyl theorem, there exists a faithful representation G ↪→
U(n) and we may identify G with a closed subgroup of U(n). Then iξ yields a
hermitian endomorphism of Cn which is diagonalizable with real eigenvalues λ1 <
· · · < λr. Denote the eigenspace corresponding to λj by Vj . They yield an orthogonal
decomposition

Cn = V1 ⊕ · · · ⊕ Vr.

In this decomposition we can write g ∈ Gc ⊂ GL(n,C) as

g =


g11 g12 · · · g1r
g21 g22 · · · g2r
...

...
. . .

...
gr1 gr2 · · · grr


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with gij ∈ Hom(Vj , Vi). Then

eitξge−itξ =


g11 e(λ1−λ2)tg12 · · · e(λ1−λr)tg1r

e(λ2−λ1)tg21 g22 · · · e(λ2−λr)tg2r
...

...
. . .

...
e(λr−λ1)tgr1 e(λr−λ2)tgr2 · · · grr

 .

Thus g ∈ Q(ξ) if and only if g is upper triangular (i.e. gij = 0 for i > j) and g ∈ L(ξ)
if and only if g is block diagonal (i.e. gij = 0 for i 6= j). This shows that L(ξ) and
Q(ξ) are closed subgroups of Gc and the formulas for l(ξ) and q(ξ) are immediate.

As the spaces Vj are pairwise orthogonal, the intersection G ∩ Q(ξ) consists of
block diagonal matrices and hence agrees with the centralizer of the torus Tξ in G.
Since the centralizers of tori in compact groups are connected (see [70] Corollary
4.51) we conclude that G ∩ Q(ξ) is connected. Since L(ξ) is the complexification of
G ∩ Q(ξ) it is connected and reductive. Moreover Q(ξ)/L(ξ) can be identified with
the unipotent matrices in Q(ξ) and hence L(ξ) is a maximal reductive subgroup of
Q(ξ). We observe that

Q(ξ)→ L(ξ), g 7→ lim
t→∞

eitξge−itξ

defines a continuous retraction of Q(ξ) onto L(ξ) and hence Q(ξ) is connected.
Finally, since Gc is reductive, we have Gc = Q(ξ) if and only if Gc = L(ξ). The

later is clearly equivalent to ξ ∈ Z(g).

The root-space decomposition

We recall the necessary background on Lie theory briefly and refer to [70] for the
proofs. Note that the discussion remains valid for any G-invariant inner product on
g, which does not need to be the negative Killing form.

Reductive Lie groups. Using the invariant inner product on g, it is easy to show
that the adjoint action of g on itself is completely reducible. This yields an orthogonal
decomposition

g = z⊕ [g, g]

where z denotes the center of g and the commutator [g, g] is a direct sum of simple
ideals and hence a semisimple Lie algebra. The same decomposition is valid for the
complexification. To see this extend the inner product on g to a non-degenerated
C-bilinear form B : gc × gc → C by

B(ξ1 + iη1; ξ2 + iη2) = 〈ξ1, ξ2〉 − 〈η1, η2〉+ i(〈ξ1, η2〉+ 〈η1, ξ2〉).

This bilinear form is nondegenerate and Gc-invariant. Moreover, the B-orthogonal
complement of a complex subspace W ⊂ gc is a Gc-invariant complement and the
same argument as above yields the decomposition

gc = zc ⊕ [gc, gc].
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Root space decomposition. Fix a maximal torus T ⊂ G with Lie algebra t and
decompose it orthogonally as t = z⊕ t0. A nonzero imaginary valued real linear map

α = ia : t0 → iR, a ∈ Hom(t0,R)

is called a root of G with respect to T if there exists eα ∈ [gc, gc] satisfying

[t, eα] = α(t)eα for all t ∈ t0.

The element eα is uniquely determined by α up to scaling. We denote by gα := C ·eα
the one dimensional root space corresponding to α and denote by R the set of all
roots (relative to T ). The root space decomposition of gc is the vector space
decomposition

gc = zc ⊕ tc0 ⊕
⊕
α∈R

gα.

For a proof see [70] Chapters II.1-4 and IV.5.

Lemma 2.2.13. Denote g0 := tc0.

1. For α, β ∈ R ∪ {0} the Lie bracket satisfies the relation

[gα, gβ ] ⊂ gα+β

where the right-hand side is defined to be zero when α+ β /∈ R ∪ {0}.

2. For α, β ∈ R ∪ {0} with α 6= −β the subspaces gα and gβ are B-orthogonal.

3. If α ∈ R, then −α ∈ R. Moreover, if eα ∈ gα then ēα ∈ g−α and

(gα ⊕ g−α) ∩ g = R(eα + ēα)⊕ R(ieα − iēα)

Proof. The first and the last statement follow directly from the definitions. For the
second statement consider first the case β = 0 and α ∈ R. Then follows for all
s, t ∈ tc0

B(α(t)eα, s) = B([t, eα], s) = −B(eα, [t, s]) = 0

where we used in the second step that B is Gc-invariant. This shows that tc0 is B-
orthogonal to gα. Now consider α, β ∈ R with α+β 6= 0. A similar calculation shows
for all s, t ∈ tc0

B(α(t)eα, β(s)eβ) = B([t, eα], β(s)eβ) = −B(t, [eα, β(s)eβ ]) = 0

where the last equality follows from the observation [eα, β(s)eβ ] ∈ gα+β .

The Weyl group. Using the inner product on g, we identify the roots α = ia ∈ R
with vectors tα ∈ t0 by the relation

a(t) := 〈tα, t〉 for all t ∈ t0.

This yields a subset ΦR = {tα |α ∈ R} ⊂ t0 which satisfies the properties of an
abstract root system:
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1. ΦR is a spanning set for t0.

2. For every tα ∈ ΦR, the orthogonal reflection along kerα

sα : t0 → t0, sα(t) := t− 2〈t, tα〉
||tα||2

carries ΦR to itself.

3. 2〈tβ ,tα〉
||tα||2 is an integer for all tα, tβ ∈ ΦR.

This is discussed in [70] Chapters II.5. The subgroup W generated by all the root
reflection sα inside the orthogonal group O(t0) is called the Weyl group. Since ΦR
is a spanning set of t0, any orthogonal transformation which fixes ΦR must be the
identity and hence the Weyl group is always finite. After removing all hyperplanes
ker(α) the Weyl group acts transitively and freely on t0\ ∪ {ker(α) |α ∈ R}. The
closure of a connected component of this space is called a Weyl chamber ΩW ⊂ t0.
In particular, ΩW is the closure of a fundamental domain for the action of W . The
Weyl group can alternatively be described as

W ∼= NG(T )/ZG(T ).

Here the normalizer NG(T ) acts on the maximal torus T by conjugation. This action
is trivial on the connected component of the center Z0(G) ⊂ T and its derivative
induces an action on t0. Since the inner product on g is G-invariant, this identifies
NG(T )/ZG(T ) with a subgroup of the orthogonal group O(t0) and it is easy to check
that this group permutes the roots tα. The equivalence of both descriptions of the
Weyl-group is shown in [70] Chapters IV.6. Since any two maximal tori in G are
conjugated, this shows that the conjugation classes in G are parametrized by T/W
and in particular any element ξ ∈ g is conjugated to an element in the Weyl chamber
ΩW ⊂ t0.

Simple roots. Consider a notion of positivity on the set R satisfying the properties

1. For every root α ∈ R exactly one of α and −α is positive.

2. If α and β are positive, then α+ β is positive.

An easy way to define such a notion goes as follows. Choose a real linear functional
φ : t0 → R such that kerφ∩ΦR = ∅ and define a root α ∈ R to be positive whenever
φ(tα) > 0. We write α > 0 for a positive root α and denote by R+ the collection of
positive roots. This induces a partial ordering on the roots according to the rule

α > β if and only if α− β > 0.

A root α ∈ R+ is called simple if it cannot be decomposed as α = β + γ with
β, γ ∈ R+. In other words, a simple root is a minimal positive root. We denote by
R+

0 = {α1, . . . , αr} the set of simple roots. It is easy to deduce from the definitions
that any root α can be written as

α =
r∑
j=1

xjαj (2.6)
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with coefficients x1, . . . , xr ∈ Z having all the same sign (or vanish). In particular
ΦR+

0
is a spanning set of t0. A less obvious fact is that ΦR+

0
is linear independent

(see [70] II.5 Prop 2.49). Hence every root has a unique expression (2.6) and a root
is positive if and only if all the coefficients are nonnegative. This observation shows
that the collection of simple roots and the partial ordering determine one another.

Any collection of simple roots R+
0 = {α1, . . . , αr} determines a canonical Weyl

chamber by the formula

ΩW = {t ∈ t0 | aj(t) ≥ 0 for all j = 1, . . . , r}

where we denote αj = iaj as above. Conversely, given a Weyl chamber ΩW we can
recover the collection of positive roots by the rule

α > 0 if and only if 〈t, tα〉 ≥ 0 for all t ∈ ΩW .

Hence the choice of a Weyl chamber and a partial ordering determine one another as
well. Since any two Weyl chambers are conjugated by an element in G, this shows
that all the choices in this section are canonical up to conjugation.

We denote the simple roots in ΦR+
0

for convenience by tj := tαj . Since they define
a basis of t0, we can define a dual basis {ť1, . . . , ťr} by〈

ťi,
2tj
||tj ||2

〉
= δij (2.7)

for i, j = 1, . . . , r. They are clearly contained in the Weyl chamber determined by
the simple roots and yield the characterization

t =
r∑
j=1

xj ťj ∈WΩ ⇔ xj ≥ 0 for j = 1, . . . , r.

The dual elements
λj : t0 → iR, λj(t) := i〈ťj , t〉

are called the fundamental weights associated to the simple roots.

An intrinsic definition of parabolic subgroups

We provide an intrinsic definition of parabolic subgroups following the presentation
[99] by Serre. Let ξ ∈ [g, g] be given and choose a maximal torus T ⊂ G such that
ξ ∈ t0. Moreover, let R+

0 := {α1, . . . , αr} be a choice of simple roots such that ξ is
contained in the corresponding Weyl chamber. Denote

R(ξ) := {α ∈ R | 〈ξ, tα〉 ≥ 0} and R̃(ξ) := {α ∈ R | 〈ξ, tα〉 = 0}. (2.8)

Define the Lie subalgebras

q(ξ) := z⊕ t0 ⊕
⊕

α∈R(ξ)

gα (2.9)
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and

l(ξ) := z⊕ t0 ⊕
⊕

α∈R̃(ξ)

gα. (2.10)

The next lemma shows that this notation is consistent with our definition in the
section on toral generators.

Lemma 2.2.14. Consider the setting from above and define q(ξ) and l(ξ) by (2.9)
and (2.10) respectively. Then

q(ξ) = {ρ ∈ gc | the limit lim
t→∞

eitξρe−itξ exists in gc}

and
l(ξ) = {ρ ∈ gc | eitξρe−itξ = ρ}.

Proof. Decompose ρ ∈ gc with respect to the root space decomposition as

ρ = ρ0 +
∑
α∈R

ρα

with ρ0 ∈ t and ρα ∈ gα. By definition of the roots we have

[iξ, ρa] = −a(ξ)ρ(ξ) · ρα = −〈tα, ξ〉ρα

and hence
eitξρe−itξ = ρ0 +

∑
α∈R

e−〈tα,ξ〉tρα.

This converges for t → ∞ if and only if ρα = 0 for all α /∈ R(ξ). Similarly, we have
ρ = eiξρe−iξ if and only if ρα = 0 for all α /∈ R̃(ξ).

We could now define the parabolic subgroup Q(ξ) and its Levi subgroup L(ξ)
as those connected subgroups of Gc whose Lie algebras are given by q(ξ) and l(ξ)
respectively. These are closed subgroups, since both agree with their normalizer in
Gc.

Lemma 2.2.15. Let ť1, . . . , ťr be defined by (2.7) and let

ξ = x1ť1 + · · ·+ xr ťr ∈ ΩW

with xj ≥ 0. Then Qj := Q(ťj) are maximal proper parabolic subgroups of Gc and
Q(ξ) ⊂ Q(ťj) if and only if xj > 0. Moreover,

Q(ξ) =
⋂

{j | xj>0}

Q(ťj).

Proof. The proof is a simple matter of comparing R(ťj) and R(ξ).
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2.3 Algebraic and symplectic stability
Let G be a compact connected Lie group and let P → Σ be a principal G bundle over
Σ. Denote by Gc the complexification of G and by P c := P ×G Gc the complexified
principal bundle.

The algebraic geometric construction of the moduli space of holomorphic struc-
tures on P c, in the sense of Mumford’s geometric invariant theory [88], depends on
the notion of stable and semistable objects. For vector bundles this notion is due to
Mumford [87] and it was later extended by Ramanathan [95] to principal bundles.
We discuss these two definitions in the first subsection and denote the corresponding
moduli space of holomorphic structures on P c by

J ss(P c)//G(P c).

As mentioned in the introduction, this space is obtained by identifying two orbits in
J ss(P )/G(P c) when they cannot be separated.

The G(P )-action on A(P ) is Hamiltonian with moment map µ(A) = ∗FA by
Lemma 2.2.2. For every central element τ ∈ Z(g) one obtains the symplectic quotient

A(P )//G(P ) := µ−1(τ)/G(P ).

Note that the moment map is not uniquely determined by the gauge action and
another moment map is given by µτ (A) := ∗FA− τ . In other words, different choices
of τ correspond to different choices for the moment map. The symplectic version of
GIT (see [51]) defines stable and semistable objects in A(P ) in terms of the moment
map. We show in the second subsection that there exists a natural choice for τ ∈ Z(g)
determined by the topological type of P and define the corresponding symplectic
notion of stability. It will follow from Theorem 2.4.14 and Theorem 2.4.15 in the
next section that this definitions leads to identifications

µ−1
τ (0)/G(P ) ∼= Ass(P )//Gc(P ).

The right hand side is again obtained by identifying orbits in Ass(P )/Gc(P ) if they
cannot be separated.

Recall from Lemma 2.2.5 that J (P c) can naturally be identified with A(P ). We
prove in Theorem 2.3.10 that the different notions of stability on A(P ) and J (P c) are
essentially equivalent under this identification. In particular, this yields isomorphism

J ss(P c)//G(P c) ∼= Ass(P )//Gc(P ) ∼= µ−1
τ (0)/G(P )

for a suitable choice of τ ∈ Z(g). The proof of this theorem will be based on the
whole remainder of the chapter, namely on Proposition 2.5.9, the moment-weight in-
equality (Theorem 2.5.12), the Harder-Narasimhan-Ramanathan theorem (Theorem
2.6.5) and the dominant weight theorem (Theorem 2.7.1).

2.3.1 Algebraic stability
We discuss the algebraic notion of stability on the space J (P c) of holomorphic struc-
tures on the principal Gc bundle P c. This definition depends only on the complexified
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bundle P c itself and not on the reduction P ⊂ P c. Consider as a warmup the case
Gc = GL(n). This allows us to identify P c with a complex vector bundle. The slope
or normalized Chern class of a vector bundle E → Σ is defined as

µ(E) := c1(E)
rk(E) .

The following Definition is due to Mumford [87].

Definition 2.3.1. Let E → Σ be a holomorphic vector bundle.

1. E is called stable if for every proper holomorphic subbundle 0 6= F ⊂ E we
have µ(F ) < µ(E).

2. E is called polystable if E is the direct sum of stable vector bundles all having
the same slope.

3. E is called semistable if for every proper holomorphic subbundle 0 6= F ⊂ E
we have µ(F ) ≤ µ(E).

4. E is called unstable if E is not semistable.

The analogue of this definition for general Lie groups was formulated by Ra-
manathan [95]. Lemma 2.3.4 below shows that Definition 2.3.1 corresponds to the
special case Gc = GL(n) in Definition 2.3.2.

Definition 2.3.2. Let Gc be a connected reductive Lie group and P c → Σ be a
holomorphic principal Gc bundle.

1. P c is called stable if for every holomorphic reduction PQ ⊂ P c to a maximal
proper parabolic subgroup Q ⊂ Gc the subbundle ad(PQ) ⊂ ad(P c) satisfies
c1(ad(PQ)) < 0.

2. P c is called polystable if there exists a parabolic subgroup Q ⊂ Gc and a
holomorphic reduction PL ⊂ P c to a Levi subgroup of Q satisfying the following

(a) PL is a stable principal L bundle.
(b) For every character χ : L → C∗, which is trivial on the center of Gc, the

associated line bundle χ(PL) := PL ×χ C satisfies c1(χ(PL)) = 0.

3. P c is called semistable if for every holomorphic reduction PQ ⊂ P c to a
maximal proper parabolic subgroup Q ⊂ Gc the subbundle ad(PQ) ⊂ ad(P c)
satisfies c1(ad(Q)) ≤ 0.

4. P c is called unstable if ad(P c) is not semistable.

Remark 2.3.3. Let L1, · · · , Lr and Gc be complex connected reductive Lie groups
such that the product L1 × · · · × Lr ⊂ Gc embeds as a subgroup. Let Pj be stable
principal Lj bundles for j = 1, . . . , r. Then it is easy to see that PL := PL1×· · ·×PLr
is a stable principal L bundle. However, the extension P c := PL ×L Gc is in general
not a semistable Gc-bundle. The second condition in the definition of polystability in
needed to guarantee the semistability of P c. To see this let PQ′ ⊂ P c be the reduction
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to a maximal parabolic subgroup and consider the determinant of the adjoint action
of Q′ ⊂ Gc on its Lie algebra. This character is clearly trivial on the center of Gc
and either restricts to L or to a maximal parabolic subgroup Q′′ = Q′ ∩ L ⊂ L. In
the first case, it follows from the definition of polystability that c1(ad(PQ′)) = 0. In
the other case observe that PQ′ determines a maximal parabolic reduction PQ′′ ⊂ PL
and c1(ad(PQ′)) = c1(ad(PQ′′)) < 0, since PL is stable.

Lemma 2.3.4. A holomorphic vector bundle E is stable, polystable, semistable or un-
stable if and only its GL(n)-frame bundle P c := Fr(E) is stable, polystable, semistable
or unstable respectively.

Proof. We discuss the stable (resp. semistable) case first. A maximal parabolic
subgroup of GL(n) is the stabilizer a subspace 0 6= V ⊂ Cn and the holomorphic
reduction PQ of the GL(n)-frame bundle to a maximal parabolic subgroup is thus
the stabilizer of a holomorphic subbundle F ⊂ E. Consider the orthogonal splitting
E = F⊕G with respect to some fixed hermitian metric on E. Then ad(PQ) ⊂ End(E)
is given by the space of upper block diagonal matrices. We choose unitary connections
A1 on E and A2 of G and denote by A the induced connection of E = F ⊕G. This
induces also a connection on ad(PQ) and the curvature of this connection is given by
the endomorphism

ξ 7→ FAξ − ξFA
for ξ ∈ ad(PQ). Since FA = diag(FA1 , FA2) is block-diagonal, a short calculation
shows that the trace of this map is given by rk(G)tr(FA1)− rk(F )tr(FA2) and Chern-
Weyl theory yields

c1(ad(PQ)) = rk(G)c1(F )− rk(F )c1(G)

= rk(E/F )rk(F )
(
c1(F )
rk(F ) −

c1(E/F )
rk(E/F )

)
.

This expression is nonpositive if and only if c1(F )/rk(F ) ≤ c1(E)/rk(E) and negative
whenever strict inequality holds. This proves the equivalence of both definitions in
the stable and semistable case.

The unstable case is equivalent to the semistable case and it remains to discuss
the polystable case. A general parabolic subgroup of GL(V ) is the stabilizer of a
filtration V1 ⊂ · · · ⊂ Vr = V and a Levi subgroup in given as the stabilizer of a
splitting V = W1 ⊕ · · · ⊕ Wr with Vj = W1 ⊕ · · · ⊕ Wj . Hence, a holomorphic
reduction PL ⊂ P c to the Levi factor of a parabolic subgroup corresponds to the
L = GL(n1)× · · · ×GL(nr) frame bundle of a holomorphic splitting

E = E1 ⊕ · · · ⊕ Er.

We claim that PL is a stable principal L bundle if and only if all factors Ej are stable
holomorphic vector bundles. Indeed, a maximal parabolic subgroup of L has the
shape

Q = GL(n1)⊕ · · · ⊕GL(nj−1)⊕Qj ⊕GL(nj+1) · · · ⊕GL(nr)

where Qj ⊂ GL(nj) is a maximal parabolic subgroup. Then

ad(PQ) = End(E1)⊕ · · · ⊕ ad(PQj )⊕ · · · ⊕ End(Er)
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and hence c1(ad(PQ)) = c1(ad(PQj )). The claim follows now from our discussion of
the stable case.

It remains to verify that the slopes of all subbundles satisfy µ(Ej) = µ(E) if
and only if for every character χ : L → C∗ which is trivial on the center of GL(n)
the associated line bundle χ(PL) has degree zero. Every character χ : L → C∗
factors as χ = χ1 · · ·χr with χj : GL(ni) → C∗ and induces on the Lie algebra the
representation

χ̇ = χ̇1 + · · ·+ χ̇r

with χ̇j := dχj(1) : gl(nj) → C. Since every traceless matrix in gl(nj) is a commu-
tator, there exist λj ∈ C such that

χ̇j(ρj) = λjtr(ρj)

for all ρj ∈ gl(nj). We choose unitary connections Aj ∈ A(Ej) and denote by
A = A1 ⊕ · · · ⊕ Ar the induced unitary connection on E. Then follows from Chern-
Weil theory

c1(χ(PL)) = i
2π

∫
Σ
Fχ(A) dvo`Σ = i

2π

∫
Σ
χ̇(FA) dvo`Σ

= λ1c1(E1) + · · ·+ λrc1(Er).

Note that χ vanishes on the center of GL(n) if and only if n1λ1 + · · · + nrλr = 0 is
satisfied. If in addition µ(Ej) = µ(E) holds for all j, then

c1(χ(PL)) =
r∑
j=1

njλjµ(Ej) = 0.

For the converse consider the character χ : GL(n1)× · · · ×GL(nr)→ C∗

χ(B1, . . . , Br) := det(Bj)n det(B)−nj .

This vanishes on the center of GL(n) and satisfies χ̇(ξ) = ntr(ξj)− nitr(ξ). Hence

c1(χ(PL)) = nc1(Ej)− njc1(E)

and this vanishes precisely when µ(Ej) = µ(E) is satisfied.

The next lemma shows that we can always reduce to the case where Gc has
discrete center.

Lemma 2.3.5. Let Gc be a complex connected reductive Lie group and P c → Σ be a
principal Gc bundle. Denote by Z0(Gc) the connected component of the center of Gc
containing the identity. Let Hc := Gc/Z0(Gc) and denote by

PHc := P c/Z0(Gc)

the associated Hc bundle. This carries a natural induced holomorphic structure and
P c is stable, polystable, semistable or unstable if and only if PHc is stable, polystable,
semistable or unstable respectively.
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Proof. The Lie algebra of Gc splits as gc = Z(gc)⊕[gc, gc] and [gc, gc] can be identified
with the semisimple Lie algebra of Hc. This splitting is preserved by the adjoint
action of Gc and produces a splitting ad(P c) = V ⊕ ad(PHc) where V = Σ × Z(gc)
is a trivial bundle. Parabolic subgroups Q ⊂ Gc correspond bijectively to parabolic
subgroups Q̄ := Q/Z0(Gc) ⊂ H and parabolic reductions PQ ⊂ P c correspond
bijectively to parabolic reductions PQ̄ := PQ/Z0(Gc) ⊂ PHc . Since ad(PQ) = V ⊕
ad(PQ̄), we have c1(ad(PQ)) = c1(ad(PQ̄)) and this shows that P c is stable (resp.
semistable) if and only if PHc is stable (resp. semistable).

If L is a Levi subgroup of the parabolic subgroup Q ⊂ Gc, then L̄ := L/Z0 is a
Levi-subgroup of Q̄ = Q/Z0 ⊂ Hc. Moreover, reductions PL ⊂ P c to L correspond
bijectively to reductions PL̄ = PL/Z0(Gc) ⊂ PHc . We have already shown that PL
is stable if and only if PL̄ is stable. The characters χ : Q → C∗ which are trivial on
the center Z(Gc) of Gc correspond bijectively to the characters χ̄ : Q̄ → C∗ which
are trivial on Z(Gc)/Z0(Gc) and

χ(PQ) ∼= χ̄(PQ̄).

Thus P c is polystable if and only if PHc is polystable.

2.3.2 Symplectic stability
Let G be a compact connected Lie group and P → Σ a principal G bundle. Let
χ : G→ S1 be a character and denote by χ̇ = dχ(1) : g→ iR the induced character
on the Lie algebra. Since g = Z(g) ⊕ [g, g], we may identify −2πiχ̇ with an element
in Z(g)∗ = Hom(Z(g),R). Denote by χ(P ) := P ×χ C the line bundle associated to
P via χ. Then

c1(χ(P )) = i
2π

∫
Σ
χ̇(FA) (2.11)

for any connection A ∈ A(P ). The assignment χ̇ 7→ −2πic1(χ(P )) extends to a
unique element in Z(g)∗∗, since the lattice of all infinitesimal characters spans Z(g)∗
as a vector space. This corresponds under the canonical isomorphism Z(g)∗∗ ∼= Z(g)
to an element τ ∈ Z(g) which satisfies

α(τ) =
∫

Σ
α(FA) for all α ∈ Z(g)∗ and A ∈ A(P ). (2.12)

Here we identify Z(g)∗ ⊂ g∗ with the subspace of linear functionals vanishing on
[g, g]. We call τ the central type of P .

Remark 2.3.6. Recall our standing assumption vol(Σ) = 1 and suppose that A ∈
A(P ) satisfies ∗FA = λ for some λ ∈ Z(g). Then (2.12) yields

α(τ) =
∫

Σ
α(FA) =

∫
Σ
α(λ) dvo`Σ = α(λ)

for all α ∈ Z(g)∗ and hence λ = τ .



52 CHAPTER 2. GIT AND YANG–MILLS-EQUATIONS OVER SURFACES

Let τ ∈ Z(g) be defined by (2.12). It follows from Lemma 2.2.7 that

µτ : A(P )→ L2(Σ, ad(P )), µτ (A) := ∗FA − τ (2.13)

is a moment map for the G(A)-action on A(P ). The following definition is the precise
analogue of Definition 7.1 in [51] with respect to this moment map.

Definition 2.3.7. Let G be a compact connected Lie group, let P → Σ be a principal
G bundle with central type τ ∈ Z(g) defined by (2.12), and define µτ by (2.13). For
A ∈ A(P ) denote by Gc(A) the W 1,2-closure of the complex gauge orbit Gc(A).

1. A is called µτ -stable if and only if Gc(A) ∩ µ−1
τ (0) ∩ A∗(P ) 6= ∅ where A∗(P )

denotes the irreducible connections on P .

2. A is called µτ -polystable if and only if Gc(A) ∩ µ−1
τ (0) 6= ∅.

3. A is called µτ -semistable if and only if Gc(A) ∩ µ−1
τ (0) 6= ∅.

4. A is called µτ -unstable if and only if Gc(A) ∩ µ−1
τ (0) = ∅.

Remark 2.3.8. We call A ∈ A(P ) an irreducible connection if the map

dA : W 2,2(Σ, ad(P ))→W 1,2(Σ, T ∗Σ⊗ ad(P ))

is injective. In particular, µτ -stable connections can only exist when the center of
G is discrete and τ = 0. Since the infinitesimal action of the gauge group is given
by LAξ := −dAξ, a connection A is irreducible if and only if the isotropy group of
the orbit G(A) is discrete. Suppose that A is an irreducible connection satisfying
µ0(A) = ∗FA = 0. The infinitesimal action of the complexified gauge group

LA(ξ + iη) = −dAξ − ∗dAη

is readily seen to be injective in this case: Assume LA(ξ + iη) = 0 and apply dA to
the equation. Then follows d∗AdAη = 0 and hence dAη = 0. Since A is irreducible, we
conclude η = 0 and then ξ = 0. This argument shows that the µτ -stable orbits are
precisely the µτ -polystable orbits with discrete Gc(P ) isotropy.

The next lemma relates the different notions of stability on P and on the quotient
bundle PH := P/Z0(G) with fiber H := G/Z0(G). Note that PH has central type 0
since its center is discrete.

Lemma 2.3.9. Let G be a compact connected Lie group, let P → Σ be a principal
G bundle of central type τ ∈ g defined by (2.12) and let PH := P/Z0(G) be the
associated H := G/Z0(G) bundle. Let A ∈ A(P ) and denote by AH ∈ A(PH) the
induced connection.

1. AH is µ0-stable if and only if A is µτ -polystable and the kernel of the infinites-
imal action

LA : W 2,2(Σ, ad(P c))→W 1,2(Σ, T ∗Σ⊗ ad(P ))

LA(ξ + iη) = −dAξ − ∗dAη
consists of constant central sections.
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2. AH is µ0-polystable if and only if A is µτ -polystable.

3. AH is µ0-semistable if and only if A is µτ -semistable.

4. AH is µ0-unstable if and only if A is µτ -unstable.

Proof. We begin with the polystable case. Every constant central curvature connec-
tions on P clearly induces a flat connection on PH . Conversely, assume that A1 is a
flat connection on PH . As a general property of compact Lie groups, there exists an
exact sequence

1→ F → Z0(G)× [G,G]→ G→ 1 (2.14)

where F = Z0(G) ∩ [G,G] is a finite group. From this follows the exact sequence

1→ F → G→ (G/Z0(G))× (Z0(G)/F )→ 1. (2.15)

Consider the associated (G/Z0(G))× (Z0(G)/F ) bundle

P̃ = P ×G ((G/Z0(G))× (Z0(G)/F )) = PH ×Σ P2 (2.16)

where P2 is a principal Z0(G)/F -bundle over Σ. Since Z0(G)/F is connected and
abelian, it is a torus and P2 is isomorphic to the direct sum of S1 bundles. It follows
from Hodge theory that every line bundle admits a connection with constant central
curvature and these yield a connection A2 on P2 with constant central curvature.
Together with A1 we obtain an induces a connection on P̃ which lifts to a connection
on P with constant central curvature. It follows from Remark 2.3.6 that the curvature
of this connection is given by τ .

For the proof of the stable case observe that ad(P ) ∼= V ⊕ ad(PH) where V =
Σ× Z(g) denotes the trivial Z(g) bundle. The infinitesimal action

LA : W 2,2(Σ, ad(P ))→W 1,2(Σ, T ∗Σ⊗ ad(P ))

agrees with LAH on ad(PH). Since dA restricts to a flat connection on V , it follows
that ker(LA) ∼= Z(g)⊕ ker(LAH ) and this shows the claim.

It remains to discuss the semistable case. Assume first that A is µτ -semistable.
Then exist connections Ak ∈ Gc(A) such that Ak → A+ for k →∞ and µτ (A+) = 0.
The induced connections AkH ∈ A(PH) are clearly contained in Gc(AH) and converge
to the induced connection A+

H . Since µτ (A+) = 0, it follows that µ0(A+
H) = 0 and

hence AH is µ0-semistable.
For the converse, we consider the exact sequences (2.14) and (2.15) from above.

Then (2.16) yields a finite covering

P → P̃ = PH ×Σ P2

with covering group F = Z0(G)∩ [G,G]. We have seen above that P2 is a polystable
Z0(G)/F -bundle. Note that the natural identification A(P̃ ) = A(PH)×A(P2) yields
an inclusion

Gc(PH)× Gc(P2) ⊂ Gc(P̃ ). (2.17)
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Moreover, since Ad(P c) → Ad(P̃ c) is a finite covering with covering group F ⊂
Z0(Gc), it is easy to see that every gauge transformation in Gc(P̃ ) lifts to an element
in Gc(P ) and this lift commutes with the natural identification A(P ) = A(P̃ ).

Now assume that A ∈ A(P ) induces a µ0-semistable connection AH ∈ A(PH).
Since P2 is polystable, it follows from (2.17) that there exists g0 ∈ Gc(P ) such that
g0(A) induces AH ∈ A(PH) and a connection A2 ∈ A(P2) with constant central
curvature. Since AH is µ0-semistable, using (2.16) again, there exists gauge trans-
formations gk ∈ Gc(P ) such that gk(g0(A)) induce the same connection A2 on P2
and induce a sequence of connections AkH on PH which converges to a flat connection
A+
H . Clearly, gk(g0A) converges to the connection A+ which is induced by A2 and

A+
H . Hence A+ has constant central curvature and it follows from Remark 2.3.6 that
∗FA+ = τ . This completes the proof of the semistable case.

2.3.3 Equivalence of algebraic and symplectic stability
The following theorem shows that the algebraic notion of stability from Definition
2.3.2 and the symplectic notion of µτ -stability from Definition 2.3.2 are essentially
equivalent.

Theorem 2.3.10 (Generalized Narasimhan-Seshadri-Ramanathan Theorem).
Let G be a compact connected Lie group and P → Σ a principal G bundle with central
type τ ∈ Z(g) defined by (2.12). Let A ∈ A(P ) and consider the complexified bundle
P c := P ×G Gc with the induced holomorphic structure JA.

1. (P c, JA) is stable if and only if A is µτ -polystable and the kernel of

LA : W 2,2(Σ, ad(P c))→W 1,2(Σ, T ∗Σ⊗ ad(P ))

LA(ξ + iη) = −dAξ − ∗dAη

contains only constant central sections.

2. (P c, JA) is polystable if and only if A is µτ -polystable.

3. (P c, JA) is semistable if and only if A is µτ -semistable.

4. (P c, JA) is unstable if and only if A is µτ -unstable.

The stable case was first proven by Narasimhan and Seshadri [91] for G = U(n)
and later extended by Ramanathan [95] to arbitrary compact Lie groups. They
establish these results using algebraic geometric methods.The first analytic proof
was given by Donaldson [30] for the case G = U(n). We present a different approach
given by Bradlow [12] and Mundet [89] in Theorem 2.6.5. The equivalence of both
definitions for semistability is essentially contained in the work of Atiyah and Bott
[4].

Proof of Theorem 2.3.10. We assume the following results for the proof:

• the characterization of algebraic stability in Proposition 2.5.9

• the moment-weight inequality (Theorem 2.5.12)
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• the Narasimhan-Seshadri-Ramanathan theorem (Theorem 2.6.5)

• the dominant weight theorem (Theorem 2.7.1)

We establish these results independently in the remainder of this chapter.
The stable case is equivalent to Theorem 2.6.5. By Lemma 2.3.5 and Lemma

2.3.9 we may assume in the following that Z(G) is discrete and τ = 0. We then
deduce the polystable case from the stable case by an inductive argument: Assume
first that P c is polystable. Then there exists a reductive subgroup L ⊂ Gc and a
holomorphic reduction PL ⊂ P c which is stable. We may assume that L = Kc is
the complexification of a compact subgroup K ⊂ G. Since Gc/L ∼= G/K, we have
an induced reduction PK ⊂ P and PL agrees with the complexification of PK . It
follows from the construction in Lemma 2.2.5 that A restricts to a connection on PK .
Assuming the stable case (i.e. Theorem 2.6.5) we conclude that there exists a gauge
transformation g ∈ Gc(PK) ⊂ Gc(P ) such that ∗FgA = τK ∈ Z(k). It remains to
show that τK ∈ Z(g) = 0 vanishes. If τK 6= 0 then exists a character χ : L → C∗
with χ̇(τK) 6= 0. Since Z(G) is finite, we may replacing χ by a suitable power and
assume that it is trivial on Z(Gc). Using the definition of polystability then yields
the contradiction

0 = c1(χ(PL)) = i
2π

∫
Σ
χ̇(FA) dvo`Σ = i

2π χ̇(τK) 6= 0.

For the converse, assume that A ∈ A(P ) is a flat connection. Let H ⊂ G be
the holonomy subgroup and PH ⊂ P be a reduction to the holonomy. Let K :=
CG(Z(H)) be the centralizer of the center of the holonomy and denote the induced
connection on PK = PH×HK again by A. It is well-known that the isotropy subgroup
of A consists of constant gauge transformations and is naturally isomorphic to the
centralizer of its holonomy, i.e.

GA := {g ∈ G(PK) | g(A) = A} ∼= CK(H).

Comparing the Lie algebras of both sides, one checks that CK(H) = Z0(K) is satisfied
and A ∈ A(PK) has only trivial isotropy. It follows now from the stable case (i.e.
Theorem 2.6.5) that P cK is a stable principal L = Kc bundle. Note that L is a Levi-
subgroup of a parabolic subgroup of Gc, since K is the centralizer of a torus in G.
Since FA = 0, we have for any character χ : L→ C∗

c1(χ(PL)) = i
2π

∫
Σ
χ̇(FA) dvo`Σ = 0

and hence P c is polystable.
Assume that P c is unstable. By Proposition 2.5.9 there exists ξ ∈ Ω0(Σ, ad(P ))

with w0(A, ξ) < 0. The moment-weight inequality (Theorem 2.5.12) yields µ0(gA) ≥
−w0(A, ξ)/||ξ|| > 0 for all g ∈ Gc(P ) and hence A is µ0-unstable. Assume conversely
that A is µ0-unstable. The dominant-weight theorem (Theorem 2.7.1) shows that
there exists ξ ∈ Ω0(Σ, ad(P )) such that w0(A, ξ) < 0 and hence P c is unstable by
Proposition 2.5.9. This completes the proof of the unstable case and the semistable
case is equivalent to this case.
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2.4 The Yang-Mills flow and symplectic stability
Let G be a compact connected Lie group and let P → Σ be a principal G bundle
of central type τ ∈ Z(g) defined by (2.12). In the differential geometric approach
towards GIT the moment map squared functional plays a crucial role. This is defined
by

Fτ : A(P )→ R, Fτ (A) := 1
2

∫
Σ
|| ∗ FA − τ ||2 dvo`Σ. (2.18)

Note that (2.12) implies
∫

Σ〈FA, τ〉 = ||τ ||2 for every connection A ∈ A(P ) and hence

Fτ (A) = 1
2

∫
Σ
|| ∗ FA − τ ||2dvo`Σ = 1

2

(∫
Σ
||FA||2dvo`Σ − ||τ ||2

)
. (2.19)

Thus Fτ agrees up to a constant shift with the Yang-Mills functional

YM : A(P )→ R, YM(A) := 1
2

∫
Σ
||FA||2 dvo`Σ. (2.20)

R̊ade showed in his thesis [97] that the negative gradient flow of the Yang-Mills
functional is well-defined and converges if the base manifold has dimension 2 or 3.
We summarize his results in the first subsection. Recall that we always consider the
W 1,2-topology on A(P ) when nothing else is specified.

A crucial observation is the following: Any solution of the Yang-Mills flow remains
in a single complexified orbit and there exists a canonical lift of a solution A(t) of the
Yang-Mills flow under the projection Gc → Gc(A) to a curve in Gc(P ). Since the Yang-
Mills flow is G(P )-invariant, the geometric importance lies within the projection of
such curves in Gc(P )/G(P ). The fibers of this quotient coincide with the homogeneous
space Gc/G which is a complete, connected, simply connected Riemannian manifold
of nonpositive sectional curvature (see [51] Appendix A and B). This underlying
geometry is crucial for the following application.

As a first application, we establish the moment limit theorem (Theorem 2.4.14)
and the analogue of the Ness uniqueness theorem in Theorem 2.4.15 following the
line of arguments in [51]. The first result says that the limit A∞ := limt→∞A(t) of
the Yang-Mills flow starting at A0 ∈ A(P ) minimizes the Yang-Mills functional over
the complexified orbit Gc(A0). The second result asserts that any connection in the
W 1,2-closure of G(A0) which minimizes the Yang-Mills functional over this orbit must
be contained in G(A∞). In particular, every µτ -semistable orbit contains a unique
µτ -polystable orbit in its closure. This yields the identification

Ass(P )//Gc(P ) ∼= Aps/Gc(P ) ∼= µ−1
τ (0)/G(P )

where two semistable orbits on the left hand side are identified if and only if they
contain the same polystable orbit in their closure.

In the last section we extend this observation and characterize in Theorem 2.4.18
the µτ -stability of A ∈ A(P ) in terms of the limit of the Yang-Mills flow starting at
A. We observe in particular that Ass(P ) and As(P ) are both open subsets of A(P )
in the W 1,2-topology.
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2.4.1 Analytical foundations
The Yang Mills flow on low dimensional manifolds

Recall for A ∈ A(P ) and a ∈W 1,2(Σ, T ∗Σ⊗ ad(P )) the formula

FA+a = FA + dAa+ 1
2[a ∧ a].

From this follows directly that the L2-gradient of the Yang-Mills functional (2.20) is
given by

∇YM : A(P )→W−1,2(Σ, ad(P )), ∇YM(A) := d∗AFA.

The critical points of the Yang-Mills functional (2.20) are called Yang-Mills connec-
tions and satisfy the equation

d∗AFA = 0.

It follows from the strong Uhlenbeck compactness result (see e.g. [122] Theorem
E) and elliptic regularity that every Yang-Mills connection is gauge equivalent to
a smooth Yang-Mills connection and the set Λ := {YM(A) | d∗AFA = 0} of critical
values is discrete. The negative gradient flow of the Yang-Mills functional is given by
the degenerated parabolic equation

∂tA(t) + d∗A(t)FA(t) = 0. (2.21)

Definition 2.4.1 (Weak solutions). Let A0 ∈ A(P ) be a connection of Sobolev class
W 1,2. We call A ∈ C0([0,∞),A(P )) a weak solution of the initial value problem

∂tA(t) + d∗A(t)FA(t) = 0, A(0) = A0 (2.22)

if A(0) = A0 and there exists a sequence Ak : [0,∞) → A(P ) of smooth solutions of
(2.21) which converges in C0

`oc([0,∞),A(P )) to A, where A(P ) is endowed with the
W 1,2-topology.

The next two theorems state that the initial value problem (2.22) has a unique
(weak) solution for every initial data A0 ∈ A(P ) existing for all time and that this
solution converges to a Yang-Mills connection.

Theorem 2.4.2 (Long time existence). Let G be a compact connected Lie group,
P → Σ a principal G bundle and A0 ∈ A(P ).

1. There exists a unique weak solution A(t) ∈ C0
`oc([0,∞),A(P )) for the initial

value problem (2.22). The curvature has the additional regularity properties
FA(t) ∈ C0

`oc([0,∞), L2) and FA(t) ∈ L2
`oc([0,∞),W 1,2).

2. The solution A(t) and its curvature FA(t) depend smoothly on the initial data
A0 in these topologies.

3. If A0 is smooth, then the solution A(t) is smooth and satisfies (2.21).

Proof. This is Theorem 1 in [97].
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Theorem 2.4.3 (Convergence). Assume the setting of Theorem 2.4.2 and let
A(t) ∈ C0

`oc([0,∞),A(P )) be a weak solution of (2.22). Then exists a Yang-Mills
connection A∞ ∈ A(P ) and constants c, β > 0 such that

||A(t)−A∞||W 1,2 ≤ ct−β

holds for all times t > 0.

Proof. This is Theorem 2 in [97].

The key ingredient in the proof of the convergence result is the appropriate ana-
logue of the  Lojasiewicz gradient inequality. This approach was introduced by Simon
[101] for a general class of evolution equations.

Proposition 2.4.4 ( Lojasiewicz gradient inequality). Let A∞ ∈ A(P ) be a
Yang-Mills connection. There exist constants ε > 0, γ ∈ [ 1

2 , 1) and c > 0 such that
for every A ∈ A(P ) with ||A−A∞||W 1,2 < ε the estimate

||d∗AFA||W−1,2 ≥ c|YM(A)− YM(A∞)|γ

is satisfied.

Proof. This is Proposition 7.2 and (9.1) in [97].

In finite dimensions the  Lojasiewicz inequality always guarantees convergence by
some standard arguments. We recall these arguments in the following and discuss
additional technical difficulties arising in the infinite dimensional setting. Suppose
that A(t) satisfies (2.22). It follows from the weak Uhlenbeck compactness (see [97],
Proposition 7.1) that there exists a G(P )-orbit G(A∞) of Yang-Mills connections such
that

inf
t>0
YM(A(t)) = YM(A∞)

and for every δ > 0 exists T > 0 and g ∈ G(P ) such that

||A(T )− g(A∞)||W 1,2 < δ.

Since the Yang-Mills functional and the  Lojasiewicz inequality are invariant under
the action of G(P ), the constant ε = ε(g(A∞)) > 0 from the  Lojasiewicz inequality
does not depend on g. Now choose δ < ε and define

T := inf{t > T | ||A(t)− g(A∞)||W 1,2 ≥ ε}.

For any s1, s2 ∈ (T, T ) with s1 < s2 we obtain

||A(s1)−A(s2)||L2 ≤
∫ s2

s1

||d∗AFA||L2 dt

≤
∫ s2

s1

||d∗AFA||2L2

c|YM(A)− YM(A∞)|γ dt

≤ 1
c

(YM(A(s1))− YM(A(s2)))1−γ
.

To conclude the convergence result, one needs to show T =∞ and extend the estimate
above to the W 1,2-norm. Both can be achieved by using the following lemma.
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Lemma 2.4.5. Let A∞ ∈ A(P ) be a Yang-Mills connection and ε = ε(A∞) > 0 as in
Proposition 2.4.4. There exists a constant c > 0 with the following significance: For
every solution A(t) of the Yang-Mills flow (2.22) and real numbers 0 ≤ s1 ≤ s2 − 1
such that ||A(t)−A∞||W 1,2 ≤ ε for all t ∈ [s1, s2] we have∫ s2

s1+1
||d∗AFA||W 1,2 dt ≤ c

∫ s2

s1

||d∗AFA||L2 dt.

Proof. This is Lemma 7.3 in [97].

Now the calculation above yields

||A(s1 + 1)−A(s2)||W 1,2 ≤ C (YM(A(s1))− YM(A∞))1−γ (2.23)

for any T ≤ s1 < s1 + 1 < T̄ . Since the solutions of the Yang-Mills flow depend
continuously on the initial condition in the C0

`oc([0,∞),W 1,2) topology, there exists
a constant c1 > 0 such that

||A(T + t)− g(A∞)||W 1,2 ≤ c1||A(T )− g(A∞)||W 1,2

holds for all t ∈ [0, 1]. This follows as we may view g(A∞) as constant flow line and
the constant c1 depends only on the orbit G(A∞). For sufficiently small δ, we have
δc1 < ε and hence T̄ > 1. Then (2.23) yields

||A(T + 1)−A(t)||W 1,2 ≤ C (YM(A(T ))− YM(A∞))1−γ ≤ Cδ1−γ

for any T + 1 ≤ t ≤ T̄ . For sufficiently small δ > 0 the right hand side is smaller
than ε and this yields T̄ = ∞. The calculation above then shows then that the
integral

∫∞
0 ||∂tA(t)||W 1,2 dt < ∞ is finite and A(t) converges uniformly to a Yang-

Mills connection Ã∞.
Replacing A∞ in the argument above by the limiting connection Ã∞ yields

||A(t)− Ã∞||W 1,2 ≤ C
(
YM(A(t))− YM(Ã∞)

)1−γ
.

Let T > 0 be such that for every t > T the  Lojasiewicz inequality in Lemma 2.4.5
for A(t) with respect to the Yang-Mills connection Ã∞. Then

∂t
(
YM(A(t))− YM(Ã∞)

)
= −||∇YM(A(t))||L2

≤
(
YM(A(t))− YM(Ã∞)

)2γ
and hence

(
YM(A(t))− YM(Ã∞)

)1−γ ≤ C(t− T )
1

1−2γ . This shows

||A(t)− Ã∞||W 1,2 ≤ C(t− T )
1−γ
1−2γ

for all t > T and completes the proof of the convergence result. This argument also
proves the following result:
Corollary 2.4.6. Let B ∈ A(P ) be a Yang-Mills connection and let ε > 0. Then
there exists δ > 0 such that for every solution A(t) of the Yang-Mills flow (2.22) with
||A(0)−B||W 1,2 < δ we have either

sup
t≥0
||A(0)−A(t)||W 1,2 < ε

for all t ≥ 0 or there exists T > 0 with YM(A(T )) < YM(B).
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The Kempf-Ness flow

By Proposition 2.2.3 the infinitesimal action of the complexified Gauge action is given
by

LA(ξ + iη) := d

dt

∣∣∣∣
t=0

exp(tξ + itη)A = −dAξ − ∗dAη

for ξ, η ∈ W 2,2(Σ, ad(P )) and A ∈ A(P ). With this formula we can express the
gradient of the Yang-Mills functional as

∇YM(A) = d∗AFA = − ∗ dA ∗ FA = LA(i ∗ FA).

This implies that any solution of the Yang-Mills flow (2.20) remains in a single com-
plexified orbit.

Proposition 2.4.7. Let A0 ∈ A(P ) and let A(t) be the (weak) solution of the Yang-
Mills flow (2.22) starting at A0. Let g : [0,∞)→ Gc(P ) be the solution of the ODE

g(t)−1ġ(t) = i(∗FA(t)), g(0) = 1. (2.24)

Then holds g ∈ C0
`oc([0,∞),Gc(P )) and

A(t) = g(t)−1A0

for all t ∈ [0,∞). Moreover, g depends continuously on A0.

Proof. Recall from Lemma 2.2.7 the formula

B(t) := g−1
t (A0) = A0 + g−1

t dA0gt − g−1
t (h−1

t ∂A0ht)gt

with ht := (g−1
t )∗g−1

t . By Theorem 2.4.2 holds F ∈ L2
`oc([0,∞),W 1,2) and hence

g ∈ W 1,2
`oc ([0,∞),W 1,2) and B ∈ W 1,2

`oc ([0,∞), L1). The same calculation as in the
smooth case shows

Ḃ(t) = LB(t)(g−1
t ġt) = −d∗B(t)FA(t).

Approximation of A0 with smooth connections shows A ∈W 1,2
`oc ([0,∞), L1) and

Ȧ(t) = −d∗A(t)FA(t).

Define C(t) := A(t) − B(t) and Ψ(t) := ∗FA(t) ∈ L2
`oc([0,∞), L1). The calculation

above shows that C solves the linear ODE

Ċ(t) = ∗[C(t),Ψ(t)], C(0) = 0.

and hence C = 0. The Sobolev embedding W 1,2([0, t0], L1) ↪→ C0([0, t0], L1) then
yields A(t) = B(t) = g−1

t A0 for all t.
Since A maps continuously in W 1,2, it follows from the expression

A(t) = g−1
t A0 = A0 + g−1

t dA0gt − g−1
t (h−1

t ∂A0ht)gt

that A(t)0,1 = A0,1
0 +g−1

t ∂̄A0gt and g−1
t ∂̄A0gt maps continuously into W 1,2. Let Ã be

a smooth reference metric and write A0 = Ã+a0. Then g−1
t ∂̄Ãg

−1
t maps continuously
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into Lp for any p <∞ and by elliptic regularity, g maps continuously in W 1,p. Since
W 1,p ↪→ C0, we can rerun the argument where g−1

t ∂̄Ãgt now maps continuously in
W 1,2 and conclude g ∈ C0

`oc([0,∞),W 2,2). Since A and FA depend continuously on
A0, the solution g depends continuously on A0 in W 1,2

`oc ([0,∞),W 1,2) and then by
elliptic regularity also in C0

`oc([0,∞),W 2,2).

Remark 2.4.8. Let A0 ∈ A(P ) and let A(t) be as in Proposition 2.4.7. For g0 ∈
Gc(P ) consider the more general equation

g(t)−1ġ(t) = i ∗ FA(t), g(0) = g0. (2.25)

Then g̃(t) = g−1
0 g(t) solves equation (2.24) with respect to Ã0 = g−1

0 (A0). Hence
(2.25) has a unique solution in C0

`oc([0,∞),Gc(P )), which depends continuously on
g0 and A0.

We shall consider the following variant of this equation.

Definition 2.4.9 (Kempf-Ness flow). Let A0 ∈ A(P ) and g0 ∈ Gc(P ). We say
that g(t) ∈ C0

`oc([0,∞),Gc(P )) is a weak solution of the equation

g−1(t)ġ(t) = i ∗ Fg−1(t)A0 , g(0) = g0 (2.26)

if there exist a sequence of smooth initial data (Ak, gk0 ) ∈ A(P ) × Gc(P ) converging
to (A0, g0) and smooth solutions gk(t) of the equation

g−1
k (t)ġk(t) = i ∗ Fg−1

k
(t)Ak , gk(0) = gk0

such that gk(t) converges to g(t) in C0
`oc([0,∞),W 2,2).

Remark 2.4.10. We call a solution g ∈ C0
`oc([0,∞),Gc(P )) of (2.25) a solution of

the Kempf-Ness flow starting at g0 (with respect to A0). We show in Section 6 that
there exists a G(P )-invariant functional

ΦA0 : Gc(P )→ R

whose negative gradient flow lines correspond to solution of (2.26).

Lemma 2.4.11. For every initial data (A0, g0) ∈ A(P )×Gc(P ) there exists a unique
(weak) solution of (2.26) which depends continuously on the initial data.

Proof. We use the notation introduced in Definition 2.4.9. Then Ak(t) := gk(t)−1Ak
satisfies

∂tAk(t) = LAk(t)
(
g−1
k (t)ġk(t)

)
= −LAk(t)

(
i ∗ FAk(t)

)
= −d∗Ak(t)FAk(t)

and thus Ak(t) yields a smooth solution of the Yang-Mills flow. Conversely, the so-
lution Ak(t) is uniquely determined by the initial condition (gk0 )−1Ak and we may
recover gk(t) from this solution via Proposition 2.4.7 and Remark 2.4.8. Since solu-
tions of the Yang-Mills flow and solutions of (2.25) depend continuously on the initial
data, it follows that the weak solution g(t) of (2.26) is uniquely determined by the
weak solution A(t) of the Yang-Mills flow starting at g−1

0 A0.
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The next proposition shows that solutions of the Kempf-Ness flow (2.26) remain
at bounded distance in the homogeneous space Gc/G.

Proposition 2.4.12. Let A0 ∈ A(P ) and let g, g̃ ∈ C0
`oc([0,∞),Gc(P )) be (weak)

solutions of (2.26) starting at g0, g̃0 ∈ Gc(P ). Define η(t) ∈ W 2,2(Σ, ad(P )) and
u(t) ∈ G(P ) by the equation

g(t) exp(iη(t))u(t) = g̃(t).

Then the following holds:

1. ρ(t) := ||η(t)||L2 is non-increasing in t. More precisely, if η(t) 6= 0 then

ρ̇(t) = − 1
ρ(t)

∫ 1

0
||dAs,tη(t)||2L2 ds

with As,t := e−isη(t)g−1
t A0.

2. The differential inequality
(∂t + ∆)||η||2 ≤ 0

is satisfied. In particular, ||η(t)||L∞ is non-increasing by the maximum principle
for the heat equation

3. η is uniformly bounded in W 2,2.

4. u is uniformly bounded in W 2,2.

Proof. We prove 1.) and 2.): By approximation, we can assume that A0, g and g̃
are all smooth. Let π : Gc → Gc/G denote the projection and define γ(s, t) :=
π(g(t)eisη(t)). Pointwise γ(·, t) is the unique geodesic of length |η(t)| connecting π(g)
and π(g̃). The following calculation is pointwise valid:

∂t||η||2 = ∂t

∫ 1

0
〈∂sγ, ∂sγ〉 ds = 2

∫ 1

0
〈∇t∂sγ, ∂sγ〉 ds

= 2
∫ 1

0
〈∇s∂tγ, ∂sγ〉 ds = 2

∫ 1

0
∂s〈∂tγ, ∂sγ〉 ds

= 2 (〈∂tγ(1, t), ∂sγ(1, t)〉 − 〈∂tγ(0, t), ∂sγ(0, t)〉)
= 2〈g̃−1(t) ˙̃g(t)− g−1(t)ġ(t), iη(t)〉
= 2〈∗Fg̃(t)−1A0 − ∗Fg(t)−1A0 , η(t)〉

With As,t := e−isη(t)g−1A0 this yields

∂t||η||2 = 2
∫ 1

0
〈η(t), ∗dAs,t ∗ dAs,tη(t)〉 = −∆||η||2 − 2

∫ 1

0
||dAs,tη(t)||2 ds.

This proves the second claim and the first one is obtained by integrating this inequal-
ity over Σ.
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We prove 3.) and 4.): Recall that Ã(t) := g̃−1
t (A0) and A(t) := g−1

t (A0) are
solutions of the Yang-Mills flow. Since they converge in W 1,2, they are both uniformly
bounded in W 1,2. With a(t) := eiηtut we have Ã = a−1(A) and hence

Ã0,1 = A0,1 + a−1∂̄Aa

This shows that ∂̄Aa is uniformly bounded in W 1,2 and hence a is uniformly bounded
in W 2,2. From the formula aa∗ = e2iη we conclude that η is uniformly bounded in
W 2,2 and then u is also uniformly bounded in W 2,2.

2.4.2 Uniqueness of Yang-Mills connections
We follow the arguments from ([51], Chapter 6) to prove the analog of the Ness
uniqueness theorem and the moment limit theorem. These are originally due to
Calabi-Chen [17] and Chen-Sun [23] in the context of extremal Kähler metrics.

Proposition 2.4.13. Let A0, A1 ∈ A(P ) be Yang-Mills connections with Gc(A0) =
Gc(A1). Then holds G(A0) = G(A1).

Proof. Choose g̃ ∈ Gc(P ) such that

A1 = g̃−1A0.

holds. Since A0 and A1 are Yang-Mills connections, they generate constant flow lines
A0(t) ≡ A0 and A1(t) ≡ A1. Let g0, g1 ∈ C0

`oc([0,∞),Gc) be the solutions of the
equation

g−1
0 ġ0 = ∗FA0 , g0(0) = 1 and g−1

1 ġ1 = ∗FA1 , g1(0) = g̃

from Proposition 2.4.7 and the following Remark. They satisfy

A0 = g−1
0 (t)A0 and A1 = g−1

1 (t)A0

and g0 and g1 are solutions of the Kempf-Ness flow (2.26) with respect to A0. Define
η(t) ∈W 2,2(Σ, ad(P )) and u(t) ∈ G by the equation

g0(t) exp(iη(t))u(t) = g1(t)

as in Proposition 2.4.12. Then there exist η∞ ∈ W 2,2(Σ, ad(P )), u∞ ∈ G(P ) and a
sequence ti →∞ such that

lim
i→∞

ρ̇(ti) = 0, η(ti)
H2

⇀ η∞, u(ti)
H2

⇀ u∞.

By taking a further subsequence if necessary, we may assume that

lim
i→∞

||dAs,ti η(ti)||L2 = 0

holds for almost every s ∈ [0, 1], where we defined

As,t = e−isη(t)(g−1
0 (t)A0) = e−isη(t)A0.
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Moreover, by Rellich’s theorem, η(ti) and u(ti) converge for every p <∞ strongly in
W 1,p to η∞ and u∞. By continuity of the Gauge action G1,p × Ap → Ap for p > 2,
we conclude

As,ti
Lp→ As,∞ := e−isη∞A0, and dAs,ti η(ti)

Lp→ dAs,∞η∞.

This implies that for almost every s ∈ [0, 1], we must have dAs,∞η∞ = 0. For s→ 0
we conclude dA0,∞η∞ = dA0η∞ = 0 and hence e−iη∞A0 = A0. It follows now

A1 = g1(ti)−1A0 = u(ti)−1e−iη(ti)A0
Lp−→ u−1

∞ e−iη∞A0 = u−1
∞ A0.

This shows A1 = u−1
∞ A0 and thus A0 and A1 lie in the same G-orbit.

Theorem 2.4.14 (Moment Limit Theorem). Let A0 ∈ A(P ) and A : [0,∞) →
A(P ) be the solution of the Yang-Mills flow starting at A0. The limit A∞ :=
limt→∞A(t) satisfies

YM(A∞) = inf
g∈Gc(P )

YM(gA0).

Moreover, the G(P )-orbit of A∞ depends only on the complexified orbit Gc(A0).

Proof. Let g0 ∈ Gc(P ) be given and define g, g̃ ∈ C0
`oc([0,∞),Gc) by

g−1ġ = ∗FA, g(0) = 1 and g̃−1 ˙̃g = ∗FA, g(0) = g0

as in Proposition 2.4.7 and the following Remark. Let A(t) and Ã(t) be the solutions
of the Yang-Mills flow starting at A0 and Ã0 := g−1

0 A0. Then

A0(t) = g−1
t (A0), Ã(t) = g̃−1

t (A0)

and g, g̃ are solutions of the Kempf-Ness flow (2.26) with respect to A0. Define
η(t) ∈W 2,2(Σ, ad(P )) and u(t) ∈ G(P ) by the equation

g0(t) exp(iη(t))u(t) = g1(t)

as in Proposition 2.4.12. It follows that there exist η∞ ∈ W 2,2(Σ, ad(P )) and u∞ ∈
G(P ) and a sequence ti →∞ such that

η(ti)
W 2,2

⇀ η∞, u(ti)
W 2,2

⇀ u∞.

By Rellich’s theorem we obtain strong convergence in W 1,p and using the Sobolev
embedding W 1,2 ↪→ Lp for every p <∞ we obtain:

Ã∞
W 1,2

←− Ã(ti) = u(ti)−1eiη(ti)A(ti)
Lp−→ u−1

∞ η−1
∞ A∞.

Hence Ã∞ = u−1
∞ η−1
∞ A∞. Thus Ã∞ and A∞ are Yang-Mills connections lying in

a common complexified orbit and Proposition 2.4.13 shows that in fact G(A∞) =
G(Ã∞). This shows YM(A∞) = YM(Ã∞) ≤ YM(g−1

0 A0) and completes the proof.

The following theorem is the analog of the Ness uniqueness theorem in finite
dimensional GIT.
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Theorem 2.4.15 (Uniqueness of Yang-Mills connections). Let A0 ∈ A(P ) and
A′, A′′ ∈ Gc(A0) be in the W 1,2-closure of a single complexified orbit satisfying

YM(A′) = YM(A′′) = inf
g∈Gc

YM(gA0).

Then follows G(A′) = G(A′′).

Corollary 2.4.16. Let P → Σ be a principal G bundle of constant central type
τ ∈ Z(g) defined by (2.12). Suppose A ∈ A(P ) is µτ -semistable. Then the W 1,2-
closure Gc(A) contains a unique µτ -polystable orbit.

Proof. It follows from (2.19) that solutions of the equation ∗FA = τ correspond to
global minima of the Yang-Mills functional on A(P ).

Proof of Theorem 2.4.15. Let A(t) be the solution of the Yang-Mills flow starting at
A0 and let A∞ := limt→∞A(t). Then Theorem 2.4.14 implies

YM(A∞) = inf
g∈Gc

YM(gA0) =: m.

Since A∞ ∈ Gc(A0), it suffices to show that any connection B ∈ Gc(A0) with
YM(B) = m is contained in G(A∞). For this let Ai ∈ Gc(A0) be a sequence which
converges to B. Denote by Ai(t) the corresponding solutions of the Yang-Mills flow
and set Bi := limt→∞Ai(t). Note that B is necessarily a Yang-Mills connection,
since

YM(B(t)) = lim
i→∞

YM(Ai(t)) ≥ m = YM(B(0))

where B(t) denotes the solution of the Yang-Mills flow starting at B. Thus, we may
apply Corollary 2.4.6 with respect to B and conclude that ||Ai −Bi||W 1,2 converges
to zero and hence

lim
i→∞

Bi = B.

By Theorem 2.4.14 holds G(Bi) = G(A∞) and hence there exists ui ∈ G(P ) such that
u−1
i (A∞) = Bi. Since the connections Bi are uniformly bounded in W 1,2, the gauge

transformations ui are uniformly bounded in W 2,2. Thus there exists u∞ ∈ G(P ) such
that after passing to a subsequence ui converges weakly in W 2,2 to u∞ and strongly
in W 1,p for any p < ∞. Using the continuity of the Gauge action G1,p × Ap → Ap
we conclude

Bi = u−1
i (A∞) Lp−→ u−1

∞ A∞

and in particular B = u−1
∞ A∞ ∈ G(A∞)

2.4.3 Yang-Mills characterization of µτ -stability
We characterize the µτ -stability of a connection A ∈ A(P ) in terms of the the limit
A∞ of the Yang-Mills flow starting at A. This is Theorem 2.4.18 below. The proof
relies on the following proposition.
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Proposition 2.4.17. Let P → Σ be a principal G bundle of central type τ ∈ Z(g)
defined by (2.12). The subsets of µτ -semistable connections

Ass(P ) := {A ∈ A(P ) |A is µτ -semistable}

and µτ -stable connections

As(P ) := {A ∈ A(P ) |A is µτ -stable}

are open subsets of A(P ) with respect to the W 1,2-topology.

Proof. It follows from (2.19) that

inf
A∈A(P )

YM(A) ≥ 1
2 ||τ ||

2 =: m.

Moreover

Ass(P ) :=
{
A ∈ A(P )

∣∣∣∣ inf
g∈Gc(P )

YM(gA) = m

}
(2.27)

and YM(A) = m is equivalent to ∗FA = τ .

Step 1: Ass(P ) is open.

Let A0 ∈ Ass(P ) be given. Let A(t) be the solution of the Yang-Mills flow starting
at A0 and A∞ := limt→∞A(t). It follows from Theorem 2.4.14 and (2.27) that A∞
is a Yang-Mills connection satisfying YM(A∞) = m. By the  Lojasiewicz inequality
(Proposition 2.4.4) there exists ε > 0, c > 0 and γ ∈ [ 1

2 , 1) such that for all B ∈ A(P )
with ||B −A∞||W 1,2 < ε the inequality

||d∗BFB ||L2 ≥ c|YM(B)−m|γ (2.28)

is satisfied. By Corollary 2.4.6 there exists δ > 0 such that for every B ∈ A(P ) with
||B − A∞||W 1,2 < δ we have ||B∞ − A∞||W 1,2 < ε. In particular, (2.28) applies to
B∞ and yields YM(B∞) = m. This shows

U := {B ∈ A(P ) | ||B −A∞||W 1,2 < δ} ⊂ Ass(P ).

Now choose T > 0 such that A(T ) ∈ U and choose g ∈ Gc(P ) with A(T ) = g−1A0.
By continuity of the gauge action there exists an open neighborhood V of A0 with
g−1V ⊂ U and hence V ⊂ Ass(P ).

Step 2: Denote by A∗(P ) ⊂ A(P ) the space of irreducible connections. This is
an open subset and

Z := {A ∈ A∗ | YM(A) = m}/G
is a finite dimensional smooth submanifold of A∗/G.

We may assume that Z(G) is discrete, τ = 0 and m = 0, since otherwise A∗(P ) =
∅. Let A0 ∈ A∗(P ) be a smooth irreducible connection. The Laplacian d∗A0

dA0 is
then injective and by elliptic regularity there exists c0 > 0 such that

||d∗A0
dA0ξ||L2 ≥ c0||ξ||W 2,2
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for all ξ ∈W 2,2(Σ, ad(P )). For a ∈W 1,2(Σ, T ∗Σ⊗ ad(P )) expand

d∗A0+adA0+aξ = d∗A0
dA0ξ + d∗A0

[a, ξ]− ∗[a, ∗dA0ξ]− ∗[a, ∗[a, ξ]].

Since dimR(Σ) = 2, we have the Sobolev estimate ||fg||L2 ≤ c||f ||W 1,2 ||g||W 1,2 and
||fg||W 1,2 ≤ ||f ||W 1,2 ||g||W 2,2 . This yields

||d∗A0+adA0+aξ||L2 ≥ c0||ξ||W 2,2 − c||a||W 1,2 ||ξ||W 2,2

and A0 + a is irreducible if ||a||W 1,2 is sufficiently small. Hence A∗(P ) is open.
Now fix an irreducible connection A0 with ∗FA0 = 0. We may assume without

loss of generality that A0 is smooth and work in a Coulomb gauge relative to A0. This
allows us to identify a neighborhood of [A0] in A∗(P )/G(P ) with a ∈W 1,2(Σ, T ∗Σ⊗
ad(P )) satisfying ||a||W 1,2 < ε and d∗A0

a = 0 under the map a 7→ [A0 + a]. Consider

φ : {a ∈W 1,2(Σ, T ∗Σ⊗ ad(P )) | d∗A0
a = 0, ||a||W 1,2 < ε} → L2(Σ, ad(P ))

φ(a) := ∗FA0+a

and define ZA0 := φ−1(0). We claim that 0 is a regular value for φ (after possibly
shrinking ε). Once this is established, the claim follows from the implicit function
theorem. The derivative of φ at a point a is given by

dφ(a) : {â ∈W 1,2(Σ, T ∗Σ⊗ ad(P )) | d∗A0
â = 0} → L2(Σ, ad(P ))

dφ(a)â = ∗dA0 â+ ∗[a ∧ â].
Since dφ(a) is the restriction of a compact perturbation of the Fredholm operator
∗(dA0 ⊕ d∗A0

), its kernel is finite dimensional. We denote by

K := {â ∈W 1,2(Σ, T ∗Σ⊗ ad(P )) | dA0 â = 0, d∗A0
â = 0}

the space of A0-harmonic 1-forms with values in ad(P ) and define V by the L2-
orthogonal decomposition

W 1,2(Σ, T ∗Σ⊗ ad(P )) = V ⊕K.

Then the restriction of the Fredholm-operator dA0⊕d∗A0
to V defines an isomorphism

dA0 ⊕ d∗A0
: V → L2(Σ, ad(P ))⊕ L2(Σ,Λ2T ∗Σ⊗ ad(P ))

It is injective by definition of V and to prove surjectivity let f ∈ L2(Σ, ad(P )) and
ω ∈ L2(Σ,Λ2T ∗Σ⊗ad(P )) be given. Then by Hodge theory we can solve the equation

∆A0 â = d∗A0
ω + dA0f.

From this follows
d∗A0

(dA0 â− ω) = dA0(f − d∗A0
â).

Since ∗FA0 = 0, both sides of the equation are orthogonal and hence must vanish.
Since A0 is irreducible, it follows dA0 â = ω and d∗A0

â = f . In particular, for any
s ∈ L2(Σ, ad(P )) exists a solution â ∈ V of the equations

dA0 â+ [a ∧ â] = ∗s, d∗A0
â = 0 (2.29)
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for a = 0. Since the equation is linear in a, another application of the inverse func-
tion theorem shows that after possibly shrinking ε the equation (2.29) has a solution
â(a) ∈ V for all a with ||a||W 1,2 < ε.

Step 3: As is open.

We may assume that Z(G) is discrete, τ = 0 and m = 0, since otherwise As(P ) =
∅. Let A ∈ As(P ) be given. By definition there exists g ∈ Gc(P ) such that A0 = g−1A
is smooth and satisfies YM(A0) = 0. Let ZA0 be as in Step 2 and consider the map

ψ : ZA0 ×W 2,2(Σ, ad(P ))×W 2,2(Σ, ad(P ))→ A

ψ(A, ξ, η) := eiηeξA.

We have seen that ZA0 is a smooth manifold with tangent space

TA0ZA0 = {â ∈W 1,2(Σ, ad(P )) | d∗A0
â = 0, dA0 â = 0}.

The differential of ψ at the point (A0, 0, 0) is given by

dψ(A0, 0, 0)[â, ξ̂, η̂] := â− dA0 ξ̂ − ∗dA0 η̂.

Since FA0 = 0, it follows as in Step 2 from Hodge theory that dψ(A0, 0, 0) is an
isomorphism. The implicit function theorem yields thus an open neighborhood U of
A0 with

A0 ∈ U ⊂ Im(ψ) ⊂ As.

Finally, by continuity of the gauge action, there exists an open neighborhood V of A
with g−1V ⊂ U and hence As(P ) is open.

Theorem 2.4.18. Let P → Σ be a principal G bundle of central type τ ∈ Z(g)
defined by (2.12) and denote m := 1

2 ||τ ||
2. Let A0 ∈ A(P ) and denote by A∞ the

limit of the the Yang-Mills flow A(t) starting at A0.

1. A0 is µτ -stable if and only if A∞ is irreducible.

2. A0 is µτ -polystable if and only if YM(A∞) = m and A∞ ∈ Gc(A0).

3. A0 is µτ -semistable if and only if YM(A∞) = m.

4. A0 is µτ -unstable if and only if YM(A∞) > m.

Proof. It follows from (2.19) that m is a lower bound for the Yang-Mills functional
on A(P ) and A ∈ A(P ) satisfies YM(A) = m if and only if ∗FA = τ . Thus the
characterization for µτ -unstable and µ-semistable orbits follows from Theorem 2.4.14.

Suppose next that A0 is µτ -polystable. Then exists g0 ∈ Gc(P ) such that Ã0 :=
g−1

0 (A0) satisfies YM(Ã0) = m. The Yang-Mills flow line Ã(t) starting at Ã0 is
constant and it follows from Theorem 2.4.14 and Theorem 2.4.15 that A∞ ∈ G(Ã0) ⊂
Gc(A0). The converse is immediate and this proves the criterion for µτ -polystable
orbits.
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Suppose now that A0 is µτ -stable. Then the orbit Gc(A0) has only discrete Gc(P )
isotropy. Since A0 is in particular µτ -polystable, we have A∞ ∈ Gc(A0). Hence the
infinitesimal action LA∞ : ξ 7→ −dA∞ξ is injective and A∞ is irreducible. Suppose
conversely that A∞ is irreducible. Since A∞ is a Yang-Mills connection, it satisfies
dA∞ ∗ FA∞ = 0 and hence FA∞ = 0. This shows that Gc(A∞) is stable. By Proposi-
tion 2.4.17, the subsetAs(P ) of µτ -stable connections is open and hence A(t) ∈ As(P )
for all sufficiently large t. Since the notion of µτ -stability is Gc(P )-invariant, and since
A(t) ∈ Gc(A0), we conclude that A0 is µτ -stable.

2.5 Maximal weights
Let G be a compact connected Lie group, let P → Σ be a principal G bundle and
let τ ∈ Z(g) denote the central type of P defined by (2.12). It follows from Lemma
2.2.2 that µτ (A) = ∗FA − τ defines a moment map for the action of G(P ) on A(P ).
The weights associated to the gauge action with respect to this moment map are
defined by

wτ (A, ξ) := lim
t→∞
〈∗FeitξA − τ, ξ〉 (2.30)

for every ξ ∈ W 2,2(Σ, ad(P )) and A ∈ A(P ). Differentiating the right hand side in
time yields

d

dt
〈∗FeitξA − τ, ξ〉 = 〈− ∗ deitξA ∗ deitξAξ, ξ〉 = ||deitξAξ||2L2 ≥ 0 (2.31)

and therefore wτ (A, ξ) ∈ R ∪ {+∞} is well-defined.

Remark 2.5.1. The weights can be defined when ξ is only of Sobolev class W 1,2.
The calculation above shows

wτ (A, ξ) = 〈∗FA − τ, ξ〉+
∫ ∞

0
||deitξAξ||2L2 dt (2.32)

and the right hand side is well-defined for ξ ∈W 1,2(Σ, ad(P )).

We show in Proposition 2.5.2 and Lemma 2.5.7 that there exists a one to one
correspondence between finite weights wτ (A, ξ) <∞ and(PQ, ξ0)

∣∣∣∣∣∣
ξ0 ∈ g, Q = Q(ξ0)

PQ is a principal Q bundle
PQ ⊂ (P c, JA) is a holomorphic reduction

 .

For the definition of the parabolic subgroup Q(ξ0) ⊂ Gc see Definition 2.2.10. Using
a deep regularity result of Uhlenbeck and Yau [118], we note that for every finite
weight the section ξ ∈ Ω0(Σ, ad(P )) is smooth provided A is a smooth connection.

Using this geometric description, we show in Proposition 2.5.9 that the algebraic
stability of (P c, JA) is equivalent to the conditions on the weights wτ (A, ξ) required
in the Hilbert-Mumford criterion. In the last subsection we prove the moment weight
inequality

−wτ (A, ξ)
||ξ||L2

≤ inf
g∈Gc(P )

||µτ (gA)||L2 .
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This shows that A is µτ -unstable whenever there exists a negative weight. By Propo-
sition 2.5.9 the later is true if and only if (P c, JA) is unstable.

2.5.1 Finite weights
It is more convenient to describe the weights in the language of vector bundles: We fix
a faithfull representation G ↪→ U(n), identify G with a subgroup of U(n) and denote
by E := P ×GCn the associated vector bundle with structure group G. Consider the
bundles

G(E), g(E), Gc(E), gc(E) ⊂ End(E)

which consist of endomorphisms that in any trivialization are contained in G, g, Gc
and gc respectively. There are canonical identifications

G(P ) ∼= G(E) = Ω0(Σ, G(E)), ad(P ) ∼= g(E) ⊂ End(E)

and
G(P c) ∼= Gc(E) = Ω0(Σ, Gc(E)), ad(P c) ∼= gc(E) ⊂ End(E).

We denote byAG(E) the space of G-connections on E which is canonically isomorphic
to A(P ). Assume for convenience that the invariant inner product on g is obtained
by restriction of the standard inner product

〈ξ, η〉 := tr(ξη∗)

on u(n).

Proposition 2.5.2. Consider the setting described above. Let A ∈ AG(E) be a
smooth connection and let ξ ∈W 1,2(Σ, g(E))\{0}. If wτ (A, ξ) <∞, then the follow-
ing holds:

1. The endomorphism iξ has constant eigenvalues λ1 < · · · < λr. The correspond-
ing eigenspaces are unitary subbundles Dj and decompose E as orthogonal direct
sum E = D1 ⊕ · · · ⊕Dr.

2. Each partial sum Ej := D1 ⊕ · · · ⊕Dj is a holomorphic subbundle of E. This
yields a holomorphic filtration

0 < E1 < E2 < · · · < Er = E.

3. The weight of ξ is given by the formula

wτ (A, ξ) = 2π
r∑
j=1

λjc1(Dj)− 〈τ, ξ〉

This is Lemma 4.2 in [89]. Before giving the proof, we need to discuss the regu-
larity of weakly holomorphic subbundles.

Definition 2.5.3. Let E be a holomorphic hermitian vector bundle. A weakly holo-
morphic subbundle of E is a section π ∈ W 1,2(Σ,End(E)) satisfying π = π2 = π∗

and (1− π)∂̄(π) = 0.
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The following theorem is a special case of a more general result of Uhlenbeck and
Yau [118]. They prove that weakly holomorphic subbundles of holomorphic hermitian
vector bundles over arbitrary Kähler manifolds correspond to torsion-free coherent
subsheaves. Since any torsion-free coherent sheaf over a Riemann surface is locally
free, this reduces to the following:

Theorem 2.5.4 (Uhlenbeck and Yau [118]). If π ∈ W 1,2(Σ,End(E)) is a weakly
holomorphic subbundle, then π is the projection on a smooth holomorphic subbundle
E′ ⊂ E.

Proof of Proposition 2.5.2. Let 0 6= ξ ∈W 1,2(Σ, g(E)) be given and assume wτ (A, ξ) <
∞. Since gc = g⊕ ig is per definitionem an orthogonal decomposition we have

||deitξAξ||2 = 1
2 ||∂̄eitξAξ||2 = 1

2 ||Ad
(
eitξ) ◦ ∂̄A ◦Ad

(
e−itξ) (ξ)||2

= 1
2 ||e

itξ∂̄A(ξ)e−itξ||2.

and from (2.32) follows

wτ (A, ξ) =
∫

Σ
〈∗FA − τ, ξ〉 dvo`Σ + 1

2

∫ ∞
0
||eitξ∂̄A(ξ)e−itξ||2 dt. (2.33)

Denote At := eitξ(A) and let k ≥ 1 be an integer. Then follows

∂̄tr(ξk) = tr(∂̄At(ξk)) = ktr(ξk−1∂̄At(ξ))

and the Cauchy-Schwarz inequality |tr(AB)| ≤ ||A|| · ||B|| yields∫
Σ
||∂̄ tr(ξk)|| dvo`Σ ≤ k

∫
Σ
||ξk−1|| · ||∂̄Atξ|| dvo`Σ

= k||ξk−1||L2 · ||eiξt∂̄A(ξ)e−iξt||L2 .

Since wτ (A, ξ) is finite, it follows from (2.32) that there exists a sequence tj → ∞
such that

lim
j→∞

||eiξtj ∂̄A(ξ)e−iξtj ||L2 = 0. (2.34)

Hence ∂̄tr(ξk) = 0 and it follows from the maximum principle that tr(ξk) is constant.
Denote the eigenvalues of iξ with repetition according to their multiplicity by λ′1 ≤
· · · ≤ λ′n. Then

tr(ξk) = (λ′1)k + . . .+ (λ′n)k

is constant for every k ≥ 1. This is only possible if all the functions λ′j are constant
and hence iξ has constant eigenvalues.

Let λ1 < · · · < λr be the distinct eigenvalues of iξ. Since iξ is a normal (hermitian)
operator, the eigenspaces are pairwise orthogonal. Moreover, if Γj is a small loop
around the eigenvalue λj in the complex plane, the orthogonal projection π′j : E → Dj

onto the eigenspace of λj is given by

π′j := 1
2πi

∫
Γj

(z1− iξ)−1 dz.
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These projections have regularity π′j ∈ W 1,2(Σ,End(E)) and satisfy π′j = (π′j)2 =
(π′j)∗.

We show next that the projections πj := π′1 + · · · + π′j : E → Ej define weakly
holomorphic subbundles. By construction

iξ = m1π1 + · · ·+mrπr (2.35)

for some m1, . . . ,mr ∈ R. Write ∂̄A(ξ) = [ξ̂ij ] with respect to the splitting E =
D1 ⊕ · · · ⊕Dr. Then holds [

eitξ ξ̂e−itξ
]
ij

= e(λj−λi)tξ̂ij

and (2.34) implies ξ̂ij = 0 for i > j. Thus ∂̄A(iξ) is upper triangular and (2.35) yields

0 = (1− πj)(∂̄Aξ)πj =
r∑

k=1
mk(1− πj)∂̄A(πk)πj . (2.36)

The Leibniz rule provides the formula

(1− πj)∂̄A(πk)πj =


(1− πk)(1− πj)∂̄A(πj) for k > j

(1− πj)∂̄A(πj) for k = j

(1− πj)(∂̄A(πk)− πk∂̄A(πj)) for k < j

.

This implies together with (2.36) the formula (1 − πj)∂̄A(πj) = 0 by induction on
j. Hence πj defines a weakly holomorphic subbundle and Ej is smooth by Theorem
2.5.4. This proves the first two parts of the theorem.

Write ∂̄A with respect to the splitting E = D1 ⊕ · · · ⊕Dr as

∂̄A =


∂̄A1 A12 . . . A1r
0 ∂̄A2 . . . A2r
...

...
. . .

...
0 0 . . . ∂̄Ar


where Aij ∈ Ω0,1(Di ⊗D∗j ) and ∂̄Aj is the Cauchy-Riemann operator corresponding
to the induced unitary connection Aj ∈ A(Dj) ∼= A(Ej/Ej−1). Decompose ∂̄A =
∂̄A+ +A0 with

∂̄A+ =


∂̄A1 0 . . . 0
0 ∂̄A2 . . . 0
...

...
. . .

...
0 0 . . . ∂̄Ar

 , A0 =


0 A12 . . . A1r
0 0 . . . A2r
...

...
. . .

...
0 0 . . . 0


We claim that eitξ(A) converges uniformly to A+ := A1⊕ · · · ⊕Ar as t→∞. In fact

∂̄At − ∂̄A+ = eitξA0e
−itξ

and
[eitξA0e

−itξ]ij = −iet(λi−λj)(λj − λi)Aij
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decays exponentially to zero, since A0 is strictly upper triangular. This in turn implies
that eitξA converges to A+ and hence

wτ (A, ξ) = lim
t→∞
〈∗FeitξA, ξ〉 = 〈∗FA+ − τ, ξ〉 =

r∑
j=1
〈∗FAj , ξ〉 − 〈τ, ξ〉

=
r∑
j=1

iλj
∫

Σ
tr(FAj ) dvo`Σ − 〈τ, ξ〉

= 2π
r∑
j=1

λjc1(Dj)− 〈τ, ξ〉.

Corollary 2.5.5. Suppose ξ ∈ Ω0(Σ, g(E)) yields a finite weight wτ (A, ξ). Then the
limit

A+ := lim
t→∞

eitξA

exists in AG(E). Moreover, the splitting E = D1⊕· · ·⊕Dr is holomorphic with respect
to A+ and on each factor the holomorphic structure agrees with the one induced by
the isomorphism Dj

∼= Ej/Ej−1

Proof. This follows directly from the proof of Proposition 2.5.2.

Remark 2.5.6. The Corollary shows that A+ ∈ Gc(A) if and only if the holomorphic
filtration determined by ξ splits holomorphically.

We reformulate the characterization of the finite weights in intrinsic terms. Let
A ∈ A(P ) ∼= AG(E) and suppose that ξ is a smooth section of ad(P ) ∼= g(E)
which yields a finite weight wτ (A, ξ). By Proposition 2.5.2 this defines a holomorphic
filtration

0 < E1 < E2 < · · · < Er = E

and there exist unitary trivializations of this filtration such that ξ = ξ0 where
ξ0 = −idiag(λ1, . . . , λr) is a block diagonal matrix with λ1 < λ2 < · · · < λr. This
trivialization yields a reduction PK(ξ) ⊂ P to K(ξ0) := CG(ξ0). Note that ξ0 gives
rise to a constant central section of ad(PK(ξ)) ⊂ ad(P ) and agrees with ξ in ad(P ).
We can rewrite the formula for the weight as

wτ (A, ξ) :=
∫

Σ
〈∗FA+ , ξ〉 dvo`Σ − 〈τ, ξ〉

where A+ ∈ A(PK(ξ)) is a K(ξ)-connection. It follows from Chern-Weyl theory
that the right hand side does not change when we replace A+ by another K(ξ)-
connection. The weight depends therefore only on the reduction PK(ξ) ⊂ P and ξ.
The complexification yields a reduction P cK(ξ) = PL(ξ) ⊂ P c to the Levi subgroup
L(ξ0) ⊂ Gc (see Definition 2.2.10). The reduction PL(ξ) ⊂ P c is holomorphic if
and only if ∂̄A takes values in l(ξ0) and this is the case if and only if the filtration
determined by ξ splits holomorphically. In contrast, the extension L(ξ0) ⊂ Q(ξ0)
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yields a reduction PQ(ξ0) ⊂ P c to the stabilizer of the filtration determined by ξ0
within Gc. This reduction is always holomorphic, since ∂̄A is upper block triangular.

Conversely, let PQ ⊂ P c be a holomorphic reduction to a parabolic subgroup
Q = Q(ξ0) ⊂ Gc. This yields a canonical reduction PK ⊂ P to K = CG(ξ0), since
Gc/Q(ξ0) ∼= G/CG(ξ0). Since ξ0 is contained in the center of K, it gives rise to
a constant section in ad(PK) and its image under the embedding ad(PK) ⊂ ad(P )
yields a section ξ ∈ Ω0(Σ, ad(P ) which gives rise to a finite weight wτ (A, ξ). We
summarize our discussion in the following lemma.

Lemma 2.5.7. Let P → Σ be a principal G bundle, let A ∈ A(P ) be a smooth
connection and let P c := P ×GGc denote the complexification of P endowed with the
holomorphic structure determined by A. There exists a one-to-one correspondence
between

{ξ ∈ Ω0(Σ, ad(P )) |wτ (A, ξ) <∞}

and (PQ, ξ0)

∣∣∣∣∣∣
ξ0 ∈ g, Q = Q(ξ0)

PQ is a principal Q bundle
PQ ⊂ P c is a holomorphic reduction


Every reduction PQ ⊂ P c yields a canonical reduction PK ⊂ P to K = CG(ξ0). The
toral generator ξ0 yields a constant section of ad(PK) and its image in ad(P ) yields
ξ. Moreover, the weight is given by the formula

wτ (A, ξ) =
∫

Σ
〈∗FB − τ, ξ〉 dvo`Σ

for any connection B ∈ A(PK).

Proof. This follows directly from the preceding discussion

The next lemma describes how the weights behave under an extension G ↪→ H of
the structure group.

Lemma 2.5.8. Let H be a compact connected Lie group and fix an invariant inner
product on its Lie algebra h. Suppose that there exists a monomorphism G ↪→ H
which identifies G with a subgroup of H and assume that the invariant inner product
on g is obtained by restriction of the one on h. Let P → Σ be a principal G bundle of
central type τ ∈ Z(g) defined by (2.12) and denote by PH := P ×G H the associated
H bundle.

1. The central type τH ∈ Z(h) of PH is the image of τ under the orthogonal
projection

Z(g) ↪→ h ∼= Z(h)⊕ [h, h]→ Z(h).

2. Let A ∈ A(P ), let ξ ∈ Ω0(Σ, ad(P )) and denote by ξH ∈ Ω0(Σ, ad(PH)) the
image of ξ under the embedding ad(P ) ⊂ ad(PH). Then

wτ (A, ξ) = wτH (A, ξH) +
∫

Σ
〈τH − τ, ξ0〉 dvo`Σ.
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3. Let A ∈ A(P ), let ξH ∈ Ω0(Σ, ad(PH)) be a section with wτH (A, ξ) < ∞ and
denote by ξ ∈ Ω0(Σ, ad(P )) the image of ξH under the orthogonal projection
ad(PH)→ ad(P ). Then

wτ (A, ξ) = wτH (A, ξH) +
∫

Σ
〈τH − τ, ξ〉 dvo`Σ.

Proof. For the first part, note that h = Z(h) ⊕ [h, h] yields an orthogonal decompo-
sition with respect to any invariant inner product of h. The orthogonal projection of
τ onto Z(h) does therefore depend only on the embedding of G into H and it is easy
to verify that it satisfies (2.12) for PH .

By Lemma 2.5.7 there exists ξ0 ∈ g and a reduction PK ⊂ P to a principal
K = CG(ξ0) bundle such that ξ is the image of the constant section ξ0 under the
embedding ad(PK) ⊂ ad(P ). Moreover,

wτ (A, ξ) =
∫

Σ
〈∗FB − τ, ξ〉 dvo`Σ

for any connection B ∈ A(PK). Define K̃ = CH(ξ0) and PK̃ := PK ×K K̃ ⊂ PH .
Then ξH agrees with the image of ξ0 under the embedding ad(PK̃) ⊂ ad(PH) and
Lemma 2.5.7 yields

wτH (A, ξ) =
∫

Σ
〈∗FB − τH , ξ0〉

for any connection B ∈ A(PK̃). In particular, for B ∈ A(PK) ⊂ A(PK̃), we get

wτ (A, ξ)− wτH (A, ξ) =
∫

Σ
〈τH − τ, ξ0〉 dvo`Σ

and this proves the second part.
The third part follows by a similar argument. Note that the proof of Proposition

2.5.2 implies that there exists a connection B = A+ ∈ A(P )∩A(PK̃) for the reduction
PK̃ ⊂ PH associated to ξH . For such a connection holds 〈ξH , FB〉 = 〈ξ, FB〉 and the
claim follows as in the second part.

2.5.2 Weights and algebraic stability
The following proposition characterizes the (algebraic) stability of the holomorphic
principal bundle (P c, JA) in terms of the associated weights wτ (A, ξ).

Proposition 2.5.9 (Characterization of Stability). Let P be a principal G bundle
of central type τ ∈ Z(g) defined by (2.12). Let A ∈ A(P ) be a smooth connection
and let P c := P ×GGc be the complexified principal bundle endowed with the induced
holomorphic structure JA.

1. (P c, JA) is stable if and only if wτ (A, ξ) > 0 for all ξ ∈ W 1,2(Σ, ad(P )) which
are not constant central sections.

2. (P c, JA) is polystable if and only if wτ (A, ξ) ≥ 0 for all ξ ∈W 1,2(Σ, ad(P )) and
whenever wτ (A, ξ) = 0 the associated (smooth) reduction PL(ξ) ⊂ PQ(ξ) ⊂ P c

is holomorphic.
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3. (P c, JA) is semistable if and only if wτ (A, ξ) ≥ 0 for all ξ ∈W 1,2(Σ, ad(P )).

4. (P c, JA) is unstable if and only if there exists ξ ∈W 1,2(Σ, ad(P )) with wτ (A, ξ) <
0.

Proof. Using the geometric interpretation of the finite weights in Lemma 2.5.7 we
can reduce the proof to a lemma of Ramanathan [95]. The proof will be given on
page 78 below.

Reduction argument

We reduce the theorem to the case where Z(G) is discrete and τ = 0. Recall that
the invariant inner product on g yields the decomposition g = Z(g) ⊕ [g, g] of the
Lie algebra into its center and a semisimple subalgebra. The center yields a trivial
Z(g) subbundle V ⊂ ad(P ) and its orthogonal complement can be identified with
ad(P/Z0(G)).

Lemma 2.5.10. Assume the setting of Proposition 2.5.9. Let ξ ∈ Ω0(Σ, ad(P )) with
wτ (A, ξ) < ∞ and decompose ξ = ξz + ξss with respect to the splitting ad(P ) =
V ⊕ ad(P/Z0(G)). Then

wτ (A, ξ) = w0(Ā, ξss)

where Ā ∈ A(P/Z0(G)) denotes the induced connection on P/Z0(G).

Proof. By Lemma 2.5.7 exists a reduction PK ⊂ P and an element ξ0 ∈ g which
gives rise to a constant central section in ad(PK) and such that ξ is the image of
ξ0 under the embedding ad(PK) ⊂ ad(P ). Decompose ξ0 = ξz0 + ξss0 with respect
to g = Z(g) ⊕ [g, g]. Then ξz0 yields ξz and ξss0 yields ξss under the embedding
ad(PK) ⊂ ad(P ). By Lemma 2.5.7 the weight is given by

wτ (A, ξ) =
∫

Σ
〈∗FB − τ, ξss〉 dvo`Σ +

∫
Σ
〈∗FB − τ, ξz〉 dvo`Σ.

for any connection B ∈ A(PK). The second integral vanishes by (2.12) and in the
first integral yields∫

Σ
〈∗FB − τ, ξss〉 dvo`Σ =

∫
Σ
〈∗FB , ξss〉 dvo`Σ = w0(Ā, ξss).

since τ ∈ Z(g) is orthogonal to [g, g]. This completes the proof.

The main argument

The following result is a reformulation of Lemma 2.1 in [95].

Lemma 2.5.11. Assume the setting of Proposition 2.5.9 and suppose in addition
that Z0(G) is discrete and τ = 0. (P c, JA) is stable (resp. semistable) with respect
to Definition 2.3.2 if and only if w0(A, ξ) > 0 (resp. w0(A, ξ) ≥ 0) for all ξ ∈
W 1,2(Σ, ad(P )).
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Proof. Let ξ ∈ Ω0(Σ, ad(P )) with w0(A, ξ) < ∞ be given. By Lemma 2.5.7 exists a
reduction PK ⊂ P and an element ξ0 ∈ g such that K = CG(ξ0) and ξ is the image
of ξ0 under the embedding ad(PK) ⊂ ad(P ).

Let T ⊂ G be a maximal torus whose Lie algebra contains ξ0 and let R+
0 =

{α1, . . . , αr} be a system of simple roots with respect to T whose Weyl-chamber
contains ξ0. Recall that αj = iaj with aj ∈ Hom(t,R) and define tj ∈ t by aj = 〈tj , ·〉.
The elements ť1, . . . , ťr ∈ t defined by (2.7) yield a basis of t and ξ0 has the shape

ξ0 =
r∑
j=1

xj ťj

with xj ≥ 0. Note that ťj lies in the center of the Lie algebra of K = CG(ξ0) when
xj > 0. Then ťj gives rise to a constant central section of ad(PK) and

w0(A, ξ) =
r∑
j=1

xjw0(A, ťj). (2.37)

Fix 1 ≤ j ≤ r with xj > 0 and denote Qj := Q(ťj). This is a maximal parabolic
subgroup of Gc which contains Q(ξ0) and the extension PQj := PQ(ξ) ×Q(ξ) Qj ⊂ P c
yields a maximal parabolic reduction. Let χ : Qj → C∗ be the determinant of the
action of Qj on its Lie algebra and denote by χ̇ : qj → C the induced map on the Lie
algebra. Chern-Weyl theory yields the relation

c1(ad(PQj )) = i
2π

∫
Σ
χ̇(FB)

for a connection B ∈ A(PK). For η ∈ qj the value of χ̇(η) is given as the trace of
ad(η) := [η, ·] acting on

qj = t⊕
⊕

α∈R(ťj)

gα. (2.38)

where R(ťj) is defined by (2.8). This decomposition is unitary and by definition of
the roots we have ad(t)eα = α(t)eα for t ∈ t. This shows

χ̇(η) =
∑

α∈R(ťj)

α(η) (2.39)

for all η ∈ t. Since χ̇ vanishes on [qj , qj ] it vanishes on all root space gα with
{α,−α} ⊂ R(ťj). These are the roots in R̃(ťj) which produce the Levi subgroup L(ťj).
The remaining root spaces gα with α ∈ R(ťj)\R̃(ťj) form a nilpotent subalgebra. This
shows that (2.39) remains valid for all η ∈ qj if one extends the roots by complex
linearity over tc and by zero over the root spaces.

Denote by R+ the positive roots and by R−(ťj) = R(ťj)\R+ the negative roots
whose root spaces are contained in qj . Then χ̇ = γ1 + γ2 with

γ1 =
∑
α∈R+

α, γ2 :=
∑

α∈R−(ťj)

α
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and
〈αi, γ1〉 =

∑
α∈R+

〈ti, tα〉 = |ti|2 +
∑

α∈R+\{αj}

〈ti, tα〉

holds for every simple root αi. The root reflection

sj : t→ t, sj(t) := t− 2〈t, tj〉
|tj |2

tj

restricts to a permutation of R+\{αj}. Indeed, any root has a unique representation
tα =

∑r
k=1 cktk and all coefficients happen to have the same sign. Applying the

reflection sj changes only the coefficient cj and thus sj(α) remains positive if ck > 0
for some coefficient k 6= j. Using this symmetry we conclude

〈αi, γ1〉 = |ti|2. (2.40)

A similar argument shows for i 6= j

〈αi, γ2〉 =
∑

α∈R−(ťj)

〈ti, tα〉 = −|ti|2 +
∑

α∈R−(ťj)\{αj}

〈ti, tα〉 = −|ti|2. (2.41)

This shows χ̇(ti) = 0 for i 6= j. As a general property of root systems (see [70] Lemma
2.51) it holds 〈tj , ti〉 ≤ 0 for distinct simple roots αi, αj and thus

χ̇(tj) = |tj |2 +
∑

α∈R−(ťj)

〈tj , tα〉 > 0 (2.42)

Combining (2.40), (2.41) and (2.42) we conclude

χ̇(t) = im〈ťj , t〉

for some m > 0. Hence

c1(ad(PQj )) = −m2π

∫
Σ
〈FB , ťj〉 = −m2π w0(A, ťj). (2.43)

Suppose now that P c is stable (resp. semistable). Then the left hand side in (2.43)
is negative (resp. nonpositive) and (2.37) implies w0(A, ξ) > 0 (resp. w0(A, ξ) ≥ 0).
Conversely, Lemma 2.5.7 show that every holomorphic reduction PQ ⊂ P c to a proper
maximal parabolic subgroup Q(ξ0) ⊂ Q is induced by some ξ ∈ Ω0(Σ, ad(P )) with
w0(A, ξ) <∞. Lemma 2.2.15 shows that in (2.38) exactly one coefficient xj does not
vanishes. Hence (2.43) implies that c1(ad(PQ)) is negative or vanishes if and only if
w0(A, ξ) is positive or vanishes respectively. This establishes the converse direction
and completes the proof of the lemma.

Completion of the proof

Proof of Proposition 2.5.9. We may assume by Lemma 2.3.5 and Lemma 2.5.10 that
Z0(G) is discrete and τ = 0. The stable and semistable case follow then from Lemma
2.5.11 and the unstable case is equivalent to the semistable case.



2.5. MAXIMAL WEIGHTS 79

Assume that P c is polystable. Then there exists a holomorphic reduction PL ⊂ P c
to a Levi subgroup L ⊂ Gc and PL is a stable L bundle. Let ξ ∈ Ω0(Σ, ad(P )) with
w0(A, ξ) = 0 be given. By Lemma 2.5.7 exists ξ0 ∈ g and a reduction PK ⊂ P to
a principal K = CG(ξ0) bundle such that ξ agrees with the image of ξ0 under the
embedding ad(PK) ⊂ ad(P ). Using the notation from the proof of Lemma 2.5.11
above, write ξ0 with respect to a system of simple roots as

ξ0 =
r∑
j=1

xj ťj

with xj ≥ 0. Since P c is in particular semistable, the proof of Lemma 2.5.11 shows
that w0(A, ξ) = 0 if and only if

xj > 0 ⇒ c1(ad(PQj )) = 0

where Qj := Q(ťj). We may assume (after conjugation) that L = L(η0) for some
η0 ∈ g and η0 is contained in the Weyl-chamber determined by our choice of simple
roots. If L is not contained in Qj , then Q′j := L∩Qj is a maximal parabolic subgroup
of L and we have an induced reduction PQ′

j
⊂ PL. Since L and Gc are reductive, the

Lie algebra bundles ad(PL) and ad(P c) carry a non degenerated symmetric C-bilinear
form. Hence they are both self-dual and have vanishing first Chern-class. This shows

c1(ad(PQj )) = −c1(ad(P c)/ad(Qj)) = −c1(ad(PL)/ad(Q′j))
= c1(ad(PQ′

j
)) < 0

where the last step follows from the stability of PL. We have thus proven that L ⊂ Qj
whenever xj > 0 and this yields L ⊂ L(ξ0). Since the reduction to L is holomorphic,
so is the reduction to L(ξ0).

Assume conversely, that all weights are nonnegative and if ξ ∈ Ω0(Σ, P c) is a
section with w0(A, ξ) = 0 then PL(ξ) ⊂ P c is a holomorphic reduction (where PL(ξ) =
P cK(ξ) and PK(ξ) is determined by Lemma 2.5.7). It follows from Lemma 2.5.11 that
P c is semistable. If P c is in fact stable, then we are done. Otherwise there exists a
vanishing weight w0(A, ξ) = 0 and by assumption this yields a holomorphic reduction
PL(ξ) ⊂ P c. In particular A restricts to a connection on PK(ξ) ⊂ P and PK(ξ) is again
of central type 0. For the later claim let η ∈ g be contained in the center of the Lie
algebra of K and consider its image η′ under the embedding ad(PK) ⊂ ad(P ). Then
follows ∫

Σ
〈∗FB , η〉 dvo`Σ = w0(A, η′) ≥ 0.

for any connection B ∈ A(PK). Replacing η by −η shows that this expression must
vanish and hence PK(ξ) is of central type 0. Now Lemma 2.5.11 shows that PL(ξ)
is again semistable. If PL(ξ) is not stable, then there exists ξ̃ ∈ Ω0(Σ, ad(PK(ξ))
with w0(A, ξ̃) = 0. We can consider ξ̃ as section ξ′ of ad(P ) which then satisfies
w0(A, ξ′) = 0 and thus yields a strictly smaller holomorphic reduction PL(ξ′) ⊂ PL(ξ).
If we replace ξ by ξ′ and rerun the argument from above we obtain after finitely many
iterations a section ξ which satisfies w0(A, ξ) = 0 and yields a stable holomorphic
reduction PL(ξ) ⊂ P c.
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Let χ : L → C∗ be a character. We need to show c1(χ(PL(ξ))) = 0. Decompose
ξ0 =

∑r
j=1 xj ťj as above and denote

S := {j |xj > 0}.

Since χ̇ : l(ξ) → C vanishes on [l(ξ), l(ξ)], it vanishes on all the root spaces gα
belonging to l(ξ) and the dual vectors tα ∈ t. In particular, χ̇ vanishes on the simple
roots tj with j /∈ S and has the shape

χ̇(η) =
∑
j∈S

irj〈η, ťj〉

for some rj ∈ R. Chern-Weyl theory yields

c1(χ(PL(ξ))) = i
2π

∫
Σ
χ̇(FB) = i

2π
∑
j∈S

irj
∫

Σ
〈∗FB , ťj〉

for some connection B ∈ A(PK(ξ)). We claim that each summand vanishes separately
in the last expression. This follows from the assumption

0 = w0(A, ξ) =
r∑
j=1

xj

∫
Σ
〈∗FB , ťj〉 dvo`Σ =

∑
j∈S

xj

∫
Σ
〈∗FB , ťj〉 dvo`Σ

and
w0(A, ťj) =

∫
Σ
〈∗FB , ťj〉 dvo`Σ ≥ 0

since P c is semistable.

2.5.3 The moment weight inequality
The moment-weight inequality provides a lower bound for the norm of the moment-
map µτ (A) = ∗FA − τ on the complexified orbit Gc(A).

Theorem 2.5.12 (The moment-weight inequality). Let P → Σ be a principal
G bundle of central type τ ∈ Z(g) defined by (2.12). Let A ∈ A(P ) be a smooth
connection and ξ ∈W 1,2(Σ, ad(P )). Then

−wτ (A, ξ)
||ξ||L2

≤ inf
g∈Gc

|| ∗ Fg(A) − τ ||L2 . (2.44)

The moment weight-inequality is essentially proven by Atiyah and Bott ([4], Prop.
8.13 and Prop. 10.13). They explicitly determine the infimum of the Yang-Mills func-
tional over Gc(A) in terms of the Harder-Narasimhan filtration of the holomorphic
vector bundle ad(P c). It follows from the proof of the dominant weight theorem
(Theorem 2.7.1) in the next section that the same description yields the supremum
over the left-hand side whenever it is positiv. We provide a different approach fol-
lowing the arguments in [51] for the finite dimensional case which are essentially due
to Chen [19, 18] and Donaldson [39].
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Proof. We reduce the proof to the case where Z(G) is discrete and τ = 0. Denote by
Ā ∈ A(P/Z0(G)) the induced connection on the quotient bundle and decompose ξ =
ξss + ξz as in Lemma 2.5.7. Let g ∈ Gc(P ) be given and decompose FgA = F ss + F z

in the same way. Note that FgĀ = F ss. Suppose that the moment-weight inequality
is satisfied on P/Z0(G), i.e.

−w0(Ā, ξss)
||ξss||L2

≤ || ∗ FgĀ||L2 .

We may assume wτ (A, ξ) ≤ 0. Then Lemma 2.5.7 implies

−wτ (A, ξ)
||ξ||L2

≤ −w0(Ā, ξss)
||ξss||L2

≤ || ∗ FgĀ||L2 ≤ ||FgA − τ ||L2

and this completes the reduction argument.
Now assume that Z(G) is discrete and τ = 0. Let ξ ∈ W 1,2(Σ, ad(P )) with

w0(A, ξ) <∞. Then ξ is smooth by Proposition 2.5.2 and the limit

lim
t→∞

eitξA =: A+ (2.45)

exists by Corollary 2.5.5.
Let g0 = u0e

iη0 ∈ Gc(P ) be given and define η(t) ∈ W 2,2(Σ, ad(P )) and u(t) ∈ G
by the equation

eiξt = eiη(t)u(t)g0.

From this follows pointwise the estimate

||η(t)− tξ|| ≤ ||η0||. (2.46)

To see this, denote by π : Gc → Gc/G the canonical projection and recall that Gc/G
is a complete simply-connected Riemannian manifold with nonpositive sectional cur-
vature. For a fixed time t and z ∈ Σ define p := π(eitξ(z)) and q := π(eiη(t,z)).
Then

γ : [0, 1]→ Gc/G, γ(s) := π(eitξ(z)e−isη0(z))

is the unique geodesic from p to q in Gc/G of length ||η0(z)||. Since the exponential
map on a Riemannian manifold with nonpositive curvature is distance increasing,
this yields

||η(t, z)− tξ(z)|| ≤ distGc/G(p, q) = ||η0(z)||

and hence (2.46). With this estimate we get∣∣∣∣∣∣∣∣ ξ

||ξ||L2
− η(t)
||η(t)||L2

∣∣∣∣∣∣∣∣
L2
≤
∣∣∣∣∣∣∣∣ tξ − η(t)
t||ξ||L2

+ η(t)
t||ξ||L2

− η(t)
||η(t)||L2

∣∣∣∣∣∣∣∣
L2

≤ ||tξ − η(t)||L2

t||ξ||L2
+
∣∣∣∣ ||η(t)||L2 − t||ξ||L2

t||ξ||L2

∣∣∣∣
≤ 2 ||η0||L2

t||ξ||L2
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and hence

lim
t→∞

∣∣∣∣∣∣∣∣ η(t)
||η(t)||L2

− ξ

||ξ||L2

∣∣∣∣∣∣∣∣
L2

= 0. (2.47)

By (2.31) the map
s 7→ 〈∗Feisu−1ηug0A

, u−1ηu〉

is nondecreasing in s. With the relation eiu−1ηug0 = u−1eitξ follows

−|| ∗ Fg0A||L2 ≤ 1
||η||L2

〈
∗Fg0A, u

−1ηu
〉
≤ 1
||η||L2

〈
∗Feiu−1ηug0A

, u−1ηu
〉

≤ 1
||η||L2

〈
∗Fu−1eitξA, u

−1ηu
〉

= 1
||η||L2

〈∗FeitξA, η〉

≤ 〈∗FeitξA, ξ〉
||ξ||L2

+
〈
∗FeitξA,

η

||η||L2
− ξ

||ξ||L2

〉

It follows from (2.45) and (2.46) that the right and side converges to w0(A,ξ)
||ξ|| for

t→∞ and this proves the theorem.

2.6 The Kempf-Ness functional

Let G be a compact connected Lie group and let P → Σ be a principal G bundle of
central type τ ∈ Z(g) defined by (2.12). Let A ∈ A(P ) be a smooth connection. The
Kempf-Ness functional associated to A is the G(P )-invariant functional

ΦA : Gc(P )→ R, ΦA(eiξu) =
∫ 1

0
〈∗Fe−itξA − τ,−ξ〉 dt. (2.48)

We show in Lemma 2.6.1 below that the derivative of ΦA is given by

αA(g; ĝ) = −〈∗Fg−1A − τ, Im(g−1ĝ)〉. (2.49)

The asymptotic slope of ΦA along the geodesic ray t 7→ e−itξ yields the weight
wτ (A, ξ). This is related to the stability of the associated holomorphic principal
bundle (P c, JA) by Proposition 2.5.9. On the other hand, it follows directly from
(2.49) that g ∈ Gc(P ) is a critical point of ΦA if and only if ∗Fg−1A = τ . The analog
of the Kempf-Ness theorem in classical GIT is Theorem 2.6.2 below. It characterizes
the different notions of µτ -stability in terms of the global behaviour of ΦA and thus
provides a link between the algebraic and the symplectic notions of stability. We
can deduce from this the Narasimhan-Seshadri-Ramanathan theorem in the second
subsection.
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2.6.1 The generalized Kempf-Ness theorem
Lemma 2.6.1. Let P → Σ be a principal G bundle and define ΦA : Gc(P ) → R by
(2.48).

1. The derivative of ΦA is given by

αA(g; ĝ) = −〈∗Fg−1A − τ, Im(g−1ĝ)〉.

2. Let g, h ∈ Gc(P ), then

Φh−1A(h−1g) = ΦA(g)− ΦA(h).

Proof. Let g ∈ Gc(P ), ĝ ∈ TgGc(P ) and let u ∈ G(P ) be given. Then

αA(gu−1, ĝu−1) = 〈∗Fug−1A, Im(ug−1ĝu−1)〉
= 〈u ∗ Fg−1Au

−1, uIm(g−1ĝ)u−1〉
= αA(g, ĝ)

shows that αA is invariant under the right-action of G(P ) and hence descends to a
1-form on Gc(P )/G(P ).

We claim that αA is closed. Denote by π : Gc → Gc/G the canoncial projection
and let ĝ1 = dπ(g)giξ and ĝ2 := dπ(g)giη be two tangent vectors in Tπ(g)Gc(P )/G(P ).
Then

dαA(g; ĝ1, ĝ2) = dαA(g; ĝ2)[ĝ1]− dαA(g; ĝ1)[ĝ2]− αA(g; [ĝ1, ĝ2])
= d〈Fg−1A − τ, η〉[giξ]− d〈Fg−1A − τ, ξ〉[giη]
= 〈d∗g−1Adg−1Aξ, η〉 − 〈d∗g−1Adg−1Aη, ξ〉 = 0.

We used in the second step that [ĝ1, ĝ2] ∈ TgG(P ) is tangent to the real gauge orbit
and thus lies in the kernel of αA(g; ·).

Denote for p, q ∈ Gc(P )/G(P ) by [p, q] the geodesic segment connecting p to q.
Then (2.48) can be reformulated as

ΦA(g) =
∫

[π(1),π(g)]
αA. (2.50)

For h ∈ Gc(P ) we have αh−1A(h−1g, h−1ĝ) = αA(g, ĝ) and hence

Φh−1A(h−1g) =
∫

[π(1),π(h−1g)]
αh−1A =

∫
[π(h),π(g)]

αA.

Since αA is closed we have∫
[π(h),π(g)]

αA =
∫

[π(1),π(g)]
αA −

∫
[π(1),π(h)]

αA = ΦA(g)− ΦA(h)

and this establishes the second part of the lemma.
Using the second part, we can can reduce the proof of the first part to the case

g = 1 and in this case the claim follows directly from (2.48).
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The difficult part of the following theorem is the stable case. The proof of this
case is due to Bradlow [12] and Mundet [89] in the context of more general moduli
problems.

Theorem 2.6.2 (Generalized Kempf-Ness Theorem). Let G be a compact con-
nected Lie group, let P → Σ be a principal G bundle with central type τ ∈ Z(g)
defined by (2.12) and let A ∈ A(P ).

1. A is µτ -stable if and only if Gc(A) has discrete Gc(P ) isotropy and for every
R > 0 such that

MR := {ξ ∈W 2,2(Σ, ad(P ) | || ∗ Fe−iξA − τ ||L2 ≤ R}

is nonempty, there exist constants c1, c2 > 0 such that

ΦA(eiξ) ≤ c1||ξ||L∞ + c2 for all ξ ∈MR. (2.51)

2. A is µτ -polystable if and only if ΦA has a critical point.

3. A is µτ -semistable if and only if ΦA is bounded below.

4. A is µτ -unstable if and only if ΦA is unbounded below.

Proof. We consider both implications of the stable case in the following lemmas first.
The proof will then be given on page 87 below.

Lemma 2.6.3. Assume the setting of Theorem 2.6.2. Suppose that the orbit Gc(A) ⊂
A∗(P ) contains only irreducible connections and that there exist c1, c2, R > 0 such
that MR is nonempty and (2.51) holds. Then exists ξ0 ∈MR such that

ΦA(eiξ0) ≤ ΦA(eiξ) for all ξ ∈MR (2.52)

and B := e−iξ0A satisfies FB = 0.

Proof. Suppose first that ξ0 ∈ MR satisfies (2.52). Let B := e−iξ0A and let η ∈
W 2,2(Σ, ad(P )) be a solution of the equation

∆Bη = d∗BdBη = ∗FB

which exists since B is irreducible. Then follows

d

dt

∣∣∣∣
t=0

ΦA(eiξ0eiηt) = αA(eiξ0 , eiξ0 iη) = −〈∗FB , η〉 = −||dBη||2L2

and

d

dt

∣∣∣∣
t=0
||∗Fe−iηte−iξ0A||

2 = 2
〈
∗FB , ∗

d

dt

∣∣∣∣
t=0

Fe−iηtB

〉
= 2〈∗FB , ∗dB ∗ dBη〉 = −2〈∗FB ,∆Bη〉 = −2|| ∗ FB ||2L2

Now decompose eiξ0eiηt = eiξ1u. Then the calculation shows that for sufficiently small
t we have ξ1 ∈MB and ΦA(eiξ1) ≤ ΦA(eiξ0) with equality if and only if FB = 0. Since
(2.52) yields the converse inequality, we have indeed equality and hence FB = 0.
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It remains to prove the existence of a minimizer ξ0 ∈ MR. Let {ξk} ⊂ MR be a
minimizing sequence satisfying

lim
k→∞

ΦA(eiξk) = inf
ξ∈MR

ΦA(eiξ). (2.53)

By definition of MR, the curvature FeiξkA is uniformly bounded in L2. Hence the
Uhlenbeck compactness theorem asserts that there exists uk ∈ G(P ) such that Ak :=
uke

iξkA converges weakly in W 1,2. For gk := uke
iξk the expression

∂̄Ak − ∂̄A = g−1
k ∂̄Agk

is thus uniformly bounded in W 1,2. Since ξk is uniformly bounded in L∞ by (2.51)
and (2.53), we conclude that gk and ξk are uniformly bounded in W 2,2. Hence, after
taking a subsequence, there exists ξ0 ∈ MR such that ξk converges to ξ0 weakly in
W 2,2 and strongly in W 1,p for 2 < p <∞. From this follows

lim
k→∞

〈∗Fe−itξkA,−ξk〉 = 〈∗Fe−itξ0A,−ξ0〉.

Hence limk→∞ΦA(eiξk) = ΦA(eiξ0) and ξ0 satisfies (2.52).

Lemma 2.6.4. Assume the setting of Theorem 2.6.2. Suppose that Z0(G) is discrete,
τ = 0 and w0(A, ξ) > 0 for all nonzero ξ ∈W 1,2(Σ, ad(P )). Let R > 0 be given such
that MR is nonempty. Then exist constants c1, c2 > 0 such that (2.51) is satisfied.

Proof. The proof consists of several steps.

Step 1: There exists C > 0 such that

||ξ||C0 ≤ C (||ξ||L1 + 1) for all ξ ∈MR.

We observe that

2〈∗FeiξA − ∗FA, ξ〉 = 2
∫ 1

0
〈∆eitξAξ, ξ〉 dt = ∆||ξ||2 + 2

∫ 1

0
||deitξAξ||2 dt

≥ ∆||ξ||2 ≥ 2||ξ||∆||ξ||

and hence

∆||ξ|| ≤ || ∗ FeiξA − ∗FA||. (2.54)

An argument due to Simpson ([102], Prop 2.1) shows that this implies the claim. For
this denote

f : Σ→ R, f(z) := ||ξ(z)||.

For z0 ∈ Σ choose a local coordinate which identifies z0 with the origin in C. Let
Br0(0) be a ball contained in the image of this local coordinate and let r ∈ (0, r0).
Let w, h be solutions of

∆w = || ∗ FeiξA − ∗FA||, w|∂Br(0) = 0 ∆h = 0, h|∂Br(0) = f |Br(0).



86 CHAPTER 2. GIT AND YANG–MILLS-EQUATIONS OVER SURFACES

Here we consider the Laplacian of Σ which agrees with the Laplacian on C up to a
positive factor. Hence (2.54) and the maximum principle show that f − w − h ≤ 0
and the mean value theorem yields

f(0)− w(0) ≤ h(0) = 1
2πr

∫
∂Br(0)

f.

Moreover, by definition of MR and elliptic regularity follows

|w(0)| ≤ C||w||W 2,2 ≤ C||∆w||L2 ≤ C(|| ∗ FA||L2 +R).

Hence

f(z0) ≤ C
(
r + 1

r

∫
∂Br(0)

f

)
.

Now choose r ∈ (r0/2, r0) such that r0
2
∫
∂Br(0) f ≤ ||f ||L1 holds. Then follows

f(z0) ≤ C
(
r0 + 1

r2
0
||f ||L1

)
.

Since Σ is compact, we can perform this argument within finitely many charts and
choose the final constant C to be independent of z0.

Step 2: There exist c1, c2 > 0 such that

||ξ||L1 ≤ c1ΦA(eiξ) + c2 for all ξ ∈MR.

Suppose the claim is false. Then exists Ck > 0 and ξk ∈MR such that

lim
k→∞

Ck =∞, lim
k→∞

||ξk||L1 =∞ and ||ξk||L1 ≥ CkΦA(eiξk).

It follows from Step 2 that ηk := −ξk/||ξk||L1 is uniformly bounded in L∞. Denote
`k := ||ξk||L2 . Then

1
Ck
≥ ΦA(eiξk)
||ξk||L1

=
∫ 1

0
〈∗FeitξkA, ηk〉 dt = 1

`k

∫ `k

0
〈∗FeitηkA, ηk〉 dt

The integrand is increasing by (2.31). Hence, for any fixed t > 0 follows

1
Ck
≥ `k − t

`k
〈∗Feitηk , ηk〉+ t

`k
〈FA, ηk〉. (2.55)

It follows from (2.33) that

〈∗FeitηkA, ηk〉 = 〈∗FA, ηk〉+ 1
2

∫ t

0
||eiηks(∂̄Aηk)e−iηks||2L2 ds

and, since ηk is uniformly bounded in C0, we conclude that ∂̄Aηk is uniformly bounded
in L2. Since A is irreducible and ||∂̄Aηk||2 = 1

2 ||dAηk||
2 this shows that ηk is uniformly



2.6. THE KEMPF-NESS FUNCTIONAL 87

bounded in W 1,2. Hence, after taking a subsequence, there exists η ∈ W 1,2 ∩ L∞
such that ηk → η converges weakly in W 1,2 and strongly in Lp for every 1 ≤ p <∞.
In particular ||η||L1 = 1 shows that η 6= 0 and

lim
k→∞

〈∗FeitηkA, ηk〉 = 〈∗FeitηA, η〉.

Now (2.55) implies 〈∗FeitηA, η〉 ≤ 0 and as t → ∞ we obtain w0(A, η) ≤ 0. This
contradicts our assumptions and proves Step 2.

Step 3: There exist c1, c2 > 0 such that

||ξ||L∞ ≤ c1ΦA(eiξ) + c2 for all ξ ∈MR.

This follows directly from Step 1 and Step 2.

Proof of Theorem 2.6.2. Suppose A is µτ -stable. Then Z0(G) is discrete, τ = 0
and Gc(A) has discrete Gc(P ) isotropy. We claim that w0(A, ξ) > 0 for all ξ ∈
W 1,2(Σ, ad(P )). By Proposition 2.5.9 this condition is equivalent to the stability of
the induced holomorphic structure JA on P c := P×GGc. In particular, this condition
is invariant under the action of Gc(P ) and we may assume that FA = 0. Then (2.32)
shows

w0(A, ξ) =
∫ ∞

0
||deitξAξ||2L2 dt > 0

since A is irreducible. Thus Lemma 2.6.4 applies and shows that the estimate (2.51)
is satisfied. The converse direction follows from Lemma 2.6.3.

The characterization of the µτ -polystable case follows directly from (2.49).
In the following let A(t) denote the solution of the Yang-Mills flow (2.22) starting

at A and let A∞ := limt→∞A(t). Suppose A is µτ -unstable. Theorem 2.4.14 and
(2.19) show that

||FgA − τ ||L2 ≥ ||FA∞ − τ ||L2 = c > 0

for all g ∈ Gc(P ). Now define g(t) by (2.24). Then A(t) = g(t)−1(A) and

d

dt
ΦA(g(t)) = αA(g(t), ġ(t)) = −〈∗FA(t) − τ, ∗FA(t)〉

= −|| ∗ FA(t) − τ ||2L2 ≤ −c

where the penultimate step follows from (2.12). This shows that ΦA is unbounded
below.

Suppose conversely that A is µτ -semistable. It follows from Theorem 2.4.14 and
(2.19) that A∞ is a global minimum for the Yang-Mills functional on A(P ) and
∗FA∞ = τ . It follows from the  Lojasiewicz inequality (Lemma 2.4.5) that there
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exists γ ∈ [ 1
2 , 1) and C, T > 0 such that

|| ∗ FA(t) − τ ||2L2 = 2|YM(A(t))− YM(A∞)|

≤ C||d∗A(t)FA(t)||
1
γ

L2

≤ C||d∗A(t)FA(t)||2L2(YM(A(t))− YM(A∞))1−2γ

= d

dt
C (YM(A(t))− YM(A∞))2−2γ

for all t > T . Since the right hand side is integrable, the solution g(t) of (2.24)
satisfies

lim
t→∞

ΦA(g(t)) = −
∫ ∞

0
|| ∗ FA(t) − τ ||2L2 dt =: a > −∞.

We claim that a is a global minimum for ΦA. For this let g̃0 ∈ Gc(P ) and let g̃(t) be
the solution of (2.26) starting at g̃0. This is a negative gradient flow line of ΦA and
satisfies

d

dt
ΦA(g̃(t)) = −αA(g̃(t), ˙̃g(t)) = −|| ∗ Fg̃(t)−1A − τ ||2L2 ≤ 0.

Define η(t) ∈W 2,2(Σ, ad(P )) and u(t) ∈ G(P ) by the equation

g(t) exp(iη(t))u(t) = g̃(t)

and
βt : [0, 1]→ Gc(P ), βt(s) = g(t)eisη(t).

Then (ΦA ◦ βt) satisfies

d

ds

∣∣∣∣
s=0

(ΦA ◦ βt)(s) = αA(g(t), ∂sβt(s)) = −〈∗Fg(t)−1A − τ, η〉

≥ −|| ∗ Fg(t)−1A − τ ||L2 · ||η(t)||L2

and

d2

ds2 (ΦA ◦ βt)(s) = − d

ds
〈∗Fe−iη(t)sg(t)−1A − τ, η(t)〉

= 〈d∗As,tdAs,tη(t), η(t)〉 = ||dAs,tη(t)||2L2 ≥ 0

where we abbreviated As,t := e−iη(t)sg(t)−1A. In particular, ΦA ◦ βt is convex and
since η(t) is uniformly bounded in L∞ by Proposition 2.4.12 there exists a constant
C > 0 such that

ΦA(g̃(t)) ≥ ΦA(g(t))− C||Fg(t)−1A − τ ||L2 .

Since ΦA(g̃0) ≥ ΦA(g̃(t)) for all t and the right hand side converges to a as t → ∞
we conclude ΦA(g̃0) ≥ a. This establishes the claim and completes the proof of the
theorem.



2.7. THE DOMINANT WEIGHT THEOREM 89

2.6.2 The Narasimhan-Seshadri-Ramanathan theorem
The Narasimhan-Seshadri-Ramanathan theorem relates the notion of stable objects
in Definition 2.3.2 and Definition 2.3.7. This was first proven by Narasimhan-Seshadri
[91] in the case G = U(n) and later extended by Ramanathan [95] to general compact
connected Lie groups. Both of these proofs are entirely of algebraic geometric nature.

In the case G = U(n) Donaldson [30] gave an analytic proof of this result. His
argument uses the moment weight inequality and an induction argument which is
based on the Harder-Narasimhan filtration. We present a different proof which is due
to Bradlow [12] and Mundet [89]. The main step in their proof consists of establishing
the stable case in Theorem 2.6.2.

Theorem 2.6.5 (Narasimhan-Seshadri-Ramanathan). Let G be a compact con-
nected Lie group and P → Σ a principal G bundle with central type τ ∈ Z(g) defined
by (2.12). Let A ∈ A(P ) and consider the complexified bundle P c := P ×G Gc with
the holomorphic structure induced by A. Then (P c, JA) is stable if and only if there
exists a complex gauge transformation g ∈ Gc(P ) such that ∗FgA = τ and the kernel
of

LA : W 2,2(Σ, ad(P c))→W 1,2(Σ, T ∗Σ⊗ ad(P ))

LA(ξ + iη) = −dAξ + ∗dAη

contains only constant central sections.

Proof. We may assume by Lemma 2.3.5 and Lemma 2.3.9 that Z0(G) is discrete and
τ = 0.

Suppose there exists g ∈ Gc(P ) such that ∗FgA = 0 and gA is irreducible. Then
(2.32) shows

w0(gA, ξ) =
∫ ∞

0
||deitξgAξ||2L2 dt > 0

for all 0 6= ξ ∈ W 1,2(Σ, ad(P )) and by Proposition 2.5.9 (P c, JgA) is stable. Since
the notion of stability is Gc(P ) invariant, (P c, JA) is stable.

Assume conversely that (P c, JA) is stable. For every g ∈ Gc(P ) then (P c, JgA)
is stable as well and Proposition 2.5.9 implies w0(gA, ξ) > 0 for every nonzero ξ ∈
W 1,2(Σ, ad(P )). In particular, gA is irreducible and Lemma 2.6.4 is applicable and
shows that A is µ0-stable.

2.7 The dominant weight theorem
The dominant weight theorem strengthens the moment weight inequality (Theorem
2.5.12). It shows that there exists (up to scaling) a unique section ξ ∈ Ω0(Σ, ad(P ))
which yields equality in the moment weight inequality, whenever the right hand side
is positive. In particular, it relates the notion of unstable objects in Definition 2.3.2
and Definition 2.3.7. A key ingredient in its proof is the Harder-Narasimhan filtration
associated to a holomorphic holomorphic vector bundle. We review this first before
we proceed to the proof of the dominant weight theorem.
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Theorem 2.7.1 (The dominant weight theorem). Let G be a compact connected
Lie group, let P → Σ be a principal G bundle of central type τ ∈ Z(g) defined by
(2.12) and let A ∈ A(P ) be a smooth µτ -unstable connection.

1. There exists an element ξ̂ ∈ Ω0(Σ, ad(P )) such that

sup
0 6=ξ∈Ω0(Σ,ad(P ))

−wτ (A, ξ)
||ξ||L2

= −wτ (A, ξ̂)
||ξ̂||L2

= inf
g∈Gc(P )

|| ∗ FgA − τ ||L2 . (2.56)

2. The normalized section ξ̂/||ξ̂||L2 is uniquely determined. Moreover, it is rational
in the sense that it generates a closed C∗ subgroup of Gc(P ).

3. If A∞ is the limit of the Yang-Mills flow (2.22) starting at A, then there exists
u ∈ G(P ) such that ξ̂ = u(∗FA∞ − τ)u−1 satisfies (2.56).

Proof. This result is essentially contained in the work of Atiyah and Bott. They
determine in ([4], Prop. 8.13 and Prop. 10.13) the infimum of the Yang-Mills func-
tional on the complexified orbit Gc(A) in terms of the Harder-Narasimhan filtration
of ad(P c).

Bruasse and Teleman [15, 14] show in a more general gauge theoretical setting
that the supremum over the normalized weights is attained in a unique direction
whenever it is positive. This corresponds to the case where (P, JA) is unstable and
they identify again the dominant weight with the Harder-Narasimhan filtration.

We follow these ideas in our proof below, but simplify the arguments considerably
by using the moment weight inequality and the analytic properties of the Yang-Mills
flow. The proof will be given on page 94.

2.7.1 The Harder-Narasimhan filtration
Let F and G be holomorphic vector bundles over a Riemann surface Σ and let α :
F → G be a holomorphic bundle map. The kernel and cokernel of α are in general
not well-defined as holomorphic vector bundles and one may think of them as vector
bundles with singularities. These considerations lead naturally to the larger category
of coherent analytic sheaves on Σ which is closed under taking kernels and cokernels.
The next lemma, however, allows us to get away without considering sheaves.

Lemma 2.7.2. Let F and G be holomorphic vector bundles over a Riemann surface
Σ and let α : F → G be a nonzero holomorphic bundle map. Then there exists a
commutative diagram of holomorphic vector bundles and holomorphic bundle maps

0 −−−−→ F ′ −−−−→ F −−−−→ F ′′ −−−−→ 0yα yβ
0 ←−−−− G′′ ←−−−− G ←−−−− G′ ←−−−− 0

with exact rows and rk(F ′′) = rk(G′), det(β) 6= 0 and c1(F ′′) ≤ c1(G′).

Proof. This lemma is most easily understood in the language of analytic sheaves.
Denote by O the sheaf of germs of holomorphic functions on Σ. There exists a one
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to one correspondence between holomorphic vector bundles and locally free O-sheafs
on Σ, which associates to a vector bundle its sheaf of holomorphic sections. The
homomorphism α induces a homomorphism between the associated sheaves and the
sheaf kernel and sheaf image are clearly torsion free subsheaves. Since the stalks of
O are isomorphic to the principal ideal domain C[[z]], these sheaves are locally free
and correspond to the the vector bundles F ′ and G′.

Recall that we denote for a complex vector bundle E → Σ by

µ(E) := c1(E)
rk(E)

its slope or normalized Chern-class.

Corollary 2.7.3. Let F and G be holomorphic vector bundles over Σ.

1. Suppose F is semistable, G is stable and µ(F ) = µ(G). Then any nonzero
holomorphic bundle map α : F → G is surjective.

2. Suppose F and G are stable and µ(F ) = µ(G). Then any nonzero holomorphic
bundle map α : F → G is an isomorphism.

3. Suppose F and G are semistable and µ(F ) > µ(G). Then every holomorphic
bundle map α : F → G vanishes.

Proof. We prove the first part. Suppose α : F → G is neither zero nor surjective.
Using the notation of Lemma 2.7.2 we see that G′ is a proper subbundle and thus

µ(G) > µ(G′) ≥ µ(F ′′) ≥ µ(F )

contradicting the assumption µ(G) = µ(F ). In other two parts follow from a similar
argument.

Lemma 2.7.4. Let E be a holomorphic semistable vector bundle. Then there exists
a filtration

0 < E1 < E2 < · · · < Er = E

such that each quotient Ej/Ej−1 is stable and µ(Ej/Ej−1) = µ(E).

Proof. Let F ⊂ E be a stable subbundle with µ(F ) = µ(E). Since E ∼= F ⊕ (E/F )
as C∞-bundles, it follows µ(E/F ) = µ(E). Moreover, any holomorphic subbundle
G ⊂ E/F with µ(G) > µ(E) would lift under the projection map E → E/F to a holo-
morphic subbundle G̃ ⊂ E with µ(G̃) > µ(E) and this contradicts the semistability
of E. Hence E/F is semistable and the lemma follows by induction.

The Harder-Narasimhan filtration generalizes Lemma 2.7.4 to general holomor-
phic vector bundles.
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Proposition 2.7.5 (Harder-Narasimhan filtration). Let E be an holomorphic
vector bundle. Then there exists a unique holomorphic filtration

0 = E0 < E1 < · · · < Er = E

such that all quotients Ei/Ei−1 are semistable and the slopes

µj := c1(Ej/Ej−1)
rk(Ej/Ej−1)

satisfy µ1 > µ2 > · · · > µr.

Proof. The degree of any holomorphic subbundles of E is uniformly bounded by
Lemma 2.7.6 below. Let E1 ⊂ E be a semistable subbundle for which µ(E1) =: µ1
is maximal and such that E1 has maximal rank among all such subbundles. We
claim that every proper holomorphic subbundle G′ ⊂ E/E1 satisfies µ(G′) < µ1.
Otherwise, the preimage of G′ under the projection E → E/E1 would be a subbundle
G̃ ⊂ E with µ(G̃) ≥ µ1 and of strictly greater rank then E1. This proves the claim
and the existence of the Harder-Narasimhan filtration follows by induction.

Let 0 = Ẽ0 < Ẽ1 < · · · < Ẽ` = E be another filtration of E such that all quotients
Ẽj/Ẽj−1 are semistable and the slopes µ̃j := µ(Ẽj/Ẽj−1) are strictly decreasing. In
particular, Ẽ1 is semistable and the construction above shows

µ(E1) ≥ µ(Ẽ1) = µ̃1 > µ̃2 > · · · > µ̃`.

The last part of Corollary 2.7.3 shows that the projection E1 → E/Ẽ`−1 must be
zero, since µ(E1) > µ̃` and hence E1 ⊂ Ẽ`−1. Repeating the argument, it follows by
induction that E1 ⊂ Ẽj for all j ≥ 1. If µ(E1) > µ(Ẽ1), we could go one step further
and obtain the contradiction E1 ⊂ Ẽ0 = 0. This shows µ1 = µ̃1. Finally, consider
the projection

α : E1 → E → E/Ẽ1.

If it is nonzero, we can apply Lemma 2.7.2 with F = E1 and G = E/Ẽ1 to obtain
the contradiction

µ1 = µ(E1) ≤ µ(F ′′) ≤ µ(G′) ≤ µ̃2 < µ̃1 = µ1.

This shows E1 ⊂ Ẽ1 and by maximality of rk(E1) equality must hold. The uniqueness
of the Harder-Narasimhan filtration follows now by induction.

Lemma 2.7.6. Let (E, h) be a hermitian holomorphic vector bundle over Σ and
denote by A ∈ A(E) the associated unitary connection from Lemma 2.2.7. For a
holomorphic subbundle F ⊂ E the following holds:

1. Let E = F ⊕ G be an orthogonal decomposition and identify G with E/F .
Denote by AF and AG the induced connections on F and G. Then A has the
shape

A =
(
AF η
−η∗ AG

)
with η ∈ Ω0,1(Σ,End(G,F )). Moreover, the curvature has the shape

FA =
(
FAF − η ∧ η∗ dAη
−dAη∗ FAG − η∗ ∧ η

)
.
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2. There exists a constant C > 0, which does not depend on F , such that

c1(F ) ≤ C(1− ||η||2L2).

Proof. We leave the first part as an exercise to the reader, see e.g. [53] Chapter 0.5.
For the second part, we calculate

c1(F ) = i
2π

∫
Σ

tr(FAF ) = i
2π

∫
Σ

tr (FA|F ) + tr (η ∧ η∗) .

In local coordinates write η = η̃dz̄ and hence η ∧ η∗ = 2iη̃η̃∗dx ∧ dy. This yields
precisely the L2-norm of η. Since FA is uniformly bounded in L∞, the estimate
follows.

We show next that the Harder-Narasimhan filtration is maximal among all holo-
morphic filtrations in a certain sense. For this we need to introduce some notation.
Let

E : 0 = E0 < E1 < · · · < Er = E

be a holomorphic filtration of E. Denote nj := rk(Ej/Ej−1), kj := c1(Ej/Ej−1) and
define the characteristic vector of the filtration E to be

~µ(E) =
(
k1

n1
, . . . ,

k1

n1
, . . . ,

kr
nr
, . . . ,

kr
nr

)
∈ Rn (2.57)

where we repeat each entry kj/nj exactly nj-times. Moreover define

`E : {0, . . . , n} → R, `E(m) =
m∑
j=1

[~µ(E)]j

where [~µ(E)]j denotes the j-th entry of the vector ~µ(E). The graph of `E interpolates
linearly between the points (0, 0), (n1, k1), (n1 +n2, k1 + k2), . . ., (n, k). We consider
the following ordering on the space of holomorphic filtrations:

E ≥ F if and only if `E ≥ `F .

We call a filtration E concave if the function `E is concave, or equivalently, if the
entries of ~µ(E) are decreasing.

Proposition 2.7.7. Let E be a holomorphic vector bundle over Σ. The Harder-
Narasimhan filtration of E is the unqiue maximal concave filtration on E.

Proof. Let
EHN : 0 < E1 < E2 < · · · < Er = E

be the Harder-Narasimhan filtration of E and let F < E be a holomorphic subbundle.
It suffices to prove that the point pF := (rk(F ), c1(F )) lies on or below the graph of
`E . We prove this by induction on r.

Suppose r = 1. Then E is semistable and µ(E) ≥ µ(F ). In particular, `E is a
straight line of slope µ(E) and pF clearly lies below that line.
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Suppose now r > 1. The Harder-Narasimhan filtration of E/E1 is given by

E ′HN : 0 < E2/E1 < E3/E1 < · · · < Er/E1 = E/E1

and the induction hypothesis applies to E ′HN . Consider the commutative diagram
from Lemma 2.7.2

0 −−−−→ F ′ −−−−→ F −−−−→ F ′′ −−−−→ 0yα yβ
0 ←−−−− G′′ ←−−−− E/E1 ←−−−− G′ ←−−−− 0

with α : F → E → E/E1. By the induction hypothesis, the point of (rk(G′), c1(G′))
lies below `E′ . Since rk(F ′′) = rk(G′) and c1(F ′′) ≤ c1(G′) the same holds with G′

replaced by F ′′. This shows

c1(E1) + c1(F ′′) ≤ `E(rk(E1) + rk(F ′′)). (2.58)

Since F ′ gets maped to zero under α, we have F ′ ⊂ E1 and µ(F ′) ≤ µ(E1) by
semistability of E1. This shows c1(F ′) ≤ `E(rk(F ′)) and with (2.58) follows

c1(F ) = c1(F ′) + c1(F ′′) ≤ `E(rk(E1) + rk(F ′′)) + `E(rk(F ′))− `E(rk(E1)).

Since `E is concave and rk(F ′) ≤ rk(E1) we have

`E(rk(E1) + rk(F ′′))− `E(rk(E1)) ≤ `E(rk(F ′) + rk(F ′′))− `E(rk(F ′))

and thus
c1(F ) ≤ `E(rk(F ′) + rk(F ′′)) = `E(rk(F )).

This completes the proof.

Corollary 2.7.8. Let E be a holomorphic vector bundle over Σ. Let E be a concave
filtration of E and EHN the Harder-Narasimhan filtration of E. Then follows

||~µ(E)||2 ≤ ||~µ(EHN )||2

where || · ||2 denotes the standard euclidean norm on Rn. Moreover, equality holds if
and only if E = EHN .

Proof. An easy calculation shows that for two concave filtrations with E1 ≤ E2 the
estimate ||~µ(E1)||2 ≤ ||~µ(E2)||2 is satisfied. Moreover, equality holds if and only if
E1 = E2.

2.7.2 Proof of the dominant weight theorem
We proceed now to the proof of Theorem 2.7.1. We consider first the case G = U(n)
and deduce the general case afterwards by choosing a faithful representation G ↪→
U(n).
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µτ -unstable orbits in the unitary case.

Assume G = U(n) and denote by E := P ×G Cn the associated hermitian vector
bundle. Note that the constant central type τ of P is related to the slope of E by
the formula

τ = −2πiµ(E) · 1. (2.59)

If (E, ∂̄A) is unstable, then Proposition 2.5.9 implies that there exists a negative
weight wτ (A, ξ) < 0 and the moment weight inequality (Theorem 2.5.12) shows that
A is µτ -unstable. The following lemma proves the converse direction.

Lemma 2.7.9. Let A ∈ A(E) be a unitary connection and suppose (E, ∂̄A) is a
semistable holomorphic vector bundle. Then the limit A∞ of the Yang-Mills flow
A(t) starting at A satisfies

∗FA∞ = −2πiµ(E) · 1.

Proof. We show first that the W 1,2-closure Gc(A) contains a connection Ā with FĀ =
−2πiµ(E)·1. For this, consider the refined Harder-Narasimhan filtration from Lemma
2.7.4

0 < E1 < E2 < · · · < Er = E

with stable quotients Ej/Ej−1 all having the same slope as E. Choose an orthogonal
splitting E = D1 ⊕ · · · ⊕ Dr such that Ej = D1 ⊕ · · · ⊕ Dj . With respect to this
splitting ∂̄A has the shape

∂̄A =


∂̄A1 A12 . . . A1r
0 ∂̄A2 . . . A2r
...

...
. . .

...
0 0 . . . ∂̄Ar

 .

Define gt := diag(t−1, t−2, . . . , t−r). Then

∂̄gt(A) =


∂̄A1 tA12 . . . tr−1A1r
0 ∂̄A2 . . . tr−2A2r
...

...
. . .

...
0 0 . . . ∂̄Ar

→


∂̄A1 0 . . . 0
0 ∂̄A2 . . . 0
...

...
. . .

...
0 0 . . . ∂̄Ar


as t→ 0. Since Ej/Ej−1 ∼= (Dj , ∂̄Aj ) are stable holomorphic vector bundles, Theorem
2.6.5 shows that there exist complex gauge transformations gj ∈ Gc(Dj) such that
Āj = gj(Aj) satisfies ∗FĀj = −2πiµ(Dj). Since µ(Dj) = µ(E), we conclude that the
induced connection Ā = Ā1 ⊕ · · · ⊕ Ār has curvature FĀ = −2πiµ(E) · 1.

It follows from (2.19) that Ā minimizes the Yang-Mills functional over AU(n)(E).
The lemma follows thus from Theorem 2.4.14 and Theorem 2.4.15.
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Proof of Theorem 2.7.1 for G = U(n).

Let ξ be a section of skew-hermitian endomorphism in u(E) ⊂ End(E) satisfying
||ξ|| = 1 and

−wτ (A, ξ) = sup
0 6=η∈Ω0(Σ,u(E))

−wτ (A, η)
||η||

. (2.60)

Proposition 2.5.2 shows that ξ determines a holomorphic filtration and orthogonal
splitting

E : E1 < E2 < · · · < E, Ej = D1 ⊕ · · · ⊕Dj

of (E, ∂̄A). With respect to this orthogonal splitting ξ has the shape

iξ = diag(λ1, λ2, . . . , λr)

with λ1 < λ2 < · · · < λr and the weight is given by

wτ (A, λ) = 2π
r∑
j=1

λj (c1(Dj)− rk(Dj)µ(E)) .

By maximality of the weight −wτ (A, ξ) we conclude that λ = (λ1, . . . , λr) is a global
minimum of the function

f(x1, . . . , xr) =
r∑
j=1

xj (c1(Dj)− rk(Dj)µ(E))

on the ellipsoid {
∑r
j=1 x

2
j rk(Dj) = 1} under the open condition

x1 < x2 < · · · < xr.

Since (E, ∂̄A) is unstable, Proposition 2.5.9 implies that this minimum is negative
and f does not vanish identically. Thus ∇f vanishes nowhere and λ must lie on the
ellipsoid. It satisfies there the Lagrange condition

(c1(Dj)− rk(Dj))µ(E) = cλjrk(Dj)

for j = 1, . . . , r and some constant c 6= 0. Since f(λ) < 0 we must have c < 0. Since
the λj are increasing this yields

µ(D1) > µ(D2) > · · · > µ(Dr)

and E is a concave filtration of E. Solving the Lagrange problem we get

λj = µ(E)− µ(Dj)√∑r
j=1 rk(Dj)(µ(Dj)− µ(E))2

= µ(E)− µ(Dj)√
||~µ(E)||22 − rk(E)µ(E)2

and

−wτ (A, ξ) = 2π
√
||~µ(E)||22 − rk(E)µ(E)2. (2.61)
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Now Corollary 2.7.8 shows that E = EHN must agree with the Harder-Narasimhan
filtration of E and ξ is uniquely determined.

Conversely, we can use the Harder-Narasimhan filtration to define ξ and the ar-
gument from above shows that it satisfies (2.60). It remains to show it also yields
equality in the moment-weight inequality. It follows from the proof of Proposition
2.5.2 that the limit

A+ := lim
t→∞

eitξA

exists and splits as A+ = A1 ⊕ · · · ⊕ Ar with Aj ∈ A(Dj) ∼= A(Ej/Ej−1). The
Yang-Mills flow A+(t) starting at A+ is the product of the Yang-Mills flow on each
factor and clearly remains in the closure Gc(A). It follows from Lemma 2.7.9 that
the limit A∞ := limt→∞A+(t) of this flow satisfies

FA∞ = −2πi


µ(D1)

µ(D2)
. . .

µ(Dr)

 .

Now (2.59) and (2.61) yield

inf
g∈Gc

||FgA − τ || ≤ ||FA∞ − τ || = 2π

√√√√ r∑
j=1

rk(Dj)(µ(E)− µ(Dj))2 = −w(A, ξ).

The converse inequality follows from the moment-weight inequality (Theorem 2.5.12)
and this completes the proof in the unitary case.

Proof of Theorem 2.7.1 for general compact connected Lie groups G.

LetG be a compact connected Lie group. We show first that one restrict the argument
to the case where Z0(G) is discrete. Recall that the Lie algebra of G decomposes
as g = Z(g) ⊕ [g, g]. The center yields a trivial Z(g) subbundle V ⊂ ad(P ) and its
orthogonal complement has fiber [g, g] and is canonically isomorphic to ad(P/Z0(G)).
This yields the orthogonal decomposition

ad(P ) ∼= V ⊕ ad(P/Z0(G)). (2.62)

Let A ∈ A(P ) and denote by Ā ∈ A(P/Z0(G)) the induced connection. Decompose
ξ ∈ Ω0(Σ, ad(P )) as ξ = ξz + ξss with respect to the decomposition (2.62). Then
(2.12) and Lemma 2.5.10 yields

wτ (A, ξ) = wτ (A, ξss) = w0(Ā, ξss).

Decompose similarly FgA = F z + F ss and note that F ss = FgĀ. This yields

|| ∗ FgA − τ ||2 = || ∗ F ss||2 + || ∗ F z − τ ||2 ≥ || ∗ FgĀ||2.

As in Lemma 2.3.9 one shows that g can be modified to a gauge transformation g̃
such that gĀ = g̃Ā and ∗F z = τ . Hence

inf
g∈Gc(P )

|| ∗ FgA − τ || = inf
g∈Gc(P/Z0(G))

|| ∗ FgĀ||.
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This completes the reduction argument.
Now assume that Z0(G) is discrete and τ = 0. Choose a faithful representation

G ↪→ U(n) and identify G with its image in U(n). It follows from Lemma 2.5.8
and (2.59) that the associated vector bundle E = P ×G Cn satisfies µ(E) = 0. For
A ∈ A(P ) Theorem 2.4.14 yields

inf
g∈Gc(P )

|| ∗ FgA|| = || ∗ FA∞ || = inf
g∈GL(n)

|| ∗ FgA||

where we consider A as G-connection for the left equality and as U(n)-connection for
the right equality. It follows from the unitary case that there exists (up to scaling) a
unique section ξ ∈ Ω0(Σ, u(E)) satisfying

−w0(A, ξ)
||ξ||

= inf
g∈Gc

||FgA||.

Let ξ̃ be the orthogonal projection of ξ onto g(E) ⊂ u(E). Then Lemma 2.5.8 shows
w0(A, ξ) = w0(A, ξ̃) and hence

inf
g∈Gc

||FgA|| = −
w0(A, ξ)
||ξ||

≤ −w0(A, ξ̃)
||ξ̃||

with equality if and only if ξ = ξ̃. The moment weight inequality (Theorem 2.5.12)
yields the converse inequality and this completes the proof.



Chapter 3

Convergence of the
Yang–Mills–Higgs flow and
applications

The content of this chapter has been published in [115]. The symplectic vortex equa-
tions [25, 26, 89] are an equivariant version of the J-holomorphic curves equation in
symplectic geometry. These equations also generalize the Yang–Mills equations [4],
the notion of Bradlow pairs [12] and are closely related to Hitchin’s selfduality equa-
tions [58] and Higgs-bundles. The symplectic vortex equations admit a variational
description as global minimum of the Yang–Mills–Higgs functional. We study its neg-
ative gradient flow on holomorphic pairs (A, u) where A is a connection on a principal
G-bundle P over a closed Riemann surface Σ and u : P → X is an equivariant map
into a Kähler Hamiltonian G-manifold. The connection A induces a holomorphic
structure on the Kähler fibration P ×G X and we require that u descends to a holo-
morphic section of this fibration. We prove a  Lojasiewicz type gradient inequality
and show uniform convergence of the negative gradient flow in the W 1,2 × W 2,2-
topology when X is equivariantly convex at infinity with proper moment map, X is
holomorphically aspherical and its Kähler metric is analytic.

As applications we establish several results inspired by finite dimensional GIT:
First, we prove a certain uniqueness property for the critical points of the Yang–Mills–
Higgs functional which is the analogue of the Ness uniqueness theorem. Second, we
extend Mundet’s Kobayashi–Hitchin correspondence to the polystable and semistable
case. The arguments for the polystable case lead to a new proof in the stable case.
Third, in proving the semistable correspondence, we establish the moment-weight
inequality for the vortex equation and prove the analogue of the Kempf existence
and uniqueness theorem. Our proofs are inspired by the work of Calabi, Chen,
Donaldson, Sun [17, 23, 18, 19, 39] on extremal Kähler metrics; see [51] for a finite
dimensional discussion.
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3.1 Introduction
Throughout this chapter we assume the following. G is a compact (real) Lie group
with Lie algebra g together with a fixed choice of an invariant inner product on g, Σ
is a closed Riemann surface with fixed volume form dvo`Σ and induced Riemannian
metric, P → Σ is a principal G bundle and (X, J, ω) is a Kähler manifold equipped
with a Hamiltonian G action induced by an equivariant moment map µ : X → g.

Geometric invariant theory for the vortex equation
Atiyah–Bott [4] observed that the curvature FA ∈ Ω2(Σ, ad(P )) defines a moment
map for the action of the gauge group G(P ) on the space of connections A(P ) (see
Lemma 2.2.2). The vortex equations are obtained as an extension of this picture.
Consider the associated Kähler fibration

P (X) := P ×G X := (P ×X)/G.

and denote by S(P,X) its space of sections. The symplectic vortex equations on
pairs (A, u) ∈ A(P )× S(P,X) are given by

∂̄Au = 0, ∗FA + µ(u) = 0. (3.1)

The connection A ∈ A(P ) induces a holomorphic structure on the total space of the
Kähler fibration P (X) and the equation ∂̄Au = 0 requires u to be a holomorphic
section. The subspace

H(P,X) := {(A, u) ∈ A(P )× S(P,X) | ∂̄Au = 0}

is formally a Kähler submanifold of A(P )× S(P,X). It is well known that

Φ : A(P )× S(P,X)→ Ω0(Σ, ad(P )), Φ(A, u) := ∗FA + µ(u) (3.2)

provides a moment map for the G(P )-action on H(P,X) (see Lemma 3.2.1) and
solutions of (3.1) give rise to the symplectic moduli space

Msymp(P,X) := {(A, u) ∈ H(P,X) | ∗ FA + µ(u) = 0} /G(P ).

This moduli space admits an alternative description as complex GIT quotient of
H(P,X). For this let Gc be the complexification of G, let P c := P ×G Gc be the
complexification of P and define the complexified gauge group as Gc(P ) := G(P c).
There exists a one to one correspondence between smooth connections on P and
holomorphic structures on P c (see [104] or Lemma 2.2.5). This yields a natural
action of Gc(P ) on A(P ) which extends the gauge action. Assume that the G-action
on (X, J, ω) extends to a holomorphic Gc-action on (X, J) such that Gc(P ) acts
naturally on S(P,X).
Definition 3.1.1. Let (A, u) ∈ H(P,X) and denote by Gc(A, u) the W 1,2 ×W 2,2-
closure of its complexified orbit1. Denote by Φ(A, u) := ∗FA +µ(u) the moment map
(3.2).

1 Here it suffices to consider the closure within the space H(P,X) of smooth holomorphic pairs.
In the main part of the paper we will consider pairs (A, u) of Sobolev class W 1,2 ×W 2,2 and gauge
transformations of Sobolev class W 2,2. This does not affect the overall picture since (a) every
complex orbit contains a dense set of smooth representatives and (b) every W 1,2×W 2,2 solution to
the vortex equation is gauge equivalent to a smooth solution. See Section 3.2.7 and Lemma 3.2.10.
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1. (A, u) is called stable, if Φ−1(0) ∩ Gc(A, u) 6= ∅ and the isotropy subgroup
G(A,u) := {k ∈ G(P ) | k(A, u) = (A, u)} is discrete.

2. (A, u) is called polystable, if Φ−1(0) ∩ Gc(A, u) 6= ∅.

3. (A, u) is called semistable, if Φ−1(0) ∩ Gc(A, u) 6= ∅ .

4. (A, u) is called unstable, if Φ−1(0) ∩ Gc(A, u) = ∅.

Denote by Hs ⊂ Hps ⊂ Hss and Hus the corresponding Gc(P )-invariant subspaces.

The GIT quotient of H(P,X) by Gc(P ) is defined as the quotient space

MGIT (P,X) := Hss(P,X)//Gc(P ) := (Hss(P,X)/Gc(P ))/ ∼

under the orbit closure relation Gc(A, u) ∼ Gc(B, v) if and only if Gc(A, u)∩Gc(B, v)∩
Hss(P,X) 6= ∅. It follows from our main results that each equivalence class in this
quotient contains a unique G(P )-orbit of solutions to the symplectic vortex equations
and MGIT (P,X) ∼=Msymp(P,X) (see Corollary 3.1.7).

The main theorem
The moment map squared functional plays a crucial role in the differential geometric
version of GIT. It is defined by

F : H(P,X)→ R, F(A, u) := 1
2

∫
Σ
|| ∗ FA + µ(u)||2 dvo`Σ (3.3)

and closely related to the Yang–Mills–Higgs functional

YMH(A, u) := 1
2

∫
Σ
||FA||2 + ||dAu||2 + ||µ(u)||2 dvo`Σ (3.4)

by the energy identity in Proposition 3.2.2. In particular, for (A, u) ∈ H(P,X) it
holds ∇YMH(A, u) = ∇F(A, u), albeit the gradients look quite different at first
glance. The negative gradient flow on H(P,X) has the following form

A(0) = A0, u(0) = u0, ∂̄A(u) = 0
∂tA = ∗dA(∗FA + µ(u)), ∂tu = −JLu(∗FA + µ(u))

(3.5)

Our main result says that solutions exist for all time and converge under the following
hypothesis:

(A) The Kähler metric on X and the moment map µ : X → g are both analytic.

(B) X is holomorphically aspherical.

(C) µ is proper and X is equivariantly convex at infinity, i.e. there exists a proper
G-invariant function f : X → [0,∞) and c0 > 0 such that

f(x) ≥ c0 =⇒ 〈∇v∇f(x), v〉+ 〈∇Jv∇f(x), Jv〉 ≥ 0
df(x)JLxµ(x) ≥ 0 (3.6)

for every x ∈ X and v ∈ TxX.
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Theorem A (Convergence). Assume (C) and let (A0, u0) ∈ H(P,X) be given.
Then there exists a unique solution

(A, u) : [0,∞)→ H(P,X)

of (3.5) which exists for all times t ≥ 0. If in addition (A), (B) are satisfied,
then there exists a critical point (A∞, u∞) ∈ A1,2(P ) × S2,2(P,X) of Sobolev class
W 1,2 ×W 2,2 and T,C, ε > 0 such that for all t > T the pointwise distance between
u(t) and u∞ is smaller then the injectivity radius of X along u∞(P ) and

||A(t)−A∞||W 1,2 + || exp−1
u∞ u(t)||W 2,2 ≤ Ct−ε.

Proof. Long time existence of the flow is established in Theorem 3.4.3 together with
certain continuity and regularity assertions on the flow. The convergence part is
proved in Theorem 3.4.8.

Remark 3.1.2 (Regularity of the Limit.). Starting at a smooth initial condition
(A0, u0) ∈ H(P,X), the solution (A(t), u(t)) of (3.5) remains smooth for all times
t > 0. However, it is an open question if the limit (A∞, u∞) is smooth.

Lin [77] and Venugopalan [119] discussed the flow (3.5) independently and they
proved under certain hypotheses that solutions exist for all times. Lin [77] considered
in fact a generalization of (3.5), where Σ is replaced by a compact Kähler manifold,
and showed that smooth solutions exist for all times when X is compact. His proof
follows ideas of Donaldson [31] and he translates (3.5) into a heat flow on the space
of complex gauge connections. Venugopalan [119] extended the arguments given by
R̊ade [97] for the Yang–Mills flow and proved short time existence together with
an uniform lower bound of the existence interval. For this argument she needed to
assume that the flow remains in a compact region of X. We verify in Lemma 3.2.5
that this property follows from (C) and the maximum principle.

The main ingredient in our proof of the convergence of solutions to (3.5) is a
 Lojasiewicz gradient inequality for the Yang–Mills–Higgs functional (Theorem 3.4.4).
This approach was introduced by Simon [101] and in its implementation we follow
the arguments given by R̊ade [97] for the Yang–Mills flow.

Remark 3.1.3 (On assumption (A)). The proof depends on a suitable version
of the  Lojasiewicz gradient inequality and requires an analytic setup. In the finite
dimensional case, it follows from the Marle and Guillemin-Sternberg normal form
that the moment map squared functional is locally analytic (see Lerman [76]). If an
analogous result is valid in our infinite dimensional setting, one might hope to remove
this assumption.

Remark 3.1.4 (On assumption (B)).

1. Holomorphically aspherical means that every holomorphic map CP 1 → X is
constant.

2. This assumption prevents bubbling of holomorphic spheres within the fiber
and is needed to establish sequential compactness along the flow lines (see
Proposition 3.4.9).
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3. X is necessarily noncompact under this assumption. Suppose otherwise that
X is compact and there exists ξ ∈ g\{0} and x0 ∈ X such that exp(ξ) = 1 and
the infinitesimal action Lx0ξ 6= 0 is nontrivial. Let x : R → X be the solution
of ẋ = −JLxξ = −∇Hξ(x) with Hξ := 〈µ, ξ〉 starting at x(0) = x0. Since Hξ

is a Morse–Bott function, x(t) converges exponentially to critical points x± as
t → ±∞ satisfying Lx±ξ = 0. Using the S1 action obtained from integrating
the infinitesimal action of ξ, one can rotate this flow line within X and construct
a nontrivial holomorphic sphere.

4. When X has nonpositive curvature, the distance function is plurisubharmonic
and every holomorphic sphere CP 1 → X is constant.

Remark 3.1.5. Important examples in which our assumptions are satisfied arise
when X is a complex vector space (see [7, 13]).

Remark 3.1.6 (Higgs bundles). Let X = gc and consider the adjoint action
of G on gc. This action is Hamiltonian with moment map µ(ζ) = i

2 [ζ, ζ∗] where
ζ∗ := −Re(ζ) + iIm(ζ). Then P (X) = ad(P c) is a holomorphic vector bundle and
our assumptions are satisfied. Higgs bundles are obtained as a slight variant of
this setup where one considers holomorphic sections of the twisted bundle P (X) ⊗
K = Ω1,0(Σ, ad(P c)). While this is not covered by our general discussion, the proof
generalizes ad verbatim to this case.

Consequences of the main theorem
The infinitesimal action of ξ ∈ Ω0(Σ, ad(P )) on A(P )× S(X,P ) is given by

L(A,u)ξ := d

dt

∣∣∣∣
t=0

exp(tξ)(A, u) = (−dAξ, Luξ)

where Lx : g→ TxX denotes the infinitesimal action of g on X. Denote by Lc(A,u) the
infinitesimal action of Gc(P ) which agrees with the complexification of L(A,u). Then

∇F(A, u) = Lc(A,u)i(∗FA + µ(u))

implies that solutions of (3.5) remain in a single complexified orbit. The following
result is the analogue of the Ness uniqueness theorem in finite dimensional GIT.

Theorem B (Uniqueness of critical points). Assume (A), (B) and (C).

1. Let (A0, u0) ∈ H(P,X) and let (A∞, u∞) be the limit of the gradient flow (3.5)
starting at (A0, u0). Then

|| ∗ FA∞ + µ(u∞)||L2 = inf
g∈Gc(P )

|| ∗ FgA0 + µ(gu0)||L2 =: m.

2. Suppose (B0, v0), (B1, v1) ∈ Gc(A0, u0) (the W 1,2 ×W 2,2-closure) and

|| ∗ FB0 + µ(v0)||L2 = m = || ∗ FB1 + µ(v1)||L2 .

Then there exists k ∈ G(P ) such that (B1, v1) = k(B0, v0).
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Proof. This is reformulated and proven in Theorem 3.5.1. The equivalence of both
formulations follows from Proposition 3.2.2.

Corollary 3.1.7. Assume (A), (B) and (C). Every semistable orbit contains a
unique polystable orbit in its W 1,2×W 2,2-closure and every polystable orbit contains
a unique G(P )-orbit of solutions to the symplectic vortex equations.

The corollary shows Msymp(P,X) ∼=MGIT (P,X). More explicitly, this isomor-
phism is obtained by the map which sends (A0, u0) ∈ H(P,X) to its limit (A∞, u∞)
under (3.5). Theorem 3.5.2 gives a complete characterization for the different stabil-
ity conditions in Definition 3.1.1 in terms of the limit (A∞, u∞).

Next, we need to recall the general construction behind the Kempf–Ness theorem.
Given (A, u) ∈ H(P,X) there exists a G(P )-invariant functional

Ψ(A,u) : Gc(P )→ R

whose gradient flow intertwines with (3.5) under the map g 7→ g−1(A, u). The Kempf–
Ness theorem characterizes the stability conditions of (A, u) in Definition 3.1.1 in
terms of the global properties of Ψ(A,u). The stable case is the main step in Mundet’s
proof of the Kobayashi–Hitchin correspondence [89] and relates the stability of (A, u)
to a certain properness of Ψ(A,u). The remaining cases are the content of the next
theorem, whose proof is a relatively easy consequence of Theorem A and Theorem B.

Theorem C (Kempf–Ness Theorem). Assume (A), (B), (C) and let (A, u) ∈
H(P,X).

1. (A, u) is polystable if and only if Ψ(A,u) has a critical point.

2. (A, u) is semistable if and only if Ψ(A,u) is bounded below.

3. (A, u) is unstable if and only if Ψ(A,u) is unbounded below.

Proof. This is established in Theorem 3.5.5.

The weights for the Gc(P )-action are defined as the asymptotic slopes of Ψ(A,u)
along geodesics rays in Gc(P )/G(P ). For (A, u) ∈ H(P,X) and ξ ∈ Ω0(Σ, ad(P )) one
has the explicit description

w((A, u), ξ) := lim
t→∞

〈
∗FeitξA + µ(eitξu), ξ

〉
L2 ∈ R ∪ {∞}.

Mundet’s Kobayashi–Hitchin correspondence asserts that (A, u) is stable if and only
if w((A, u), ξ) > 0 for all ξ 6= 0. We extend this correspondence to the polystable and
semistable case under the following technical assumption on a pair (A, u) ∈ H(P,X):

(H) For all ξ ∈ Ω0(Σ, ad(P )) it holds:

w((A, u), ξ) ≤ 0 =⇒ supt>0 ||µ(eitξu)||L2 <∞.
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Remark 3.1.8 (On assumption (H)).
1. (H) is trivially satisfied for stable pairs (A, u) and, by Proposition 3.6.6, it is

always satisfied for polystable pairs.

2. By Proposition 3.6.2, w((A, u), ξ) <∞ implies that A+ := limt→∞ eitξA exists
in C∞.

3. Proposition 3.6.2 provides a strong tool to verify (H). When X is a unitary
vector space with linear G ⊂ U(n) action, one can show that

w((A, u), ξ) <∞ =⇒ lim
t→∞

eitξ(A, u) =: (A+, u+)

where the limit exists in C∞ and (H) is satisfied in this case. Similarly, using
Proposition 3.6.2, one verifies (H) for Higgs bundles.

4. (H) admits the following geometric description: For (A, u) ∈ H(P,X) denote
by Ψ(A,u) : Gc(P )→ R its Kempf–Ness functional.

(H’) For all ξ ∈ Ω0(Σ, ad(P )) it holds:
sup
t>0

Ψ(A,u)
(
e−itξ) <∞ ⇒ sup

t>0

∣∣∣∣∇Ψ(A,u)
(
e−itξ)∣∣∣∣

L2 <∞.

Unraveling the definitions shows (H) ⇔ (H’). This property is reasonable
to expect, since Ψ(A,u) is convex along geodesics. However, one can construct
examples which show that convexity of Ψ(A,u) alone does not guarantee (H’).

5. Unfortunately, we know little about the validity of (H) in general: We could
neither prove that it is always satisfied, nor construct an explicit counterexam-
ple. This question is already meaningful (and open) in the finite dimensional
case where Σ = {pt}.

Consider the following properties for a pair (A, u) ∈ H(P,X):
(SS) For all ξ ∈ Ω0(Σ, ad(P )) it holds w((A, u), ξ) ≥ 0.

(PS) For all ξ ∈ Ω0(Σ, ad(P )) with exp(ξ) = 1 and w((A, u), ξ) = 0 the limit
limt→∞ eitξ(A, u) ∈ (Gc)2,2(A, u) exists in W 1,2 ×W 2,2 and remains in the
Sobolev completion of the complex group orbit.

Theorem D (Polystable and semistable correspondence). Assume (A), (B),
(C) and suppose that (A, u) ∈ H(P,X) satisfies (H).

1. (A, u) is polystable if and only if it satisfies (SS) and (PS).

2. (A, u) is semistable if and only if it satisfies (SS).
Proof. This is established in Theorem 3.6.5 and Theorem 3.6.4.

The polystable case has been established for twisted Higgs-bundles over Riemann
surface by Garćıa-Prada, Gothen and Mundet [49] by different methods. They con-
struct a Jordan-Hölder reduction and then deduce the polystable case from the stable
case. For our proof the opposite is true and the stable case can be recovered as a spe-
cial case of the polystable case. The proof is based on arguments of Chen–Sun [23].
The semistable correspondence follows from a sharp version of the moment weight
inequality stated next.
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Theorem E (Sharp moment-weight inequality). Suppose that (A, u) ∈ H(P,X)
satisfies (H). Then for all ξ ∈ Ω0(Σ, ad(P ))\{0} it holds

−w((A, u), ξ)
||ξ||L2

≤ inf
g∈Gc(P )

|| ∗ FgA + µ(gu)||L2 . (3.7)

If in addition (A), (B), (C) are satisfied and the right hand side is positive, then
there exists a unique ξ0 ∈ Ω0(Σ, ad(P )) with ||ξ0||L2 = 1 which yields equality.

Proof. This is established in Theorem 3.6.3.

For finite dimensional projective spaces the estimate (3.7) is due to Mumford
[88] and Ness [92, Lemma 3.1], and the existence of a dominant weight is due to
Kempf [68]. Around the same time Atiyah–Bott [4] established this result for the
Yang–Mills equations over Riemann surfaces. Its generalization to the hermitian
Yang–Mills equations over higher dimensional base manifolds is essentially equiva-
lent to the Bando-Siu conjecture [6], established by Daskalopoulos–Wentworth [28],
Sibling [100] and Jacob [65, 66]. In the context of K-stability and extremal Kähler
metrics moment-weight inequalities are due to Tian [112], Donaldson [36, 37, 39] and
Chen [18, 19]. In this context Chen–Sun [23] found an analytic proof of the Kempf
existence theorem on finite dimensional spaces and we extend their argument to our
infinite dimensional setting to prove existence of the dominant weight. The survey
[51] by Georgoulas–Robbin–Salamon provides an overview on the different proofs of
the moment weight inequality for Hamiltoninan actions on closed Kähler manifolds
and its importance for geometric invariant theory.

3.2 Preliminaries

3.2.1 The moment map picture
We recall the natural Kähler structures on A(P ) and S(P,X). Since A(P ) is an affine
space over the linear space Ω1(Σ, ad(P )), it suffices to specify the Kähler structure
on the later one. For a, b ∈ Ω1(Σ, ad(P )) this is defined as

ωA(a, b) :=
∫

Σ
〈a ∧ b〉, JAa = ∗a, 〈a, b〉A :=

∫
Σ
〈a ∧ ∗b〉.

For u ∈ S(P,X) let ũ : P → X be the equivariant map determined by u(z) = [p, ũ(p)]
for z ∈ Σ and p ∈ Pz. The tangent space TuS(P,X) is represented by G-equivariant
sections of the vector bundle ũ∗TX → P or equivalently by sections of the quotient
bundle ũ∗TX/G → P/G = Σ. The quotient bundle is again a vector bundle over Σ
and we denote it in the following by u∗TX/G for simplicity. For û1, û2 ∈ TuS(P,X) =
Ω0(Σ, u∗TX/G) one defines

ωS(û1, û2) :=
∫

Σ
ω(û1, û2) dvo`Σ, JS û1 = Jû1, 〈û1, û1〉S :=

∫
Σ
〈û1, û2〉 dvo`Σ.

On A(P )×S(P,X) denote the product Kähler structure by (ωA×S , JA×S , 〈·, ·〉A×S).
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Lemma 3.2.1. The diagonal G(P )-action on A(P ) × S(P,X) is Hamiltonian with
moment map

Φ : A(P )× S(P,X)→ Ω0(Σ, ad(P )), Φ(A, u) := ∗FA + µ(u). (3.8)

Proof. For (A, u) ∈ A(P )× S(P,X) and ξ ∈ Ω0(Σ, ad(P )) the infinitesimal action is
given by

L(A,u)ξ := d

dt

∣∣∣∣
t=0

exp(tξ)(A, u) = (−dAξ, Luξ) (3.9)

where Lx : g → TxX denotes the infinitesimal action of g on X. The verification of
(3.9) is straightforward and left to the reader. The differential of the function

A(P )× S(P,X)→ R, (A, u) 7→
∫

Σ
〈∗FA + µ(u), ξ〉 dvo`Σ

is the 1-form

TAA(P )× TuS(P,X)→ R, (a, û) 7→
∫

Σ
〈−dAξ ∧ a〉+

∫
Σ
ω(Luξ, û).

This is precisely ωA×S(L(A,u)ξ, ·) and (3.8) satisfies the moment map equation.

3.2.2 Connections on P (X) and the space S(P,X)
For x ∈ X the infinitesimal action of g defines a map Lx : g → TxX. A smooth
connection A ∈ A(P ) induces on the Kähler fibration P (X) the covariant derivative

dA : Ω0(Σ, P (X))→ Ω1(Σ, u∗TX/G), dAu := du+ LuA

with values in the the vertical tangent bundle along u which is isomorphic to u∗TX/G.
Moreover, A and the Levi-Civita connection induce a covariant derivative

∇A : Ω0(Σ, u∗TX/G)→ Ω1(Σ, u∗TX/G), ∇Aξ := ∇ξ +∇ξ(LuA).

All these covariant derivatives extend to first order elliptic operators between suitable
Sobolev spaces.

3.2.3 The Yang–Mills–Higgs functional
The moment map squared functional (3.3) and the Yang–Mills–Higgs functional (3.4)
are related by the following energy identity.

Proposition 3.2.2. Let (A, u) ∈ A(P )× S(P,X), then

YMH(A, u) = F(A, u) +
∫

Σ
||∂̄A(u)||2 dvo`Σ + 〈ω − µ, u〉 (3.10)

where 〈ω − µ, u〉 =
∫

Σ u
∗ω − d〈µ(u), A〉.

Proof. This is Proposition 3.1 in [25].
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Remark 3.2.3. The term 〈ω − µ, u〉 describes the pairing between the equivariant
homology class [u] ∈ HG

2 (X,Z) determined by u and the equivariant cohomology class
[ω − µ] ∈ H2

G(X,R), see [25] for more details. In particular, this term is constant on
the homotopy class of (A, u) and solutions of the symplectic vortex equation (3.1)
minimize the Yang–Mills–Higgs functional in their homotopy class.
Lemma 3.2.4.

1. The L2-gradient of F is given by

∇F(A, u) =
(
− ∗ dA(∗FA + µ(u))
JLu(∗FA + µ(u))

)
.

2. The L2-gradient of YMH is given by

∇YMH(A, u) =
(

d∗AFA + L∗udAu
∇∗AdAu+ dµ(u)∗µ(u)

)
.

3. If (A, u) ∈ H(P,X), then both gradients are tangential to H(P,X) and agree.
That is

− ∗ dA(∗FA + µ(u)) = d∗AFA + L∗udAu

J(u)Lu(∗FA + µ(u)) = ∇∗AdAu+ dµ(u)∗µ(u)

holds for all (A, u) ∈ H(P,X).
Proof. We leave the first two parts to the reader (or refer to [119] and [77] for full
details). For the last claim, note that

∇F(A, u) =
(
− ∗ dA(∗FA + µ(u))
J(u)Lu(∗FA + µ(u))

)
= Lc(A,u)i(∗FA + µ(u))

is tangential to the complexified orbit Gc(A, u) ⊂ H(P,X) and hence tangential to
H(P,X). Since H(P,X) minimizes the functional

(A, u) 7→
∫

Σ
||∂̄Au||2 dvo`Σ

its gradient vanishes for (A, u) ∈ H(P,X) and the claim follows from the energy
identity (3.10).

3.2.4 Equivariant convexity at infinity
The next lemma shows that under assumption (C) solutions of (3.5) remain in a
compact region of X.
Lemma 3.2.5. Suppose X is equivariantly convex at infinity, let f : X → [0,∞)
and c0 > 0 be as in (3.6). Let T ∈ (0,∞] and suppose (A, u) : [0, T )→ H(P,X) is a
smooth map satisfying

∂tu = −JLu(∗FA + µ(u)).
Then, for c > c0 and Sc := f−1[0, c], it holds

u0(P ) ⊂ Sc =⇒ ut(P ) ⊂ Sc
for every t ∈ [0, T ].
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Proof. The proof is similar to the calculation in [24], Lemma 2.7.
In local trivializing coordinates z = x+ iy define

vx := ∂Ax u := ∂xu+ LuA(∂x), vy := ∂Ay u := ∂yu+ LuA(∂y)

Denote by ∆̃ := ∂2
x + ∂2

y the standard Laplacian. Then

∆̃f(u) = ∂x〈∇f(u), vx〉+ ∂y〈∇f(u), vy〉
= 〈∇Ax∇f(u), vx〉+ 〈∇Ay∇f(u), vy〉+ 〈∇f(u),∇Ax vx +∇Ay vy〉

and since f is G-invariant, we obtain

∆̃f(u) = 〈∇vx∇f(u), vx〉+ 〈∇vy∇f(u), vy〉+ 〈∇f(u),∇Ax vx +∇Ay vy〉 (3.11)

Using the characteristic equation for the curvature

∇Ax vy −∇Ay vx = LuFA(∂x, ∂y)

and the assumption (A, u) ∈ H(P,X), which is equivalent to vx+Jvy = 0, we obtain

∇Ax vx +∇Ay vy = −J
(
∇Ax vx −∇Ay vx

)
= −JLuFA(∂x, ∂y).

Inserting this in (3.11) yields

∆̃f(u) = 〈∇vx∇f(u), vx〉+ 〈∇vy∇f(u), vy〉 − 〈∇f(u), JLuFA(∂x, ∂y)〉 (3.12)

If f(u) ≥ c0, then the convexity assumption implies that the first two terms in (3.12)
are positive and thus

f(u) ≥ c0 =⇒ ∆f(u) ≤ 〈∇f(u), JLu ∗ FA〉

where ∆ = d∗d denotes the positive Laplacian (which corresponds to −λ∆̃ in local
coordinates for some function λ > 0). This yields

f(u) ≥ c0 =⇒ (∂t + ∆) f(u) ≤ 〈∇f(u),−JLudµ(u)〉 ≤ 0 (3.13)

where we used the second equation in the convexity assumption.
We deduce the claim from (3.13) by contradiction. Suppose there exists M > c

such that
t1 := inf{t ∈ [0, T ) | f(ut(z)) ≥M for some z ∈ Σ}

satisfies 0 < t1 < T (i.e. inf ∅ = ∞ is excluded). Let D ⊂ Σ be a small disc and let
t0 ∈ (0, t1) be such that

f(ut(z)) > c0 ∀(t, z) ∈ [t0, t1]×D

and f(ut1(z0)) = M for some interior point z0 ∈ D. It follows from (3.13) that
in local coordinates f(ut(z)) is a subsolution to a parabolic equation on [t0, t1] ×D
and by construction it attains its maximum on {t1} × D. By the strong maximum
principle for parabolic equations (see [47] Chapter 2, Theorem 1), it follows that
f(ut(x)) ≡ M is constant on [t0, t1] × D. This contradicts the definition of t1 and
completes the proof of the lemma.
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3.2.5 Sobolev spaces
We discuss mixed Sobolev spaces of time dependent sections of vector bundles. Fol-
lowing R̊ade [97] and Venugopalan [119] we use a norm on Hr([0, t0], Hs(Σ, V )) which
depends on the length t0 of the time interval. For convenience, we use the abbrevia-
tion Hs := W s,2 for L2-Sobolev spaces.

Fractional Sobolev spaces on bounded domains

The refer to [1] for the general theory of Sobolev spaces. The definition of fractional
Sobolev spaces (also called Bessel potential spaces) uses deep results from harmonic
analysis (see [107] Chapter V.3 or [56] Chapter 2.1-3). For s ∈ R and p ∈ (1,∞) one
defines

W s,p(Rn) := (1−∆)−s/2 (Lp(Rn)) , ||f ||W s,p := ||(1−∆)s/2f ||Lp . (3.14)

For a smoothly bounded domain Ω ⊂ Rn and f ∈ C∞(Ω) one defines

||f ||W s,p(Ω) = inf
f=F |Ω

||F ||W s,p(Rn)

where the infimum ranges over all F ∈ C∞0 (Rn) which restrict to f . The space
W s,p(Ω) (resp. W s,p

0 (Ω)) is the closure of C∞(Ω) (resp. C∞0 (Ω)) under this norm.
The extension theorem shows that W s,p(Ω) is the set of restriction to Ω of functions in
W s,p(Rn). In the special case p = 2 one obtains the Hilbert spaces Hs(Ω) = W s,2(Ω)
(see [78]).

Interpolation. The spaces W s,p(Ω) form a family of interpolation spaces in both
parameters: the degree s of differentiability and the degree p of summability. For
1 < p0, p1 <∞, s0, s1 ∈ R and 0 < θ < 1 it holds

W sθ,pθ (Ω) ∼= [W s0,p0(Ω),W s1,p1(Ω)]θ (3.15)

with sθ = (1 − θ)s0 + θs1, pθ = (1 − θ)p0 + θp1 and [·, ·]θ refers to the holomorphic
interpolation method. The same remains valid for the spaces W s,p

0 (Ω). (See [56]
Chapter 2.4-5, [116] Chapters 1.9, 2.4 and 4.3).

Duality. For 1 < p, q <∞, 1
p + 1

q = 1 and s ∈ R+
0 there exists a natural identifica-

tion

W−s,p(Ω) ∼= W s,q
0 (Ω)∗. (3.16)

which is obtained by extending the L2-product.

Products. Let s, t, u ∈ R with u ≤ min{s, t} and s + t ≥ 0. Let 1 < p, q, r < ∞
with s 6= n/p, t 6= n/q, u 6= −n/r, and

max
{(

1
p
− s

n

)
,

(
1
q
− t

n

)
,

(
1
p
− s

n

)
+
(

1
q
− t

n

)}
≤
(

1
r
− u

n

)
(3.17)
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Then, if f ∈W s,p(Ω) and g ∈W t,q(Ω), the product fg is contained in Wu,r(Ω) and
satisfies an estimate

||fg||Wu,r(Ω) ≤ C||f ||W s,p(Ω)||g||W t,q(Ω). (3.18)

This follows for s, t, u ∈ Z+
0 from the Sobolev embedding theorem and Hölder’s in-

equality. The general case is obtained from this by interpolation (3.15) and duality
(3.16). (See [93] Theorem 9.6 for the details)

Sobolev spaces of sections Hs(Σ, V )

Let V → Σ be a Riemannian vector bundle over Σ. One can describe Hs(Σ, V ) in
local coordinates as follows: Let {Uα} be an open trivializing cover of Σ by charts and
choose unitary trivializations V |Uα ∼= Uα×Rn. A partition of unity subordinate to the
cover {Uα} divides a section σ ∈ Ω0(Σ, V ) into a collection of functions σjα ∈ C∞0 (Uα).
Using the charts we identify Uα with open bounded subsets Ωα ⊂ R2 and define

||σ||Hs :=
∑
α,j

||σjα||Hs(Ωα). (3.19)

The space Hs(Σ, V ) is the completion of Ω0(Σ, V ) in this norm.

Remark 3.2.6. Let ∇ be a smooth Riemannian connection on V . For s = k ∈ Z+
0

the norm

||σ|| :=
k∑
j=0
||∇jσ||L2 (3.20)

is equivalent to the Hk-norm defined in (3.19). This leads to an alternative construc-
tion of Hs(Σ, V ) starting with (3.20) for positive integers and then using interpolation
and duality.

The product formula (3.18) takes under the assumptions p = q = r = 2 and n = 2
the following simpler form. Let s, t, u ∈ R with s, t 6= +1, u 6= −1, s+ t ≥ 0, and

u ≤ min{s, t, s+ t− 1}.

Then, if f ∈ Hs(Σ) and g ∈ Ht(Σ), the product fg is contained in Hu(Σ) and
satisfies an estimate

||fg||Hu ≤ C||f ||Hs ||g||Ht .

Time dependent Sobolev spaces Hr([0, t0], Hs(Σ, V ))

Let K be a separable Hilbert space, let t0 > 0 and let f : [0, t0] → K be a smooth
function. The following is a slight variant of (3.14). For r ∈ R we define

||f ||Hr([0,t0],K) := inf
F |[0,t0]=f

(∫ ∞
−∞

(τ2 + t−2
0 )r||F̂ (τ)||2K dτ

) 1
2

(3.21)

where the infimum is taken over all F ∈ C∞0 (R,K) which restrict to f on [0, t0] and
F̂ denotes the Fourier transform.



112 CHAPTER 3. YANG–MILLS–HIGGS FLOW AND APPLICATIONS

Remark 3.2.7. If r = k ∈ Z+
0 , then (3.21) is equivalent to the norm

||f || :=
k∑
j=0

∣∣∣∣∣∣∣∣t−(k−j)
0

dj

dtj
f

∣∣∣∣∣∣∣∣2
L2([0,t0],K)

. (3.22)

As before, one could construct the spaces Hr([0, t0],K) using (3.22) for positive
integers and then use interpolation and duality.

The dependence of the norms on t0 has the advantage that for r1 ≥ r2 the inclusion

Hr1([0, t0],K) ↪→ Hr2([0, t0],K)

has norm ≤ Ctr1−r20 . In particular, this norm can be controlled by t0.
For K = Hs(Σ, V ) one obtains the spaces Hr([0, t0], Hs(Σ, V )). These form

again a family of interpolation spaces ([119] Lemma 6.36): For s0, s1, r0, r1 ∈ R and
θ ∈ (0, 1) we have

[Hr0([0, t0], Hs0(Σ, V )), Hr1([0, t0], Hs1(Σ, V ))]θ ∼= Hrθ ([0, t0], Hsθ (Σ, V ))

with rθ = (1 − θ)r0 + θr1, sθ = (1 − θ)s0 + θs1 and [·, ·]θ denotes the holomorphic
interpolation method.

3.2.6 The heat equation
Let V → Σ be a Riemannian vector bundle and let ∇ be a Riemannian connection
on V .

Lemma 3.2.8. For every σ0 ∈ Ω0(Σ, V ) and t0 > 0, there exists a unique smooth
solution σ : [0, t0]→ Ω0(Σ, V ) solving the initial value problem

∂tσ +∇∗∇σ = 0, σ(0, ·) = σ0. (3.23)

Moreover, there exists a constant C > 0 such that the following estimate holds

||σ||L2([0,t0],H1(Σ,V )) ≤ Ct
1
2
0 ||σ0||L2 .

Proof. This is a special case of Lemma 6.33 in [119].

From this we deduce the following estimates.

Lemma 3.2.9. Let f : [0, t0] → Ω0(Σ, V ) be smooth. There exists a unique smooth
solution ψ of the equation

∂tψ +∇∗∇ψ = f, ψ(0, ·) = 0. (3.24)

Moreover, the solution satisfies the estimates

||ψ||L2([0,t0],H1(Σ,V )) ≤ Ct
1
2
0 ||ψ||L1([0,t0],L2(Σ,V )) (3.25)

and

||ψ||L2([0,t0],H1(Σ,V )) ≤ Ct
1
4
0 ||ψ||L2([0,t0],H−

1
2 (Σ,V ))

. (3.26)
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Proof. Let Pt denote the solution operator of (3.23), i.e. P0 = 1 and Ptσ0(·) = σ(t, ·)
satisfies (3.23). The solution of (3.24) is then given by

ψ(t, ·) =
∫ t

0
Pt−sf(s, ·) ds.

The Minkowski inequality and Lemma 3.2.8 yield

||ψ||L2(H1) ≤

(∫ t0

0

(∫ t

0
||Pt−sf(s, ·)||H1 ds

)2

dt

) 1
2

≤
∫ t0

0

(∫ t0

s

||Pt−sf(s, ·)||2H1 dt

) 1
2

ds

≤ Ct
1
2
0

∫ t0

0
||f(s, ·)||L2 ds

and this proves (3.25). Abbreviate

Hr,s := Hr([0, t0], Hs(Σ, V )).

Parabolic regularity (see [119] Lemma 6.35) yields

||ψ||
H

3
4 ,−

1
2
≤ C||f ||

H−
1
4 ,−

1
2
, ||ψ||

H−
1
4 ,

3
2
≤ C||f ||

H−
1
4 ,−

1
2

and, since H0,1 is an interpolation space between H
3
4 ,−

1
2 and H−

1
4 ,

3
2 , it follows

||ψ||H0,1 ≤ C||f ||
H−

1
4 ,−

1
2
≤ Ct

1
4
0 ||f ||H0,− 1

2
.

This establishes (3.26) and completes the proof.

3.2.7 Sobolev completions and regularity assumptions
For the main part of the article, we need to consider suitable Sobolev completions of
the various spaces defined in the introduction. The space

S2,2(P,X) := W 2,2(Σ, P (X))

contains all continuous sections u : Σ → P (X) which in any trivialization of P (X)
and local coordinates on Σ and X are of Sobolev class W 2,2

`oc . It carries a natural
topology, since W 2,2

`oc (R2) ↪→ C0(R2) is in the good range of the Sobolev embedding:
For u ∈ S(P,X) let ε > 0 be smaller then the injectivity radius of X along the image
of u. Then

{û ∈W 2,2(Σ, u∗TX/G) | ||û||W 2,2 < ε} → S2,2(P,X), û 7→ expu û

defines a homeomorphism onto its image.
With respect to a smooth reference connection A0 ∈ A(P ), we define

A1,2(P ) := {A0 + a | a ∈W 1,2(Σ, T ∗Σ⊗ ad(P ))}
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and denote

H1,2(P,X) := {(A, u) ∈ A1,2(P )× S2,2(P,X) | ∂̄Au = 0}.

The W 2,2 completion of the gauge groups

G2,2(P ) := W 2,2(Σ,Ad(P )), (Gc)2,2(P ) := W 2,2(Σ,Ad(P ×G Gc))

are similar defined as S2,2(P,X) by requiring their sections to be of Sobolev class
W 2,2 in any local trivialization. These groups act continuously on S2,2(P,X), A1,2(P )
and H1,2(P,X) as one readily checks.

Lemma 3.2.10. Let (A, u) ∈ H1,2(P,X).

1. There exists g ∈ (Gc)2,2(P ) such that g(A, u) is smooth.

2. If (A, u) is a critical point of YMH satisfying

dA(∗FA + µ) = 0, Lu(∗FA + µ(u)) = 0 (3.27)

then there exits k ∈ G2,2(P ) such that k(A, u) is smooth.

Proof. This lemma is proven as in the Yang-Mills case. First, there exists g ∈ (Gc)2,2

such that gA is smooth (see [4], Lemma 14.8). Then ∂̄gA(gu) = 0 and elliptic regu-
larity yields that gu is smooth. This proves the first part of the lemma.

For the second part we pass to a Coulomb gauge and choose a smooth reference
connection A0 ∈ A(P ) and k ∈ G2,2(P ) such that d∗A0

(kA − A0) = 0. By (3.27),
a := kA−A0 satisfies

∆A0a = dA0 ∗ FA0 + 1
2[a ∧ a] + dA0(µ(ku)) + [a ∧ (∗FkA + µ(ku))]. (3.28)

Suppose first that a ∈ H1 and u ∈ H2. Using the multiplication theorem H1⊗L2 →
H−

1
2 , one sees that the right hand side of (3.28) is in H− 1

2 and hence a ∈ H 3
2 . With

this improved regularity, the right hand side of (3.28) is now contained in H0 and
hence a ∈ H2. The holomorphicity condition

0 = ∂̄kA(ku) = ∂̄A0(ku) + (Lkua)0,1

then yields u ∈ H3. Repeating this argument, one shows k(A, u) ∈ H` × H`+1 for
every ` ≥ 2 and this completes the bootstrapping argument.

3.3 The  Lojasiewicz inequality for Gelfand triples
We establish an infinite dimensional version of the  Lojasiewicz gradient inequality
following closely the arguments of R̊ade [97] and Simon [101]. This result is an
important ingredient in proving convergence of the Yang–Mills–Higgs gradient flow.

Let H be Hilbert space and let V ⊂ H be a dense subset. Suppose V is a Hilbert
space in its own right with respect to an inner product 〈·, ·〉V and assume that the
inclusion V ⊂ H is compact. Identifying H with its dual, we obtain the Gelfand
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triple V ⊂ H = H∗ ⊂ V ∗. Let F : V → R be a real analytic function and denote its
differential by

M := dF : V → V ∗.

Assume F vanishes to the first order at the origin, i.e. F (0) = 0 and M(0) = 0. The
linearization of M at the origin is given by

L = dM(0) : V → V ∗

and we call this map the Hessian of F at the origin.

Theorem 3.3.1. Assume the setting described above and suppose there are constants
δ, c > 0 such that

||Lx||V ∗ ≥ δ||x||V − c||x||H (3.29)

is satisfied for all x ∈ V . Then there exist ε, C > 0 and γ ∈ [ 1
2 , 1) such that for all

x ∈ V with ||x||V ≤ ε it holds

||dF (x)||V ∗ ≥ C|F (x)|γ .

Proof. The proof consists of six steps.

Step 1: L has finite dimensional kernel and closed range.

The proof is left as an exercise and uses the assumption that V ⊂ H is compact.
The result follows as in [86] Lemma A.1.1.

Step 2: Construction of the finite dimensional approximation.

Let K := ker(L) and denote its orthogonal complement by W ′. The image
W ′′ := Im(L) ⊂ V ∗ agrees with the annihilator of K. Identifying K∗ ⊂ V ∗ with
the annihilator of W ′ yields decompositions

V = K ⊕W ′, V ∗ = K∗ ⊕W ′′

and L restricts to an isomorphism L : W ′ → W ′′. It follows from the implicit
function theorem that there exists ε > 0 and δ > 0 such that for every x ∈ K with
||x||V < ε there exists a unique φ(x) ∈ W ′ with ||φ(x)||V < δ solving the equation
M(x+ φ(x)) ∈ K∗. Moreover, the function

φ : Bε(0;K)→ Bδ(0;W ′)

is analytic. Define

f : Bε(0;K)→ R, f(x) := F (x+ φ(x)).

This is a real analytic function on a finite dimensional domain.

Step 3: For x ∈ Bε(0;K) it holds df(x) = M(x+ φ(x)) ∈ K∗.
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For x, y ∈ K the chain rule yields

〈df(x), y〉V ∗×V = 〈M(x+ φ(x)), y + dφ(x)y〉V ∗×V .

and this proves the claim, since M(x+ φ(x)) ∈ K∗ annihilates dφ(x)y ∈W ′.

Step 4: Decompose x ∈ V with ||x||V < ε as

x = x0 + φ(x0) + x′ (3.30)

with x0 ∈ K and x′ ∈W ′. For sufficiently small ε > 0 there exists C > 0 such that

||M(x)||V ∗ ≥ C (||df(x0)||V ∗ + ||x′||V ) (3.31)

holds for all x ∈ V with ||x||V < ε.

The terms in the decomposition (3.30) satisfy the estimates

||x0||V ≤ C||x||V , ||φ(x0)||V ≤ C||x||V , ||x′||V ≤ C||x||V . (3.32)

Using Step 3 we obtain

M(x) = M(x0 + φ(x0) + x′)

= df(x0) +
∫ 1

0
dM(x0 + φ(x0) + tx′)x′ dt

= df(x0) + Lx′ +
∫ 1

0
(dM(x0 + φ(x0) + tx′)− dM(0))x′ dt.

Since dM is continuously differentiable, it follows from (3.32) that there exists an
estimate

sup
t∈[0,1]

||dM(x0 + φ(x0) + tx′)− dM(0)||Hom(V,V ∗) ≤ C||x||V ≤ Cε.

Since df(x0) ∈ K∗ and Lx′ ∈W ′′ we have

||df(x0) + Lx′||V ∗ ≥ C (||df(x0)||V ∗ + ||Lx′||V ∗) ≥ C(||df(x0)||V ∗ + ||x′||V ).

Combining these estimates yields

||M(x)||V ∗ ≥ C1(||df(x0)||V ∗ + ||x′||V )− C2ε||x′||V

and this proves (3.31) after possibly shrinking ε > 0.

Step 5: For sufficiently small ε > 0 there exists C > 0 such that

|F (x)| ≤ f(x0) + C||x′||2V (3.33)

for all x ∈ V with ||x||V < ε.
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The Taylor expansion of F yields:

F (x) = F (x0 + φ(x0) + x′)

= f(x0) +
∫ 1

0
〈M(x0 + φ(x0) + tx′), x′〉V ∗×V ds

= f(x0) + 〈M(x0 + φ(x0)), x′〉V ∗×V

+
∫ 1

0

∫ 1

0
〈dM(x0 + φ(x0) + stx′)sx′, x′〉V ∗×V dsdt

= f(x0) + 〈df(x0), x′〉V ∗×V + 1
2 〈Lx

′, x′〉V ∗×V + 〈L2x
′, x′〉V ∗×V

where

L2x
′ :=

∫ 1

0

∫ 1

0
s (dM(x0 + φ(x0) + stx′)− dM(0))x′ dsdt.

As in Step 4 one shows that this term satisfies an estimate

〈L2x
′, x′〉V ∗×V ≤ C||x||V ||x′||2V ≤ Cε||x′||2.

The open mapping theorem yields the estimate 〈Lx′, x′〉V ∗×V ≥ C||x′||2V . Combining
these estimates yields

|F (x)| ≤ f(x0) + C1||x′||2V − C2ε||x′||2V

and this proves (3.33) for sufficiently small ε > 0.

Step 6: For suffiently small ε > 0, there exists C > 0 and γ ∈ [ 1
2 , 1) such that

||M(x)||V ∗ ≥ C|F (x)|γ (3.34)

for all x ∈ V with ||x||V < ε.

The gradient inequality of  Lojasiewicz [80] shows that for sufficently small ε > 0
there exists C > 0 and γ ∈ [ 1

2 , 1) such that

||df(x)||V ≥ |f(x)|γ

for all x ∈ K with ||x||V < ε. Since K is finite dimensional, there exists a constant
such that C||df(x0)||V ∗ ≥ ||df(x0)||V . Now the estimates (3.31) and (3.33) show

||M(x)||V ∗ ≥ C (||df(x0)||V ∗ + ||x′||V )
≥ C1

∣∣|F (x)| − C2||x′||2V
∣∣γ + C3||x′||V .

We may assume that |F (x)| < 1 for all x ∈ Bε(0, V ) and then follows (3.34) with
C := min{C12−γ , C3/

√
2C2}.
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3.4 Convergence of the Yang–Mills–Higgs flow
In the first section weak solutions of the gradient flow (3.5) are defined and the
existence and regularity of solutions are discussed. The second section contains a
proof of the  Lojasiewicz gradient inequality for the Yang–Mills–Higgs functional.
Combining this inequality with an interior regularity result in the third section, we
can then prove that solutions convergence under the additional assumptions (A),
(B). This approach is very similar to the one developed by R̊ade [97] in the Yang–
Mills case.

3.4.1 The gradient flow equations
Definition 3.4.1 (Negative gradient flow of YMH). A (weak) solution of

∂tA = −d∗AFA − L∗udAu
∂tu = −∇∗AdAu− dµ(u)∗µ(u)

(3.35)

is a continuous map (A, u) : [0,∞) → H1,2(P,X), such that there exists a sequence
of smooth solutions of (3.35) converging to (A, u) in C0([0,∞), H1 ×H2).

Definition 3.4.2 (Negative gradient flow of F). A (weak) solution of

∂tA = ∗dA(∗FA + µ(u))
∂tu = −JLu(∗FA + µ(u))

(3.36)

is a continuous map (A, u) : [0,∞) → H1,2(P,X), such that there exists a sequence
of smooth solutions of (3.36) converging to (A, u) in C0([0,∞), H1 ×H2).

By Lemma 3.2.4 both of these flows agree:

(A, u) is a weak solution of (3.35) ⇐⇒ (A, u) is a weak solution of (3.36).

The following theorem is a slight extension of a result of Venugopalan [119] (she works
in the H1 × C0 topology and needs to assume that the flow remains in a compact
region of X).

Theorem 3.4.3. Assume (C) and let (A0, u0) ∈ H1,2(P,X).

1. There exists a unique solution (A, u) ∈ C0([0,∞),H1,2(P,X)) of (3.36) with
A(0) = A0 and u(0, ·) = u0.

2. The map Φ : [0,∞)→ L2(Σ, T ∗Σ⊗ ad(P ))

Φ(t) := ∗FA(t) + µ(u(t)) (3.37)

is contained in the spaces C0([0,∞), L2) and L2
`oc([0,∞), H1).

3. The solution g : [0,∞)→ (Gc)2,2(P ) of the ODE

g−1(t)ġ(t) = i(∗FA(t) + µ(u(t))), g(0) = 1. (3.38)

is continuous with values in H2 and satisfies (A(t), u(t)) = g(t)−1(A0, u0).
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4. The solution (A(t), u(t)) of (3.36), the map Φ(t) in (3.37) and the solution g(t)
of (3.38) depend continuously on the initial condition (A0, u0) ∈ H1,2(P,X) in
the respective topologies stated above.

Proof. Let f : X → [0,∞) and c0 ∈ R be as in (3.6). By Lemma 3.2.5 the compact
sets Sc := f−1[0, c] with c > c0 have the following property: If (A(t), u(t)) is a
gradient flow line starting at (A0, u0), then

u0(P ) ⊂ Sc =⇒ ut(P ) ⊂ Sc ∀t ≥ 0. (3.39)

Venugopalan proves long time existence by establishing short time existence together
with an uniform lower bound on the existence intervall. When we restrict to the
set Sc her analysis yields uniform lower bounds for the existence interval for any
solution with u0(P ) ⊂ Sc. Now Theorem 1.1 in [119] shows that for any A0 ∈ H1

and u0 ∈ C0 there exists a unique (weak) solution (A, u) ∈ C0([0,∞), H1 × C0).
Moreover, the proof shows the solution (A, u) depends continuously on the initial
condition (A0, u0), the moment map term Φ(t) := ∗FA(t) + µ(u(t)) is contained
in the space C0([0,∞), L2)∩L2

`oc([0,∞), H1) and depends continously on the initial
condition (A0, u0) in these topologies. The additional regularity Φ ∈ L2

`oc([0,∞), H1)
is somewhat hidden in her proof and follows from the consideration of the space
ŨP (t0) at the end of the proof of Proposition 3.3. There she shows Φ ∈ H 1

2 +ε,−2ε ∩
H−

1
2 ,2 and this embedds into L2(H1) by interpolation.
By the Sobolev embedding H1×H2 ↪→ H1×C0, we obtain for any initial condition

(A0, u0) ∈ H1 × H2 a solution (A, u) ∈ C0([0,∞), H1 × C0). We claim that there
exists a continuous path of complex gauge transformations g : [0,∞) → (Gc)2,2(P ),
depending continuously on the initial condition (A0, u0), such that (A(t), u(t)) =
g(t)−1(A0, u0). By continuity of the gauge action, this readily implies that (A, u) ∈
C0([0,∞), H1 ×H2) and it depends continuously on the initial condition.

By (3.38) it holds g ∈ H1
`oc([0,∞), H1), since Φ ∈ L2

`oc([0,∞), H1). And by (3.36)
it holds ∂tA ∈ L2

`oc([0,∞), L2). Hence B(t) := A(t) − g(t)−1A0 ∈ H1
`oc([0,∞), L1)

and
Ḃ(t) = [∗B(t),Φ(t)], B(0) = 0.

If B is smooth, this implies B = 0. In general, one can approximate weak solutions
by smooth solutions and deduce then B = 0. This shows A(t) = g(t)−1A0 for all
t ≥ 0. Since g ∈ H1

`oc([0,∞), H1) and A ∈ C0([0,∞), H1) depend continuously on
the initial condition in H1 ×H2, it follows from the equation

A(t)0,1 = (g(t)−1A0)0,1 = A0 + g(t)−1∂̄A0g(t)

and standard elliptic bootstrapping arguments that g ∈ C0([0,∞), H2) depends con-
tinuously on the initial condition. One readily checks u(t) = g(t)−1u0 and this
completes the proof.

3.4.2 The  Lojasiewicz gradient inequality
The  Lojasiewicz gradient inequality is the key ingredient in proving uniform conver-
gence of the Yang–Mills–Higgs flow. This approach is due to Simon [101] and we
follow quite closely the arguments of R̊ade [97] in the Yang–Mills case.
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Theorem 3.4.4 ( Lojasiewicz gradient inequality). Assume (A) and let (A∞, u∞) ∈
H1,2(P,X) be a critical point of YMH. Then there exist ε, C > 0 and γ ∈ [ 1

2 , 1) such
that for all a ∈ H1(Σ, T ∗Σ⊗ad(P )) and û ∈ H2(Σ, u∗TX/G) with ||a||H1 +||û||H2 < ε
it holds

||∇YMH(A∞ + a, expu∞ û)||H−1×L2

≥ c|YMH(A∞ + a, expu∞ û)− YMH(A∞, u∞)|γ .
(3.40)

Proof. See page 121.

By Lemma 3.2.10 every critical point (A0, u0) ∈ H1,2(P,X) of the Yang–Mills–
Higgs functional is gauge equivalent to a smooth pair. Since the estimate (3.40)
is G2,2(P ) invariant, we may assume in the following that (A∞, u∞) ∈ H(P,X) is
smooth.

The infinitesimal gauge action induces for s = ±1 the L2-orthogonal splittings

Hs(Σ, T ∗Σ⊗ ad(P ))⊕Hs+1(Σ, u∗∞TX/G) = Is+1 ⊕ V s,s+1 (3.41)

with

Is+1 := {(−dA∞ξ, Lu∞ξ) | ξ ∈ Hs+1(Σ, ad(P ))}
V s,s+1 := {(a, û) ∈ Hs ×Hs+1 | d∗A∞a+ L∗u∞ û = 0}.

Define
E : V 1,2 → R, E(a, û) := YMH(A∞ + a, expu∞ û).

When ||û||L∞ is smaller than the injectivity radius of X along u∞(P ), the L2-gradient
of E is given by

∇E(a, û) = ΠV ◦ T(a,û)∇YMH(A∞ + a, expu∞ û)

where

T(a,û) : T(A∞+a,expu∞ û)(A× S(P,X))→ T(A∞,u∞)(A× S(P,X))

T(a,û)(b, v) := (b, d exp−1
u0
v)

and ΠV denotes the orthogonal projection onto V −1,0 in (3.41). The next theorem
establishes the  Lojasiewicz inequality for E and we show below that this is equivalent
to Theorem 3.4.4.

Theorem 3.4.5. In the setting described above, there exist ε, C > 0 and γ ∈ [ 1
2 , 1)

such that for all (a, û) ∈ V 1,2 with ||a||H1 + ||û||H2 < ε it holds

||∇E(a, û)||H−1×L2 ≥ C|E(a, û)− E(0, 0)|γ . (3.42)

Proof. E is an analytic functional by assumption (A) and we claim that its Hessian

∇2E(0, 0) : V 1,2 → V −1,0

satisfies the elliptic estimate

||(b, v)||H1×H2 ≤ C
(
||∇2E(0, 0)(b, v)||H−1×L2 + ||(b, v)||L2×H1

)
(3.43)
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for all (b, v) ∈ V 1,2. Then Theorem 3.4.5 follows directly from Theorem 3.3.1.
The Hessian Q of the Yang–Mills–Higgs functional at (A∞, u∞) has the shape

Q(b, v) = (d∗A∞dA∞b,∇
∗
A∞∇A∞v) +R(b, v)

with some compact operator R. As a Hessian, this operator is symmetric and it
follows from the gauge-invariance of the Yang–Mills–Higgs functional, that it restricts
to the Hessian of E, i.e.

∇2E(0, 0) = Q|V 1,2 : V 1,2 → V −1,0

takes indeed values within V −1,0. Now consider the operator

Λ := Q+ L(A∞,u∞)L∗(A∞,u∞) : V 1,2 ⊕ I2 → V −1,0 ⊕ I0

This has the shape

Λ(b, v) = (d∗A∞dA∞b+ dA∞d
∗
A∞b,∇

∗
A∞∇A∞v) + R̃(b, v)

with some compact operator R̃. In particular, Λ is Fredholm and satisfies the elliptic
estimate

||(b, v)||H1×H2 ≤ C (||Λ(b, v)||H−1×L2 + ||(b, v)||L2×H1) . (3.44)

Since L(A∞,u∞)L∗(A∞,u∞) vanishes on V 1,2, we have Λ|V 1,2 = ∇2E and (3.43) follows
from (3.44).

Proof of Theorem 3.4.4. Since the Yang–Mills–Higgs functional is gauge-invariant, it
follows from the implicit function theorem that we may assume (a, û) ∈ V 1,2 with
respect to the splitting (3.41). Let ε > 0 be sufficiently small, let (a, û) ∈ V 1,2 with
||a||H1 + ||û||H2 < ε and denote (A, u) = (A∞ + a, expu∞ û). Then

||∇E(a, û)||H−1×L2 ≤ C||T(a,û)∇YMH(A, u)||H−1×L2

≤ C||∇YMH(A, u)||H−1×L2

and Theorem 3.4.4 follows from Theorem 3.4.5.

Remark 3.4.6. Theorem 3.4.4 is in fact equivalent to Theorem 3.4.5. To see this
denote by ΠI the projection onto I0 in (3.41). With the same notation as above
follows

||ΠI ◦ T(a,û)∇YMH(A, u)||H−1×L2

≤ C||L∗(A∞,u∞)T(a,û)∇YMH(A, u)||H−2×H−1

= C||(L∗(A∞,u∞)T(a,û) − L∗(A,u))∇YMH(A, u)||H−2×H−1

where the second equation uses L∗(A,u)∇YMH(A, u) = 0. One verifies that the
operator norm of L∗(A∞,u∞)T(a,û) − L∗(A,u) tends to zero as ||a||H1 + ||û||H2 tends to
zero. Hence

||ΠI ◦ T(a,û)∇YMH(A, u)||H−1×L2 ≤ C(ε)||∇YMH(A, u)||L2

where C(ε) > 0 tends to zero as ε→ 0 and therefore

||∇E(a, û)||H−1×L2 ≥ C||∇YMH(A, u)||H−1×L2

for sufficiently small ε > 0.
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3.4.3 Interior regularity
Theorem 3.4.7. Let (A∞, u∞) ∈ H1,2(P,X) be a critical point of YMH. There
exists ε0 > 0 such that for every ε ∈ (0, ε0) there exists C > 0 with the following
significance: let T > 1 and let

(a, û) : [0, T ]→ H1(Σ, T ∗Σ⊗ ad(P ))×H2(Σ, u∗∞TX/G)

be a continuous map such that (A(t), u(t)) = (A∞ + a(t), expu∞ û(t)) ⊂ H1,2(P,X)
is a solution of (3.35) and ||a(t)||H1 + ||û(t)||H2 < ε for all t ∈ [0, T ]. Then∫ T

1
||∂ta||H1 + ||∂tû||H2 dt ≤ C

∫ T

0
||∇YMH(A(t), u(t))||L2 dt.

Proof. By Lemma 3.2.10, we may assume that (A∞, u∞) ∈ H(P,X) is smooth, after
applying a suitable gauge transformation. The idea of the proof is then to show that
the derivatives

b := ∂ta = ∗dA(∗FA + µ(u))
v := ∂tû = d expu∞(û)−1 (−∇∗AdAu− JLuµ(u))

are solutions of the heat equation up to some perturbation which can be controlled.
Note that the later expression is well-defined for sufficiently small ε > 0, i.e. when
||û||L∞ ≤ C||û||H2 ≤ Cε is smaller than the injectivity radius of X along the image of
u∞. Using standard estimates for the heat equation, we can then deduce the interior
regularity estimate. In the following fix a small time 0 < t0 < min{1, T/2}.

Differentiating b in time gives

∂tb = ∂t (∗dA(∗FA + µ(u))) = −d∗AdAb+ [∗b, ∗FA + µ(u)] + ∗dA(∂tµ(u))

From the gauge-invariance follows d∗Ab+ Lu(∂tu) = 0 and hence

∂tb+ ∆Ab = [∗b, ∗FA + µ(u)] + dALu(∂tu) + ∗dA(∂tµ(u)).

Finally the Bochner-Weizenböck formula yields the relation

∆Ab = ∇∗∞∇∞b+ FA × b+RΣ × b

where × denotes some bilinear expression and RΣ is the Riemann curvature tensor
of Σ. Then follows

(∂t +∇∗∞∇∞)b = ∇∞a× b+ a×∇∞b+ a× a× b+ F∞ × b+RΣ × b+ b× µ(u)
+ a× Lu(∂tu) + a× (∂tµ(u)) +∇∞(Lu(∂tu)) +∇∞(∂tµ(u))

Now choose a smooth cut-off function η(t) such that η(t) = 0 for η ∈ [0, t0/2] and
η(t) = 1 for t ∈ [t0, 2t0]. Then ηb satisfies

(∂t +∇∗∞∇∞)(ηb) = η(∂t +∇∗∞∇∞)b+ η′(t)b.
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and vanishes at t = 0. Lemma 3.2.9 shows

||ηb||L2([0,2t0],H1) ≤ Ct
1
4
0 ||η(∇∞a× b+ · · ·+ b× µ(u))||

L2([0,2t0],H−
1
2 )

+ Ct
1
4
0 ||η(a× Lu(∂tu) + · · ·+∇∞(∂tµ(u)))||

L2([0,2t0],H−
1
2 )

+ Ct
1
2
0 ||η′tb||L1([0,2t0],L2)

Using the assumption ||a(t)||H1 + ||û(t)||H2 < ε and the multiplication theorem H1⊗
L2 → H−

1
2 it follows:

||η(∇∞a× b+ · · ·+ b× µ(u))||
L2([0,2t0],H−

1
2 )
≤ Cε||ηb||L2([0,2t0],H1)

||η(a× Lu(∂tu) + · · ·+∇∞(∂tµ(u)))||
L2([0,2t0],H−

1
2 )
≤ Cε||ηv||L2([0,2t0],H2)

By choosing t0 sufficiently small we thus obtain

||ηb||L2([0,2t0],H1) ≤ c||η′b||L1([0,2t0],L2) + Ct
1
4
0 ||ηv||L2([0,2t0],H2) (3.45)

Next, we need to obtain a similar estimate for v. Define

Ψ : H1(Σ, T ∗Σ⊗ ad(P ))×H2(Σ, u∗∞TX/G)→ H−
1
2 (Σ, u∗∞TX/G)

Ψ(a, û) := d exp−1
u∞(−∇∗AdAu− JLuµ(u))

with A = A∞ + a and u = expu∞ û. This is continuously differentiable and satisfies
Ψ(0, 0) = 0. In particular,

v = Ψ(a, û) = dΨ(0, 0)(a, û) + q(a, û)

where q vanishes to the first order. Differentiating this equation with respect to t
yields

∂tv = dΨ(0, 0)(b, v) + ∂tq(a, û)
= −∇∗A∞∇A∞v −∇v(JLu∞µ(u∞))−∇∗A∞Lu∞b+∇b× dA∞u∞

+ dq(at, ût)[b, v]

Let η be the same cut-off function as above. Then ηv vanishes at t = 0 and solves
the equation

(∂t +∇∗A∞∇A∞)(ηv) = −∇ηv(JLu∞µ(u∞)−∇∗A∞Lu∞(ηb) +∇(ηb)× d∞u∞
+ η∂tq(at, ût)[b, v] + η′v

It follows from Lemma 3.2.9 that

||ηv||L2([0,2t0],H1) ≤ Ct
1
4
0 || − ∇ηv(JLu∞µ(u∞)− . . .+∇(ηb)× d∞u∞||

L2([0,2t0],H−
1
2 )

+ Ct
1
4
0 ||ηdq(at, ût)[b, v]||

L2([0,2t0],H−
1
2 )

+ Ct
1
2
0 ||η′tv||L1([0,2t0],L2)



124 CHAPTER 3. YANG–MILLS–HIGGS FLOW AND APPLICATIONS

The first term satisfies the estimate

|| − ∇ηv(JLu∞µ(u∞)− · · ·+∇(ηb)× d∞u∞||
L2([0,2t0],H−

1
2 )

≤ C||ηv||L2([0,2t0],H1) + C||ηb||L2([0,2t0],H1)

and it follows from the definition of q that

||ηdq(at, ût)[b, v]||
L2([0,2t0],H−

1
2 )
≤ Cε

(
||ηb||L2([0,2t0],H1) + ||ηv||L2([0,2t0],H2)

)
For sufficiently small t0 > 0 we thus get

||ηv||L2([0,2t0],H1) ≤ C||η′tv||L1([0,2t0],L2)

+ Ct
1
4
0 (||ηv||L2([0,2t0],H2) + ||ηb||L2([0,2t0],H1))

(3.46)

Finally, differentiating the holomorphicity condition ∂̄Au = ∂̄u+ LuA
0,1 = 0, we

obtain by elliptic regularity the estimate

||vt||H2 ≤ C(||vt||H1 + ||bt||H1). (3.47)

Combining (3.45, (3.46) and (3.47) yields for sufficiently small t0 > 0

||ηb||L2([0,2t0],H1) + ||ηv||L2([0,2t0],H2) ≤ C
(
||η′b||L1([0,2t0],L2) + ||η′v||L1([0,2t0],L2)

)
.

In particular

||b||L1([t0,2t0],H1) + ||ηv||L1([t0,2t0],H2)

≤ t
1
2
0
(
||ηb||L2([0,2t0],H1) + ||ηv||L2([0,2t0],H2)

)
≤ Ct

1
2
0
(
||η′b||L1([0,2t0],L2) + ||η′v||L1([0,2t0],L2)

)
≤ Ct−

1
2

0
(
||b||L1([0,2t0],L2) + ||v||L1([0,2t0],L2)

)
.

The proof follows now by subdividing the interval [0, T ] into smaller intervals of length
t0 and applying the estimate above to each pair of successive subintervals.

3.4.4 The convergence theorem
The next theorem establishes uniform convergence of the Yang–Mills–Higgs flow.

Theorem 3.4.8. Assume (A), (B) and (C). Let (A0, u0) ∈ H1,2(P,X) and let
(A(t), u(t)) be the solution of (3.36). There exist C, β > 0 such that for all T > 0∫ ∞

T

||∂tA(t)||H1 + ||∂tu(t)||H2 dt ≤ CT−β .

In particular, (A(t), u(t)) converges uniformly in H1×H2 to a critical point (A∞, u∞)
of YMH.

The following compactness result arises from a combination of Gromov compact-
ness for holomorphic curves and Uhlenbeck compactness.
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Proposition 3.4.9. Assume (B), (C) and let (A(t), u(t)) ⊂ H1,2(P,X) be a solution
of (3.36). Then there exists sequences of times tj → ∞ and of gauge transforma-
tions kj ∈ G2,2(P ) and a critical point (A∞, u∞) of YMH such that kj(A(tj), u(tj))
converges to (A∞, u∞) in H1 ×H2.

Proof. This is a special case of Theorem 1.2 in [119].

Remark 3.4.10. In general, we expect the convergence of u(tj) only modulo bub-
bling in finitely many fibers, as stated in [119] Theorem 1.2. Assumption (B) rules
the formation of bubbles out and is crucial for the result stated in Proposition 3.4.9.

Proof of Theorem 3.4.8. Let (A(t), u(t)) ⊂ H1,2(P,X) be a solution of (3.36). Let
tj → ∞, kj ∈ G2,2(P ) and (A∞, u∞) be as in Proposition 3.4.9 above. Choose
ε > 0, such that the  Lojasiewicz gradient inequality in Theorem 3.4.4 is satisfied with
respect to (A∞, u∞). Let δ ∈ (0, ε) and choose j ≥ 1 such that

||A∞ − kjA(tj)||H1 + || exp−1
u∞(kju(tj))||H2 < δ.

Since the gradient flow and the  Lojasiewicz inequality are G2,2(P )-equivariant, we
may assume kj = 1 and tj = 0.

The gradient flow depends continuously in the C0(H1 × H2) topology on the
initial conditions by Theorem 3.4.3. Since the flow is constant at the critical point
(A∞, u∞) this yields

||A(1)−A(0)||H1 + || exp−1
u∞ u1 − exp−1

u∞ u0||H2 ≤ ρ(δ)

where ρ(δ)→ 0 as δ → 0. Define

T := inf{t > 0 | ||A(t)−A∞||H1 + || exp−1
u∞ ut||H2 ≥ ε}.

By choosing δ > 0 sufficiently small, we can guarantee T > 1. For 1 < s < T
define û(s) := exp−1

u∞ u(s). The interior regularity estimate in Theorem 3.4.7 and the
 Lojasiewicz gradient inequality in Theorem 3.4.4 yield

||A(s)−A∞||H1 + ||û(s)||H2

≤ ρ(δ) +
∫ s

1
||∂tA(t)||H1 + ||∂tû(t)||H2 dt

≤ ρ(δ) + C

∫ s

0
||∂tA(t)||L2 + ||∂tu(t)||L2 dt

≤ ρ(δ) + C

∫ s

0

||∇YMH(A, u)||2L2×L2

(YMH(A, u)− YMH(A∞, u∞))γ dt

≤ ρ(δ) + C (YMH(A(0), u(0))− YMH(A∞, u∞))1−γ
.

For δ > 0 sufficiently small, this shows T = ∞ and the integral
∫∞

1 ||∂tA(t)||H1 +
||∂tu(t)||H2 dt < ∞ is finite. This proves that (A(t), u(t)) converges uniformly in
H1 ×H2 to a critical point (Ã∞, ũ∞) of the Yang–Mills–Higgs functional.

Repeating the argument from above, with respect to the critical point (Ã∞, ũ∞)
we obtain for all sufficently large T∫ ∞

T

||∂tA(t)||H1 + ||∂tû(t)||H2 dt ≤ f(T − 1)1−γ
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with f(t) := (YMH(A(t), u(t))− YMH(Ã∞, ũ∞)). Since

f ′(t) = −||∇YMH(A(t), u(t))||2L2 ≤ −Cf(t)2γ

it follows f(t) ≤ Ct
1

1−2γ and hence∫ ∞
T

||∂tA(t)||H1 + ||∂tû(t)||H2 dt ≤ C(T − 1)
1−γ
1−2γ

for all sufficiently large T . This is equivalent to the estimate in the Theorem and
completes the proof.

We state some consequences of the proof for later reference.

Corollary 3.4.11. Assume (A), (B), (C) and let (B, v) ∈ H(P,X) be a critical
point of the Yang–Mills–Higgs functional. There exist C, ε0 > 0 and γ ∈ [ 1

2 , 1)
with the following significance: let (A, u) : [0,∞) → H(P,X) be a solution of (3.36)
satisfying ||A(0)−B||H1 +|| exp−1

v u(0)||H2 < ε0 and YMH(A(t), u(t)) ≥ YMH(B, v)
for all t > 0. Then

1. The limit satisfies YMH(A∞, u∞) = YMH(B, v).

2. For every ε > 0 exists δ ∈ (0, ε0) such that∫ ∞
0
||∂tA(t)||H1 + ||∂tu(t)||H2 dt < ε

whenever ||A(0)−B||H1 + || exp−1
v u(0)||H2 < δ.

3.5 Uniqueness and the Kempf–Ness theorem
3.5.1 Uniqueness of critical points
The next result is a reformulation of Theorem B in the introduction and the analogue
of the Ness uniqueness theorem in finite dimensional GIT. The proof is based on
arguments of Chen–Sun [23] in the finite dimensional differentiable setting.

Theorem 3.5.1 (Uniqueness of critical points). Assume (A), (B) and (C).
Let (A0, u0) ∈ H1,2(P,X) and (A∞, u∞) be the limit of the Yang–Mills–Higgs flow
(3.36) starting at (A0, u0). Then (A∞, u∞) ∈ (Gc)2,2(A0, u0) (the H1 ×H2 closure)
and

YMH(A∞, u∞) = inf
g∈(Gc)2,2(P )

YMH(gA0, gu0).

Moreover, if (B, v) ∈ (Gc)2,2(A0, u0) and YMH(B, v) = YMH(A∞, u∞), then
(B, v) ∈ G2,2(A∞, u∞).

Proof. The proof consists of four steps.

Step 1: Let (B, v) ∈ H1,2(P,X) and let gj : [0,∞)→ (Gc)2,2(P ) satisfy

gj(t)−1ġj(t) = i
(
Fgj(t)−1B + µ(gj(t)−1v)

)
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for j ∈ {0, 1}. Using the Cartan decomposition, write

g1(t) = g0(t)eiη(t)k(t)

with η(t) ∈ H2(Σ, ad(P )) and k(t) ∈ G2,2(P ). Then η(t) and k(t) are uniformly
bounded in H2.

Denote by π : Gc → Gc/G the canonical projection. The homogeneous space
Gc/G is a complete Riemannian manifold with nonpositive curvature and for t > 0
the curve γ(s, t) := π(g0(t)eisη(t)) is pointwise the unique geodesic of length ||η(t)||
connecting π(g0(t)) and π(g1(t)). This yields

∂t||η(t)||2 = 2
∫ 1

0
〈∇t∂sγ, ∂sγ〉 ds = 2

∫ 1

0
∂s〈∂tγ, ∂sγ〉 ds

= 2〈g1(t)−1ġ1(t), iη(t)〉 − 〈g0(t)−1ġ0(t), iη(t)〉
= 2〈∗Fg1(t)−1B − ∗Fg0(t)−1B , η(t)〉+ 2〈µ(g1(t)−1v)− µ(g0(t)−1v), η(t)〉.

Abbreviate (Bs,t, vs,t) := e−isη(t)g0(t)−1(B, v). Then

∂t||η(t)||2 = 2
∫ 1

0
∂s〈∗FBs,t + µ(vs,t), η(t)〉 ds

= −2〈∆Bs,tη + L∗vs,tLvs,tη(t), η(t)〉

= −∆(||η(t)||2)− 2
∫ 1

0

(
||Lus,tη(t)||2 + ||dAs,tη(t)||2

)
ds

Thus ||η||2 satisfies the differential inequality (∂t+ ∆)||η||2 ≤ 0 and by the maximum
principle for the heat equation η(t) is uniformly bounded in L∞. Since (Bj(t), vj(t)) :=
(gj(t)−1B, gj(t)−1v) satisfies (3.36), it converge uniformly in H1 × H2 by Theorem
3.4.8. Hence it follows from the equation

B1(t) = g1(t)−1B = k(t)−1e−iη(t)g0(t)−1B = k(t)−1e−iη(t)B0(t)

and elliptic bootstrapping that η(t) and k(t) are uniformly bounded in H2.

Step 2: Let (B0, v0), (B1, v1) ∈ H1,2(P,X) be critical points of the Yang–Mills–
Higgs functional. If (B1, v1) ∈ (Gc)2,2(B0, v0), then (B1, v1) ∈ G2,2(B0, v0).

Choose g̃ ∈ (Gc)2,2(P ) such that g̃−1(B1, v1) = (B0, v0). By Theorem 3.4.3 there
exist g0, g1 : [0,∞)→ (Gc)2,2(P ) solving

g−1
0 ġ0 = ∗FB0 + µ(v0), g0(0) = 1, g−1

0 (t)(B0, v0) = (B0, v0)

g−1
1 ġ1 = ∗FB1 + µ(v1), g1(0) = g̃, g−1

1 (t)(B0, v0) = (B1, v1).
Both of these curves satisfy the conditions of Step 1 with (B, v) = (B0, v0). Using
the same notation as in Step 1, write g1(t) = g0(t)eiη(t)k(t), and conclude that there
exists a sequence tj →∞ such that k(tj)→ k∞ and η(tj)→ η∞ converge weakly in
H2 and strongly in W 1,p. Then

Bs,tj
Lp−→ Bs,∞ := e−isη∞B0, dBs,tj η(tj)

Lp−→ dBs,∞η∞
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where (Bs,t, vs,t) := e−isη(t)(B0, v0) as in Step 1. It follows from the calculation in
Step 1 that

∂t||η||2L2 = −2
∫ 1

0
||dBs,tη||2L2 + ||Lvs,tη||2L2 ds

and we may assume in addition

lim
j→∞

||dBs,tj η(tj)||L2 + ||Lvs,tj η(tj)||L2 = 0.

At s = 0 we obtain L(B0,v0)η∞ = 0 and hence

(B1, v1) = g1(tj)−1(B1, v1) Lp−→ k−1
∞ e−iη∞(B0, v0) = k−1

∞ (B0, v0).

This shows (B1, v1) ∈ G2,2(B0, v0) and completes the proof of Step 2.

Step 3: Let (A0, u0), (B0, v0) ∈ H1,2(P,X) and denote by (A∞, u∞), (B∞, v∞)
the limits of the Yang–Mills–Higgs flow (3.36) starting at (A0, u0), (B0, v0) respec-
tively. If (B0, v0) ∈ (Gc)2,2(A0, u0), then (B∞, v∞) ∈ G2,2(A∞, u∞).

Denote by (A(t), u(t)) and (B(t), v(t)) the solutions of (3.36) starting at (A0, u0)
and (B0, v0) respectively. Choose g̃ ∈ (Gc)2,2(P ) such that (B0, v0) = g̃−1(A0, u0).
Then, by Theorem 3.4.3, there exist g0, g1 : [0,∞)→ (Gc)2,2(P ) solving

g−1
0 ġ0(t) = Φ(A(t), u(t)), g0(0) = 1, g−1

0 (t)(A0, u0) = (A(t), u(t))

g−1
1 ġ1(t) = Φ(B(t), u(t)), g1(0) = g̃, g−1

1 (t)(A0, u0) = (B(t), v(t)).

Both of these curves satisfy the conditions of Step 1 with (B, v) = (A0, u0). Using
the same notation as in Step 1, write g1(t) = g0(t)eiη(t)k(t). Then there exists a
sequence tj →∞ such that η(tj)→ η∞ and k(tj)→ k∞ converge weakly in H2 and
strongly in W 1,p. As j tends to infinity in the equation

(B(tj), v(tj)) = k(tj)−1e−iη(tj)(A(tj), u(tj))

both sides converge in Lp ×W 1,p and this yields (B∞, v∞) = k−1
∞ e−iη∞(A∞, u∞).

This proves (Gc)2,2(A∞, u∞) = (Gc)2,2(B∞, v∞) and Step 3 follows from Step 2.

Step 4: If (B, v) ∈ (Gc)2,2(A0, u0) and YMH(B, v) = YMH(A∞, u∞), then
(B, v) ∈ G2,2(A∞, u∞).

It follows from Step 3 that

YMH(A∞, u∞) = inf
g∈(Gc)2,2(P )

YMH(gA0, gu0) =: m.

Note that the solution (B(t), v(t)) of the Yang–Mills–Higgs flow (3.36) starting at
(B, v) remains in the closure (Gc)2,2(A0, u0). Hence YMH(B(t), v(t)) = m is con-
stant, (B(t), v(t)) a constant flow line and (B, v) a critical point.

Choose (A(j), u(j)) ∈ (Gc)2,2(A0, u0) converging in H1 ×H2 to (B, v) and denote
the limit of the Yang–Mills–Higgs flow starting at (A(j), u(j)) by (B(j), v(j)). Corollary
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3.4.11 shows that (B(j), v(j)) converges to (B, v) in the H1 ×H2 topology. By Step
3, there exists kj ∈ G2,2(P ) such that (B(j), v(j)) = (kjA∞, kju∞). Since the connec-
tions B(j) are uniformly bounded in H1, the gauge transformations kj are uniformly
bounded in H2 and after passing to a subsequence, we may assume that kj → k∞
converges weakly in H2 and strongly in W 1,p. It follows (B, v) = (k∞A∞, k∞u∞)
and this completes the proof.

Theorem 3.5.2. Assume (A), (B) and (C). Let (A, u) ∈ H1,2(P,X) and denote
by (A∞, u∞) the limit of the flow (3.5) starting at (A, u). Then

1. (A, u) is stable if and only if L(A∞,u∞) is injective.

2. (A, u) is polystable if and only if (A∞, u∞) ∈ Gc(A, u) remains in the complex
orbit and ∗FA∞ + µ(u∞) = 0.

3. (A, u) is semistable if and only if ∗FA∞ + µ(u∞) = 0.

4. (A, u) is unstable if and only if ∗FA∞ + µ(u∞) 6= 0.

Remark 3.5.3. We call an element (A, u) ∈ H1,2(P,X) stable, polystable, semistable
or unstable, if every smooth element of (Gc)2,2(A, u) is stable in the sense of Defini-
tion 3.1.1. Note that for every stable pair (A, u) the extension of the infinitesimal
action

Lc(A,u) : H2(Σ, ad(P ))→ H1(Σ, T ∗Σ⊗ ad(P ))⊕H2(Σ, u∗TX/G)

remains injective. This follows from Lemma 3.2.10 and elliptic regularity.

Proof. The unstable, semistable and polystabe characterization follow directly from
Theorem 3.5.1.

For the stable case, note that every stable orbit has discrete Gc-isotropy and
this proves one direction. Conversely, the limit satisfies the critical point equation
L(A∞,u∞)(∗FA∞ + µ(u∞)) = 0. Hence, when L(A∞,u∞) is injective, (A∞, u∞) is
stable. Since the subset of stable pairs H1,2

s (P,X) is open by Proposition 3.5.4 below,
this implies (A(t), u(t)) ∈ H1,2

s (P,X) for sufficiently large t and (A, u) is stable.

Proposition 3.5.4. Assume (A), (B) and (C). The subsets of stable and semistable
pairs H1,2

ss (P,X) ⊂ H1,2
s (P,X) ⊂ H1,2(P,X) are open subsets in the H1 × H2-

topology.

Proof. The semistable case follows from Corollary 3.4.11. The stable case follows from
a suitable application of the implicit function theorem: Suppose (A, u) ∈ H1,2(P,X)
solves the vortex equation ∗FA+µ(u) = 0 and L(A,u) is injective. Then Lc(A,u) is also
injective and, since

〈Lc(A,u)iξ, (a, û)〉L2×L2 = 〈ξ, ∗dAa+ dµ(u)û〉L2

for all ξ ∈ H2(Σ, ad(P )) and (a, û) ∈ T(A,u)(A(P ) × S(P,X)), (A, u) is a regular
point for the moment map Φ(A, u) = ∗FA + µ(u). It follows that

Z := Φ−1(0) ⊂ A1,2(P )× S2,2(P,X)
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is a submanifold locally around (A, u) and the orthogonal complement of T(A,u)Z
coincides with the image of H2(Σ, i ad(P )) under Lc(A,u). Hence

H2(Σ, T ∗Σ⊗ ad(P c))×Z → A1,2(P )× S2,2(P,X), (ξ, z) 7→ exp(iξ)z

restricts to a diffeomorphism between neighborhoods of (0; (A, u)) and (A, u). In
particular, (A, u) is an interior point of H1,2

s (P,X).

3.5.2 The Kempf–Ness theorem
Let (A, u) ∈ H1,2(P,X) and define the 1-form α(A,u) : T (Gc)2,2(P )→ R by

α(A,u)(g, ĝ) := −
∫

Σ

〈
∗Fg−1A + µ(g−1u); Im(g−1ĝ)

〉
dvo`Σ. (3.48)

It is straight forward to check that α(A,u) is exact, G2,2(P )-invariant and integrates
to a unique G2,2(P )-invariant functional

Ψ(A,u) : (Gc)2,2(P )→ R (3.49)

satisfying Ψ(A,u)(1) = 0 (see e.g. [89]). We call Ψ(A,u) the Kempf–Ness functional
associated to (A, u).

Theorem 3.4.3 shows that for every g0 ∈ (Gc)2,2(P ) the negative gradient flow

g−1(t)ġ(t) = −g−1(t)∇Ψ(A,u)(g(t)) = −i(∗Fg(t)−1A + µ(g(t)−1u)) (3.50)

has a unique solution g ∈ C0([0,∞), (Gc)2,2(P )) satisfying g(0) = g0. This flow
intertwines with the Yang–Mills–Higgs flow in the following sense

g(t) solves (3.50) =⇒ (A(t), u(t)) := (g(t)−1A, g(t)−1u) solves (3.36).

We will repetitively make use of the fact that Ψ(A,u) is convex along geodesics in
(Gc)2,2(P )/G2,2(P ). This amounts to the formula

d2

dt2
Ψ(A,u)(geitξ) =

∣∣∣∣Le−itξg−1(A,u)ξ
∣∣∣∣2
L2 ≥ 0 (3.51)

for g ∈ (Gc)2,2(P ) and ξ ∈ H2(Σ, ad(P )).
The Kempf–Ness theorem relates the stability of the pair (A, u) to global prop-

erties of the functional Ψ(A,u). The stable case is due to Mundet [89], see Remark
3.5.6 below. The remaining cases are the content of the next theorem which is a
reformulation of Theorem C in the introduction.

Theorem 3.5.5. Assume (A), (B) and (C) and let (A, u) ∈ H1,2(P,X).

1. (A, u) is polystable if and only if Ψ(A,u) has a critical point.

2. (A, u) is semistable if and only if Ψ(A,u) is bounded below.

3. (A, u) is unstable if and only if Ψ(A,u) is unbounded below.
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Proof. The polystable case follows from (3.48). For the other two cases let g0 ∈
(Gc)2,2(P ) and g : [0,∞)→ (Gc)2,2(P ) be the solution of (3.50) starting at g0. Then

d

dt
Ψ(A,u)(g(t)) = α(A,u)(g(t), ġ(t)) = −|| ∗ Fg(t)−1A + µ(g(t)−1u)||2L2 .

If (A, u) is unstable, Theorem 3.5.1 shows that the right hand side is bounded above
by a strictly negative constant and hence Ψ(A,u) is unbounded below. Conversely,
assume that (A, u) is semistable. Then (A(t), u(t)) := (g(t)−1A, g(t)−1u) satisfies
(3.36) and its limit (A∞, u∞) solves ∗FA∞+µ(u∞) by Theorem 3.5.2. By Proposition
3.2.2 and Theorem 3.4.4 there exist γ ∈ [ 1

2 , 1) and C, T > 0 such that for all t > T

|| ∗ Fg(t)−1A + µ(g(t)−1u)||2L2 = 2 (F(A(t), u(t))−F(A∞, u∞))
= 2 (YMH(A(t), u(t))− YMH(A∞, u∞))
≤ 2 (YMH(A(t), u(t))− YMH(A∞, u∞))γ

≤ C||∇YMH(A(t), u(t))||L2

= C||∂t(A(t), u(t))||L2 .

Theorem 3.4.8 shows that the right-hand-side is integrable and hence

m := lim
t→∞

Ψ(A,u)(g(t)) > −∞.

We claim m = inf Ψ(A,u). For this let g̃0 ∈ (Gc)2,2(P ) and denote by g̃(t) the solution
of (3.50) starting at g̃0. It follows from Step 1 of the proof of Theorem 3.5.1, that
the pointwise geodesic distance between g(t) and g̃(t) in Gc/G remains uniformly
bounded. Since Ψ(A,u) is convex along geodesics in (Gc)2,2(P )/G2,2(P ) by (3.51)
and its gradient converges to zero along g(t) and g̃(t), it follows that |Ψ(A,u)(g(t))−
Ψ(A,u)(g̃(t))| converges to zero. This proves the claim and Ψ(A,u) is bounded below
m.

Remark 3.5.6 (The stable case). In finite dimensions the Kempf–Ness functional
of a point is proper if and only if this point is stable. Mundet [89] established the
following analogous result for the vortex in equations in great generality: (A, u) is
stable if and only if the complexified orbit Gc(A, u) has discrete Gc-isotropy and for
every R > 0 there exist c1, c2 > 0 such that

|| ∗ Fe−iξA + µ(e−iξA)||L2 < R =⇒ ||ξ||L∞ ≤ c1Ψ(A,u)(eiξ) + c2. (3.52)

3.6 Polystability and the moment-weight inequality
3.6.1 The Kobayashi–Hitchin correspondence
Finite weights

The weights of (A, u) ∈ H(P,X) are defined as the asymptotic slopes of Ψ(A,u) along
the geodesic rays [exp(−itξ)] in Gc/G. Here ξ ∈ Lie(G) is a section of T ∗Σ ⊗ ad(P )
and one may hope to replace the conditions on Ψ(A,u) in Theorem 3.5.5 by conditions
on these weights. In general, one needs to consider sections ξ of very low regularity,
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namely of Sobolev class H1. For bundles over a Riemann surface and smooth pairs
(A, u) every finite weight is obtained from a smooth section by Proposition 3.6.2
below.

Definition 3.6.1. For (A, u) ∈ H(P,X) and ξ ∈ H1(Σ, ad(P )) define

w((A, u), ξ) := lim
t→∞
〈∗FeitξA + µ(eitξu), ξ〉L2 ∈ R ∪ {+∞}.

By (3.51), the right-hand-side is monotone increasing in t and the limit exists.

Similarly, define by

w(A, ξ) := lim
t→∞
〈∗FeitξA, ξ〉, w(u, ξ) := lim

t→∞
〈µ(eitξu), ξ〉

the weights for the G(P )-action on A(P ) and S(P,X) respectively. They are well-
defined in R ∪ {+∞} and satisfy w((A, u), ξ) = w(A, ξ) + w(u, ξ).

Proposition 3.6.2. Let A ∈ A(P ) be smooth and let ξ ∈ H1(Σ, ad(P ))\{0} with
w(A, ξ) <∞.

1. Endow P c := P ×G Gc with the holomorphic structure induced by A. Then
there exists ξ0 ∈ g\{0} and a holomorphic reduction PQ ⊂ P c to the parabolic
subgroup

Q = Q(ξ0) :=
{
q ∈ Gc

∣∣∣ the limit lim
t→∞

eitξ0qe−itξ0 =: q+ exists
}
.

The reduction PQ ⊂ P c induces a smooth reduction PK ⊂ P to the centralizer
K = CG(ξ0) and ξ is the image of ξ0 under the following map

Z(Lie(K))→ Ω0(Σ, ad(PK))→ Ω0(Σ, ad(P ))

where the first arrow identifies central elements with constant sections and the
second map is obtained from the inclusion PK ⊂ P .

2. The limit A+ := limt→∞ eitξA exists in H1 and A+ restricts to a smooth con-
nection on PK .

Proof. This is an intrinsic version of [89] Lemma 4.2 and makes use of a deep reularity
result of Uhlenbeck and Yau [118] on weakly holomorphic subbundles, see Lemma
2.5.7. The reduction PK ⊂ P is induced by the isomorphism Gc/Q(ξ0) ∼= G/CG(ξ0).

Stable Kobayashi–Hitchin correspondence

The Kobayashi–Hitchin correspondence says that (A, u) ∈ H(P,X) is stable if and
only if w((A, u), ξ) > 0 for all ξ ∈ Ω0(Σ, ad(P ))\{0}. This was established by Mundet
[89] in greater generality and we briefly recall his argument. Suppose (A, u) is stable
and satisfies the vortex equation. Then

w((A, u), ξ) = 〈∗FA + µ(u), ξ〉L2 +
∫ ∞

0
||L(eitξA,eitξu)ξ||2L2 dt (3.53)
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is positive. It is a less obvious fact that this condition is Gc(P )-invariant and hence
w(g(A, u), ξ) > 0 for every g ∈ Gc(P ). The converse direction depends on the Kempf–
Ness theorem. Mundet shows by contradiction when no estimate (3.52) holds, then
there exists a destabilizing direction ξ with w((A, u), ξ) ≤ 0. Once the estimate (3.52)
is established, one obtains a solution to the vortex equation by direct methods of the
calculus of variations.

Our proof of the polystable case in Theorem 3.6.5 below yields an alternative
proof of the stable case under more restrictive assumptions.

Semistable Kobayashi–Hitchin correspondence

We need to assume the following technical property on the pair (A, u) ∈ H(P,X):

(H) For all ξ ∈ Ω0(Σ, ad(P )) it holds:

w((A, u), ξ) ≤ 0 =⇒ supt>0 ||µ(eitξu)||L2 <∞.

We refer to Remark 3.1.8 for a discussion of this assumption. Following the ideas of
Chen [19, 18], Chen–Sun [23] and Donaldson [39] we prove the following version of
the moment weight inequality which is Theorem E in the introduction.

Theorem 3.6.3 (Sharp moment weight inequality). Suppose (A, u) ∈ H(P,X)
satisfies (H). Then for all ξ ∈ Ω0(Σ, ad(P ))\{0} it holds

−w((A, u), ξ)
||ξ||L2

≤ inf
g∈Gc(P )

|| ∗ FgA + µ(gu)||L2 . (3.54)

If in addition (A), (B), (C) are satisfied and the right hand side is positive, then
there exists a unique ξ0 ∈ Ω0(Σ, ad(P )) with ||ξ||L2 = 1 which yields equality.

Proof. The proof is given in the next subsection on page 134.

Theorem 3.6.4 (Semistable correspondence). Assume (A), (B), (C) and sup-
pose that (A, u) ∈ H(P,X) satisfies (H). Then the following are equivalent:

1. (A, u) is semistable in the sense of Definition 3.1.1.

2. infg∈Gc(P ) || ∗ FgA + µ(gu)||L2 = 0.

3. w((A, u), ξ) ≥ 0 for all ξ ∈ Ω0(Σ, ad(P )).

Proof. This is a direct consequence of Theorem 3.5.1 and Theorem 3.6.3.

Polystable Kobayashi–Hitchin correspondence

Consider for (A, u) ∈ H(P,X) the following properties

(SS) For all ξ ∈ Ω0(Σ, ad(P )) it holds w((A, u), ξ) ≥ 0.
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(PS1) For all ξ ∈ Ω0(Σ, ad(P )) with exp(ξ) = 1 and (w(A, u), ξ) = 0 the limit

lim
t→∞

eitξ(A, u) ∈ (Gc)2,2(A, u)

exists in H1×H2 and remains in the (Sobolev completion of the) complexified
group orbit (Gc)2,2(A, u).

(PS2) For all ξ ∈ Ω0(Σ, ad(P )) with (w(A, u), ξ) = 0 the limit

lim
t→∞

eitξ(A, u) ∈ (Gc)2,2(A, u)

exists in H1×H2 and remains in the (Sobolev completion of the) complexified
group orbit Gc(A, u).

Theorem 3.6.5 (Polystable correspondence). Assume (A), (B), (C) and sup-
pose that (A, u) ∈ H(P,X) satisfies (H). Then the following are equivalent

1. (A, u) is polystable, i.e. there exits g ∈ Gc(P ) such that ∗FgA + µ(gu) = 0.

2. (A, u) satisfies (SS) and (PS1).

3. (A, u) satisfies (SS) and (PS2).

Proof. See page 140.

Assumption (H) is only needed for the application of Theorem 3.6.4. For twisted
Higgs-bundles over Riemann surfaces a polystable Kobayashi–Hitchin correspondence
was established by Garćıa-Prada, Gothen and Mundet [49] by different methods. We
present a more general proof following the ideas of Chen–Sun [23].

3.6.2 Proof of the moment-weight inequality
The purpose of this section is to prove Theorem 3.6.3. Section 3.6.2 contains the
proof of the inequality (3.54). The proof is essentially due to Chen [19, 18] and
Donaldson [39]. Section 3.6.2 contains a proof of the equality in the unstable case.
This is the analog of the Kempf existence theorem in finite dimension. The proof is
based on arguments given by Chen–Sun [23] in the finite dimensional differentiable
case. Section 3.6.2 contains a proof of the uniqueness claim. This is the analogue of
the Kempf uniqueness theorem. The proof is the one given in [51], Theorem 11.3, for
the finite dimensional setting and extends almost ad verbum to our setting.

Proof of the inequality

Let (A, u) ∈ H(P,X), g0 ∈ Gc(P ) and ξ ∈ Ω0(Σ, ad(P ))\{0} be given and assume
w((A, u), ξ) ≤ 0. Define η(t) ∈ Ω1(Σ, ad(P )) and u(t) ∈ G(P ) by

g−1
0 = e−iξte−iη(t)u(t). (3.55)

Let π : Gc → Gc/G denote the canonical projection. Since the left-invariant metric
on Gc/G has nonpositive curvature, the exponential map is distance increasing and
it holds pointwise

||ξt− η(t)|| ≤ distGc/G(π(eiξt), π(eiη(t))) ≤ distGc/G(π(1), π(g−1
0 )).
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In particular, there exists C > 0 such that ||ξt− η(t)||L2 ≤ C and this implies∣∣∣∣∣∣∣∣ ξ

||ξ||L2
− η(t)
||η(t)||L2

∣∣∣∣∣∣∣∣
L2
≤ C

2t||ξ||L2
(3.56)

Define
g : [0, 1]→ Gc(P ), g(s) := g−1

0 exp
(
isu(t)η(t)u−1(t)

)
.

Then γ := π ◦ g is the unique geodesic connecting π(g−1
0 ) to π(e−itξ). It follows from

(3.48) and the fact that Ψ(A,u) is convex along geodesics (3.51) that

−|| ∗ Fg0A + µ(g0u)||L2 ≤ 1
||η||L2

α(A,u) (γ(0), γ̇(0))

≤ 1
||η||L2

α(A,u) (γ(1), γ̇(1))

=
〈
∗FeiξtA + µ(eiξtu), η(t)

||η(t)||L2

〉
L2
.

Assumption (H), Proposition 3.6.2 and (3.56) show that the right-hand side converges
to w((A,u),ξ)

||ξ||L2
and this completes the proof.

Existence of the dominant weight

Suppose that (A0, u0) ∈ H(P,X) is unstable. We prove in this section that there
exists ξ ∈ Ω0(Σ, ad(P )) such that

−w((A0, u0), ξ)
||ξ||L2

= inf
g∈Gc

|| ∗ FgA0 + µ(gu0)||L2 . (3.57)

Let (A, u) : [0,∞) → H(P,X) be the solution of (3.36) starting at (A0, u0), let g :
[0,∞)→ Gc(P ) be the solution of (3.38). Define ξ(t) ∈ Ω0(Σ, ad(P )) and k(t) ∈ G(P )
by

g(t) = e−iξ(t)k(t). (3.58)

The strategy of the proof is to show that the limit

lim
t→∞

ξ(t)
t

=: ξ∞ (3.59)

exists in W 1,p and satisfies (3.57).

Step 1: The limit (3.59) exists in L2.

Denote by π : Gc → Gc/G the canonical projection and let γ := π ◦ g. Since
g−1ġ = i(∗FA+µ(u)) takes values in ig, it holds∇tγ̇ = dπ(g)i(∂t(g−1ġ)) and Theorem
3.4.8 yields the estimate∫ ∞

T

||∇tγ̇(t)||L2 dt ≤ C
∫ ∞
T

||∂t(A, u)||H1 dt ≤ CT−ε. (3.60)
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Define γt : [0, t] → Gc(P )/G(P ) by γt(s) := π
(
e−i ξ(t)t s

)
. Pointwise this is the

geodesic segment connection π(1) to γ(t) and we define

ρt(s) : Σ→ R, ρt(s) = distGc/G(γ(s), γt(s)).

Since Gc/G has nonpositve sectional curvature, there holds pointwise the estimate
ρ̈t(s) ≥ −||∇γ̇(s)|| (see [51] Appendix A). Hence (3.60) yields

||ρ̇t(s)||L2 ≤
∫ ∞
s

||∇tγ̇(t)||L2 ≤ Cs−ε (3.61)

and integrating this estimate shows

||ρt(s)||L2 ≤
∫ s

0
||ρ̇t(r)||L2 dr ≤ Cs1−ε. (3.62)

Since the exponential map on Gc/G is distance increasing, it follows pointwise for
0 < t1 < t2 ∣∣∣∣∣∣∣∣ξ(t1)

t1
− ξ(t2)

t2

∣∣∣∣∣∣∣∣ ≤ ||γ̇t1(0)− γ̇t2(0)|| ≤ ρt2(t1)
t1

(3.63)

Now (3.62) and (3.63) show that ξ(t)
t is a L2-Cauchy sequence and the limit (3.59)

exists in L2.

Step 2: The limit (3.59) exists in W 1,p for every p ∈ (2,∞).

Let ξ(t) be as in (3.58) and define

R(t) := ∗Feiξ(t)A0 − ∗FA0 + µ(eiξ(t)u0)− µ(u0).

A similar calculation as in the proof of Theorem 3.5.1 shows

2 〈R(t), ξ(t)〉 = ∆||ξ(t)||2 + 2
∫ 1

0

(
||deisξ(t)A0ξ(t)||

2 + ||Leisξ(t)u0ξ(t)||
2) ds

≥ 2||ξ(t)||∆||ξ(t)||.

Thus ||ξ(t)|| : Σ → [0,∞) are positive functions satisfying ∆ξ(t) ≤ ||R(t)|| at points
where ξ(t) 6= 0. An argument of Donaldson [32] (see [103] Prop 2.1) using the mean-
value property of harmonic functions shows that this implies an estimate

||ξ(t)||C0 ≤ C (1 + ||R(t)||L2 + ||ξ(t)||L1) . (3.64)

Since (A(t), u(t)) satisfies (3.36) and

|| ∗ Feiξ(t)A0 + µ(eiξ(t)u0)||L2 = || ∗ FA(t) + µ(u(t))||L2

the term ||R(t)||L2 is uniformly bounded and (3.64) simplifies to

||ξ(t)||C0 ≤ C(1 + ||ξ(t)||L1). (3.65)
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In particular, ξ(t)t is uniformly bounded in C0. Since g(t)−1∂̄A0g(t) = (A0 −A(t))0,1

is uniformly bounded in H1 and pointwise

||g−1(t)∂̄A0g(t)||2 = ||eiξ(t)∂̄A0e
−iξ(t)||2 + ||(∂̄A0k(t))k(t)−1||2

it follows that eiξ(t)∂̄A0e
−iξ(t) is uniformly bounded in Lp for every p ∈ (1,∞). Now

eiξ(t)∂̄A0e
−iξ(t) = teiξ(t)/t∂̄A0e

−iξ(t)/t

implies that eiξ(t)/t∂̄A0e
−iξ(t)/t converges to zero in Lp and by elliptic regularity the

limit (3.59) exists in W 1,p.

Step 3: The limit ξ∞ defined by (3.59) yields equality in (3.54).

The Kempf–Ness functional (3.49) satisfies Ψ(A0,u0)(1) = 0, decreases along γ(t)
and is convex along geodesics. Hence Ψ(A0,u0)(eisξ(t)) ≤ 0 for 0 < s < t and by
continuity with respect to the W 1,p-topology, it takes nonpositive values along the
geodesic ray γ∞(t) := π

(
eiξ∞t

)
. This implies w((A0, u0), ξ∞) ≤ 0 and ξ∞ is smooth

by Proposition 3.6.2. Using again that Ψ(A0,u0) is convex along geodesics it follows∣∣Ψ(A0,u0)(γ(t))−Ψ(A0,u0)(γ∞(t))
∣∣ ≤M · distGc/G(γ(t), γ∞(t)) (3.66)

where distGc/G denotes the L2-geodesic distance and

M := sup
t>0

max
{
|| ∗ Fg(t)−1A0 + µ(g(t)−1u0)||L2 , || ∗ Feiξ∞tA0 + µ(eitξu0)||L2

}
.

which is finite by (H) and Proposition 3.6.2. As t → ∞ in (3.62) one obtains
distGc/G(γ(t), γ∞(t)) ≤ Ct1−ε and hence∣∣Ψ(A0,u0)(γ(t))−Ψ(A0,u0)γ∞(t)

∣∣ ≤ Ct1−ε. (3.67)

Then

−w((A0, u0), ξ∞) = lim
t→∞

1
t

∫ t

0
〈e−iξ∞s(A0, u0), ξ∞〉 ds

= lim
t→∞

Ψ(A0,u0)(γ∞(t))
t

= lim
t→∞

Ψ(A0,u0)(γ(t))
t

= lim
t→∞

1
t

∫ t

0
|| ∗ FA(s) + µ(u(s))||2L2 ds

= || ∗ FA∞ + µ(u∞)||2L2

By Theorem 3.5.2

|| ∗ FA∞ + µ(u∞)||L2 = inf
g∈Gc

|| ∗ FgA0 + µ(gu0)|| =: m

and thus −w((A0, u0), ξ∞) = m2. Now

||ξ∞||L2 = lim
t→∞

∣∣∣∣∣∣∣∣ξ(t)t
∣∣∣∣∣∣∣∣
L2
≤ lim
t→∞

1
t

∫ t

0
||γ̇(s)||L2 ds = || ∗ FA∞ + µ(u∞)||L2 = m

shows −w(A, ξ∞)/||ξ∞||L2 ≥ m and the converse inequality follows from (3.54).
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Uniqueness of the dominant weight

Suppose that (A, u) ∈ H(P,X) is unstable and ξ0, ξ1 ∈ Ω0(Σ, ad(P )) satisfy ||ξ1||L2 =
||ξ2||L2 = 1 and

−w((A, u), ξ1) = −w((A, u), ξ2) = inf
g∈Gc(P )

|| ∗ FgA + µ(gu)||L2 =: m > 0.

We prove in the following that this implies ξ1 = ξ2.

Define η(t) ∈ Ω0(Σ, ad(P )) and k(t) ∈ G(P ) by

e−itξ0eiη(t) = e−itξ1k(t). (3.68)

Let π : Gc → Gc/G denote the canonical projection and let p(t) := π(e−itξ0eiη(t)/2)
denote the midpoint between the geodesic rays spanned by ξ1 and ξ2. Since Gc/G
has nonpositive curvature, the exponential map (based at p(t)) is distance increasing
and this yields

d(1, p(t))2 ≤ d(π(1), π(eiξ1t))2 + d(π(1), π(eiξ2t))2

2 − d(π(eiξ1t), π(eiξ2t))2

4

≤ t2
(

1− ||ξ1 − ξ2||L
2

4

)
where d(·, ·) = distGc/G(·, ·) denotes the L2-geodesic distance. Since Ψ(A,u) is convex
along geodesics, it follows Ψ(A,u)(p(t)) ≤ −tm and hence

Ψ(A,u)(p(t))
d(1, p(t)) ≤ −m√

1− ||ξ0 − ξ1||L2/4
. (3.69)

Denote for r > 0

Sr :=
{
π(eiξ)

∣∣ ξ ∈ Ω0(Σ, ad(P )), ||ξ||L2 = r
}
⊂ Gc(P )/G(P ).

We claim

lim
r→∞

1
r

inf
Sr

Ψ(A,u) = −m. (3.70)

As t → ∞ in (3.69) the claim implies ξ1 = ξ2. The inequality ”≤” in (3.70) follows
by considering the values along the geodesics ray π(eiξ1t). For the other direction let
h ∈ Gc(P ) be given and using (3.51) one estimates

Ψh−1(A,u)(g) ≥ −|| ∗ Fh−1A + µ(h−1u)||L2 · d(π(1), π(g))

Suppose h is chosen such that || ∗ Fh−1A + µ(h−1u)||L2 ≤ m+ ε. Then

Ψ(A,u)(g) = Ψh−1(A,u)(h−1g) + Ψ(A0,u0)(h)
≥ (−m− ε)d(π(1), π(h−1g)) + Ψ(A0,u0)(h)
≥ (−m− ε)d(π(1), π(g)) + (−m− ε)d(π(1), π(h−1)) + Ψ(A0,u0)(h)

and as d(π(1), π(g))→∞ and ε→ 0 this proves (3.70).
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3.6.3 Proof of the polystable correspondence
The purpose of this section is to prove Theorem 3.6.5.

Proposition 3.6.6. Let (A, u) ∈ H(P,X) be polystable, then (A, u) satisfies (SS)
and (PS2).

Proof of Proposition 3.6.6. Choose g ∈ Gc(P ) such that ∗FgA + µ(gu) = 0. Then

w(g(A, u), ξ) = 〈∗FgA + µ(gu), ξ〉L2 +
∫ ∞

0
||L(eitξgA,eitξgu)ξ||2L2 dt (3.71)

shows w(g(A, u), ξ) ≥ 0. Equality holds if and only if Lg(A,u)ξ = 0 and eitξg(A, u) =
g(A, u) is constant. In particular, g(A, u) satisfies (SS) and (PS2). The proposition
follows now from Lemma 3.6.7 below.

Lemma 3.6.7. Let (A, u) ∈ H(P,X) and let (B, v) ∈ Gc(A, u).

1. If (A, u) satisfies (SS) and (PS1) then (B, v) satisfies (SS) and (PS1).

2. If (A, u) satisfies (SS) and (PS2) then (B, v) satisfies (SS) and (PS2).

Proof. We prove the second part first. Choose g ∈ Gc(P ) such that (B, v) = g(A, u)
and let ξ ∈ Ω0(Σ, ad(P )) be such that w(g(A, u), ξ) ≤ 0. Let ξ0 ∈ g and PQ ⊂ P c

be the Q(ξ0)-bundle determined by ξ as asserted in Proposition 3.6.2. It is possible
to decompose g = qk with q ∈ G(PQ) and k ∈ G(P ) (e.g. by using the identity
Gc/B = G/Z(G) for any Borel subgroup B ⊂ Q(ξ0)). By definition of Q(ξ0)

q+ := lim
t→∞

eitξqe−itξ (3.72)

Using the assumption w(qk(A, u), ξ) ≤ 0 it follows for t > 0

0 ≥ Ψqk(A,u)(e−itξ) = Ψk(A,u)(q−1e−itξ)−Ψk(A,u)(q−1). (3.73)

Let π : Gc → Gc/G deonte the canoncial projection. Then

distGc/G
(
π
(
e−itξ) , π (q−1e−itξ)) = distGc/G

(
π(1), π

(
eitξq−1e−itξ)) ≤ C (3.74)

which is bounded by (3.72). For t > s > 0 define ηs,t ∈ Ω0(Σ, ad(P )) and ks,t ∈ G(P )
by

e−isξeiηs,t = q−1e−itξks,t.

Since the exponential map in Gc/G is distance increasing, it follows from (3.74)

lim
t→∞

∣∣∣∣∣∣∣∣ ηs,tt− s
− ξ
∣∣∣∣∣∣∣∣
L2

= 0. (3.75)

If sup{Ψk(A,u)(e−itξ) | t > 0} < ∞, then clearly w(k(A, u), ξ) ≤ 0. Otherwise, (3.73)
shows that for all sufficently large s > 0 and every t > s we have

Ψk(A,u)(e−isξ) > Ψk(A,u)(q−1e−itξ).
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Since Ψk(A,u) is convex along the geodesic segement r 7→ e−isξ · eiηs,tr, it follows

dΨk(A,u)

(
π(e−isξ); dπ(e−isξ)i ηs,t

t− s

)
=
〈
∗FeisξkA + µ(e−isξku), ηs,t

t− s

〉
< 0.

Now (3.75) implies
〈
FeisξA + µ(eisξu); ξ

〉
≤ 0 for all sufficiently large s and hence

w(k(A, u), ξ) ≤ 0. Since (A, u) satisfies (SS) by assumption, it follows w((A, u), k−1ξk) =
0 and (PS2) implies that the limit

(A+, u+) := lim
t→∞

eitk−1ξk(A, u)

exists in H1 ×H2 and (A+, u+) ∈ (Gc)2,2(A, u). Hence

(B+, v+) := lim
t→∞

eitξ(B, v) = lim
t→∞

eitξqe−itξkeitk−1ξk(A, u) = q+k(A+, u+)

exists and (B+, v+) ∈ (Gc)2,2(B, v). Moreover,

w((B, v), ξ) = 〈∗Fq+kA+ + µ(q+ku+), ξ〉

and it remains to verify that this vanishes. By Proposition 3.6.2, there exists a
reduction PK ⊂ P to the centralizer K = CG(ξ0) and q+ restricts to an element
in Gc(PK). Let h : [0, 1] → Gc(PK) be a smooth path connecting 1 to q+ with
h−1(t)ḣ(t) = α(t) + iβ(t) . A short calculation shows

∂t〈∗Fh(t)kA+ + µ(h(t)ku+), ξ〉
=
〈
−
[
∗Fh(t)kA+ + µ(h(t)ku+), α(t)

]
, ξ
〉

+
〈
Lh(t)k(A+,u+)β(t),Lh(t)k(A+,u+)ξ

〉
= 0

where the last step uses [α(t), ξ] = 0 and Lh(t)k(A+,u+)ξ = h(t)Lk(A,u)ξ = 0. Hence

w((B, v), ξ) = 〈∗FkA+ + µ(ku+), ξ) = 〈∗FA+ , µ(u+), k−1ξk〉
= w((A, u), k−1ξk) = 0

and this completes the proof of the second part.
The first part follows from the same argument, since exp(ξ) = 1 implies exp(k−1ξk) =

1.

Proof of Theorem 3.6.5. If (A, u) is polystable then it satisfies (SS) and (PS2) by
Proposition 3.6.6. For the converse direction let (A0, u0) ∈ H(P,X) be given and
assume that it satisfies (SS) and (PS1). Denote by (A, u) : [0,∞) → H(P,X) the
solution of (3.36) starting at (A0, u0) with limit (A∞, u∞). Theorem 3.6.4 shows that
(A0, u0) is semistable and hence by Theorem 3.5.2 the limit solves ∗FA∞+µ(u∞) = 0.
Denote the isotropy groups at the limit and their Lie algebras by

H := {h ∈ G2,2(P ) | (hA∞, hu∞) = (A∞, u∞)}, h = ker(LA∞,u∞)

Hc := {h ∈ (Gc)2,2(P ) | (hA∞, hu∞) = (A∞, u∞)}, hc = ker(Lc(A∞,u∞)).
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By Theorem 3.5.2 we may assume that these groups are not discrete. There are
two important properties to note: (1) By Lemma 3.2.10 A∞ is gauge equivalent to a
smooth connection. In particular, as a subgroup of the isotropy group of A∞, one can
identify H with a closed and hence compact subgroup of G. (2) Using the equation
∗FA∞ +µ(u∞) = 0, a short calculation shows that Hc is indeed the complexification
of H.

Step 1: There exists an H-invariant holomorphic coordinate chart

ψ : (T(A∞,u∞)A1,2(P )× S2,2(P,X), 0)→
(
A1,2(P )× S2,2(P,X), (A∞, u∞)

)
defined on a neighborhood of the origin satisfying dψ(0, 0) = id.

Let {gp}p∈P be a smooth G-invariant family of Riemannian metrics on X, com-
patible with the holomorphic structure, such that gp is flat in a neighborhood of
u∞(p). Then expgp : Tu∞(p)X → X is holomorphic in a neighbourhood of the origin
and φS(û)(p) := expgp(û(p)) provides a holomorphic chart for S(P,X). Define

ψ(a, û) :=
∫
H

h−1(A∞ + hah−1) dµH(h) + φS

∫
H

φ−1
S
(
h−1φS(hû))

)
dµH(h)

where µH denotes the Haar-measure on H with µH(H) = 1. This is well-defined for
||û||L∞ ≤ c||û||H2 sufficiently small and satisfies the desired properties.

Step 2: The linearization of the holomorphicity condition ∂̄Au = 0 is the operator
D : H1(Σ, ad(P ))⊕H2(Σ, u∗∞TX)→ H1(Σ,Λ0,1 ⊗ u∗∞TX)

D(a, û) = (∇A∞ û+ Lu∞a)0,1
.

There exists an H-invariant holomorphic coordinate chart ψ as in Step 1 with the
additional property that

ψ(a, û) ∈ H1,2(P,X) =⇒ D(a, û) = 0

for every pair (a, û) in the domain of ψ.

Since ∇A∞ is a Fredholm operator with closed range and finite dimensional coker-
nel, it follows that the image of D is closed with finite codimension. Now any choice
of complements for the kernel and image of D yield a pseudoinverse

T : H1(Σ,Λ0,1 ⊗ u∗∞TX)→ H1(Σ, ad(P ))⊕H2(Σ, u∗∞TX)

which is a bounded linear operator satisfying DTD = D and TDT = T . Since D
is complex linear we can choose complex complements to obtain a complex linear
pseudoinverse T . Moreover, D is H-equivariant and for every h ∈ H the operator
Th := hTh−1 yields another complex linear pseudoinverse for D. The average∫

H

∫
H

Th1DTh2dµH(h1)dµH(h2)
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with respect to the Haar measure µH provides a H-equivariant pseudoinverse.
Let ψ be defined as in Step 1 and let T be a complex linear H-invariant pseu-

doinverse of D. Consider on the domain of ψ the map f̃(a, û) := f(ψ(a, û)) where
f(A, u) := ∂̄Au. The map

θ(a, û) := (a, û) + T (f̃(a, û)−D(a, û))

satisfies θ(0) = 0 and dθ(0) = 1. Hence there exists a local holomorphic inverse θ−1

around the origin by the inverse function theorem. It follows from the construction
that f̃0 := (1−DT ) ◦ f̃ ◦ θ−1 takes values in ker(T ) and

f̃ ◦ θ−1 = f̃0 +D.

Since ker(T ) is a complement of Im(D) this implies

f̃ ◦ θ−1(a, û) = 0 ⇐⇒ D(a, û) = 0, f̃0(a, û) = 0.

Step 2 follows from this discussion after replacing ψ by ψ ◦ θ−1.

Step 3: Denote by h⊥ the L2-orthogonal complement of h in H2(Σ, ad(P )) and by
V the L2-orthogonal complement of the image of LcA∞,u∞ . Then there exists t0 > 0
and maps

(a, û) : [t0,∞)→ ker(D) ∩ V, ξ, η : [t0,∞)→ h⊥

such that (a(t), û(t)) is in the domain of the chart ψ constructed in Step 2 and

(A(t), u(t)) = eiη(t)eξ(t)ψ(a(t), û(t)) (3.76)

for all t > t0.

The map h⊥×h⊥×V → A1,2(P )×S2,2(P,X) defined by (ξ, η, (a, û)) 7→ eiηeξψ(a, û)
is smooth near the origin with invertible derivative. Step 3 follows now from the im-
plicit function theorem and Step 2.

Step 4: Let g : [0,∞)→ Gc(P ) be the solution of the equation g−1ġ = i(∗FA(t) +
µ(u(t))) with g(0) = 1 obtained in Theorem 3.4.3. There exists t1 ≥ t0 with the
following significance:

h : [t1,∞)→ (Gc)2,2(P ), h(t) := e−iξ(t)e−iη(t)g−1(t)g(t1)eiη(t1)eiξ(t1)

satisfies h(t) ∈ Hc and (a(t), û(t)) = h(t)−1(a(t1), û(t1)) for every t ≥ t1.

Let t1 ≥ t0 be fixed. Rewrite the identity (A(t), u(t)) = g(t)−1(A0, u0) as
ψ(a(t), û(t)) = h(t)ψ(a(t1), û(t1)) and differentiate this to obtain

dψ(a(t), û(t))[∂t(a(t), û(t))] = ∂t(ψ(a(t), û(t))) = Lcψ(a(t),û(t))ḣ(t)h−1(t). (3.77)

For (a, û) ∈ V consider the operator

N(a,û) : H2(Σ, ad(P )c)× V → T(A∞,u∞)(A1,2(P )× S2,2(P,X))
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N(a,û)(ζ, (b, v̂)) := Lcψ(a,û)ζ − dψ(a, û)[b, v̂].
Then (3.77) can be reformulated as

(h(t)−1ḣ(t), ∂t(a(t), û(t))) ∈ ker(N(a(t),û(t))). (3.78)

Since N(0,0) is surjective with kernel hc, it follows that N(a,û) is a surjective Fredholm
operator with index dim(hc) for ||a||H1 + ||û||H2 sufficiently small. For ξ ∈ h it holds

d

ds

∣∣∣∣
s=0

ψ(eξs(a, û)) = d

ds

∣∣∣∣
s=0

eξsψ(a, û) = Lψ(a,û)ξ.

Since V is H-invariant this shows Lψ(a,û)h ⊂ dψ(a, û)V . Moreover, since ψ is holo-
morphic and V a complex subspaces, it follows Lcψ(a,û)h

c ⊂ dψ(a, û)V . This implies
that the kernel of N(a,û) projects onto hc. For sufficiently large t1 the same is true for
all operators N(a(t),û(t)) with t ≥ t1. Then (3.78) shows h−1(t)ḣ(t) ∈ hc for all t ≥ t1
and hence h(t) ∈ Hc. Since ψ is holomorphic and H-equivariant this completes the
proof of Step 4.

Step 5: There exists ξ0 ∈ h with exp ξ0 = 1 such that w(h(t1)−1(A(t1), u(t1)), ξ0) =
0 and

lim
t→∞

eitξ0h(t1)−1(A(t1), u(t1)) = (A∞, u∞). (3.79)

In particular, (A∞, u∞) ∈ (Gc)2,2(A0, u0) and (A0, u0) is polystable.

The group H acts on the finite dimensional vector space X0 := V ∩ ker(D) by
unitary automorphism. Step 4 shows that the origin is contained in the closure of the
Hc-orbit of (a(t1), û(t1)). The classical Hilbert-Mumford criterion (see [51] Theorem
14.2) shows that there exists ξ0 ∈ h with exp ξ0 = 1 such that

lim
t→∞

eitξ0(a(t1), û(t1)) = 0.

Since ψ(eitξ0(a(t1), û(t1)) = eitξ0ψ(a(t1), û(t1)) = eitξ0h(t1)−1(A(t1), u(t1)) for all
t ≥ 0, it follows

lim
t→∞

eitξ0h(t1)−1(A(t1), u(t1)) = ψ(0) = (A∞, u∞)

and w(h(t1)−1(A(t1), u(t1)), ξ0) = 〈∗FA∞ + µ(u∞), ξ0〉 = 0.
By Lemma 3.2.10 there exists k ∈ G2,2(P ) such that k(A∞, u∞) is smooth. Then

kh(t1)−1 ∈ ker(Lck(A∞,u∞) is smooth and

w(kh(t1)−1(A(t1), u(t1)), kξ0k−1) = w(h(t1)−1(A(t1), u(t1)), ξ0) = 0

By Lemma 3.6.7 kh(t1)−1(A(t1), u(t1)) satisfies (PS1) and together with (3.79) this
yields

(A∞, u∞) = lim
t→∞

eitξ0h(t1)−1(A(t1), u(t1))

= k−1 lim
t→∞

ekξ0k
−1
kh(t1)−1(A(t1), u(t1)) ∈ (Gc)2,2(A0, u0)

Hence (A0, u0) is polystable by Theorem 3.5.2 and this completes the proof.
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Chapter 4

Donaldson’s moment map
approach to Teichmüller
theory

This chapter provides a self-contained exposition of a general moment map framework
for the diffeomorphism group introduced by Donaldson [38].
The main applications considered in this chapter is the construction of a hyperkähler
moduli space M associated to a closed oriented surface Σ with genus(Σ) ≥ 2. This
embeds naturally into the cotangent bundle T ∗T (Σ) and can be viewed as the Feix–
Kaledin hyperkähler extension of the Weil–Petersson metric on Teichmüller space.
Donaldson outlined various remarkable properties of this moduli space for which we
provide complete proofs: The moduli space M parametrizes the class of almost-
Fuchsian 3-manifolds. These are quasi-Fuchsian 3-manifolds which contain a unique
minimal surface with principal curvatures in (−1, 1). The area of this minimal surface
then provides a Kähler potential for the hyperkähler metric. Moreover, the moduli
space M embeds naturally into the SL(2,C)-representation variety of Σ and the
hyperkähler structure onM extends the Goldman holomorphic symplectic structure
on the representation variety. The various identifications are obtained using the work
of Uhlenbecks [117] on germs of hyperbolic 3-manifolds, an explicit map from M to
T (Σ)×T (Σ) found by Hodge [61], the simultaneous uniformization theorem of Bers
[8], and the theory of Higgs bundles introduced by Hitchin [58].
Another motivation for such a detailed account on Donaldson’s framework is the
fact that there are several interesting variants and extensions of the theory. We will
explore some of these in the remaining three chapters of this thesis building upon the
discussion in this chapter.
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4.1 Introduction
Donaldson’s moment map framework
Let (M,ρ) be a closed manifold equipped with a volume form ρ, denote by P → M
its SL(n,R) frame bundle and let (X,ω) be a symplectic manifold with Hamiltonian
SL(n,R) action generated by a moment map µ : X → sl(n,R)∗. Denote by S(P,X)
the space of section of the associated symplectic fibration P (X) := P ×SL(n,R) X.
This carries a natural symplectic form defined by

ωs(ŝ1, ŝ2) :=
∫
M

ωs(ŝ1, ŝ2)ρ (4.1)

for vertical vector fields ŝ1, ŝ2 ∈ Ω0(M, s∗T vertP (X)).
The group Diff(M,ρ) of volume preserving diffeomorphisms acts symplectically on

S(P,X) by pullback. It is useful to view this group formally as an infinite dimensional
Lie group with Lie algebra

Lie (Diffex(M,ρ)) = {v ∈ Vect(M) | dι(v)ρ = 0} . (4.2)
The subgroup Diffex(M,ρ) ⊂ Diff0(M,ρ) of exact volume preserving diffeomorphisms
is the subgroup obtained by integrating exact divergence free vector fields. In other
words, it is the subgroup corresponding to the Lie subalgebra

Lie (Diffex(M,ρ)) = {v ∈ Vect(M) | ι(v)ρ is exact} . (4.3)
This space is isomorphic to Ωn−2(M)/ker(d) and thus its dual space can formally be
identified with the space of exact 2-forms on M

Lie (Diffex(M,ρ))∗ = dΩ1(M). (4.4)
In this setup Donaldson proved the following theorem.
Theorem A (Donaldson [38]). Fix a torsion free SL(n,R) connection ∇ on M and
define µ : S(P,X)→ Ω2(M) by

µ(s) := ω(∇s ∧∇s)− 〈µs, R∇〉 − dc(∇µs) (4.5)

where µs ∈ Ω0(M,End0(TM)∗) is obtained by composing the equivariant lift s̃ : P →
X of s with the moment map µ : X → sl(n,R)∗ and c(∇µs) ∈ Ω1(M) is defined as
the contraction (µs)ij;i of ∇µs. Then the following holds.

1. The map µ is Diff(M,ρ)-equivariant and µ(s) ∈ Ω2(M) is closed and indepen-
dent of the connection ∇ used to define it.

2. Let v ∈ Vect(M) be an exact divergence free vector field and choose a primitive
αv ∈ Ωn−2(M) with dαv = ι(v)ρ. Then

∂t

∫
M

µ(s(t)) ∧ αv =
∫
M

ω(ṡ(t),Lvs(t))ρ (4.6)

for any smooth curve s : R → S(P,X), where Lvs denotes the infinitesimal
action of v on s for the right action.

Proof. This is Theorem 9 in [38] and we include the proof in Theorem 4.2.4. (Note
that the formula for the moment map in [38] contains some obvious typos regarding
the signs which we corrected in formula stated above.)
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Remark 4.1.1. The map µ is not a moment map in the strict sense, since it takes
only values in the space of closed 2-forms and not in the space of exact 2-forms.
Nevertheless, Theorem A asserts that µ satisfies the moment map equation. When
dim(M) = 2, one can fix this by subtracting a suitable multiple of the area form. In
higher dimensions, one could still subtract a suitable closed 2-form τ ∈ Ω2(M) such
that µ(s) − τ is exact for every s ∈ S(P,X). However, the resulting moment map
µ(s)− τ is in general not equivariant.

Construction of the hyperkähler moduli space M
In the following let (Σ, ρ) be a closed oriented 2-dimensional surface with fixed area
form ρ ∈ Ω2(Σ) and assume genus(Σ) ≥ 2.

The fundamental example considered by Donaldson arises form taking the hyper-
bolic plane H as fibre. This admits a canonical identification with the space J (R2)
of linear complex structures on R2 and the space of sections S(P,X) ∼= J (Σ) gets
then identified with the space of complex structures on Σ. Theorem A asserts that
the action of Ham(Σ, ρ) on J (Σ) is Hamiltonian and generated by the moment map

µ(J) = 2(KJ − c)ρ with c := 2π(2genus(Σ)− 2)
vol(Σ, ρ) , (4.7)

where KJ denotes the Gaussian curvature of ρ(·, J ·) and c is determined by the
Gauss–Bonnet theorem. After taking the action of Symp0(Σ, ρ)/Ham(Σ, ρ) on the
Marsden–Weinstein into account, this yields the Teichmüller space

T (Σ) := J (Σ)/Diff0(Σ) ∼= {J ∈ J (Σ) |KJ = c} /Symp0(Σ, ρ) (4.8)

equipped with the Weil–Petersson symplectic form (up to scaling).
A remarkable generalization of this construction is obtained by taking as fibre the

unit disc bundle X ⊂ T ∗H. This carries a unique S1×SL(2,R)-invariant hyperkähler
metric, which extends the hyperbolic metric along the zero section and blows up
when approaching the boundary of the disc bundle (see Theorem 4.5.1). A section
s ∈ S(P,X) corresponds now to a pair (J, σ) consisting of a complex structure J and
a quadratic differential σ with |σ|J < 1, i.e. S(P,X) corresponds to

Q1(Σ) :=
{

(J, σ) | J ∈ J (Σ), σ ∈ Ω0(Σ, S2(T ∗Σ⊗J C)), |σ|J < 1
}

(4.9)

The hyperkähler structure on X then yields a hyperkähler structure on Q1(Σ) and
Theorem A asserts that there exists a hyperkähler moment map for the action of the
Hamiltonian diffeomorphism group.
Theorem B (Donaldson [38]).

1. The action of Ham(Σ, ρ) on Q1(Σ) admits a hyperkähler moment map given by

µ1(J, σ) = |∂̄σ|
2 − |∂σ|2√
1− |σ|2

ρ+ 2
√

1− |σ|2KJρ+ 2i∂̄∂
√

1− |σ|2 − 2cρ

µ2(J, σ) + iµ3(J, σ) = −2i∂̄r(∂̄σ)
(4.10)

where c := 2π(2 − 2genus(Σ))/vol(Σ, ρ) and r : Ω0,1(Σ, S2(T ∗Σ ⊗J C)) →
Ω1,0(Σ) is the contraction defined by the metric ρ(·, J ·).
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2. The action of Symp0(Σ, ρ) on Q1(Σ) is Hamiltonian for the second and third
symplectic form with moment maps

〈µ̃2(J, σ), v〉+ i〈µ̃3(J, σ), v〉 = −2i
∫

Σ
ι(v)r(∂̄Jσ)ρ (4.11)

for any symplectic vector field v ∈ Vect(Σ) satisfying dι(v)ρ = 0.

Proof. This is Proposition 17 in [38] and we present a proof in Theorem 4.5.13.
We give an alternative proof of the second statement, since we found it difficult to
translate the conceptual arguments given by Donaldson into a rigorous proof. We
proceed by generalizing the proof of Theorem A where we use that the canonical
holomorphic symplectic form ω2 + iω3 on X is exact.

The construction of the hyperkähler quotientM based upon Theorem B requires
some additional work. This was indicated very briefly in [38] and we include a careful
exposition of this. First, we show that the quotient(

µ−1
1 (0) ∩ µ̃−1

2 (0) ∩ µ̃−1
2 (0)

)/
Symp0(Σ, ρ)

inherits a canonical hyperkähler structure form Q1(Σ). Then we show that by Moser
isotopy and a suitable rescaling of the quadratic differential this moduli space is
isomorphic to

M :=
{

(g, σ) ∈ Met(Σ)×Q(g)
∣∣∣∣ ∂̄σ = 0, |σ| < 1,
Kg − c

2 |σ|
2 = c

2

}/
Diff0(Σ) (4.12)

where c := 2π(2−2genus(Σ))
vol(Σ,ρ) as above.

Geometric interpretations of the hyperkähler quotient
The moduli space M takes a particularly simple form when we scale the volume of
Σ such that c = −2. Donaldson proposed under this assumption the following three
geometric interpretations:

1. M can be embedded in T ∗T (Σ) and the hyperkähler metric on M yields the
Feix–Kaledin extension of the Weil–Petersson metric on T (Σ).

2. M parametrizes the class of almost-Fuchsian hyperbolic 3-manifolds. These are
quasi-Fuchsian 3-manifolds which possess an incompressible minimal surface
with principal curvatures in (−1, 1). This surface is then unique and its area
provides a Kähler potential for the hyperkähler metric.

3. M embeds as an open subset into the smooth locus of the SL(2,C) repre-
sentation variety RSL(2,C)(Σ) := Hom (π1(Σ),SL(2,C)) /SL(2,C). The hy-
perkähler structure onM is compatible with the natural holomorphic symplec-
tic structure introduced by Goldman [52], where the natural complex structure
coincides with the second complex structure on M.
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Remark 4.1.2. The class of almost-Fuchsian manifolds is strictly smaller the the
class of quasi-Fuchsian manifold: There are examples of quasi-Fuchsian manifolds
which admit more then one minimal surface (see [121, 63, 57]) and these cannot be
almost-Fuchsian (see Lemma 4.6.5).

The isomorphism betweenM and the space of almost-Fuchsian manifolds follows
from Uhlenbeck’s theory of minimal surfaces in hyperbolic 3-manifolds [117]. Her
result gives rise to the following theorem in our context.

Theorem C (Uhlenbeck [117]). Let g ∈ Met(Σ) and σ ∈ Q(g) satisfy the equations
Kg + |σ|2 = −1, ∂̄σ = 0, and |σ|g < 1. For every such pair we define an almost-
Fuchsian metric on Y := Σ× R by

gY = gYg,σ =
(
g
(
cosh(t)1− sinh(t)g−1Re(σ)

)2 0
0 1

)
. (4.13)

This is the unique almost-Fuchsian metric which restricts to g along Σ × {0} and
such that Re(σ) is the second fundamental form of Σ× {0} ⊂ Y .

Proof. See Theorem 4.6.4.

Let (Y := Σ × R, gY ) be an almost Fuchsian manifold. Its boundary at infinity
is the disjoint union of two disjoint unions of Σ, which are both equipped with an
induced conformal structure. This gives rise to an embedding of the space of almost
Fuchsian metrics into the product space T (Σ) × T (Σ). An alternative construction
of this map was introduced by Hodge [61]. This is based on the SL(2,R)-equivariant
diffeomorphism α : X → H×H defined by

α(x+ iy, u+ iv) :=
(
x− y2v

1− yu + i yγ

1− yu, x+ y2v

1 + yu
+ i yγ

1 + yu

)
(4.14)

where γ :=
√

1− y2(u2 + v2). The second complex structure on X ⊂ T ∗H corre-
sponds under this map to (i,−i) on H × H. On the space of sections, this gives
rise to an embedding of Q1(Σ) into J (Σ) × J (Σ) which descends to the moduli
spaces and yields the same embedding of M into T (Σ) × T (Σ) as before. This em-
bedding intertwines the second complex structure on M with the complex structure
(Ĵ1, Ĵ2) 7→ (−J1Ĵ1, J2Ĵ2) on T (Σ) × T (Σ) (see Proposition 4.6.8 and Proposition
4.6.7). We then verify the following remarkable observation of Donaldson.

Theorem D. Let A : AF(Σ)→ R be the area functional, which assigns to an almost
Fuchisan manifold Y the area of its unique minimal surface. Then

2i∂̄J2∂J2A = ω2. (4.15)

Hence A provides a Kähler potential with respect to the natural complex structure on
AF(Σ) which agrees (up to sign) with the second complex structure on M.

Proof. See Theorem 4.6.9.
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By the Cartan–Ambrose–Higgs theorem, one can express every complete hyper-
bolic 3-manifold as quotient of hyperbolic space H3. This gives rise to a natural
embedding of the almost Fuchsian moduli space into RPSL(2,C)(Σ). A classical result
of Bers [9] asserts that the restriction of this complex structure to M corresponds
to the standard complex structure on T (Σ) × T (Σ) which differs by a sign from
our conventions. In particular, the second complex structure on M corresponds to
multiplication by −i on RPSL(2,C)(Σ).

The representation associated to an almost-Fuchisan manifold lifts to SL(2,C) and
a corresponding embedding ofM into RSL(2,C)(Σ) can be constructed directly using
the theory of Higgs bundles [58]. This has been suggested by Donaldson [38] and
goes as follows: Let g ∈ Met(Σ) and σ ∈ Q(g) be given. Choose a holomorphic line
bundle L → Σ with L2 = TΣ and define E = L ⊕ L−1. The Levi-Civita connection
for g induces a unique U(1)-connection a ∈ A(L). Then consider the pair

A =
(
a σ̄

2
−σ2 −a

)
∈ A(E) and φ = 1

2

(
0 1
0 0

)
∈ Ω1,0(End(E)) (4.16)

where σ ∈ Ω1,0(L−2) = Ω1,0(Hom(L,L−1)) and 1 ∈ Ω0(End(TΣ)) = Ω1,0(L2) =
Ω1,0(Hom(L−1, L)).

Theorem E. Let g ∈ Met(Σ) and σ ∈ Q(g) satisfy the equations Kg + |σ|2 = −1,
∂̄σ = 0, and |σ|g < 1. The corresponding pair (A, φ) defined by (4.16) satisfies the
Hitchin equation

∂̄Aφ = 0, FA + [φ ∧ φ∗] = 0
and B := A + φ + φ∗ ∈ Ac(E) is a flat SL(2,C) connection. The holonomy rep-
resentation ρB : π1(Σ) → SL(2,C) agrees up to conjugation with the representation
associated to the almost Fuchian metric gYg,σ defined in Theorem C.

Proof. See Theorem 4.6.12).

Finally, we show that the natural map ofM into T ∗T (Σ) is a well-defined embed-
ding (see Theorem 4.6.14). This follows by a standard application of the continuation
method and the proof is due to Uhlenbeck [117].

We should also mention the work of Taubes [108], which is closely related to our
setup. He investigates the larger moduli space which one obtains by omitting the
constraint |σ|g < 1 in the definition of M.

Overview
Section 2 discusses the relevant background on symplectic fibrations and contains a
proof of Theorem A.

Section 3 summarizes basic properties of the hyperbolic plane H. We provide an
explicit formula for the identification H ∼= J (Σ) and show that the cotangent bundle
T ∗H can be identified with the space of pairs (J, q) where J ∈ J (R2) and q ∈ Q(J)
is a complex quadratic form on (R2, J).

Section 4 contains Donaldson’s construction of Teichmüller space. We include
a detailed discussion on how this leads to the Weil–Petersson symplectic form on
Teichmüller space. We also include an exposition of the identification of Teichmüller
space with the space of Fuchsian representations.
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Section 5 contains the construction of the moduli space M: We present Donald-
son’s derivation of the hyperkähler metric on X ⊂ T ∗H by elementary methods and
then calculate the hyperkähler moment map for the SL(2,R) action on X. After this
preparatory work, we proceed to the proof of Theorem B. This is the main ingredient
for the construction ofM. Finally, we show that the hyperkähler structure on Q1(Σ)
induces a hyperkähler structure on M.

Section 6 investigates the three geometric models for the hyperkähler moduli
space M. We construct various isomorphism between the different models and es-
tablish Theorem C, Theorem D and Theorem E. We also include a brief discussion
of complete hyperbolic 3-manifolds, quasi-Fuchsian groups and the simultaneous uni-
formization theorem of Bers.

4.2 Donaldson’s moment map
Let (M,ρ) be a closed oriented n-dimensional manifold with fixed volume form ρ and
let P →M be its SL(n,R) frame bundle which is defined by

P := {(z, θ) | z ∈M, θ ∈ Hom(Rn, TzM), θ∗ρz = dvolRn}.

Let (X,ω) be a symplectic manifold with Hamiltonian SL(n,R)-action induced by an
equivariant moment map µ : X → sl∗(n,R) and consider the associated bundle

P (X) := P ×SL(n,R) X := (P ×X)/SL(n,R)

where SL(n,R) acts diagonally. Denote by S(P,X) its space of sections. We establish
the necessary background on symplectic fibrations and the action of the diffeomor-
phism group in the first two subsection. We then state the main result of this section
is Theorem 4.2.4. This establishes Donaldson’s moment map for the action of the
subgroup Diffex(M,ρ) of exact volume preserving diffeomorphism on S(P,X). The
action of the full group of volume preserving diffeomorphism is symplectic but in
general not Hamiltonian.

4.2.1 Symplectic fibrations
The symplectic structure on S(P,X)

The space S(P,X) is formally an infinite dimensional symplectic manifold. The
tangent space at s ∈ S(P,X) is the space of vertical vector fields along s

TsS(P,X) = Ω0(M, s∗T vertP (X)).

The symplectic form on X induces a symplectic structure on the vertical tangent
bundle T vertP (X) and

ωs : TsS(P,X)× TsS(P,X)→ R, ωs(ŝ1, ŝ2) :=
∫
M

ω(ŝ1, ŝ2)ρ.

defines a symplectic form on S(P,X).
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Symplectic connections and covariant differentiation

A connection A ∈ A(P ) induces a covariant derivative on S(P,X) via

∇ : S(P,X)→ Ω1(M, s∗T vertP (X))
∇p̂s(p) = ds(p)p̂+ Ls(p)Ap(p̂) = ds(p)p̂hor.

(4.17)

In this formula s : P → X is an equivariant map, Lx : sl(n,R) → TxX denotes
the infinitesimal action, and p̂hor := p̂ − p · Ap(p̂) is the horizontal component of
a tangent vector p̂ of P . The next lemma shows that there exists a closed 2-form
Ω ∈ Ω2(P (X)) defined on the total space which agrees with ω along the fibres and
such that the horizontal and vertical subspaces are Ω-orthogonal. Conversely, any
such 2-form gives rise to a symplectic connection on P (X), where one recovers the
horizontal distribution ThorP (X) as the Ω-orthogonal complement of the fibre.

Lemma 4.2.1 (A closed 2-form on the total space). Let A ∈ A(P ) be given
and define Ω ∈ Ω2(P ×X) by

Ω(p,x)((p̂1, x̂1), (p̂2, x̂2))
:= ωx(x̂1 + LxAp(p̂1), x̂2 + LxAp(p̂2))− 〈µ(x), FA(p̂1, p̂2)〉.

(4.18)

This is a closed, equivariant and horizontal 2-form on P × X. In particular, it
descends to a closed 2-form on P (X) which restricts to ω along the fibres.

Proof. Define α ∈ Ω1(P ×X) by α(p,x)(p̂, x̂) := 〈µ(x), Ap(p̂)〉. Then

(dα)(p,x)((p̂1, x̂1), (p̂2, x̂2))
= 〈dµ(x)x̂1, Ap(p̂2)〉 − 〈dµ(x)x̂2, Ap(p̂2)〉 − 〈µ(x), (dA)p(p̂1, p̂2)〉
= ωx (LxAp(p̂2), x̂1)− ωx (LxAp(p̂1), x̂2)− 〈µ(x), (dA)p(p̂1, p̂2)〉,

where the second equation follows from the characteristic equation for the moment
map. Equivariance of the moment map yields the identity

ωx(LxAp(p̂1), LxAp(p̂2)) = 〈µ(x), [Ap(p̂1), Ap(p̂2)]〉.

Denote by prX : P×X → X the projection onto the second factor. Putting everything
together, we have shown that Ω = pr∗Xω − dα and therefore Ω is closed.

The tangent space of the SL(n,R)-orbit through a point (p, x) ∈ P ×X is given
by {(pξ,−Lxξ) ∈ TpP × TxX | ξ ∈ sl(n,R)}. It now follows from (4.18) and Car-
tan’s formula that Ω is SL(n,R)-invariant. It follows directly from (4.18) that Ω is
horizontal and thus descends to a closed 2-form on P (X).

There exists a natural isomorphism ad(P ) ∼= End0(TM) and we denote by R ∈
Ω2(M,End0(TM)) the curvature of the connection A ∈ A(P ) under this identifica-
tion. Let s ∈ S(P,X) be given. The composition µ ◦ s : P → sl(n,R)∗ is equivariant
and thus descends to a section µs ∈ Ω0(M,End0(TM)∗). Denote the dual pairing of
these two sections by

〈µs, R〉 ∈ Ω2(M). (4.19)
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Define ω(∇s ∧ ∇s) ∈ Ω2(M) by coupling the exterior product on M with the sym-
plectic from on T vertP (X):

ω(∇s ∧∇s) : TM × TM → R, (u, v) 7→ ω(∇us,∇vs) (4.20)

Lemma 4.2.2. Fix a connection A ∈ A(P ). Let s ∈ S(P,X) and define Ω ∈
Ω2(P (X)) by (4.18). Then

s∗Ω = ω(∇s ∧∇s)− 〈µs, R〉. (4.21)

where the two terms on the right hand side are define by (4.19) and (4.20).

Proof. Lift s ∈ S(P,X) to an equivariant map s : P → X and define s̃ : P → P ×X
by s̃(p) := (p, s(p)). It follows from (4.17) that

s̃∗Ωp(p̂1, p̂2) = ωs(p)(∇p̂1s(p),∇p̂2s(p))− 〈µ(s(p)), FA(p̂1, p̂2)〉

The curvature form FA ∈ Ω2(P, sl(n,R)) descends to R ∈ Ω2(M,End0(TM)) and
hence s̃∗Ω descends to the 2-form ω(∇s ∧∇s)− 〈µs, R〉 on M .

4.2.2 Action of the diffeomorphism group
The group Diff(M,ρ) of volume preserving diffeomorphisms can be viewed as infinite
dimensional Lie group with Lie algebra

Lie (Diff(M,ρ)) = {v ∈ Vect(M) | dι(v)ρ = 0} .

Every φ ∈ Diff(M,ρ) lifts naturally to an equivariant diffeomorphism of P defined by

φ̃ : P → P, φ̃(z, θ) := (φ(z), dφ(z) ◦ θ)

for z ∈M and θ ∈ Hom(Rn, TzM). This induces a natural action

Diff(P, ρ)× S(P,X)→ S(P,X), φ∗s := s ◦ φ̃

where we view elements of S(P,X) as equivariant maps s : P → X.

Infinitesimal action

There is a one-to-one correspondence between connections A ∈ A(P ) and SL(n,R)
connections ∇ on TM . For the calculation of the infinitesimal action it is useful to
adopt the later point of view and to choose a torsion free SL(n,R) connections on
TM as auxiliary data.

Lemma 4.2.3. Choose a torsion-free SL(n,R) connection ∇ on TM and denote
by A ∈ A(P ) the corresponding connection 1-form on P . Let v ∈ Vect(M) with
dι(v)ρ = 0 and denotes is flow by φtv ∈ Diff(M,ρ).

1. The infinitesimal action of v on P is defined as

Lv(z, θ) := d

dt

∣∣∣∣
t=0

(φtv(z), dφtv(z) ◦ θ) ∈ T(z,θ)P
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and satisfies for all (z, θ) ∈ P

dπ(z, θ)Lv(z, θ) = v(z), A(z,θ)(Lv(z, θ)) = θ−1(∇θ(·)v)(z). (4.22)

where π : P →M denotes the projection map.

2. Denote by ∇v : P → sl(n,R) the map (z, θ) 7→ θ−1(∇θ(·)V )(z) . Then

Lvs := d

dt

∣∣∣∣
t=0

(φtv)∗s = ∇vs− Ls(∇v). (4.23)

Proof. The first part of (4.22) follows from

dπ(z, θ)Lv(x, θ) = d

dt

∣∣∣∣
t=0

π(φtv(z), dφtV (z) ◦ θ) = d

dt

∣∣∣∣
t=0

φtv(z) = v(z).

The following calculation uses that ∇ is a torsion free connection corresponding to
A ∈ A(P ). For every ξ ∈ Rn it holds

A(z,θ)(Lv(z, θ))ξ = θ−1 ∇tdφtv(z)θ(ξ)
∣∣
t=0 = θ−1∇θ(ξ) ∂tφtv(z)

∣∣
t=0 = θ−1∇θ(ξ)v(z).

This completes the proof of (4.22). Next, let s : P → X be an equivariant map.
Then, by the chain rule and (4.17), it follows

(Lvs)(p) = ds(p)[Lv(p)] = ∇s(p)[Lv(p)]− L(s(p))Ap(Lv(p))

for every p ∈ P . Equation (4.23) follows from this and (4.22).

Exact volume preserving diffeomorphism

A diffeomorphism φ ∈ Diff(M,ρ) is called exact, if there exists an isotopy φ : [0, 1]→
Diff(M,ρ) with φ0 = 1 and φ1 = φ and there exists a smooth map v : [0, 1] →
Vect(M) such that ∂tφt = vt ◦ φt and ι(vt)ρ is exact for all t ∈ [0, 1]. This is the
subgroup of Diff(M,ρ) corresponding to the Lie subalgebra

Lie (Diffex(M,ρ)) =
{
v ∈ Vect(M) | ι(v)ρ ∈ dΩn−2(M)

}
.

The dual space of the Lie algebra can be identified with the space of exact 2-forms
on M using the pairing

Ω2
ex(M)× Lie(Diffex(M,ρ))→ R, 〈τ, v〉 :=

∫
M

τ ∧ αv

where αv ∈ Ωn−2(M) satisfies dαv = ι(v)ρ. By Stokes theorem, the pairing does not
depend on the choice of this primitive, since τ is exact.

4.2.3 Donaldson’s moment map
For s ∈ S(P,X) the moment map µ : X → sl(n,R)∗ gives rise to a section µs := µ◦s ∈
Ω0(M,End0(TM)∗). Its covariant derivative is a tensor ∇µs ∈ Ω1(M,End0(TM)∗)
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and we denote by c(∇µs) ∈ Ω1(M) its contraction of the first and third index. This
is given by

c(∇µs) ∈ Ω1(M), m̂ 7→
n∑
i=1

〈
∇eiµs, (m̂⊗ ei)0

〉
(4.24)

where (e1, . . . , en) is a local frame for TM with dual frame (e1, . . . , en) and the
contraction does not depend on the choice of this basis. We are now ready to state
the main result of this section.

Theorem 4.2.4 (Donaldson’s moment map). Let ∇ be a torsion-free SL(n,R)
on TM and define

µ : S(P,X)→ Ω2(M), µ(s) := ω(∇s ∧∇s)− 〈µs, R〉 − dc(∇µs) (4.25)

where the expression on the right hand side are defined in (4.19), (4.20) and (4.24).

1. µ(s) is closed for every s ∈ S(P,X).

2. µ is equivariant for the action of Diff(M,ρ).

3. Let v ∈ Vect(M) be an exact divergence free vector field and choose a primitive
αv ∈ Ωn−2(M) with dαv = ι(v)ρ. The derivative of the map

S(P,X)→ R, s 7→
∫
M

µ(s) ∧ αv (4.26)

is the map TsS(P,X)→ R defined by

ŝ 7→ ω(ŝ,Lvs) =
∫
M

ω(−∇vs+ Ls∇v, ŝ)ρ (4.27)

4. µ is independent of the choice of the torsion free SL(n,R) connection ∇.

Remark 4.2.5. The map µ is not a moment map in the strict sense, since it takes
values in the space of closed 2-forms. Let v ∈ Vect(M) such that ι(v)ρ is exact and
choose αv ∈ Ωn−2(M) with dαv = ι(v)ρ. Then

〈µ(s), v〉 =
∫
M

µ(s) ∧ αv

depends on the choice of the primitive αv. Different choices for αv change the pairing
only by a constant, and so its derivative is well-defined and independent of any choices.
The equations (4.27) and (4.26) show that µ satisfies the moment map equation.

Alternatively, it follows from Lemma 4.2.2 that the values of µ(s) are contained
in a single cohomology class in H2(M). Let τ be any representative of this class and
consider µ(s) − τ as a moment map. This is a moment map in the strict sense, but
it is not equivariant unless M is a surface.

The proof of Theorem 4.2.4 takes up the rest of this section.
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Proof of the first two assertions in Theorem 4.2.4

It follows from Lemma 4.2.2 that

µ(s) := s∗Ω− dc(∇µs). (4.28)

Since Ω ∈ Ω2(P (X)) is closed, this implies that µ(s) is closed.
Let φ ∈ Diff(M,ρ) be given and define ∇̃ := φ∗∇. This is again a torsion free

SL(n,R) connection on TM . Since the pullback of connections is functorial with
respect to the various induced connections, we get

c(∇µφ∗s) = c(∇φ∗µs) = c(φ∗∇̃µs) = φ∗c(∇̃µs).

and similarly

ω(∇φ∗s,∇φ∗s)− 〈µφ∗s, R∇〉 = φ∗ω(∇̃s, ∇̃s)− φ∗〈µs, R∇̃〉.

Hence equivariance of µ will follow from the fourth assertion that µ is independent
of the choice of the torsion free SL(n,R) connection ∇.

Proof of the moment map equation

We prove the third assertion in Theorem 4.2.4. Let v ∈ Vect(M,ρ) be an exact
divergence free vector field and choose αv ∈ Ωn−2(M) with dαv = ι(v)ρ. We claim
that for any smooth curve s : R→ S(P,X) it holds

∂t

∫
M

s(t)∗Ω ∧ αv = ω(−∇vs(t), ṡ(t)) (4.29)

−∂t
∫
M

dc(∇µs(t)) ∧ αv = ω(Ls(t)∇v, ṡ(t)). (4.30)

These two equations together with (4.28) then yield the third assertion.
We prove (4.29): Since Ω is closed it follows from Cartan’s formula:

∂t

∫
M

s(t)∗Ω ∧ αv =
∫
M

ds(t)∗(ι(ṡ(t))Ω) ∧ αv

=
∫
M

s(t)∗(ι(ṡ(t))Ω) ∧ ι(v)ρ

=
∫
M

ι(v)s(t)∗(ι(ṡ(t))Ω)ρ

=
∫
M

Ω(ṡ(t), ds(t)v)ρ

=
∫
M

ω(ṡ(t),∇vs(t))ρ = ω(−∇vs(t), ṡ(t))

where we used in the penultimate equation that the horizontal and vertical tangent
spaces of P (X) are Ω-orthogonal.
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We prove (4.30): The moment map equation on the fibre X yields

ω(Ls(t)∇v, ṡ(t)) =
∫
M

〈dµ(s(t))ṡ(t),∇v〉ρ = ∂t

∫
M

〈µs(t),∇v〉ρ.

On the other hand, integration by parts yields∫
M

dc(∇µs) ∧ αv =
∫
M

c(∇µs) ∧ ι(v)ρ =
∫
M

ι(v)c(∇µs)ρ.

Thus (4.30) will follow from the observation∫
M

(ι(v)c(∇µs) + 〈µs,∇v〉)ρ = 0. (4.31)

In local coordinates, write v = viei and µs = µjie
i ⊗ ej . Then ι(v)c(∇µs) + 〈µs,∇v〉

is given by
viµki;k + vi;kµ

k
i = div(viµki ek).

Hence the integrand in (4.31) is a divergence term and its integral vanishes.

Independence of the connection

We prove the fourth assertion in Theorem 4.2.4. Let ∇ and ∇′ be two torsion free
SL(n,R)-connections on TM and define

γ := ∇′ −∇ ∈ Ω1(M,End0(TM)).

This satisfies the additional symmetry γkij = γkji. We show in the following that the
moment map (4.25) defined with respect to ∇ and ∇′ agree.

Step 1: The formula R′ = R+ d∇γ + [γ, γ] yields

〈µs, R′ −R〉 = 〈µs, d∇γ + [γ, γ]〉 (4.32)

Step 2: We show

dc((∇′ −∇)µs)(ei, ej)
= −〈µs, (d∇γ)(ei, ej)〉+ 〈∇ejµs, γ(ei)〉 − 〈∇eiµs, γ(ej)〉.

(4.33)

For Φ ∈ Ω0(M,End0(TM)) it holds

〈(∇′ −∇)µs,Φ〉 = 〈µs, (∇−∇′)Φ〉 = 〈µs, [Φ, γ]〉.

This yields the formula

c(∇′µs −∇µs)ej =
〈
µs,

n∑
i=1

[
ej ⊗ ei, γ(ei)

]〉

Using the symmetry condition γkij = γkji and tr(γ(ek)) =
∑n
i=0 γ

i
ik = 0, we obtain

n∑
i=1

[
ej ⊗ ei, γ(ei)

]
=

n∑
i,k=1

γiikej ⊗ ek − γkijek ⊗ ei = −γ(ej)
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and hence

c(∇′µs −∇µs) = −
n∑
j=1
〈µs, γ(ej)〉ej .

Differentiating this equations yields

dc((∇′ −∇)µs)(ei, ej) = Lej 〈µs, γ(ei)〉 − Lei〈µs, γ(ej)〉 − 〈µs, γ[ei, ej ]〉
= 〈µs,∇ejγ(ei)−∇eiγ(ej)− γ[ei, ej ]〉

+ 〈∇ejµs, γ(ei)〉 − 〈∇eiµs, γ(ej)〉
= −〈µs, (d∇γ)(ei, ej)〉+ 〈∇ejµs, γ(ei)〉 − 〈∇eiµs, γ(ej)〉.

and this proves (4.33).

Step 3: We show that

ω(∇′s,∇′s)(ei, ej)− ω(∇s,∇s)(ei, ej)
= 〈µs, [γ(ei), γ(ej)]〉+ 〈∇ejµs, γ(ei)〉 − 〈∇eiµs, γ(ej)〉

(4.34)

Denote by A′ := A∇
′ and A := A∇ the corresponding connection 1-froms on P .

Then (A′ −A)(z, θ) = θ−1γ(z)θ and (4.17) yields

(∇′s−∇s)(z, θ) = Ls(θ−1γ(z)θ). (4.35)

Then follows

ω(∇′eis,∇
′
ejs)− ω(∇eis,∇ejs)

= ω(∇′eis−∇eis,∇ejs) + ω(∇eis,∇′ejs−∇ejs)
+ ω(∇′eis−∇eis,∇

′
ejs−∇ejs)

= ω(Ls(θ−1γ(ei)θ),∇ejs)− ω(Ls(θ−1γ(ej)θ),∇eis)
+ ω(Ls(θ−1γ(ei)θ), Ls(θ−1γ(ej)θ))

= 〈dµ(s)[∇ejs], θ−1γ(ei)θ〉 − 〈dµ(s)[∇eis], θ−1γ(ej)θ〉
+ 〈µ(s), θ−1[γ(ei), γ(ej)]θ〉

= 〈∇ejµs, γ(ei)〉 − 〈∇eiµs, γ(ej) + 〈µs, [γ(ei), γ(ej)]〉

The last equation uses ∇p̂(µ ◦ s)(p) = dµ(s(p))[∇p̂s(p)] which follows from (4.17).

Step 4: The moment map µ is independent of the chosen connection.

This follows directly from (4.32), (4.33), and (4.34) and completes the proof of
Theorem 4.2.4.

4.3 Complex structures on R2 and quadratic forms.
The main applications of Theorem 4.2.4 to Teichmüller theory arises when one takes
as fibre the hyperbolic plane or its cotangent bundle. We recall in this section fun-
damental properties of these spaces and establish our notation. In particular, we
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show that the hyperbolic plane can be identified with the space of linear complex
structures on R2. Its cotangent bundle can be identified with pairs (J, q) consisting
of a complex structure and a quadratic form.

4.3.1 The hyperbolic plane
The upper half-plane model. Let H := {z ∈ C | Im(z) > 0} denote the upper
half plane. It has a canoncial complex structure and we endow it with the hyperbolic
metric and volume form

gH(x, y) = dx2 + dy2

y2 , ωH(x, y) = dx ∧ dy
y2 .

The group SL(2,R) acts on H by Möbius transformations

SL(2,R)×H 7→ H,
(
a b
c d

)
z := az + b

cz + d
. (4.36)

Every Möbiustransformation is a Kähler isometry of H. This action is transitive with
stabilizer SO(2) at i and therefore H ∼= SL(2,R)/SO(2).

The disc model. Let D := {z ∈ C | |z| < 1} denote the open unit disc in C. It
carries a canonical complex structure and we equip it with the hyperbolic metric and
volume form

gD := 4(dx2 + dy2)
(1− x2 − y2)2 , ωD = 4dx ∧ dy

(1− x2 − y2)2 .

The group

SU(1, 1) : =
{
A ∈ SL(2,C)

∣∣∣∣ Āt( 1 0
0 −1

)
A =

(
1 0
0 −1

)}
=
{(

α β

β̄ ᾱ

)∣∣∣∣ α, β ∈ C, |α|2 − |β|2 = 1
}

acts by fractional linear transformations on D via

SU(1, 1)× D 7→ D,
(
α β

β̄ ᾱ

)
z := αz + β

β̄z + ᾱ
.

Lemma 4.3.1 (Cayley transform).

1. The map f : H→ D defined by

f(z) := z − i
z + i

(4.37)

is a Kähler isometry with inverse given by f−1(z) := i 1+z
1−z .

2. There exists a unique isomorphism SL(2,R) ∼= SU(1, 1) such that (4.37) is
equivariant. The isomorphism SL(2,R)→ SU(1, 1) is given by(

a b
c d

)
7→ 1

2

(
(a+ d) + (b− c)i (a− d)− (b+ c)i
(a− d) + (b+ c)i (a+ d)− (b− c)i

)
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with inverse SU(1, 1)→ SL(2,R) given by(
α β

β̄ ᾱ

)
7→
(

Re(α) + Re(β) Im(β)− Im(α)
Im(α) + Im(β) Re(α)− Re(β)

)
.

Proof. The first part is left to the reader. For the second part, let

Ψ =
(
a b
c d

)
∈ SL(2,R)

be given. The automorphism ψ(z) := f
(
Ψ∗f−1(z)

)
) is then given by

ψ(z) := (ai− b+ c+ di)z + (ai + b+ c− di)
(ai− b− c− di)z + (ai + b− c+ di)

and after normalization this yields the desired isomorphism SL(2,R) ∼= SU(1, 1).

4.3.2 The space of complex structures on the plane
Denote the space of linear complex structures on R2, compatible with the standard
orientation, by

J (R2) := {J ∈ End(R2) | J2 = −1, det(·, J ·) > 0}

This is a smooth manifold and the tangent spaces at J ∈ J (R2) consists of all J-
antilinear endomorphism:

TJJ (R2) = {Ĵ ∈ End(R2) | JĴ + ĴJ = 0}.

The space J (R2) is a Kähler manifold, where the complex structure on TJJ (R2) is
given by Ĵ 7→ −JĴ and the metric and symplectic form are

ωJ (Ĵ1, Ĵ2) = 1
2tr(Ĵ1JĴ2), gJ (Ĵ1, Ĵ2) = 1

2tr(Ĵ1Ĵ2) (4.38)

The group SL(2,R) acts on J (Σ) by conjugation

SL(2,R)× J (R2)→ J (R2), Ψ∗J = ΨJΨ−1.

This action preserves the Kähler structure on J (R2). Moreover, it is transitive with
stabilizer SO(2) at the standard complex structure

J0 :=
(

0 −1
1 0

)
Therefore, J (R2) ∼= SL(2,R)/SO(2) and the next lemma gives an explicit formula
for the composition H ∼= SL(2,R)/SO(2) ∼= J (R2).

Lemma 4.3.2. There exists a unique Kähler isometry j : H → J (R2) which is
SL(2,R)-equivariant and satisfies j(i) = J0. It is given by the formula

j : H→ J (R2), j(x+ iy) :=
(

x
y −x

2+y2

y
1
y −xy

)
(4.39)



4.3. COMPLEX STRUCTURES ON R2 AND QUADRATIC FORMS. 161

Proof. Let z = x+ iy ∈ H and define

Ψ := 1
√
y

(
y x
0 1

)
∈ SL(2,R).

Then z = Ψ∗i and SL(2,R)-equivariance implies

j(z) = ΨJ0Ψ−1 = 1
y

(
y x
0 1

)(
0 −1
1 0

)(
1 −x
0 y

)
=
(

x
y −x

2+y2

y
1
y −xy

)
The derivative dj(i) : TiH→ TJ0J (R2) is given by

dj(i)ẑ =
(

x̂ −ŷ
−ŷ −x̂

)
for ẑ = x̂+ iŷ ∈ C. This is complex linear, since dj(i)[iẑ] = J0dj(i)ẑ. Moroever,

ωJ (∂xj(i), ∂yj(i)) = 1
2tr
((

1 0
0 −1

)(
0 −1
1 0

)(
0 −1
−1 0

))
= 1

shows that dj(i) the symplectic structures. Then, by compatibility, it also intertwines
the metrics. It follows now from the SL(2,R)-invariance of the Kähler structures on
J (R2) and H that j is a Kähler isometry.

Denote by ω0 = dx ∧ dy the standard area form on R2. Every J ∈ J (R2) defines
a hermitian form on (R2, J) defined by

hJ : R2 × R2 → C, hJ(·, ·) := ω0(·, J ·) + iω0(·, ·) (4.40)

This is complex anti-linear in the first coordinate and complex linear in the second
coordinate with respect to J . A direct computation shows that hj(z) has the matrix
representation

hj(z)(v, w) = vt
1

Im(z)

(
1 −z̄
−z |z|2

)
w. (4.41)

for v, w ∈ R2.

4.3.3 Complex quadratic forms
Let J ∈ J (R2) and define the associated hermitian form hJ by (4.40). We denote
the space of complex quadratic forms on (R2, J) by

Q(J) := {q : R2 × R2 → C | (J, i)-complex bilinear and symmetric}.

This carries the complex structure q 7→ iq and the hermitian structure

gQ(q1, q2) := Re
(
q1(v, v)q2(v, v)
hJ(v, v)2

)
,

ωQ(q1, q2) := Im
(
q1(v, v)q2(v, v)
hJ(v, v)2

)
,

(4.42)

where both expressions do not depend on the choice of the vector v ∈ R2\{0}.
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Identification with tangent vectors. The map

TJJ (R2)
∼=−→ Q(J), Ĵ 7→ q(J,Ĵ) := hJ(Ĵ ·, ·) (4.43)

is a complex linear unitary isomorphism identifying tangent vectors with quadratic
forms. The next lemma summarizes some properties of this map.
Remark 4.3.3. The identification TJJ (R2) ∼= Q(J) is a consequence of our choice
for the complex structure on J (R2) being multiplication by −J . If one considers the
opposite complex structure, i.e. the one given on TJJ (R2) by multiplication with J ,
we would end up with an identification Q(J) ∼= T ∗JJ (R2). However, with this choice
of complex structure, the map j : H → J (R2) defined by (4.39) would be complex
antilinear.
Lemma 4.3.4 (Quadratic forms and tangent vectors).

1. For J ∈ J (R2) and Ĵ ∈ TJJ (R2) it holds

hJ(Ĵv, w) = hJ(Ĵw, v) (4.44)

for all v, w ∈ R2. In particular, q(J,Ĵ) := hJ(Ĵ ·, ·) ∈ Q(J).

2. For every J ∈ J (R2) the map (4.43) is a unitary isomorphism with respect to
the structures defined in (4.38) and (4.42).

3. The collection of maps (4.43) is SL(2,R)-equivariant in the following sense:
Let J ∈ J (R2), Ĵ ∈ TJJ (R2), and Ψ ∈ SL(2,R), then

qΨ∗(J,Ĵ)(v, w) = q(J,Ĵ)(Ψ
−1v,Ψ−1w)

for all v, w ∈ R2.
Proof. Differentiating the equation ω0(Jv, Jw) = ω0(v, w) it follows

ω0(Ĵv, Jw) + ω0(Jv, Ĵw) = 0.

Hence ω0(Ĵv, Jw) = ω0(v, JĴw) shows that Ĵ is self-adjoint with respect to the inner
product ω0(·, J ·). Moroever, ω0(Ĵv, w) = −ω0(v, Ĵw) and then follows

hJ(Ĵv, w) = ω0(Ĵv, Jw) + iω0(Ĵv, w) = ω0(v, JĴw) + iω0(Ĵw, v) = hJ(Ĵw, v)

This completes the proof of (4.44).
For the second part, it follows from (4.44) that

||Ĵ ||2 = 1
2

(
hJ(Ĵ2v, v)
hJ(v, v) + hJ(Ĵ2Jv, Jv)

hJ(v, v)

)
= hJ(Ĵv, Ĵv)

hJ(v, v) = |hJ(v, Ĵv)|2

hJ(v, v)2 = ||qĴ ||
2

where we used in the penultimate equation that (R2, J) is complex one-dimensional
and hence |hJ(v, Ĵv)|2 = hJ(v, v)hJ(Ĵv, Ĵv). Hence (4.43) is an isometry. It is clearly
complex linear and by compatibility it also intertwines the symplectic structures.

Finally, let Ψ ∈ SL(2,R) be given and compute

qΨ∗(J,Ĵ) = hΨJΨ−1(ΨĴΨ−1·, ·) = ω0(ΨĴΨ−1·,ΨJΨ−1·) + ω0(ΨĴΨ−1·, ·)

= ω0(ĴΨ−1·, JΨ−1·) + ω0(ĴΨ−1·,Ψ−1·) = q(J,Ĵ)(Ψ
−1·,Ψ−1·).

This proves equivariance and the lemma.



4.3. COMPLEX STRUCTURES ON R2 AND QUADRATIC FORMS. 163

Identification with covectors. The Riemannian metric on J (R2) defines a com-
plex anti-linear isomorphism of the tangent bundle and cotangent bundle of J (R2).
This is given by

TJJ (R2)→ T ∗JJ (R2), Ĵ 7→
(
Ĵ ′ 7→ 1

2tr
(
Ĵ Ĵ ′
))

. (4.45)

Combining this map with the isomorphism j : H→ J (R2) defined by (4.39) yields an
identification between the T ∗H and the bundle of quadratic forms over J (Σ), which
is complex anti-linear along the fibres.

Lemma 4.3.5 (Quadratic forms and covectors). Define the map

(j, q) : T ∗H→ J (R2)×Hom(R2 ⊗ R2,C)

j(z, w) := j(z) :=
(

x
y −x

2+y2

y
1
y −xy

)
, q(z, w) :=

(
w̄ −z̄w̄
−z̄w̄ z̄2w̄

) (4.46)

where z = x+ iy ∈ H and w ∈ C. Then the following holds:

1. (4.46) is SL(2,R)-equivariant in the sense that

q(Ψ(z, w))(·, ·) = q(z, w)(Ψ−1·,Ψ−1·) ∈ Q(Ψj(z)Ψ−1)

for every Ψ ∈ SL(2,R) and (z, w) ∈ T ∗H.

2. For every z ∈ H the fibre map q(z, ·) : T ∗zH→ Q(j(z)) is a complex anti-linear
isometry satisfying

(a) gQ(q(z, w1), q(z, w2)) = Im(z)2Re(w1w̄2).
(b) ωQ(q(z, w1), q(z, w2)) = Im(z)2Im(w1w̄2).
(c) q(z, iw) = −iq(z, w).

Proof. We leave it to the reader to check that the map (q, j) is indeed constructed by
combining (4.43), (4.45), and (4.39). Since all these maps are SL(2,R)-equivariant
isometries, with (4.43) and j being complex linear and (4.45) being complex anti-
linear, it follows then that q is a SL(2,R)-equivariant and complex anti-linear isom-
etry.

Duality. In our discussion so far, we viewed a covector J∗ ∈ T ∗JJ (R2) as real-
linear map J∗ : TJJ (R2)→ R. This extends uniquely to a complex linear map from
TJJ (R2)→ C and the resulting complex linear dual pairing is given by

T ∗JJ (R2)× TJJ (R2)→ C, 〈J∗, Ĵ〉 = J∗(Ĵ) + iJ∗(JĴ) (4.47)

Identify T ∗JJ (R2) with Q(J) using (4.43) and (4.45). This identification is complex
anti-linear and the dual pairing (4.47) takes the form

Q(J)× TJJ (R2)→ C, 〈q, Ĵ〉Q×TJ = q(Ĵv, v)
hJ(v, v) (4.48)

where the right hand side does not depend on v ∈ R2\{0}. This pairing is complex
anti-linear in the first coordinate and complex linear in the second one.
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Lemma 4.3.6. Define (j, q) : T ∗H→ Hom(R2 × R2,C) by (4.46). Then

wẑ = 〈q(z, w), dj(z)ẑ〉Q×TJ (4.49)

for all z ∈ H and ẑ, w ∈ C. Here we think of ẑ ∈ TzH, w ∈ T ∗zH, and define the right
hand side by (4.48).

Proof. This follows directly from the construction of the dual pairing. Alternatively,
one may use Lemma 4.3.5 to verify the formula at z = i and then use SL(2,R)
equivariance of both sides in (4.49) to complete the proof.

4.3.4 A moment map for Möbiustransformations
Lemma 4.3.7. The action of SL(2,R) on J (R2) and H is Hamiltonian and generated
by the equivariant moment maps

µJ : J (R2)→ sl∗(2,R), 〈µJ (J), ξ〉 := −tr(Jξ),
µH : H→ sl∗(2,R), 〈µH(z), ξ〉 := −tr(j(z)ξ)

for ξ ∈ sl(2,R). Here j : H→ J (R2) is the isomorphism defined by (4.39).

Proof. Let J ∈ J (R2), Ĵ ∈ TJJ (R2) and ξ ∈ sl(2,R). The infinitesimal action of ξ
at J is given by LJξ = [ξ, J ] and therefore

ωJ

(
LJξ, Ĵ

)
= 1

2tr
(

[ξ, J ]JĴ
)

= 1
2

(
−tr

(
ξĴ
)
− tr

(
JξJĴ

))
= −tr(Ĵξ)

This proves the first part of the lemma and the second part follows from this by
equivariance of j.

4.4 Teichmüller space as symplectic quotient
Throughout this section let (Σ, ρ) denote a closed 2-dimensional surface with fixed
area form ρ and genus(Σ) ≥ 2. Let X = H be the upper half plane and denote by
P → Σ the SL(2,R) frame bundle. Then

P (X) ∼= J (Σ) =
{
J ∈ Ω0(Σ,End(TΣ) | J2 = −1, ρ(·, J ·) > 0

}
is the space of complex structure on Σ, compatible with the orientation determined
by ρ. It follows from Theorem 4.2.4 that the natural action of Ham(Σ, ρ) on J (Σ)
is Hamiltonian with moment being 2(KJ − c)ρ, where KJ denotes the Gaussian
curvature of the metric ρ(·, J ·) and c = 2π(2genus(Σ)−2)

vol(Σ,ρ) . The details of this are given
in Theorem 4.4.2 below. The resulting Marsden-Weinstein quotient is

T̃ (Σ, ρ) := J (Σ)//Ham(Σ, ρ) = {J ∈ J (Σ) | 2KJ = c}/Ham(Σ, ρ)

and it follows from general principles that this carries a symplectic structure. This
moduli space fibres over the Teichmüller space T (Σ), which has the description

T (Σ) := J (Σ)/Diff0(Σ) ∼= {J ∈ J (Σ) |KJ = c}/Symp(Σ, ρ).
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We show that the fibres of T̃ (Σ, ρ) over T (Σ) are symplectic submanifolds and that
the symplectic form on T̃ (Σ, ρ) descends in a canonical way to T (Σ). The resulting
symplectic form is the Weil–Petersson symplectic form on Teichmüller space and
does not depend on the fixed area form ρ (apart from scaling). The final subsection
recalls the well-known fact that Teichmüller space T (Σ) can be embedded into the
representation variety Ham(π1(Σ),SL(2,R))/SL(2,R). The image consists of the so-
called Fuchsian representations and this subsection can be viewed as model case for
our discussion of the quasi-Fuchsian moduli space in the next section.

4.4.1 The Hamiltonian quotient
Let (Σ, ρ) be a closed, oriented 2-dimensional surface with fixed area form ρ and with
genus(Σ) ≥ 2. Denote by P its SL(2,R) frame bundle and consider the associated
bundle P (H) := P ×SL(2,R) H. Define j : H→ J (R2) by (4.39). Then

P (H) ↪→ End(TΣ), [(z, θ), ζ] 7→ θ−1j(ζ)θ (4.50)

is a well-defined embedding which yields the identification

S(P,H) = J (Σ) :=
{
J ∈ Ω0(Σ,End(TΣ) | J2 = −1, ρ(·, J ·) > 0

}
.

The next lemma summarizes same important properties of this setup.

Lemma 4.4.1.

1. Any torsion-free SL(2,R) connection on TΣ induces connections on P (H) and
End(TΣ) which are compatible with respect to the embedding (4.50).

2. The inclusion (4.50) is Symp(Σ, ρ)-equivariant.

Proof. The proof is a matter of unravelling the definition. We leave this as an exercise
to the reader.

Theorem 4.4.2. The action of Ham(Σ, ρ) on J (Σ) is Hamiltonian and generated
by the moment map

µ : J (Σ)→ Ω2(Σ), µ(J) = 2(KJ − c)ρ

where KJ denotes the Gaussian curvature of the metric ρ(·, J ·) and c = 2π(2genus(Σ)−2)
vol(Σ,ρ) .

Remark 4.4.3. This moment map was first established by Quillen and it has been
generalized by Fujiki [48] in the integrable case and Donaldson [34] to the space of
compatible almost complex structures on a symplectic manifold.

Proof. Let ∇ be the Levi-Civita connections of the metric ρ(·, J ·). By the Newlander-
Nierenberg theorem, every complex structure J ∈ J (Σ) is integrable and in particular
∇J = 0. We calculate the moment map µ using Theorem 4.2.4. Since ∇J = 0, the
two terms ω(∇J,∇J) and c(∇µJ) both vanish. The only remaining term is

〈µJ , R∇〉 = −tr(JR∇) = 2KJρ.
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We used in the last equation that the Gaussian curvature K and Riemann curvature
tensor R∇ are related by

KJ := 〈R∇(u, v)v, u〉
|u|2 · |v|2 − 〈u, v〉2

, R∇(u, v) = −KJρ(u, v)J

for all u, v ∈ Vect(Σ). The constant c = 2π(2genus(Σ) − 2)/vol(Σ, ρ) is determined
by the Gauss–Bonnet theorem and guarantees that µ(J) is an exact 2-form.

The Marsden-Weinstein quotient of J (Σ) by Ham(Σ, ρ) is defined as the quotient
of µ−1(0) by Ham(Σ, ρ). This yields the quotient space

T̃ (Σ, ρ) :=
{
J ∈ J (Σ)

∣∣∣∣KJ = 2π(2genus(Σ)− 2)
vol(Σ, ρ)

}/
Ham(Σ, ρ). (4.51)

It follows from the formal properties of a moment map that the symplectic form on
J (Σ) descends to a symplectic form on T̃ (Σ, ρ).

4.4.2 Donaldson’s description of Teichmüller space
The Teichmüller space of Σ is defined as

T (Σ) := J (Σ)/Diff0(Σ).

Early and Eells [41] showed that Diff0(Σ) acts freely on J (Σ) and J (Σ)→ T (Σ) is a
fibre bundle with fibre Diff0(Σ). It is a classical theorem of Teichmüller that T (Σ) is
homeomorphic to R6g−6 where g = genus(Σ). Fischer and Tromba [46] were able to
prove Teichmüller’s theorem directly from the fibre bundle description of Early and
Eells. A corollary of this is the well-known fact that Diff0(Σ, ρ) is contractible. This
can also be proven directly and we will make use of this fact in the following.

Two descriptions of Teichmüller space

Lemma 4.4.4. Assume genus(Σ) ≥ 2. Then the inclusion Symp0(Σ, ρ) ⊂ Diff0(Σ)
is a homotopy equivalence.

Proof. This follows from a parametrized version of Moser isotopy (which I learned
from [96]). Denote

V(Σ) :=
{
ω ∈ Ω2(Σ)

∣∣∣∣ω is an area form and
∫

Σ
ω =

∫
Σ
ρ

}
.

Standard Moser isotopy arguments show that there exists a continuous map

V → Diff0(Σ), ω 7→ ψω

satisfying ψ∗ωω = ρ. Then the map

Diff0(Σ)→ V(Σ)× Symp0(Σ, ρ), ψ 7→ (ψ∗ρ, ψ ◦ ψψ∗ρ)

is a homeomorphism with inverse (ω, φ) 7→ φ ◦ ψ−1
ω . Since V(Σ) is convex, it follows

that Diff0(Σ) and Symp0(Σ, ρ) are homotopy equivalent.



4.4. TEICHMÜLLER SPACE AS SYMPLECTIC QUOTIENT 167

Proposition 4.4.5. The inclusion µ−1(0) ↪→ J (Σ) yields an isomorphism{
J ∈ J (Σ)

∣∣∣∣KJ = 2π(2genus(Σ)− 2)
vol(Σ, ρ)

}/
Symp0(Σ, ρ) ∼= T (Σ).

Proof. Denote c := 2π(2genus(Σ) − 2)/vol(Σ, ρ). By Theorem 4.4.2, the moment
map is given by µ(J) = 2KJρ − 2c and this is clearly Symp0(Σ, ρ)-equivariant.
In particular, µ−1(0) is preserved by the action of Symp0(Σ, ρ) and the quotient
µ−1(0)/Symp0(Σ, ρ) is well-defined.

The uniformization theorem shows that for every J ∈ J (Σ) there exists a unique
metric gJ which is compatible with J and has constant curvature KgJ ≡ c. Let ρJ
denote the area form of gJ . The triple (J, gJ , ρJ) is satisfies the naturality condition

φ∗gJ = gφ∗J , φ∗ρJ = ρφ∗J (4.52)

for every diffeomorphism φ : Σ→ Σ, by of uniqueness of the metric gJ .
We show surjectivity: For J ∈ J (Σ) it follows from Gauss-Bonnet that vol(Σ, ρJ) =

vol(Σ, ρ). Hence, by Moser isotopy, there exists φ ∈ Diff0(Σ) such that φ∗ρJ = ρ and
hence φ∗J ∈ µ−1(0).

We show injectivity: Let J1, J2 ∈ J (Σ) with ρJ1 = ρ = ρJ2 be given and suppose
that J1 = φ∗J2 for some φ ∈ Diff0(Σ). Then φ∗ρJ2 = ρJ1 implies φ ∈ Symp(Σ, ρ).
By Lemma 4.4.4, it now follows φ ∈ Diff0(Σ) ∩ Symp(Σ, ρ) = Symp0(Σ, ρ) and this
completes the proof.

Complex structure on Teichmüller space

The next lemma calculates the infinitesimal action of Diff0(Σ) on J (Σ).

Lemma 4.4.6. Let J ∈ J (Σ), v ∈ Vect(Σ). The Lie derivative of J is given by

LvJ = 2J∂̄Jv

where ∂̄ is the canonical Cauchy–Riemann operator on (TΣ, J) determined by J .

Proof. Denote by ∇ the Levi-Civita connection for the metric g := ρ(·, J ·) and let
v, w ∈ Vect(Σ). Then

(LvJ)w = Lv(Jw)− J(Lvw) = [Jw, v]− J [w, v] = J∇wv −∇Jwv = 2J(∂̄Jv)w

and this completes the proof.

It follows from the Riemann–Roch theorem, that Σ admits no holomorphic vector
fields. The infinitesimal action is hence injective and the orbits Diff0(Σ)·J are complex
submanifolds of J (Σ). The complex structure on J (Σ) thus descends canonically to
the Teichmüller space T (Σ) = J (Σ)/Diff0(Σ).
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Symplectic structure on Teichmüller space

Denote by T̃ (Σ, ρ) the Marsden-Weinstein quotient (4.51) and define

H := Symp0(Σ, ρ)/Ham(Σ, ρ).

Recall that Ham(Σ, ρ) < Symp0(Σ, ρ) is a normal subgroup (see [85], Proposition
10.2) and therefore H is a well-defined quotient group. It follows form Proposition
4.4.5 that Teichmüller space has the description T (Σ) ∼= T̃ (Σ, ρ)/H.

Remark 4.4.7. The flux homomorpism associates to every path [0, 1]→ Symp0(Σ, ρ),
t 7→ ψt, a cohomology class in H1(Σ,R) defined by

Flux({ψt}) :=
∫ 1

0
[ι(∂tψt)ω] dt ∈ H1(Σ,R).

Since π1(Symp0(Σ)) is trivial by Lemma 4.4.4, it follows that the the flux homomor-
phism descends to an isomorphism

Flux : H := Symp0(Σ, ρ)/Ham(Σ, ρ)
∼=−→ H1(Σ,R).

See [85], Proposition 10.18 for more details.

Lemma 4.4.8. The H-orbits in T̃ (Σ, ρ) are symplectic submanifolds.

Proof. Let [J ] ∈ T̃ (Σ, ρ). Then, by Lemma 4.4.6, we have

T[J] (H · [J ]) = {J∂̄Jv | v ∈ Vect(Σ) with dι(v)ρ = 0}
{J∂̄Jv | v ∈ Vect(Σ) with ι(v)ρ exact}

.

Next, consider the subspace SJ ⊂ TJJ (Σ) defined by

SJ := {∂̄Jv | v ∈ Vect(Σ) with dι(v)ρ = 0 = dι(Jv)ρ}.

This is a complex and hence symplectic subspace. The natural projection from
TJJ (Σ) to T[J]T̃ (Σ, ρ) restricts to a symplectic isomorphism from SJ to T[J] (H · [J ])
by the Hodge decomposition theorem. Hence T[J] (H · [J ]) is also symplectic and this
proves the lemma.

Lemma 4.4.9. Let (Q,ω) be a symplectic manifold and let G be a Lie group acting
symplectically, properly and freely on Q. Suppose that all G orbits are symplectic
submanifold of Q. Then Q/G carries a natural symplectic structure which is obtained
by declaring that (Tq(G·q))ω → T[q]Q/G is a symplectic isomorphism for every q ∈ Q.

Proof. The tangent space Tq(G · q) of the G-orbit through q is by assumption sym-
plectic and so its symplectic complement (Tq(G·q))ω is also a symplectc. The induced
symplectic form on T[q]Q/G does not on the representative q, because G acts sym-
plectically on Q. It follows that Q/G carries a well-defined non-degenerated 2-form
ωQ/G ∈ Ω2(Q/G). It remains to show that ωQ/G ∈ Ω2(Q/G) is closed. We have

dωQ/G(v1, v2, v3) = ωQ/G([v1, v2], v3) + ωQ/G([v2, v3], v1) + ωQ/G([v3, v1], v2)
− Lv3(ωQ/G(v1, v2))− Lv1(ωQ/G(v2, v3))− Lv2(ωQ/G(v3, v1))
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for v1, v2, v3 ∈ Vect(Q/G). Let ṽj ∈ Vect(Q) be the unique lift of vj with ṽj(q) ∈
(Tq(G · q))ω for all q ∈ Q. Then follows

ωQ/G([v1, v2], v3) = ω([ṽ1, ṽ2], ṽ3)

since [ṽ1, ṽ2] projects to [v1, v2]. Moreover, Lv3(ωQ/G(v1, v2)) = Lṽ3(ω(ṽ1, ṽ2)). Sim-
ilar equations hold for the other terms in dω̃ and hence

dωQ/G(v1, v2, v3) = dω(ṽ1, ṽ2, ṽ3) = 0.

This completes the proof of the lemma.

Weil–Petersson metric on Teichmüller space

It follows from Lemma 4.4.9 and Lemma 4.4.8 that T (Σ) carries a natural symplectic
structure arising from the description

T (Σ) = T̃ (Σ, ρ)/H =
(
µ−1(0)/Ham(Σ, ρ)

)/
H.

The next proposition shows that this symplectic structure agrees up to scaling with
the Weil–Petersson symplectic form, where the scaling factor is determined by the
total volume V = vol(Σ, ρ). In particular, the induced symplectic structure on T (Σ)
is independent of ρ apart from scaling.

Proposition 4.4.10 (Weil–Petersson symplectic form). For J ∈ J (Σ) denote
by gJ the unique metric which is compatible with J and satisfies KgJ ≡ c, where
c := 2π(2genus(Σ)− 2)/vol(Σ, ρ). Let hJ be the hermitian form

hJ : TΣ⊗ TΣ→ C, hJ(u, v) = gJ(u, v) + igJ(Ju, v).

By Lemma 4.4.6, the tangent space of [J ] ∈ T (Σ) is given by

T[J]T (Σ) = coker(∂̄J : Ω0(Σ, TΣ)→ Ω0,1(Σ, TΣ)) ∼= H0,1
J (TΣ)

where H0,1
J = {Ĵ ∈ Ω0,1

J (Σ, TΣ) | ∂̄∗J Ĵ = 0} denotes the harmonic representatives.
The symplectic form on Teichmüller space is given by the formula

ωT : H0,1
J (TΣ)×H0,1

J (TΣ)→ R, ωT (Ĵ1, Ĵ2) = 2Re
∫

Σ
hJ(Ĵ1 ∧ Ĵ2) (4.53)

and the corresponding Kähler metric

gT : H0,1
J (TΣ)×H0,1

J (TΣ)→ R, gT (Ĵ1, Ĵ2) = −2Im
∫

Σ
hJ(Ĵ1 ∧ Ĵ2) (4.54)

is the Weil–Petersson metric.

Proof. The formulas (4.53) and (4.54) are Diff(Σ)-invariant and descend to well-
defined pairings on Teichmüller space. It follows from the Gauss–Bonnet theorem
that vol(Σ, gJ) = vol(Σ, ρ). Hence, by Moser isotopy and naturally (4.52), there exists
φ ∈ Diff0(Σ) such that φ∗J ∈ µ−1(0). We may therefore assume in the following that
ρ is the volume form of gJ .
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There are two point of views to understand Ĵ1, Ĵ2 ∈ TJJ (Σ), namely as sections
in Ω0(Σ,End(TΣ)) or as 1-forms in Ω0,1

J (Σ, TΣ). These two perspectives are related
by the formula

1
2tr
(
Ĵ1Ĵ2

)
ρ+ i

2tr
(
Ĵ1JĴ2

)
ρ = −2ihJ(Ĵ1 ∧ Ĵ2) (4.55)

The left-hand side of this expression integrates to the Kähler structure on J (Σ).
The right-hand side yields the Kähler structure (4.54) and (4.53). Therefore, it only
remains to verify that every Ĵ ∈ H0,1

J (TΣ) is tangent to µ−1(0) and in the symplectic
complement of the orbit TJ(Diff0(Σ) · J). Let F : Σ → R be a Hamiltonian. Then
Theorem 4.4.2 yields

∂Ĵ

∫
Σ

2F (KJ − c)ρ =
∫

Σ
tr
(
−J(∂̄JvF )JĴ

)
ρ = −〈∂̄vF , Ĵ〉L2 = −〈vF , ∂̄∗Ĵ〉L2 = 0.

This shows that Ĵ is indeed tangential to µ−1(0). Moreover, for v ∈ Vect(Σ) we have∫
Σ

tr
(
ĴJ(∂̄Jv)

)
ρ = 〈Ĵ , J∂̄Jv〉L2 = 〈∂̄∗J Ĵ , Jv〉L2 = 0.

Hence, by Lemma 4.4.6, Ĵ is in the symplectic complement of TJ(Diff0(Σ) · J) and
this completes the proof.

4.4.3 The space of Fuchsian representations
The moduli space of Fuchsian representations of Σ is the space

F(Σ) := {ρ ∈ Hom(π1(Σ),PSL(2,R)) |discrete and properly discontinuous}
conjugation .

This is an open subset of the PSL(2,R) representation variety of Σ.

Remark 4.4.11. We suppressed the dependency of F(Σ) on the choice of a basepoint
in Σ, since the moduli spaces for different choices are canonically isomorphic: Any
path η : [0, 1]→ Σ with η(0) = z0 and η(1) = z1 induces an isomorphism π1(Σ, z0)→
π1(Σ, z1), [γ] 7→ [η̄γη], defined by concatenation. This yields an identification of the
corresponding Fuchsian moduli spaces which is independent of the choice of η.

The identification of the Fuchsian moduli space with Teichmüller spaces depends
on the Dehn–Nielson–Baer theorem. Denote by

Out(π1(Σ)) := Aut(π1(Σ))/Inn(π1(Σ))

the space of outer automorphism of π1(Σ). Let f ∈ Diff(Σ) and fix a basepoint
z0 ∈ Σ. Let η : [0, 1] → Σ be a path with η(0) = z0 and η(1) = f(z0) and define
f∗ ∈ Out(π1(Σ, z0)) by

f∗[γ] := [ηf(γ)η̄].

In the quotient space of outer isomorphism, f∗ does not depend on the choice of the
path η.
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Theorem 4.4.12 (Dehn–Nielsen–Baer Theorem). The map

Diff(Σ)→ Out(π1(Σ)), f 7→ f∗

is surjective with kernel Diff0(Σ). Therefore, Diff(Σ)/Diff0(Σ) ∼= Out(π1(Σ)).

Proof. See [42], Theorem 8.1 and Theorem 1.13.

Theorem 4.4.13 (Fuchsian model for Teichmüller space). Uniformization as-
sociates to every J ∈ J (Σ) ∪ J (Σ̄) a biholomorphic map φ : Σ̃ → H between the
universal cover of (Σ, J) and the upper half plane. The push-forward of the deck-
transformation action of π1(Σ) on Σ̃ yields a representation π1(Σ) → PSL(2,R).
This construction is descends to a well-defined isomorphism

T (Σ) ∪ T (Σ̄)
∼=−→ F(Σ)

where the right hand side is the disjoint union of the Teichmüller spaces obtained
from both orientations of Σ.

Proof. We describe both directions of the isomorphism in the following:

Step 1: Construction of the map T (Σ) ∪ T (Σ̄)→ F(Σ).

Let J be a complex structure on Σ. Denote by Σ̃ the universal cover of Σ and by
J̃ the lifted complex structure. By uniformization, there exists a biholomorphic map

φ : Σ̃→ H

which is unique up to postcomposing with an element of Aut(H) ∼= PSL(2,R). The
fundamental group π1(Σ) acts by deck-transformations on Σ̃. The pushforward of this
action under φ yields a holomorphic action of π1(Σ) on H and thus a representation
ρ : π1(Σ) → PSL(2,R). Postcomposing φ with an element of PSL(2,R) corresponds
to conjugation of the representation and we obtain a well-defined map

J (Σ)→ F(Σ)

We show in the following that this map descends to T (Σ) ∪ T (Σ̄). To be precise, fix
a base point z0 ∈ Σ and identify the universal covering of Σ with

Σ̃ = {β : [0, 1]→ Σ |β is a smooth path with β(0) = z0}/ ∼

where two paths are identified if they are homotopic with fixed endpoints. Let f :
[0, 1]→ Diff(Σ) be an isotopy with f0 = id and define

f̃ : Σ̃→ Σ̃, f̃ [β] := [t 7→ ft(β(t))] .

One readily checks that f̃ is an π1(Σ, z0)-equivariant lift of f1. In particular f̃∗J̃ is
a lift of f∗1 J and φ ◦ f̃ yields the same representation as φ.
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Step 2: Construction of the map F(Σ)→ T (Σ) ∪ T (Σ̄).

First, we choose some reference data: Let J0 ∈ J (Σ). By uniformization there
exists a discrete and properly discontinuous representation ρ0 : π1(Σ) → PSL(2,R)
and a biholomorphic map

φ0 : (Σ, J0)→ H/Γ with Γ := ρ0(π1(Σ)).

Next, let ρ : π1(Σ) → PSL(2,R) be a discrete and properly discontinuous represen-
tation. Then H/ρ(π1(Σ)) ∼= Σ ∼= H/Γ as differentiable manifolds and there exists a
diffeomorphism

f : H/Γ→ H/ρ(π1(Σ)).

Without specifying the basepoints, f induces an isomorphism

f∗ : Γ ∼= π1(H/Γ)→ π1(H/ρ(π1(Σ))) ∼= ρ(π1(Σ))

which is well-defined up to conjugation. It follows from the Dehn–Nielson–Baer
theorem that the diffeomorphism f can be chosen in such a way that f∗ = ρ ◦ ρ−1

0
holds up to conjugation and this determines f up to isotopy. Define Jρ ∈ J (Σ) as
the pullback of the complex structure on H/ρ(π1(Σ)) under the map (f ◦ φ0). This
induces a map F(Σ)→ T (Σ) ∪ T (Σ̄).

The construction of this map does not depend on the reference data (J0, ρ0, φ0).
Let (J1, ρ1, φ1) be a difference choice for the reference data and let ρ : π1(Σ) →
PSL(2,R) be a given representation. These yield complex structures J0

ρ and J1
ρ

respectively where J1
ρ agrees with the pullback of J0

ρ under h := (f0 ◦φ0)−1 ◦(f1 ◦φ1).
It follows from the construction that h∗ ∈ Out(π1(Σ)) is the identity. Hence h ∈
Diff0(Σ) by the Dehn–Nielson–Baer theorem and both complex structures descend to
the same element in Teichmüller space.

Both constructions are inverse to each other and this completes the proof of the
theorem.

4.5 Hyperkähler thickening of Teichmüller space
In this section, we consider the unit disc bundle in T ∗H as fiber:

X := D∗H :=
{

(z, w) ∈ H× C
∣∣∣∣|w| < 1

Im(z)

}
This carries a natural SL(2,R)-action and a holomorphic symplectic form. We show
in Theorem 4.5.1 that X carries a (essentially unique) SL(2,R)-invariant hyperkähler
structure compatible with the holomorphic symplectic form. The restriction to the
disc bundle is necessary for this discussion, because the hyperkähler structure ceases
to exist on the total space of T ∗H.

As before let (Σ, ρ) be a closed 2-dimensional manifold equipped with an area
form ρ and denote by P → Σ its SL(2,R) frame bundle. Using Lemma 4.3.5, one can
identify the space of sections S(P,X) of the associated bundle P (X) := P ×SL(2,R)X
with

Q1(Σ) := {(J, σ) | J ∈ J (Σ), σ ∈ Q(J), |σ|J < 1}
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where Q(J) is the space of quadratic differentials σ ∈ Ω0(Σ, S2(T ∗Σ ⊗J C)). The
hyperkähler structure of X induces a hyperkähler structure on the bundle Q1(Σ).
The general theory developed in Theorem 4.2.4 then yields a hyperkähler moment
map for the action of Ham(Σ, ρ) on Q1(Σ). This is the content of Theorem 4.5.13.

As in the construction of Teichmüller space, one would like to construct a sym-
plectic quotient for the action of Symp0(Σ, ρ) instead of Ham(Σ, ρ). This requires
some additional work, as the Symp0(Σ, ρ)-action does not admit a hyperkähler mo-
ment map. A key ingrendient in constructing this moduli step is a slight extension
of the arguments in the proof of Theorem 4.5.13, which yields two moment maps
for the Symp0(Σ, ρ)-action. After suitable rescaling and applying standard Moser
isotopy arguments, this yields the moduli space

M :=
{

(g, σ) ∈ Met(Σ)×Q(Jg)
∣∣∣∣ ∂̄Jgσ = 0, |σ|g < 1,

Kg − c
2 |σ|

2
g = c

2

}/
Diff0(Σ) (4.56)

where c = 2π(2−2genus(Σ))/vol(Σ, ρ) and Jg ∈ J (Σ) is the unique complex structure
compatible with g. This moduli space comes equipped with a natural hyperkähler
structure and an embedding T (Σ) ↪→ M of Teichmüller space. We investigate the
rich geometry of this moduli space in the following section.

4.5.1 Hyperkähler extension of the hyperbolic plane
We identify the unit disc bundle inside the cotangent bundle of the hyperbolic plane
with the set

X =
{

(z, w) ∈ H× C
∣∣∣∣|w| < 1

Im(z)

}
.

This carries a natural SL(2,R) action induced by the action on H

SL(2,R)×X → X,

(
a b
c d

)
(z, w) =

(
az + b

cz + d
, (cz + d)2w

)
(4.57)

and a S1 action which is given by rotation of the fibre

S1 ×X → X,
(
eit, (z, w)

)
7→
(
z, eitw

)
(4.58)

As a complex cotangent bundle, X carries a natural holomorphic symplectic struc-
ture. This consists of the complex structure J1(ẑ, ŵ) := (iẑ, iŵ) and the complex
nondegenerate closed 2-form dz ∧ dw ∈ Ω2,0

J1
(X). Denote the real and imaginary part

of this form by

ω2 := dx ∧ du− dy ∧ dv, ω3 := dx ∧ dv + dy ∧ du

where z = x + iy and w = u + iv. A hyperkähler metric on X, which is compatible
with this holomorphic symplectic structure, is a Riemannian metric g satisfying the
following: The relation

ωi(·, Ji·) = g(·, ·) for i = 1, 2, 3

defines a Kähler form ω1 and integrable complex structures J2, J3 which satisfy the
quaternionic relations together with J1.
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Feix [43] and Kaledin [67] proved the following general existence result which
applies to our situation: For any real analytic Kähler manifold, there exists a unique
S1-invariant hyperkähler metric defined on some neighbourhood of the zero section
in the total space of the cotangent bundle, which is compatible with the canonical
holomorphic symplectic structure. The following theorem calculates this metric in
the case of the hyperbolic plane and shows that it exists on all of X.

Theorem 4.5.1 (Hyperkähler metric on X.). Define the Riemannian metric g
on X by

g = dz̄dz

2Im(z)2
√

1− r2
+ Im(z)2

2
√

1− r2
dw̄dw + iIm(z)w̄

2
√

1− r2
dz̄dw − iIm(z)w

2
√

1− r2
dw̄dz

where r := |w|Im(z). Then g is a SL(2,R) × S1-invariant hyperkähler metric on
X. It is compatible with the holomorphic symplectic structure and restricts to the
hyperbolic metric along H× {0} with curvature −1.

Proof. This is Lemma 16 in [38]. The proof takes up the rest of this subsection will
be completed on page 178 below.

Remark 4.5.2. It is easy to verify det gᾱβ ≡ 1
4 and then to deduce that g is a

hyperkähler metric. The purpose of the following discussion to explain the derivation
of the formula. This will be important for our discussion in Chapter 5.

Remark 4.5.3. The hyperkähler metric on X is not complete.

Remark 4.5.4 (The second complex structure). Hodge [61] showed that there
exists a SL(2,R)-equivariant diffeomorphism α : X → H × H which identifies the
second complex structure J2 on X with (i,−i) on H×H. It is given by the formula

α(z, w) = (expz (ifz(w)) , expz (−ifz(w))) (4.59)

where fz : T ∗zH→ TzH is given by

fz(w) := arctanh (−Im(z)|w|) Im(z)2w

Im(z)|w| .

For z = x+ iy, w = u+ iv and γ =
√

1− r2 =
√

1− y2(u2 + v2) it holds

α(x+ iy, u+ iv) =
(
x− y2v

1− yu + i yγ

1− yu, x+ y2v

1 + yu
+ i yγ

1 + yu

)
. (4.60)

By Remark 4.5.3, α is not an isometry.

We now proceed to the proof of Theorem 4.5.1. This consists of the following
four steps: First, we describe X in the Poincaré disc model of hyperbolic space and
introduce a suitable double cover of that space. We then determine successively the
hyperkähler metric on the double cover, in the disc model and finally on X.
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Step 1: The disc model and its double cover

In the disc model of the hyperbolic plane, X takes the form

XD := D∗D :=
{

(z, w) ∈ D× C
∣∣∣∣|w| < 2

(1− |z|2)

}
.

This comes equipped with a natural complex and holomorphic symplectic structure.
The SU(1, 1)-action on D induces the action

SU(1, 1)×XD → XD,

(
α β

β̄ ᾱ

)
(z, w) :=

(
αz + β

β̄z + ᾱ
, (β̄z + ᾱ)2w

)
.

Moreover, the Cayley transformation (see Lemma 4.3.1) defines a diffeomorphism

X
∼=−→ XD, (ζ, η) 7→

(
ζ − i
ζ + i ,

(ζ + i)2η

2i

)
. (4.61)

This intertwines the various structures on X and XD and it is equivariant with respect
to the isomorphism SL(2,R) ∼= SU(1, 1) defined in Lemma 4.3.1.

Consider the following open subset of C2

X̃ := {(z1, z2) ∈ C2 | 0 < |z1|2 − |z2|2 < 2}.

The group U(1, 1) acts on X̃ by linear transformations and the next lemma shows
that X̃ can be regarded as twofold cover of the punctured disc bundle XD\(D×{0}).

Lemma 4.5.5. The map π : X̃ → XD\(D× {0}) defined by

π(z1, z2) :=
(
z2

z1
, z2

1

)
(4.62)

is a holomorphic double cover. Moreover, for (z1, z2) ∈ X̃ with (z, w) := π(z1, z2) ∈
XD\(D× {0}) it holds

π(A(z1, z2)) = A∗(z, w), π(eit(z1, z2)) = (z, e2itw) (4.63)

for all A ∈ SU(1, 1) and eit ∈ S1.

Proof. The map π is well-defined, since 0 < |z1|2 − |z2|2 < 2 is equivalent to the
constraint 0 < |z2

1 | < 2/(1 − |z2/z1|2). Moreover, π(z1, z2) = (z, w) if and only if z1
is a square root of w and z2 = zz1. Hence, π is indeed a double cover. For

A =
(
α β

β̄ ᾱ

)
∈ SU(1, 1)

and (z1, z2) ∈ X̃ it holds

π(A(z1, z2)) =
(
β̄ + ᾱ(z2/z1)
α+ β(z2/z1) ,

(
α+ β

z2

z1

)2
z2

1

)
= Ā

(
z1

z2
, z2

1

)
.

This proves the first equation in (4.63) and the second equation is obvious.
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Step 2: The hyperkähler metric on the double cover

The next lemma constructions a U(1, 1)-invariant hyperkähler metric on X̃.
Lemma 4.5.6. Define the Riemannian metric g̃ on X̃ by the formula

g̃ := r3 + 4|z2|2

r2
√

4− r2
dz̄1dz1 + −r

3 + 4|z1|2

r2
√

4− r2
dz̄2dz2 −

4z2z̄1 dz̄2dz1 + 4z1z̄2 dz̄1dz2

r2
√

4− r2
.

where r := |z1|2− |z2|2. This is a U(1, 1)-invariant Kähler metric with det(g̃ᾱβ) ≡ 1.
Proof. Let g̃ be a Kähler metric on X̃ with Kähler form ω̃. Its volume form is given
by ω̃2/2 = − det(g̃ᾱβ)dz̄1 ∧ dz1 ∧ dz̄2 ∧ dz2 and hence det(g̃ᾱβ) ≡ 1 is equivalent to

− ω̃
2

2 ≡ dz̄1 ∧ dz1 ∧ dz̄2 ∧ dz2. (4.64)

Let f : X̃ → R be a smooth function of the form f(z1, z2) = F (|z1|2− |z2|2) for some
function F . We make the ansatz

ω̃ = i∂̄∂f. (4.65)

This is clearly U(1, 1)-invariant and we calculate

∂̄∂f = ∂̄ (F ′z̄1dz1 − F ′z̄2dz2)
=
(
F ′′|z1|2 + F ′

)
dz̄1dz1 +

(
F ′′|z2|2 − F ′

)
dz̄2dz2

− F ′′z2z̄1dz̄2dz1 − F ′′z1z̄2dz̄1dz2

(4.66)

Hence (4.64) is equivalent to

1 = F ′F ′′(|z2|2 − |z1|2)− (F ′)2.

Thus G := F ′ satisfies −1 = G(r)G′(r)r +G2(r) and the solution of this equation is
given by

G(r) =
√
C0

r2 − 1

for some constant C0. It follows from (4.65) and (4.66) that ω̃ is completely de-
termined by G. For C0 = 4 the solution is defined on all of X̃ and blows up as
r = |z1|2 − |z2|2 approaches 2. A short calculation shows that this yields the Kähler
form

−iω̃ = −r
3 − 4|z2|2

r2
√

4− r2
dz̄1dz2 + r3 − 4|z1|2

r2
√

4− r2
dz̄2dz2 + 4z2z̄1 dz̄2dz1 + 4z1z̄2 dz̄1dz2

r2
√

4− r2
.

The formula for the Kähler metric follows from this, since g̃ᾱβ = iω̃ᾱβ .

Step 3: The hyperkähler metric in the disc model

Lemma 4.5.7. The metric g̃ determined in Lemma 4.5.6 descends under the covering
map (4.62) to a metric on XD\(D× {0}) which is given by the formula

g = −r
3|w|+ 4|w|2

r2
√

4− r2
dz̄dz + (1− |z|2)2

4
√

4− r2
dw̄dw − (1− |z|2)

2
√

4− r2
(z̄wdw̄dz + w̄zdz̄dw) .

where r = |w|(1− |z|2). Moreover, g extends smoothly over the whole space XD and
restricts to the hyperbolic metric along D× {0}.



4.5. HYPERKÄHLER THICKENING OF TEICHMÜLLER SPACE 177

Proof. Let (z1, z2) ∈ X̃ and (z, w) = π(z1, z2) = (z2/z1, z
2
1) be the corresponding

coordinates on XD. Then

dw = 2z1dz1, dz = dz2

z1
− z2

z2
1
dz1 ⇐⇒ dz1 = dw

2z1
, dz2 = z1dz + z2

2z2
1
dw

and it follows

dz̄1dz1 = 1
4|w| dw̄dw

dz̄2dz2 = |w|dz̄dz + |z|
2

4|w|dw̄dw + zw̄

2|w|dz̄dw + z̄w

2|w|dw̄dz

dz̄1dz2 = w

2|w|dw̄dz + z

4|w|dw̄dw

dz̄2dz1 = w̄

2|w|dz̄dw + z̄

4|w|dw̄dw

The coefficients of g̃ can be expressed as

g̃1̄1 = r3 + 4|w| · |z|2

r2
√

4− r2

g̃2̄2 = −r
3 + 4|w|

r2
√

4− r2

g̃2̄1 = −4z|w|
r2
√

4− r2

g̃1̄2 = −4z̄|w|
r2
√

4− r2

with r = |w|(1− |z|2). Combining the equations we obtain

gw̄w = (1− |z|2)2

4
√

4− r2

gz̄z = −r
3|w|+ 4|w|2

r2
√

4− r2
= 4− |w|2(1− |z|2)3

(1− |z|2)2
√

4− r2

gw̄z = − (1− |z|2)z̄w
2
√

4− r2

gz̄w = − (1− |z|2)zw̄
2
√

4− r2

This calculation is valid for all (z, w) ∈ XD with w 6= 0. The metric extends smoothly
over D× {0} taking the values

gw̄w(z, 0) = (1− |z|2)2

8 , gz̄z(z, 0) = 2
(1− |z|2)2

and gw̄z(z, 0) = gz̄w(z, 0) = 0. This completes the proof of the lemma.
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The next result is the analogue of Theorem 4.5.1 for the disc model XD.

Theorem 4.5.8. Define g as in Lemma 4.5.7. This is a SU(1, 1)×S1-invariant hy-
perkähler metric on XD, where the action of S1 is given by rotation of the fibres. This
metric is compatible with the natural holomorphic symplectic structure and restricts
to the hyperbolic metric along D× {0} with constant curvature −1.

Proof. Let g be the metric on XD defined in Lemma 4.5.7. It follows from Lemma
4.5.5 and Lemma 4.5.6 that g is SU(1, 1)×S1-invariant and by Lemma 4.5.7 it restricts
to the hyperbolic metric along D× {0}.

Since det(g̃ᾱβ) ≡ 1, it follows

volg̃ = −dz̄1 ∧ dz1 ∧ dz̄2 ∧ dz2.

Using 2dz1 ∧ dz2 = dz ∧ dw, we then get

volg = −1
4dz̄ ∧ dz ∧ dw̄ ∧ dw.

and thus det(gᾱβ) ≡ 1
4 . Since det(gᾱβ) is the metric tensor for the induced metric

on the anti-canonical line bundle, it follows that the metric on Λ2,0T ∗XD is constant.
The Levi-Civita connection of g induces the unique connection on this bundle which
is compatible with the metric and holomorphic structures. It follows that this is the
trivial connection and

∇(dz ∧ dw) = 0.
In particular, ω2 = Re(dz∧dw) and ω3 = Im(dz∧dw) are parallel and it follows that
(XD, J2, ω2) and (XD, J3, ω3) are Kähler manifolds.

It remains to verify that the complex structures J1, J2, J3 satisfy the algebraic
relations of the quaternions. Since dz ∧ dw ∈ Ω2,0

J1
(XD), we get

ω2(J1·, ·) = ω2(·, J1·), ω3(J1·, ·) = ω3(·, J1·), ω2(·, ·) = ω3(J1·, ·).

Hence

ω2(·, J2J1·) = g(·, J1·) = −g(J1·, ·) = −ω2(J1·, J2·) = −ω2(·, J1J2·)

implies J2J1 = −J1J2. Moreover,

g(J2·, ·) = ω2(·, ·) = ω3(J1·, ·) = g(J3J1·, ·)

yields J2 = J3J1 and hence J3 = −J2J1 = J1J2.

Step 4: The hyperkähler metric in the upper half-plane model

Proof of Theorem 4.5.1. The Cayley transform (4.61) is a diffeomorphism X ∼= XD
which intertwines the various structures on X and XD. Hence it suffices to verify
that the metric on X defined in Theorem 4.5.1 is the pullback of the metric on XD
calculated in Theorem 4.5.8. Then Theorem 4.5.1 follows from Theorem 4.5.8.

Let (z, w) be the coordinates on XD and (ζ, η) be the coordinates on XH. The
Cayley transform (4.61) is given by

(z, w) =
(
ζ − i
ζ + i ,

(ζ + i)2η

2i

)
.
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It follows

dz = 2i
(ζ + i)2 dζ, dw = −i(ζ + i)ηdζ + (ζ + i)2

2i dη

and
dz̄dz = 4

|ζ + i|4 dζ̄dζ

dw̄dw = |η|2 · |ζ+ i|2dζ̄dζ+ |ζ + i|2

4 dη̄dη+ (ζ + i)|ζ + i|2η̄
2 dζ̄dη+ (ζ + i)|ζ + i|2η

2 dη̄dζ

dz̄dw = −2(ζ + i)3η

|ζ + i|4 dζ̄dζ − (ζ + i)4

|ζ + i|4 dζ̄dη

dw̄dz = −2(ζ + i)
3
η

|ζ + i|4 dζ̄dζ − (ζ + i)
4

|ζ + i|4 dη̄dζ

With r = |w|(1−|z|2) = 2|η|Im(ζ), the components of the metric transform as follows:

gz̄z = −r
3|w|+ 4|w|2

r2
√

4− r2
= |ζ + i|4

4Im(ζ)2
√

4− r2
− r|ζ + i|2|η|

2
√

4− r2

gw̄w = (1− |z|2)2

4
√

4− r2
= 4Im(ζ)2

|ζ + i|4
√

4− r2

gz̄w = − (1− |z|2)zw̄
2
√

4− r2
= − iIm(ζ)(ζ − i)(ζ + i)

3
η̄

|ζ + i|4
√

4− r2

gw̄z = − (1− |z|2)z̄w
2
√

4− r2
= iIm(ζ)(ζ − i)(ζ + i)3η

|ζ + i|4
√

4− r2

A lengthy computation combining these terms yield the desired expression:

gζ̄ζ = 1
Im(ζ)2

√
4− r2

gη̄η = Im(ζ)2
√

4− r2

gζ̄η = iIm(ζ)η̄√
4− r2

gη̄ζ = −iIm(ζ)η√
4− r2

Note that in Theorem 4.5.1 we defined r = |η|Im(ζ) in contrast to our convention of
r = 2|η|Im(ζ) in the calculation above. Hence we need to replace r by 2r to match
both formulae.
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4.5.2 Moment maps on the fibre
The S1-action on X defined by (4.58) is Hamiltonian for ω1 and rotates the symplectic
forms ω2 and ω3. The moment map for this action with respect to ω1 yields a Kähler
potential for the hyperkähler metric with respect to the second and third complex
structure. This is a general feature for hyperkähler manifolds equipped with such an
S1-action, which has been observed in [60]. We recall the argument in Lemma 4.5.9
below. The SL(2,R)-action on X defined by (4.57) preserves all three symplectic
forms and admits a hyperkähler moment map. We calculate the first moment map
in Proposition 4.5.10. The second and third moment map follow from a more general
calculation in Proposition 4.5.11.

Lemma 4.5.9 (Rotation of the fibres). Equip X with the hyperkähler structure
obtained in Theorem 4.5.1 and consider the S1-action on X defined by (4.58)

1. This action is Hamiltonian with respect to ω1 and generated by the Hamiltonian
function

H : X → R, H(z, w) :=
√

1− Im(z)2|w|2. (4.67)

2. H is a Kähler potential for the hyperkähler structure with respect to the second
and third complex structure, i.e.

2i∂̄J2∂J2H = ω2, 2i∂̄J3∂J3H = ω3 (4.68)

Proof. For (z, w) ∈ X write z = x+ iy and w = u+ iv. Then

ω1((0, iw), (ẑ, ŵ)) = −g((0, w), (ẑ, ŵ))
= −2Re (w̄gw̄z ẑ + w̄gw̄wŵ)

= −|w|
2yŷ + (uû+ vv̂)y2√

1− |w|2y2

= dH(z, w)[ẑ, ŵ].

This shows that the Hamiltonian vector field generated by H is given by vH(z, w) =
(0, iw) and hence H generates the S1-action on X.

Denote by φt(z, w) := (z, eitw) the rotation by eit. Then

LvH (ω2 + iω3) = d

dt

∣∣∣∣
t=0

φ∗t (ω2 + iω3) = d

dt

∣∣∣∣
t=0

eitdz ∧ dw = iω2 − ω3

and therefore LvHω2 = −ω3 and LvHω3 = ω2. The identity

dH(J2u) = ω1(vH , J2u) = g(J1vH , J2u) = g(J3vH , u) = ω3(vH , u)

then yields
2i∂̄J2∂J2H = d(dH ◦ J2) = dι(vH)ω3 = LvHω3 = ω2.

This proves the first equation in (4.68). The second follows by a similar calculation
and this proves the lemma.
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Proposition 4.5.10 (Moment map for ω1.). Let ω1 ∈ Ω2(X) be the symplectic
form obtained in Theorem 4.5.1 and let j : H → J (R2) be the isomorphism (4.39).
Then µ1 : X → sl∗(2,R) defined by

〈µ1(z, w), ξ〉 := −
√

1− Im(z)2|w|2)tr(j(z)ξ), for ξ ∈ sl(2,R)

is an equivariant moment map for the SL(2,R) action on X with respect to ω1.

Proof. The proof consists of three steps.

Step 1: For 0 < r < 1 define Xr := {(z, w) ∈ X | |w|Im(z) = r}. Then

ω1((ẑ1, ŵ1), (ẑ2, ŵ2)) =
√

1− r2 ωH(ẑ1, ẑ2). (4.69)

for all (z, w) ∈ Xr and (ẑ1, ŵ1), (ẑ2, ŵ2) ∈ T(z,w)Xr.

It follows from Lemma 4.5.9 that Xr = H−1(
√

1− r2). Hence Xr/S
1 is a

Marsden–Weinstein quotient and ω1 induces a well-defined SL(2,R)-invariant sym-
plectic form on Xr/S

1. Since SL(2,R) acts transitively on Xr, such a form is unique
up to scaling and there exists f(r) ∈ R such that

ω1((ẑ1, ŵ1), (ẑ2, ŵ2)) = f(r)ωH(ẑ1, ẑ2).

for all (z, w) ∈ Xr and (ẑ1, ŵ1), (ẑ2, ŵ2) ∈ T(z,w)Xr. We calculate f(r) by evaluating
ω1 at (i, r) ∈ Xr on the tangent vectors (1, 0), (i,−r) ∈ T(i,r)Xr.

f(r) = (ω1)(i,r)((1, 0), (i,−r)) = 2Im (gz̄zi− gz̄wr) =
√

1− r2.

This establishes (4.69).

Step 2: Let (z, w) ∈ X with w 6= 0 and define by

Vr(z, w) :=
(

0, w

Im(z)|w|

)
, Vφ(z, w) := (0, iw)

the radial and the angular vector fields along the fibre. Decompose ξ ∈ sl(2,R) as
ξ = ξ0 + ξ1 such that ξ0 commutes with j(z) and ξ1 anti-commutes with j(z). Then

L(z,w)ξ0 = −tr(j(z)ξ)Vφ

ω1(L(z,w)ξ1, Vr) = 0 = ω1(L(z,w)ξ1, Vφ).

Both identities are preserved by the SL(2,R)-action and we may assume without
loss of generality z = i and w > 0. Then j(z) = J0 and ξ decomposes as

ξ =
(
a b
c −a

)
=⇒ ξ0 =

(
0 b−c

2
c−b

2 0

)
, ξ1 =

(
a b+c

2
b+c

2 −a

)
.

The infinitesimal action of ξ is given by

L(i,w)ξ = (ia+ b− i(ic− a), 2(ci− a)w) = (2ia+ (b+ c), 2(ci− a)w) .
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This yields for ξ0

L(i,w)ξ0 = (0, i(c− b)w) = (c− b)Vφ = −tr(J0ξ)Vφ

which proves the first identity. For ξ1 it follows

L(i,w)ξ1 = (2ia+ (b+ c), (−2a+ i(b+ c))w) .

and hence

ω1(L(i,w)ξ0, (0, ŵ)) = 2Im (((b+ c)− 2ia)gz̄wŵ − (2a+ i(b+ c))w̄gw̄wŵ)

= 1√
1− w2

Im (((b+ c)− 2ia)iw̄ŵ − (2a+ i(b+ c))w̄ŵ)

= 0.

for every ŵ ∈ C. This proves the second identity.

Step 3: µ1 satisfies the moment map equation

d〈µ1(z, w), ξ〉[ẑ, ŵ] = ω1(L(z,w)ξ, (ẑ, ŵ)) (4.70)

for every (z, w) ∈ X and (ẑ, ŵ) ∈ T(z,w)X.

Suppose first w = 0. For tangent vectors (ẑ, 0) along the base, the claim follows
from Lemma 4.3.7. For tangent vectors (0, ŵ) along the fibre, the derivative of 〈µ1, ξ〉
in the direction of (0, ŵ) vanishes. Since ω1(L(z,0)ξ, (0, ŵ)) = 0, it follows that (4.70)
is satisfied in the case w = 0.

Suppose next r := |w|Im(z) > 0 and consider the case where (ẑ, ŵ) is tangential
to Xr. Since L(z,w)ξ is also tangential, it follows from (4.69) and Lemma 4.3.7

d〈µ1(z, w), ξ〉[ẑ, ŵ] = −
√

1− r2 dtr(j(z)ξ)[ẑ]

=
√

1− r2 ωH(Lzξ, ẑ)
= ω1(L(z,w)ξ, (ẑ, ŵ))

Finally consider the case r := |w|Im(z) > 0 and (ẑ, ŵ) = Vr(z, w). The vector
fields Vr and Vφ defined in Step 3 satisfy

ω1(Vr(z, w), Vφ(z, w)) = 2Im
(

w̄

Im(z)|w|gw̄wiw
)

= r√
1− r2

Hence, it follows from Step 2 that

d〈µ1(z, w), ξ〉[Vr] = r√
1− r2

tr(j(z)ξ) = ω1 (−tr(j(z)ξ)Vφ, Vr) = ω1(L(z,w)ξ, Vr).

This completes the proof of the moment map equation (4.70).
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Proposition 4.5.11 (Complex cotangent bundles). Let G be a Lie group acting
on a smooth complex manifold Y . Denote by π : T ∗Y → Y the canonical projection
and recall that the tautological 1-form λ ∈ Ω1(T ∗Y,C) is defined by

λ(y,α) := α ◦ dπ(y, α) : T(y,α)(T ∗Y )→ C.

The holomorphic symplectic form on T ∗Y is defined by

ω2 + iω3 = −dλ ∈ Ω2(T ∗Y,C).

The G-action on Y induces a natural action on T ∗Y . This action is Hamiltonian
with respect to ω2 and ω3 and admits the moment maps

〈µ2(y, α), ξ〉+ i〈µ3(y, α), ξ〉 := λ(y,α)(L(y,α)ξ) = α(Lyξ), for ξ ∈ g.

Here Ly : g→ TyY and L(y,α) : g→ T(y,α)T
∗Y denote the infinitesimal action on Y

and T ∗Y respectively.

Proof. Let g ∈ G, (y, α) ∈ T ∗Y and denote by mg : TyY → TgyY the derivative of
the action by g. Then g(y, α) = (gy, α ◦m−1

g ) and g∗λ = λ. Hence the Lie derivative
of λ in the direction vξ(y, α) := L(y,α)ξ vanishes. Then, by Cartan’s formula, we get

0 = Lvξλ = dι(vξ)λ+ ι(vξ)dλ.

This yields ω2(vξ, ·) + iω3(vξ, ·) = dλ(vξ) and proves the moment map equation.

4.5.3 The hyperkähler moment map on the space of sections
The main result of this subsection is Theorem 4.5.13, which calculates a hyperkähler
moment map for the action of Ham(Σ, ρ) on Q1(Σ) and two moment maps for the ac-
tion of Symp0(M,ρ). We begin our discussion with a careful look at the isomorphism
S(P,X) ∼= Q1(Σ).

Geometric description of the sections

Denote by P → (Σ, ρ) the SL(2,R) frame bundle, let X ⊂ T ∗H be the unit disc-
bundle inside the cotangent bundle of the hyperbolic plane, and consider the associ-
ated fibration P (X) := P ×SL(2,R) X. Denote by

(j, q) : X → J (R2)×Hom(R2 ⊗ R2,C)

the map (4.46) defined in Lemma 4.3.5. We remind the reader that the fibre maps
q(ζ, ·) : T ∗ζ H → Q(j(ζ)) are complex anti-linear isometries for the canonical struc-
tures. This yields an embedding

P (X) ↪→ End(TΣ)× S2(T ∗Σ⊗ C),
[(z, θ), (ζ, η)] 7→

(
θj(ζ)θ−1, θ∗q(ζ, η)

) (4.71)

where z ∈ Σ, θ : R2 → TzΣ is a volume preserving frame and (ζ, η) ∈ X. On the
space of section this yields the identification

S(P,X) ∼= Q1(Σ) = {(J, σ) | J ∈ J (Σ), σ ∈ Q(J), |σ|J < 1}

where Q(J) = Ω1(Σ, S2(T ∗Σ⊗J C)) denotes the space of J-quadratic differentials.



184 CHAPTER 4. MOMENT MAPS AND TEICHMÜLLER THEORY

Lemma 4.5.12.
1. Any torsion free SL(2,R) connection on TΣ induces connections on P (X) and

End(TΣ)× S2(T ∗Σ⊗ C) which are compatible with respect to (4.71).

2. The inclusion (4.71) is Symp(Σ, ρ)-equivariant.

3. The hyperkähler structure on X (see Theorem 4.5.1) induces a hyperkähler
structure on P (X).

(a) The natural complex structure on X corresponds to

(Ĵ , σ̂) 7→ (−JĴ,−iσ̂)

for (J, σ) ∈ Q1(Σ) and (Ĵ , σ̂) ∈ T(J,q)Q1(Σ). The corresponding holomor-
phic symplectic form satisfies (pointwise) the equation

(ω2 + iω3)(J,σ)

(
(Ĵ1, σ̂1), (Ĵ2, σ̂2)

)
= σ̂2(Ĵ1v, v)− σ̂1(Ĵ2v, v)

|v|2J
for (J, σ) ∈ Q1(Σ) and (Ĵi, σ̂i) ∈ T(J,q)Q1(Σ).

(b) The first symplectic form satisfies

(ω1)(J,q) ((0, σ̂1), (0, σ̂2)) = −ωQ(σ̂1, σ̂2)√
1− |σ|2

for (J, σ) ∈ Q1(Σ) and σ̂i ∈ Q(J). Here we denote by ωQ the pointwise
symplectic structure on S2(T ∗Σ⊗J C) determined by J and ρ.

Proof. The first two claims are a matter of unravelling the definitions and left to the
reader. The formula for the holomorphic symplectic structure follow from Lemma
4.3.5 and Lemma 4.3.6. The final property of the hyperkähler metric follows from
Theorem 4.5.1.

Calculation of the hyperkähler moment map

The symplectic forms on P (X) integrates to symplectic forms on Q1(Σ) defined by

ωi((Ĵ1, σ̂1), (Ĵ2, σ̂2)) :=
∫

Σ
ωi((Ĵ1, σ̂1), (Ĵ2, σ̂2))ρ

The next theorem calculates moment maps for these symplectic forms.
Theorem 4.5.13. The action of Ham(Σ, ρ) on Q1(Σ) is Hamiltonian for all three
symplectic structures ωi. Moreover, the action of Symp0(Σ, ρ) on Q1(Σ) is Hamilto-
nian for ω2 and ω3:

1. An equivariant moment map for the Ham(Σ, ρ)-action on Q1(Σ) for ω1 is

µ1(J, σ) = |∂̄Jσ|
2
J − |∂Jσ|2J√
1− |σ|2J

ρ+ 2
√

1− |σ|2JKJρ+ 2i∂̄J∂J
√

1− |σ|2J − 2cρ

(4.72)

where c := 2π(2− 2genus(Σ))/vol(Σ, ρ), KJ denotes the Gaussian curvature of
ρ(·, J ·) and all norms | · |J are calculated with respect to this metric.
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2. Define the contraction r : Ω0,1
J (Σ, S2(T ∗Σ⊗J C))→ Ω1,0

J (Σ) by r(γ) := γ(v)(v,·)
|v|2
J

which is independent of 0 6= v ∈ Vect(Σ). An equivariant moment map for the
Ham(Σ, ρ)-action on Q1(Σ) for ω2 and ω3 is given by

µ2(J, σ) + iµ3(J, σ) = −2i∂̄Jr(∂̄Jσ) (4.73)

3. An equivariant moment map for the Symp0(Σ, ρ)-action on Q1(Σ) with respect
to ω2 and ω3 is given by〈

µ̃2(J, σ) + iµ̃3(J, σ), v
〉

= −2i
∫

Σ
ι(v)r(∂̄Jσ)ρ. (4.74)

for any symplectic vector field v ∈ Vect(Σ) satisfying dι(v)ρ = 0.

Proof. Denote by ∇ the Levi-Civita connection of ρ(·, J ·). We deduce (4.72) in Step
1 from Theorem 4.2.4. For the proof of (4.74) we need to extend the arguments used
in the derivation of Theorem 4.2.4. This is done in Step 2 and the derivation of (4.73)
and (4.74) is completed in Step 3 and Step 4.

Step 1.1: ω1(∇(J, σ),∇(J, σ)) = 1√
1−|σ|2

(|∂̄σ|2 − |∂σ|2)ρ.

For the Levi-Civita connection we have ∇J = 0 and then Lemma 4.5.12 yields:

ω1(∇(J, σ) ∧∇(J, σ)) = ω1((0,∇σ) ∧ (0,∇σ)) = −ωQ(∇σ,∇σ)√
1− |σ|2

. (4.75)

For u ∈ Vect(Σ), we have

|∂uσ|2 = 1
4 |∇uσ − i∇Juσ|2 = 1

4
(
|∇uσ|2 + |∇Juσ|2

)
+ 1

2ωQ(∇uσ,∇Juσ)

and

|∂̄uσ|2J = 1
4 |∇uσ + i∇Juσ|2 = 1

4
(
|∇uσ|2 + |∇Juσ|2

)
− 1

2ωQ(∇uσ,∇Juσ)

which yields |∂uσ|2 − |∂̄uσ|2 = ωQ(∇uσ,∇Juσ) and therefore(
|∂σ|2 − |∂̄σ|2

)
ρ = ωQ(∇σ,∇σ) (4.76)

Step 1.1 follows from (4.75) and (4.76).

Step 1.2: 〈µ(J,σ), R
∇〉 = −2KJ

√
1− |σ|2ρ where R∇ and KJ denotes the Rie-

mannian and Gaussian curvature the Levi–Civita connection for ρ(·, J ·).

The Riemann curvature tensor R∇ and Gaussian curvature KJ are related by the
formula R∇ = −KJJ ⊗ ρ. By Proposition 4.5.10 if follows

〈µ(J,σ), R
∇〉 =

√
1− |σ|2KJtr(J2)ρ = −2KJ

√
1− |σ|2ρ

and this proves Step 1.2.
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Step 1.3: dc(∇µ(J,σ)) = −2i∂̄∂
√

1− |σ|2.

Using Proposition 4.5.10 and ∇J = 0, we obtain

∇uµ(J,σ)(Ψ) = Lu
(
−
√

1− |σ|2tr(JΨ)
)

+
√

1− |σ|2)tr(J∇uΨ)

= −Lu
(√

1− |σ|2
)

tr(JΨ)

for all Ψ ∈ Ω0(Σ,End(TΣ)) and u ∈ Vect(Σ). Let e1, e2 = Je1 be a local orthonormal
frame for TΣ and write v ∈ Vect(Σ) as v = v1e1 + v2e2. Then

c(∇µ(J,σ))(v) = ∇e1µ(J,σ)(e∗1 ⊗ v) +∇e2µ(J,σ)(e∗2 ⊗ v)

= −Le1
√

1− |σ|2tr(Je∗1 ⊗ v)− Le2
√

1− |σ|2tr(Je∗2 ⊗ v)

= Le1
√

1− |σ|2v2 − Le2
√

1− |σ|2v1

= −LJv
(√

1− |σ|2
)
.

Step 1.3. follows from this and the relation d(df ◦ J) = 2i∂̄∂f which holds for every
smooth function f : Σ→ C.

Step 1.4: (4.72) defines an equivariant moment map for the action of Ham(Σ, ρ)
with respect to ω1.

We have identified in Steps 1.1-3 all components of the moment map in Theorem
4.2.4. It follows from the general theory (see Lemma 4.2.2) that the cohomology class
of

|∂̄σ|2 − |∂σ|2√
1− |σ|2

ρ+ 2
√

1− |σ|2KJρ+ 2i∂̄∂
√

1− |σ|2

does not depend on (J, σ) ∈ Q1(Σ). For σ = 0, it follows from the Gauss–Bonnet
theorem that the cohomology class is represented by 2cρ. Therefore µ1 takes values in
the space of exact 2-forms and the moment map equation follows from Theorem 4.2.4.

Step 2.1: Let λ ∈ Ω1(X,C) be the tautological 1-form on X which is defined by
λ(ζ,η)(ζ̂, η̂) = ηζ̂ for (ζ, η) ∈ X and (ζ̂, η̂) ∈ T(ζ,η)X. Define Λ ∈ Ω1(P ×X,C) by

Λ(p,x)(p̂, x̂) = λx(x̂+ LxAp(p̂)). (4.77)

This descends to a 1-form on P (X) = P ×SL(2,R) X and satisfies

∂ŝ

∫
Σ
s∗Λ ∧ ι(v)ρ =

∫
Σ

(dΛ)s(ŝ,∇vs)ρ. (4.78)

for every symplectic vector field v ∈ Vect(Σ) with dι(v)ρ = 0.

Since λ is SL(2,R)-equivariant, one readily verifies that Λ ∈ Ω1(P ×X,C) is also
equivariant and descends to a well-define 1-form Λ ∈ Ω1(P (X),C). It now follows
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from Cartan’s formula

∂ŝ

∫
Σ
s∗Λ ∧ ι(v)ρ =

∫
Σ
ds∗ι(ŝ)Λ ∧ ι(v)ρ+

∫
Σ
s∗(ι(ŝ)dΛ) ∧ ι(v)ρ

=
∫

Σ
ι(v)s∗(ι(ŝ)dΛ)ρ

=
∫

Σ
(dΛ)s(ŝ,∇vs)ρ

where the second equation uses integration by parts and dι(v)ρ = 0.

Step 2.2: Let v ∈ Vect(Σ) with dι(v)ρ = 0. By Lemma 4.2.3, the Lie derivative
of s along v is given by Lvs = ∇vs− Ls∇v. This satisfies∫

Σ
(dΛs)(ŝ,Lvs)ρ = ∂ŝ

∫
Σ
s∗Λ ∧ ι(v)ρ− ∂ŝ

∫
Σ

Λs(Ls∇v)ρ

where Lx : sl(2,R)→ TxX denotes the infinitesimal action on the fibre.

It follows from the moment map equation in Proposition 4.5.11 that∫
Σ

(dΛ)s (Ls∇v, ŝ) ρ = −∂ŝ
∫

Σ
Λs(Ls∇v)ρ.

The formula follows thus from Step 2.1 and Lvs = ∇vs− Ls∇v.

Step 3: (4.74) defines an equivariant moment maps for the action of Symp0(Σ, ρ)
with respect to ω2 and ω3.

For s = (J, σ) we have

s∗Λ = (J, σ)∗Λ = 〈σ,∇J〉Q(J)×TJ = 0

Λs(Ls∇v) = 〈σ, LJ(∇v)〉Q(J)×TJ = 〈σ,−2J∂̄Jv〉Q(J)×TJ

where the pairing is defined by (4.48). In the second equation, we used that LJξ =
[ξ, J ] = −2Jξ0,1 for ξ ∈ End0(Rn) and J ∈ J (R2). Along the vertical tangent bundle
of Q1(Σ), it holds ω2 + iω3 = −dΛ. It thus follows from Step 2 that〈

µ2 (J, σ) + iµ3 (J, σ) , v
〉

=
∫

Σ
〈σ,−2J∂̄Jv)〉Q(J)×TJ · ρ (4.79)

where the pairing is defined by (4.48). In a holomorphic chart U ⊂ Σ write

J(z) = J0, σ(z) = f(z)dz2, v = v(z), ρ = λdx ∧ dy

for smooth functions f, v : U → C and λ : U → R+. Then (4.48) yields

〈σ,−2J∂̄Jv〉Q×TJ · ρ = 2if(z) ∂
∂z̄
v(z)dx ∧ dy

= ∂

∂z̄
(f(z)v(z)) dz̄ ∧ dz − ∂f(z)

∂z̄
v(z) dz̄ ∧ dz

= −∂J ι(v)σ − 2iι(v)r(∂̄Jσ)ρ.
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Here we used that r(∂̄σ) = λ−1 ∂f
∂z̄ dz in local coordinates. Thus∫

Σ
〈σ,−2J∂̄Jv〉Q(J)×TJ · ρ = −2i

∫
Σ
ι(v)r(∂̄Jσ)ρ. (4.80)

Step 3 follows from (4.79), and (4.80).

Step 4: (4.73) defines an equivariant moment maps for the action of Ham(Σ, ρ)
with respect to ω2 and ω3.

Let H : Σ → R be a Hamiltonian and define vH ∈ Vect(M) by ι(vH)ρ = dH.
Then

−2i
∫

Σ
ι(vH)r(∂̄Jσ)ρ = −2i

∫
Σ
r(∂̄Jσ) ∧ dH = −2i

∫
Σ
H∂̄Jr(∂̄Jσ)

where we used integration by parts and that r(∂̄Jσ) is a (1, 0) form. Equation (4.73)
follows now from Step 3.

4.5.4 Construction of the moduli space
The Hamiltonian quotient space

The hyperkähler quotient of Q1(Σ) by Ham(Σ, ρ) is defined by

M0 := µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/Ham(Σ, ρ)

=
{

(J, σ) ∈ Q1(Σ)
∣∣∣µ1(J, σ) = 0, ∂̄Jr(∂̄Jσ) = 0

}/
Ham(Σ, ρ)

(4.81)

where µ1, µ2, µ3 are the moment maps calculated in Theorem 4.5.13 for the Ham(Σ, ρ)-
action onQ1(Σ). It follows from general principles thatM0 is a hyperkähler manifold.

The next lemma is formulated in a finite dimensional setting, but extends formally
to our case. It indicates that transversality for the hyperkähler moment map is an
automatic consequence of our setup.

Lemma 4.5.14. Let (M, g, I1, I2, I3) be a hyperkähler manifold and let G be a Lie
group. Suppose G acts freely on M by hyperkähler isometries and admits a hy-
perkähler moment map

µ = (µ1, µ2, µ3) : M → R3 ⊗ g∗.

Then 0 is a regular value of µ.

Proof. Let x ∈M with µ(x) = 0 be given. Denote by Lx : g→ TxM its infinitesimal
action and decompose TxM = W0 ⊕W1 with

W1 := Im(Lx), W0 = Im(Lx)⊥.

Equivariance of the moment map yields for all ξ, η ∈ g the identity

〈IiLxξ, Lxη〉 = 〈dµi(x)Lxη, ξ〉 = 〈µi(x), [η, ξ]〉 = 0.
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This shows that the three complex structures map W1 into W0.
Let η1, η2, η3 ∈ g∗ be given. Since G acts freely, Lx is injective, and the dual

map L∗x : TxM → g∗ is surjective with kernel W0. Hence there exist ui ∈ W1 with
ηi = L∗x(αi) for i = 1, 2, 3. For v := −(I1u1 + I2u2 + I3u3) we then obtain

〈dµi(x)v, ξ〉 = ωi(Lxξ, v) = g(Lxξ, Iiv) = g(Lxξ, ui) = 〈ηi, ξ〉.

This proves surjectivity of dµ : TxM → R3 ⊗ g∗ and the lemma.

Construction of the symplectic quotient space

Denote by M0 := Q1//Ham(Σ, ρ) the Hamiltonian quotient (4.81). Recall from
Remark 4.4.7 that the quotient

H := Symp0(Σ, ρ)/Ham(Σ, ρ) ∼= H1(Σ,R)

is a well-defined group where the identification with H1(Σ,R) is obtained using the
flux homomorphism. The Lie algebra of H is the quotient

Lie(H) := {v ∈ Vect(Σ) | dι(v)ρ = 0}
{v ∈ Vect(Σ) | ι(Jv)ρ exact}

The Symp0(Σ, ρ) action on Q1(Σ) induces an action of H on M0 preserving the
hyperkähler structure.

Proposition 4.5.15.

1. The H-action is Hamiltonian with respect to ω2 and ω3: For [v] ∈ Lie(H) and
[J, σ] ∈M0 the following maps

〈
µ̃H2 ([J, σ]) + iµ̃H3 ([J, σ])[v]

〉
= −2i

∫
Σ
ι(v)r(∂̄Jσ)ρ (4.82)

are well-defined equivariant moment maps for ω2 and ω3 respectively.

2. On M0 the equation µ̃H2 ([J, σ]) = 0 is equivalent to µ̃H3 ([J, σ]) = 0 and

(µ̃H2 )−1(0) = (µ̃H3 )−1(0) =
{

[J, σ] ∈M0 | ∂̄Jσ = 0
}

(4.83)

3. (µ̃H2 )−1(0) = (µ̃H3 )−1(0) is a J1–complex submanifold

4. The H-orbits in (µ̃H2 )−1(0) = (µ̃H3 )−1(0) are J1–complex submanifolds.

Proof. Theorem 4.5.13 show that the action of Symp0(Σ, ρ) on Q1(Σ) is Hamiltonian
with respect to ω2 and ω3. This directly implies that the action of H is Hamiltonian
for the symplectic forms induced by ω2 and ω3. The formula for the moment maps
(4.82) follows from (4.74).

For fixed J , one can identify the Lie algebra of H with

hJ := {v ∈ Vect(Σ) | dι(v)ρ = 0 = dι(Jv)ρ}
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by Hodge theory. This is a J-invariant subspace and it holds µ̃H2 ([J, σ], Jv) =
µ̃H3 ([J, σ], v) for all v ∈ hJ . Hence (µ̃H2 )−1(0) = (µ̃H3 )−1(0). We prove (4.83) next.
Let [J, σ] ∈ (µ̃H2 )−1(0) = (µ̃H3 )−1(0) be given. Then

0 =
∫

Σ
ι(v)r(∂̄Jσ)ρ =

∫
Σ
r(∂̄Jσ) ∧ ι(v)ρ

for all v ∈ hJ . The defining equations of M0 show that r(∂̄Jσ) ∈ Ω1,0
J (Σ,C) is

closed. Since {ι(v)ρ | v ∈ hJ} parametrizes the space of (real) harmonic 1-forms, it
follows from Poincaré duality that [r(∂̄Jσ)] = 0 ∈ H1,0

J (Σ). Hence r(∂̄Jσ) = ∂Jf
with ∂̄J∂Jf = 0. Then f is constant and therefore ∂̄Jσ = 0.

Let [J, σ] ∈ (µ̃H2 )−1(0) = (µ̃H3 )−1(0). It follows from the moment map equations
that multiplication with J2 and J3 yields isomorphism

J2 : T[J,σ] (H · [J, σ])→
(
T[J,σ]

(
µ̃H2
)−1 (0)

)⊥
J3 : T[J,σ] (H · [J, σ])→

(
T[J,σ]

(
µ̃H3
)−1 (0)

)⊥
Hence J1 = J2J3 maps T[J,σ] (H · [J, σ]) and T[J,σ]

(
µ̃H2
)−1 (0) onto themselves. There-

fore
(
µ̃H2
)−1 (0) =

(
µ̃H3
)−1 (0) is a J1-complex submanifold of M0 and the H-orbits

are complex submanifolds.

Consider the moduli space

Ms :=
{

(J, σ) ∈ Q(Σ)
∣∣∣µ1(J, σ) = 0, ∂̄Jσ = 0, |σ| < 1

}/
Symp0(Σ, ρ) (4.84)

It follows from Proposition 4.5.15 above thatMs carries a natural hyperkähler struc-
ture: SinceMs is a Marsden-Weinstein quotient ofM0 for the symplectic structures
induced by ω2 and ω3, it follows that they descend to symplectic structures on Ms.
Using Lemma 4.4.9, ω1 also provides a natural symplectic structure on Ms. This
yields three algebraically compatible symplectic forms onMs and a lemma of Hitchin
([58], Lemma 6.8) shows that this defines a hyperkähler structure.

Proposition 4.5.16. Let (J, σ) ∈ Q1(Σ) and assume ∂̄Jσ = 0. Then

µ1(J, σ) =
(

2KJ + ∆ log(1 +
√

1− |σ|2)
)
ρ− 2cρ (4.85)

were ∆ = d∗d is the positive Laplaction for the metric ρ(·, J ·). In particular,

Ms =
{

(J, σ) ∈ Q(Σ)
∣∣∣∣ ∂̄Jσ = 0, |σ| < 1
KJ + 1

2∆ log(1 +
√

1− |σ|2) = c

}/
Symp0(Σ, ρ).

(4.86)

where c := 2π(2− 2genus(Σ))/vol(Σ, ρ).

Proof. Consider the function h := |σ|2. It suffices to prove the lemma around a point
where h 6= 0. We also simplify notation and abbreviate ∂̄ := ∂̄J and ∂ := ∂J .
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Step 1: Suppose ∂̄σ = 0, then

µ1(J, σ) = i ∂̄h ∧ ∂h
2h
√

1− h
− i
√

1− h∂̄∂ log(h) + 2i∂̄∂
√

1− h− 2cρ (4.87)

Denote by hQ the hermitian form on the bundle of quadratic differentials induced
by J and ρ. Since ∂̄σ = 0, it follows ∂h = ∂hQ(σ, σ) = hQ(σ, ∂σ) and then

|∂h|2 = |hQ(σ, ∂σ)|2 = |σ|2|∂σ|2 = h|∂σ|2. (4.88)

Using |∂h|2ρ = − i
2 ∂̄h ∧ ∂h, we then obtain

|∂σ|2ρ = − i
2h∂̄h ∧ ∂h (4.89)

Next choose holomorphic coordinates and write

ρ = λdx ∧ dy, σ(z) = f(z)dz2

for some positive function λ and a holomorphic function f . The Gaussian curvature
KJ can be computed in these coordinates via

KJ = −1
2λ
−1(∂2

x log(λ) + ∂2
y log(λ)).

Since f(z) is holomorphic, log(|f(z)|2) is harmonic and we compute

∂̄∂ log(h) = 1
4(∂2

x + ∂2
y) log(|f(z)|2λ−2)2i dx ∧ dy

= −i(∂2
x + ∂2

y) log(λ) dx ∧ dy
= 2iKJρ.

This shows

KJρ = − i
2 ∂̄∂ log(h). (4.90)

Plugging (4.89) and (4.90) into (4.72) and using ∂̄σ = 0 yields (4.87).

Step 2: Suppose ∂̄σ = 0, then µ1 is given by (4.85)

Form (4.87) and integration by parts, it follows

µ1(J, σ) = i ∂̄h ∧ ∂h
2h
√

1− h
− i
√

1− h∂̄∂ log(h) + 2i∂̄∂
√

1− h− 2cρ

= i
[
−∂̄
√

1− h ∧ ∂ log(h)−
√

1− h∂̄∂ log(h) + 2∂̄∂
√

1− h
]
− 2cρ

= i∂̄
[
−
√

1− h∂ log(h) + 2∂
√

1− h
]
− 2cρ
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A primitive for the inner expression is obtained by the following calculation:

−
√

1− h∂ log(h) + 2∂
√

1− h = −1
h
√

1− h
∂h

= −1 +
√

1− h
h
√

1− h
∂h− ∂ log(h)

= −1√
1− h(1 +

√
1− h)

∂h− ∂ log(h)

= 2∂ log(1 +
√

1− h)− ∂ log(h)

Using (4.90) this yields

µ1(J, σ) = −i∂̄∂ log(h) + 2i∂̄∂ log(1 +
√

1− h)− 2cρ

= 2KJρ+ ∆(log(1 +
√

1− h))ρ− 2cρ

where ∆ = d∗d is the positive Laplacian which satisfies (∆h)ρ = 2i∂̄∂h.

Metric description of the moduli space

Denote by Met(Σ) the space of Riemannian metrics g on Σ. For every g ∈ Met(Σ)
there exists a unique complex structure J = Jg ∈ J (Σ) which is compatible with g
and ρ. In the following, we always refer to this complex structure, when discussing
holomorphic objects on (Σ, g). Define

Md :=
{

(g, σ)
∣∣∣∣ g ∈ Met(Σ), σ ∈ Q(g), |σ| < 1
∂̄σ = 0, Kg + 1

2∆ log(1 +
√

1− |σ|2) = c

}/
Diff0(Σ). (4.91)

Standard Moser isotopy arguments (as in Proposition 4.4.5) show that the canonical
inclusion Ms → Md is an isomorphism, where Ms is defined by (4.86). The next
proposition provides a simpler description of this moduli space.

Proposition 4.5.17. Consider on the space of pairs (g, σ) with g ∈ Met(Σ) and
σ ∈ Q(g) with |σ| < 1 the self-map defined by

(g, σ) 7→
((

1 +
√

1− |σ|2g
)
· g, σ

)
.

This induces a well-defined isomorphism between Md and

M :=
{

(g, σ)
∣∣∣∣ g ∈ Met(Σ), σ ∈ Q(g), |σ| < 1

∂̄σ = 0, Kg − c
2 |σ|

2 = c
2

}/
Diff0(Σ) (4.92)

where c := 2π(2− 2genus(Σ))/vol(Σ, ρ).

Proof. Let g0 ∈ Met(Σ), let σ ∈ Q(g0) with |σ|g0 < 1 and define

f := 1 +
√

1− |σ|2g0
, g := fg0.
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Then |σ|g = |σ|g0/f < 1. For the converse direction, use the relation (f − 1)2 =
1− |σ|2g0

to obtain

1
f

=
1 + |σ|2g0

/f2

2 =
1 + |σ|2g

2 . (4.93)

It follows that one can recover g0 from (g, σ) via g0 = 2|σ|g/(1+ |σ|2g) ·g. In particular

|σ|g0 = 2|σ|g
1 + |σ|g

.

and this shows that |σ|g0 < 1 if and only if |σ|g < 1. The Gaussian curvature changes
under the conformal change as follows

Kg = 1
f

(
Kg0 + 1

2∆g0 log(f)
)
.

and (4.93) then yields

Kg =
1 + |σ|2g

2

(
Kg0 + 1

2∆g0 log(f)
)
.

This proves the identification of M with Md and the proposition.

4.6 Three geometric models for the moduli space
We assume throughout this section that genus(Σ) ≥ 2 and that V := vol(Σ, ρ) =
π(2genus(Σ) − 2). The moduli space (4.92) constructed in the previous section is
then given by

M :=
{

(g, σ)
∣∣∣∣ g ∈ Met(Σ), σ ∈ Q(g), |σ| < 1

∂̄σ = 0, Kg + |σ|2g = −1

}/
Diff0(Σ) (4.94)

It follows from the general construction that M carries a natural hyperkähler struc-
ture which extends the Weil–Petersson metric on Teichmüller space. The purpose of
this section is to establish the following three geometric description of this moduli
space proposed by Donaldson [38].

1. M embeds as an open neighbourhood of the zero section into the cotangent
bundle of Teichmüller space T (Σ). The hyperkähler metric on M can then be
viewed as the Feix–Kaledin hyperkähler extension of the Weil–Petersson metric
on T (Σ).

2. M parametrizes the class of almost-Fuchsian hyperbolic 3-manifolds. These are
quasi-Fuchsian 3-manifolds which possess an incompressible minimal surface
with principal curvatures in (−1, 1). This surface is then unique and its area
provides a Kähler potential for the hyperkähler metric with respect to the
second complex structure.
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3. M embeds as an open subset into the smooth locus of the SL(2,C) repre-
sentation variety RSL(2,C)(Σ) := Hom (π1(Σ),SL(2,C)) /SL(2,C). The natural
complex structure in this picture corresponds to minus the second complex
structure in the first picture and the Goldman holomorphic symplectic form on
RSL(2,C)(Σ) (see [52]) restricts to −ω1 + iω3 along the moduli space M.

First, we recall a construction of Uhlenbeck [117] which associate to every pair
[g, σ] ∈M a complete hyperbolic 3-manifold. The isomorphism between M and the
almost-Fuchsian moduli space is then given in Theorem 4.6.4. Next, following Hodge
[61] we describe an explicit embedding ofM into T (Σ)×T (Σ) in Theorem 4.6.4. This
map is not surjective and both maps are related by the simultaneous uniformization
theorem of Bers [8], stated in Theorem 4.6.6. By the Cartan–Ambrose–Higgs theorem,
one can express every complete hyperbolic 3-manifold as quotient of hyperbolic space
H3. This gives rise to a natural embedding of the almost Fuchsian moduli space into
RPSL(2,C)(Σ). Theorem 4.6.12 was outlined by Donaldson [38] and describes a lift
of this embedding from M into RSL(2,C)(Σ) using the theory of Higgs bundles [58].
Finally, we recall in Theorem 4.6.14 a well-known result of Uhlenbeck [117] which
states that the natural map of M into T ∗T (Σ) is a well-defined embedding.

4.6.1 Germs of hyperbolic 3-manifolds and almost-Fuchsian
metrics

The equation

Kg + |σ|2 = −1, ∂̄σ = 0 (4.95)

for pairs g ∈ Met(Σ) and σ ∈ Q(g) appeared in Uhlenbeck [117] and Taubes [108] for
minimal surfaces in hyperbolic 3-manifolds. It follows from Theorem 4.6.1 that solu-
tions of (4.95) correspond to minimal hyperbolic germs over Σ. When the additional
pointwise constraint |σ|g ≤ 1 is satisfied, then every solution of (4.95) embeds as a
minimal surfaces into a complete hyperbolic 3-manifold Y ∼= Σ × R. A hyperbolic
3-manifold is a connected, oriented, Riemannian 3-manifold (Y, gY ) with constant
sectional curvature −1. In particular, we do not assume completeness of (Y, gY ).
This section contains a proof of the following theorem of Uhlenbeck [117].

Theorem 4.6.1 (Germs of hyperbolic 3-manifolds).

1. Suppose g ∈ Met(Σ) and σ ∈ Q(g) satisfy (4.95). Then there exists a hyperbolic
3-manifold (Y, gY ) and a minimal isometric embedding

ι : (Σ, g) ↪→ (Y, gY )

with second fundamental form h = Re(σ). Moreover, the hyperbolic metric gY
is uniquely determined by (g, σ) in a tubular neighbourhood of ι(Σ) ⊂ Y .

2. Let (Y, gY ) be a hyperbolic 3-manifold, let ι : Σ ↪→ (Y, gY ) be a minimal embed-
ding with second fundamental form h and denote g := ι∗gY ∈ Met(Σ). Then
there exists σ ∈ Q(g) with h = Re(σ) such that (g, σ) satisfies (4.95).
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Proof. The proof consists of four steps.

Step 1: Assume ι : (Σ, g) ↪→ (Y, gY ) is an isometric embedding. Then there exists
ε > 0, an open neighbourhood ι(Σ) ⊂W ⊂ Y and a diffeomorphism f : Σ× (−ε, ε)→
W such that ι(z) = f(z, 0) for all z ∈ Σ and the pullback metric f∗gY on Σ× (−ε, ε)
has the form

(f∗gY )(z, t) =
(
gt(z) 0

0 1

)
(4.96)

for a smooth family of metrics t 7→ gt ∈ Met(Σ) with g0 = g.

Since Σ and Y are both orientable, there exists unit normal vector field ν ∈
Ω0(Σ, ι∗(T⊥ι(Σ))). For sufficiently small ε > 0 the map

f : Σ× (−ε, ε)→ Y, f(z, t) := expz(tν(z))

is a diffeomorphism onto its image which has all the desired properties.

Step 2: Assume Y = Σ × (−ε, ε) with Riemannian metric (4.96). The second
fundamental form of Σ× {0} ⊂ Y , is given by

h = −1
2
d

dt

∣∣∣∣
t=0

gt. (4.97)

Moreover, for t ∈ (−ε, ε) define kt ∈ Ω0(Σ, T ∗Σ⊗ T ∗Σ) by

kt(z;u, v) := gY
(
RY(z,t)((u, 0), (0, 1))(0, 1), (v, 0)

)
(4.98)

for all z ∈ Σ and u, v ∈ TzΣ. This satisfies the equation

kt = −1
2 g̈t + 1

4 ġtg
−1
t ġt (4.99)

for all t ∈ (−ε, ε).

Choose local coordinates (x1, x2, x3) on Y = Σ × (−ε, ε) such that (x1, x2) are
coordinates for Σ and x3 parametrizes (−ε, ε) in unit speed. Then

Γ3
ij = −1

2∂3gij , for i, j ∈ {1, 2}

and this yields (4.97) in local coordinates. Moreover,

Γki3 = 1
2

2∑
`=1

gk`∂3gi`, Γ3
i3 = Γ3

33 = Γk33 = 0
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for i, k ∈ {1, 2}. Therefore

R3
3jk = ∂3Γ3

jk − ∂jΓ3
3k +

3∑
ν=1

(
Γ`3νΓνjk − Γ3

jνΓν3k
)

= −1
2∂

2
3gjk − Γ3

j1Γ1
3k − Γ3

j2Γ2
3k

= −1
2∂

2
3gjk + 1

4

2∑
i,`=1

(∂3gij)gi`(∂3gk`)

and this establishes (4.99) is local coordinates.

Step 3: Suppose g ∈ Met(Σ) and σ ∈ Q(g) satisfies (4.95). Let ε > 0 and let
(−ε, ε)→ Met(Σ), t 7→ gt, be a solution of the second order ODE

g0 = g, ġ0 = −2Re(σ), 1
2 g̈t −

1
4 ġtg

−1
t ġt = gt. (4.100)

Then gY defined by (4.96) is a hyperbolic metric on Y = Σ× (−ε, ε).

The metric gY has constant sectional curvature −1 if and only if

〈RY (v1, v2)v3, v4〉gY = (−1)
(
〈v1, v4〉gY 〈v2, v3〉gY − 〈v1, v3〉gY 〈v2, v4〉gY

)
for all q ∈ Y and v1, v2, v3, v4 ∈ TqY . By symmetry of the curvature tensor, this is
equivalent to the following three instances of the curvature equation:

〈RY ((u, 0), (0, 1))(0, 1), (v, 0)〉gY = −gt(u, v) (4.101)

〈RY ((u, 0), (v, 0))(0, 1), (w, 0)〉gY = 0 (4.102)

〈RY ((u, 0), (v, 0))(v, 0), (u, 0)〉 = −gt(u, u)gt(v, v) + gt(u, v)2. (4.103)

for every point (z, t) ∈ Y and u, v, w ∈ TzΣ.
Equation (4.101) follows from (4.98), (4.99) and (4.100). By Lemma 4.6.2 below,

(4.102), (4.103) are satisfied for t = 0. By differentiating these two equations, we will
show that they remain valid for all t ∈ (−ε, ε).

Extend (u, 0), (v, 0), (w, 0) ∈ T(z,t)Y to vector fields which are parallel in t direc-
tion. The second Bianchi identity yields at the point (z, t):

∂t〈RY ((u, 0), (v, 0))(0, 1), (w, 0)〉gY
= −〈∇(u,0)R

Y ((v, 0), (0, 1)(0, 1), (w, 0)〉gY
+ 〈∇(v,0)R

Y ((u, 0), (0, 1))(0, 1), (w, 0)〉gY
= −Lukt(v, w) + Lvkt(u,w)− kt([u, v], w) + kt(v,∇tuw)− kt(u,∇tvw)
= Lugt(v, w)− Lvgt(u,w) + gt([u, v], w)− gt(v,∇tuw) + gt(u,∇tvw)
= 0
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where ∇t denotes the Levi-Civita connection on Σ for gt. The penultimate equation
uses (4.101), i.e gt = −kt, and this completes the proof of (4.102).

We deduce from (4.101) and (4.102) the following auxiliary result:

∇tR((u, 0), (0, 1)) = 0 (4.104)

for all u ∈ Vect(Σ). We get from (4.101) that

〈∇tRY ((u, 0), (0, 1))(0, 1), (0, v)〉gY
= ∂t〈RY ((u, 0), (0, 1))(0, 1), (0, v)〉gY − 〈RY (∇t(u, 0), (0, 1))(0, 1), (0, v)〉gY
− 〈RY ((u, 0), (0, 1))(0, 1),∇t(0, v)〉gY

= ∂t〈(u, 0), (v, 0)〉gY − 〈∇t(u, 0), (v, 0)〉gY − 〈(u, 0),∇t(v, 0)v〉gY
= 0

for all u, v ∈ Vect(Σ). On the other hand it holds

−〈∇tRY ((u, 0), (0, 1))(0, v), (0, w)〉gY = 〈RY (∇t(u, 0), (0, 1))(0, v), (0, w)〉gY
+ 〈RY ((u, 0), (0, 1))∇t(0, v), (0, w)〉gY
+ 〈RY ((u, 0), (0, 1))(0, v),∇t(0, w)〉gY

= 0

for all u, v, w ∈ Vect(Σ). Here we used that 〈∇t(v, 0), (0, 1)〉gY = 0 for any vector field
v ∈ Vect(Σ), the equation (4.102) and symmetries of the curvature tensor to conclude
that all three terms on the right hand side vanish separately. This establishes (4.104)

We proceed to the proof of (4.103): For two linearly independet vectors u, v ∈ TzΣ
define linear maps πu, πv : TzΣ→ R such that w = πu(w)u+πv(w)w for all w ∈ TzΣ.
They are given by the formulas

πu(w) = gt(v, v)gt(w, u)− gt(w, v)gt(u, v)
gt(u, u)gt(v, v)− gt(u, v)2 (4.105)

πv(w) = gt(u, u)gt(w, v)− gt(u,w)gt(u, v)
gt(u, u)gt(v, v)− gt(u, v)2 . (4.106)

It follows from (4.104) that

∂t〈RY ((u, 0), (v, 0))(v, 0), (u, 0)〉gY
= 2〈RY (∇t(u, 0), (0, v))(0, v), (0, u)〉gY + 2〈RY ((u, 0),∇t(0, v))(0, v), (0, u)〉gY
= 2 (πu(∇t(u, 0)) + πv(∇t(0, v)) 〈RY ((u, 0), (v, 0))(v, 0), (u, 0)〉gY

For the last step, note that 〈∇t(u, 0), (0, 1)〉gY = 0 and so ∇t(u, 0) (and similarly
∇t(v, 0)) can be identified with a tangent vector in TzΣ. Using the relations

〈∇t(u, 0), (u, 0)〉gY = 1
2 ġt(u, u), 〈∇t(v, 0), (v, 0)〉gY = 1

2 ġt(v, v)

〈∇t(u, 0), (v, 0)〉gY + 〈(u, 0),∇t(v, 0)〉gY = ġt(u, v)
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and the equations (4.105), (4.106) it follows

2 (πu(∇t(u, 0)) + πv(∇t(0, v))

=
(
ġt(u, u)gt(v, v) + ġt(v, v)gt(u, u)− 2ġt(u, v)gt(u, v)

gt(u, u)gt(v, v)− gt(u, v)2

)
.

Hence R(t) := 〈RY(z,t)((u, 0), (v, 0))(v, 0), (u, 0)〉gY satisfies the ODE

Ṙ(t) =
(
ġt(u, u)gt(u, u) + ġt(v, v)gt(v, v)− ġt(u, v)

gt(u, u)gt(v, v)− gt(u, v)2

)
R(t)

with initial condition R(0) = −g(u, u)g(v, v) + g(u, v)2. The unique solution of this
ODE is R(t) = −gt(u, u)gt(v, v) + gt(u, v)2 and this proves 4.103).

Step 4: Completion of the proof.

For the first part, choose ε > 0 such that (4.100) has a positive definite solution
gt for t ∈ (−ε, ε). Then Y = Σ × (−ε, ε) with the Riemannian metric gY defined
by (4.96) is a hyperbolic manifold by Step 3 and ι : Σ → Y , ι(z) := (z, 0), is an
isometric embedding with second fundamental form h = Re(σ) by Step 1. Moreover,
σ(Ju, Ju) = −σ(u, u) for any u ∈ Vect(Σ) yields tr(h) = 0 and thus Σ × {0} is
minimal. Uniqueness follows from uniqueness of the solution of (4.100). Conversely,
the second part follows from Step 1 and Lemma 4.6.2 below.

Lemma 4.6.2. Let (Y, gY ) be a Riemannian 3-manifold and let (Σ, g) ⊂ (Y, gY ) be
an isometrically embedded minimal surface with second fundamental form h. Then
there exists exists a unique quadratic differential σ ∈ Q(g) with h = Re(σ) and the
following is satisfied:

1. σ is holomorphic if and only if

RYz (u, v)w ∈ TzΣ for all z ∈ Σ and u, v, w ∈ TzΣ

where RY denotes the curvature tensor of the ambient manifold Y .

2. The intrinsic and extrinsic curvature along Σ are related by

〈RY (u, v)v, u〉gY
|u|2g|v|2g − 〈u, v〉2g

= Kg + |σ|2g for all u, v ∈ Vect(Σ)

where Kg denotes the Gaussian curvature of (Σ, g).

Proof. Let z ∈ Σ and choose conformal coordinates (x, y) in a neighborhood of z. In
these coordinates h can be written as

h(x, y) = h11(x, y)dx2 + h22(x, y)dy2 + 2h12(x, y)dxdy.

Since Σ ⊂ Y is minimal, its mean curvature vanishes and thus h11 = −h22. Define a
quadratic differential by

σ(x, y) = (h11(x, y)− ih12(x, y)) dz2. (4.107)
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This satisfies h = Re(σ) and, since the expression is conformally invariant, it defines
a quadratic differential on Σ.

We prove 1. For z ∈ Σ denote by Π(z) : TzY → TzΣ the orthogonal projection
determined by gY . The Mainardi-Codazzi equation yields for u, v, w ∈ Vect(Σ):(
RYz (u, v)w

)⊥ : = (1−Π(z))RYz (u, v)w
= (∇Σ

uh)z(v, w)− (∇Σ
v h)z(u,w)

= Luh(v, w)− Lvh(u,w) + h([u, v], w) + h(u,∇Σ
v w)− h(v,∇Σ

uw)
= Luh(v, w)− Lvh(u,w) + (1−Π(z))RΣ

z (u, v)w
= Luh(v, w)− Lvh(u,w).

In a conformal chart around z the equation
(
RY (u, v)w

)⊥ = 0 is thus equivalent to

∂1h22(x, y) = ∂2h12(x, y), ∂2h11(x, y) = ∂1h12(x, y).

Since h11 = −h22, these are the Cauchy–Riemann equations for the function h11(x, y)−
ih12(x, y) and hence equivalent to holomorphicity of σ.

We prove 2. The Gauss-Codazzi equation yields for u, v ∈ Vect(Σ):

〈RY (u, v)v, u〉gY = 〈RΣ(u, v)v, u〉g − h(u, u)h(v, v)− h(u, v)2

For a unit vector field u ∈ Vect(Σ) with |u|g = 1, it follows

|σ|2g = Re(σ(u))2 + Im(σ(u))2 = −h(u, u)h(Ju, Ju)− h(u, Ju)2

and 〈RΣ(u, Ju)Ju, u〉g = Kg. This yields

〈RY (u, Ju)Ju, u〉 = Kg + |σ|2g.

Hence Kg + |σ|2g agrees with the sectional curvature of TzΣ ⊂ TzY and this proves
the lemma.

Definition 4.6.3 (Almost-Fuchsian metrics). We call a complete hyperbolic met-
ric gY on Y := Σ× R almost-Fuchsian when it has the product shape

gY (z, t) =
(
gt(z) 0

0 1

)
with gt ∈ Met(Σ) and such that Σ × {0} ⊂ Y is a minimal surface with principal
curvatures in (−1, 1). Denote by AF(Σ) the space of all almost-Fuchsian metrics.

An almost-Fuchsian manifold is a hyperbolic 3-manifolds Y which is isometric to
Σ×R equipped with an almost-Fuchsian metric. The work of Uhlenbeck [117] proves
that a complete hyperbolic 3-manifold Y is almost-Fuchsian if and only if it admits
a minimal and incompressible embedding ι : Σ ↪→ Y with principal curvatures in
(−1, 1). This follows by similar arguments as in Theorem 4.6.1 and Theorem 4.6.4
below. The later provides an explicit isomorphism between the moduli spaceM and
AF(Σ)/Diff0(Σ).
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Theorem 4.6.4. Let g ∈ Met(Σ) and σ ∈ Q(g) satisfy the equations

Kg + |σ|2 = −1, ∂̄σ = 0, |σ|g < 1. (4.108)

For every such pair we define an almost-Fuchsian metric by

gY = gYg,σ =
(
g
(
cosh(t)1− sinh(t)g−1Re(σ)

)2 0
0 1

)
. (4.109)

This is the unique almost-Fuchsian metric which restricts to g along Σ × {0} and
such that Re(σ) is the second fundamental form of Σ× {0} ⊂ Y . In particular,

M
∼=−→ AF(Σ)/Diff0(Σ), [g, σ] 7→ [gYg,σ] (4.110)

defines an isomorphism of the two moduli spaces.

Proof. We verify first that gY defined by (4.109) is indeed quasi-Fuchsian. It fol-
lows from Step 2 in the proof of Theorem 4.6.1 that Re(σ) is the second fun-
damental form of Σ × {0} in Y . Moreover, Σ × {0} is a minimal surface, since
g−1Re(σ) ∈ Ω0(Σ,End(TΣ)) has trace zero. Since g−1Re(σ) is a traceless symmetric
endomorphism, it is diagonalizable with eigenvalues ±λ := ±

√
− det(g−1h). These

are the principal curvatures of Σ× {0} and they satisfy

| ± λ|2 = |det(g−1Re(σ))| = |σ|2g < 1

by (4.107). This also implies that gY is positive definite. A direct calculation shows
that gY satisfies (4.100). It then follows from Step 2 and Step 3 in the proof of The-
orem 4.6.1 that gY is a hyperbolic metric and therefore almost-Fuchsian. Moreover,
uniqueness of solutions to (4.100), shows that the metric gY is uniquely determined
by the initial data (g,Re(σ)).

Conversely, for every almost-Fuchsian metric gY , we can recover (g, σ) from the
restriction of gY to Σ×{0} and its second-fundamental form. This proves bijectivity
of (4.110) and concludes the proof of the theorem.

Lemma 4.6.5. Every almost-Fuchsian manifold Y = (Σ×R, gY ) contains a unique
closed incompressible minimal surface, which is Σ× {0}.

Proof. By Theorem 4.6.4, we may assume that gY is given by (4.109). A direct
calculation shows that the mean curvature along Σ× {t} is

H(z, t) =
2 cosh(t) sinh(t)(1 + |σ(z)|2g)

cosh(t)2 + sinh(t)2|σ(z)|2g
.

As a vector, this points in positive t direction for t > 0 and in negative t direction for
t < 0. Hence, by the maximum principle, there exists no bounded minimal surface
in Y except Σ× {0}.
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4.6.2 A Kähler potential and quasi-Fuchsian manifolds
This section begins with a brief recollection of well-known properties of hyperbolic
space H3, quasi-Fuchisan groups and the simultaneous uniformization theorem of
Bers. Classical references for this material are [110, 9].

Next, we describe work of Hodge [61] which gives rise to an explicit embedding
M ↪→ T (Σ) × T (Σ) which is equivariant with respect to the natural action of the
mapping class group and intertwines the second complex structure on M with the
canonical complex structure on T (Σ) × T (Σ). This map is not surjective and its
image can be identified with the space of almost-Fuchsian manifolds.

Finally, we describe a Kähler potential for the hyperkähler metric on M: The
functional, which assigns to every almost-Fuchsian manifold the area of its unique
minimal surface, is a Kähler potential with respect to the standard complex structure
obtained from T (Σ)× T (Σ).

Hyperbolic space and Kleinian groups

The upper half plane model. The upper half plane model of hyperbolic space
is H3 := C× R>0 endowed with the hyperbolic metric

gH
3

(z,y) ((ẑ1, ŷ1), (ẑ2, ŷ2)) = Re(ẑ1)Re(ẑ2) + Im(ẑ1)Im(ẑ2) + ŷ1ŷ2

y2 .

Identify (z, y) ∈ H3 with the quaternion z1 + iz2 + jy + k · 0 and define

SL(2,C)×H3 → H3,

(
a b
c d

)
(z, y) := (a(z + jy) + b)(c(z + jy) + d)−1.

One readily checks that this action is well-defined, preserves the hyperbolic metric,
acts transitively on the unit disc bundle, and identifies the isometry group of H3 with
PSL(2,C). The boundary at infinity ∂∞H3 can be identified with (C×{0})∪{∞} ∼=
S2. It follows from the explicit formula above that isometries on H3 correspond to
conformal automorphism of the boundary. The induced action of SL(2,C) on the
boundary is the standard action given by Möbius transformations.

Kleinian groups. A Kleinian group is a discrete subgroup Γ < PSL(2,C). The
limit set LΓ ⊂ ∂∞H3 of a Kleinian group Γ is defined as follows: Choose p ∈ H3

and denote its orbit by Γ(p) ⊂ H3. Then LΓ ⊂ ∂∞H3 is the set of points which
can be approximated in the euclidean topology of the closed ball H3 ∪ ∂∞H3 by
sequences contained in the orbit Γ(p). One readily checks that this definition does
not depend on the choice of p. The complement ΩΓ := ∂∞H3\LΓ is called the
region of discontinuity. This is the largest open subset of the boundary on which Γ
acts properly and discontinuously. The Ahlfors finiteness theorem asserts that for a
finitely generated Kleinian group the quotient ΩΓ/Γ is the disjoint union of finitely
many Riemann surfaces with finitely many points removed. The hyperbolic manifold
Y := H3/Γ can thus be viewed as hyperbolic cobordism between these surfaces. We
describe a simplest instance of this picture in the following.
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Fuchsian and quasi-Fuchsian groups. A quasi-Fuchsian group is a Kleinian
group Γ < PSL(2,C) whose limit set LΓ is a Jordan curve and such that both
components of its region of discontinuity ΩΓ =: D+ ∪ D− are preserved by Γ. For
these groups Marsden [81] proved that H3/Γ is diffeomorphic to (D+/Γ) × R and
(H3 ∪ Ω)/Γ is diffeomorphic to (D+/Γ) × [0, 1]. A quasi-Fuchsian manifold is a
complete hyperbolic 3-manifold Y which is isometric to H3/Γ for some quasi-Fuchsian
group Γ. A Fuchsian group is a quasi-Fuchsian group Γ whose limit set LΓ is a circle.

Every Fuchsian group is conjugated to a discrete subgroup of PSL(2,R) and thus
determines a hyperbolic surface (Σ, g) := H2/Γ. A direct calculation shows that the
Fuchsian hyperbolic 3-manifold Y := H3/Γ is isometric to Σ× R equipped with the
metric

gY (z, t) =
(

cosh(t)2g(z) 0
0 1

)
(4.111)

where Σ := H2/Γ and g ∈ Met(Σ) is the induced hyperbolic metric.
It follows from Definition 4.6.3 that every Fuchsian manifold is almost-Fuchsian,

and conversely, that every almost-Fuchsian manifold is quasi-isometric to a Fuchsian
manifold. In particular, every almost-Fuchsian manifold is quasi-Fuchsian, since every
quasi-isometry of H3 induces a continuous map on its boundary at infinity. The
converse is not true: There are examples of quasi-Fuchsian manifolds which admit
more then one minimal surface (see [121, 63, 57]) and these cannot be almost-Fuchsian
by Lemma 4.6.5.

Simultaneous uniformization

An odd coupled pair is a triple (Σ−, [f ],Σ+) consisting of two closed Riemann surfaces
Σ± and the homotopy class of an orientation reversing diffeomorphism f : Σ− → Σ+.
Two odd coupled pairs (Σ−, [f ],Σ+) and (Σ̃−, [f̃ ], Σ̃+) are called equivalent if there
exist biholomorphic maps h− : Σ̃− → Σ− and h+ : Σ̃+ → Σ+ such that f is homotopic
to h+ ◦ f̃ ◦ h−1

− .
Now fix a closed oriented Riemann surface Σ. It is not hard to see that every odd

coupled pair of Riemann surfaces of the same genus as Σ is isomorphic to a couple of
the form

(Σ−, [f ],Σ+) ∼ ((Σ̄, J−), [id], (Σ, J+))

for some complex structures J− ∈ J (Σ̄) and J+ ∈ J (Σ). More precisely, this
gives rise to an identification of the space of odd coupled pairs with the quotient
T (Σ̄) × T (Σ)/MCG(Σ) where MCG(Σ) = Diff+(Σ)/Diff0(Σ) denotes the mapping
class group.

Every quasi-Fuchsian group Γ < PSL(2,C) gives rise to an odd coupled pair: The
Riemann surfaces Σ± are the two connected components of ΩΓ/Γ, where ΩΓ denotes
the region of discontinuity on the boundary sphere. Moreover, the fundamental
groups π1(Σ±) are canonically isomorphic to Γ and hence give rise to an isomorphism
π1(Σ−) → π1(Σ+). This determines a unique homotopy class [f ] by the Dehn–
Nielsen–Baer Theorem 4.4.12. The simultaneous uniformization theorem of Bers
asserts that this constructions provides a bijection between the moduli space of quasi-
Fuchsian groups and odd coupled pairs.
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Theorem 4.6.6 (Simultaneous uniformization, Bers [8]). Let (Σ−, [f ],Σ+) be an
odd coupled pair with closed Riemann surfaces with genus(Σ±) ≥ 2. Then this pair is
equivalent to one which can be represented by a quasi-Fuchsian group Γ < PSL(2,C),
which is uniquely determined up to conjugation.

Denote by QF(Σ) the space of quasi-Fuchsian groups Γ which are isomorphic to
π(Σ). Then the theorem above asserts that

QF(Σ)
conjugation

∼=
T (Σ̄)× T (Σ)

MCG(Σ)

where MCG(Σ) = Diff+(Σ)/Diff0(Σ) denotes the mapping class group of Σ.

Embedding of the moduli space M into the quasi-Fuchsian moduli space

We present two maps fromM into T (Σ)×T (Σ). The following proposition is a rather
direct consequence of Definition 4.6.3 and makes no claim about holomorphicity.

Proposition 4.6.7. For an almost-Fuchsian metric

gY = gYg,σ =
(
g
(
cosh(t)1− sinh(t)g−1Re(σ)

)2 0
0 1

)
∈ AF(Σ)

define g∞± := g(1 + |σ|2g) ∓ 2Re(σ) and let J±(gY ) := Jg∞± ∈ J (Σ) be the unique
complex structures compatible with g∞± . Then

1. (Σ×R, gY ) is isomorphic to the quasi-Fuchsian manifold which corresponds to
the odd coupled pair ((Σ, J+(gY )), (Σ,−J−(gY )), [idΣ]).

2. The map M∼= AF(Σ)/Diff0(Σ) ↪→ T (Σ)× T (Σ) defined by

[g, σ] 7→
[
J+(gYg,σ), J−(gYg,σ)

]
(4.112)

is a mapping class group equivariant embedding.

Proof. The metric gt := g
(
cosh(t)1− sinh(t)g−1Re(σ)

)2 is conformally equivalent to
g
(
1− tanh(t)g−1Re(σ)

)2. For t→ ±∞, this tends to

g∞± := g
(
1+ g−1Re(σ)

)2 = g(1 + |σ|2g)∓ 2Re(σ)

where we used the relation (g−1Re(σ))2 = |σ|2g1. This establishes the given formula
and the proposition.

One can understand the map (4.112) more explicitly on the level of sections.
Denote by X ⊂ T ∗H the unit disc bundle equipped with the hyperkähler structure
from Theorem 4.5.1. Hodge [61] showed that there exists an SL(2,R)-equivariant
diffeomorphism α : X → H × H̄ which intertwines the second complex structure on
X with (i,−i) on H× H̄. It is explicitly given by the formula

α(x+ iy, u+ iv) =
(
x− y2v

1− yu + i yγ

1− yu, x+ y2v

1 + yu
+ i yγ

1 + yu

)
. (4.113)
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where γ :=
√

1− y2(u2 + v2) (see Remark 4.5.4). It gives rise to a Diff(Σ)-equivariant
bundle map α : Q1(Σ) → J (Σ) × J (Σ) which descends to a mapping class group
equivariant map

M∼=Ms → T (Σ)× T (Σ). (4.114)

where Ms denotes the moduli space (4.86).

Proposition 4.6.8 (Hodge [61]). The two maps (4.112) and (4.114) agree. More-
over, the second complex structure on M corresponds to (Ĵ1, Ĵ2) 7→ (−J1Ĵ1, J2Ĵ2) on
T (Σ)× T (Σ).

Proof. Let (J, σ) ∈ Q1(Σ) and denote by g := ρ(·, J ·) the induced Riemannian metric.
Choose a holomorphic chart φ : U → Σ and

φ∗J = J0, φ∗ρ = λ2dx ∧ dy, φ∗g = λ2(dx2 + dy2), φ∗σ = λ(u− iv)dz2

for a smooth functions u, v : U → R and λ : U ⊂ R2 → R+. This chart defines
a canonical trivialization of the SL(2,R)-frame bundle define by the frames θz :=
λ−1dφ(z). With respect to this trivialization corresponds the pair (φ∗J, φ∗σ) under
the isomorphism (4.46) to the section s`oc := (i, u+ iv) : U → X. By (4.113) we then
have

α(s`oc) :=
(
−v

1− u + i γ

1− u,
v

1 + u
+ i γ

1 + u

)
.

This corresponds to the two complex structures

J`oc+ := j

(
−v

1− u + i γ

1− u

)
= 1
γ

(
v −(1 + u)

1− u −v

)
∈ J (R2)

J`oc− := j

(
v

1 + u
+ i γ

1 + u

)
= 1
γ

(
−v 1− u

1 + u v

)
∈ J (R2)

where j : H→ J (R2) is defined (4.39). These are compatible with the metrics

g+ :=
(

0 2λ2γ
−2λ2γ 0

)
J`oc+ = 2λ2

(
1− u −v
−v 1 + u

)
= 2(φ∗g − φ∗Re(σ)).

g− :=
(

0 2λ2γ
−2λ2γ 0

)
J`oc− = 2λ2

(
1 + u v
v 1− u

)
= 2(φ∗g + φ∗Re(σ)).

This shows that the complex structures (J+, J−) associated to (J, σ) under the maps
α are determined by g± := 2(g ∓ Re(σ)). Finally, define g̃ := (1 +

√
1− |σ|2g). A

short calculation shows

g± = 2(g ∓ Re(σ)) = g̃(1 + |σ|2g̃)± 2Re(σ)

and hence J± agree with the complex structures defined in Proposition 4.6.7.
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A Kähler potential for the hyperkähler metric

Consider the area functional onM∼= AF(Σ) which assigns to every almost-Fuchsian
manifold the area of its unique closed minimal surface.

A :M∼= AF(Σ)/Diff0 → R, A([g, σ]) := vol(Σ, g) (4.115)

whereM is the moduli space (4.94). The second complex structure onM corresponds
by Proposition 4.6.8 to the standard complex structure on AF(Σ) obtained from
the embedding into T (Σ)× T (Σ). The next theorem verifies a remark of Donaldson
which asserts that the area functional (4.115) is a Kähler potential for the hyperkähler
metric on M with respect to this complex structure. This has been confirmed by
direct arguments along T (Σ) ⊂M in [55].

Theorem 4.6.9. The area functional (4.115) provides a Kähler potential for the
hyperbolic metric. More precisely

2i∂̄J2∂J2A = ω2. (4.116)

Proof. On the moduli spaceMd, defined by (4.91), the area functional has the shape

Ad :Md → R, A([g, σ]) :=
∫

Σ

(
1 +

√
1− |σ|2g

)
dvolg. (4.117)

This follows from the identification M ∼= Md in Proposition 4.5.17. In particular,
on the original moduli space Ms, defined by (4.84), one has

As :Ms → R, A([J, σ]) :=
∫

Σ

(
1 +

√
1− |σ|2J

)
ρ (4.118)

where the norm | · |J is defined using the metric ρ(·, J ·). Consider the S1-action

S1 ×Ms →Ms, eit[g, σ] = [g, e−itσ].

It follows from Lemma 4.5.9 that As is a Hamiltonian function on (Ms, ω1) which
generates this S1-action. Denote by VA ∈ Vect(Ms) the Hamiltonian vector field
generated by As. Moreover, the S1-action rotates ω2, ω3 and satisfies LVAω2 = −ω3
and LVAω3 = ω2. Hence the same formal calculation as in Lemma 4.5.9 yields

dAs(J2W ) = ω1(VA, J2W ) = 〈J1V, J2W 〉 = 〈J3V,W 〉 = ω3(V,W )

for all W ∈ Vect(Ms) and therefore

2i∂̄J2∂J2H = d(dH ◦ J2) = dι(VA)ω3 = LVAω3 = ω2.

This proves (4.116) and the theorem.

4.6.3 Embedding into the PSL(2,C) representation variety
Let gY by a hyperbolic metric on Y := Σ×R. The universal cover Ỹ of Y is isomet-
ric to hyperbolic space by the Cartan–Ambrose–Higgs theorem and there exists an
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isometry φ : Ỹ → H3. The push-forward of the desk-transformation action of π1(Σ)
on Ỹ yields then a representation ρ : π1(Σ) → PSL(2,C). Different choices of the
isometry φ differ by an element of PSL(2,C) and lead to conjugated representations.
We thus obtain a well-defined embedding

M∼= AF(Σ)/Diff0(Σ)→ RPSL(2,C)(Σ) := Ham(π(Σ),PSL(2C))
conjugation . (4.119)

The image is an open subset in the smooth locus of the the representation variety
RPSL(2,C)(Σ) which carries a natural holomorphic symplectic structure, see Goldman
[52]. A classical result of Bers [9] asserts that the restriction of this complex structure
toM corresponds to the standard complex structure on T (Σ)×T (Σ) which differs by
a sign from our conventions. In particular, it follows from Proposition 4.6.8 that the
second complex structure onM corresponds to multiplication by −i on RPSL(2,C)(Σ).

Remark 4.6.10 (Holomorphic symplectic structure). The quasi-Fuchsian mod-
uli space carries a natural holomorphic symplectic structure which can be expressed
in complex Fenchel–Nielson coordinates and corresponds to the Goldman holomor-
phic symplectic structure on RPSL(2,C)(Σ), see [94, 52]. We have seen above that
the underlying complex structure agrees with minus the second complex structure on
M. Moreover, the holomorphic symplectic form corresponds to −ω1 + iω3 on M.
This can be seen by noting that both symplectic forms agree (up to sign) with the
Weil–Petersson symplectic form along Teichmüller space, which we embed diagonally
into the quasi-Fuchisan moduli space using α. In then follows from holomorphicity
that both forms agree on all of M. See Hodge [61] for more details on this.

The Hitchin equation

We present in the following a construction of Donaldson which associates to every
pair [g, σ] ∈ M a solution of Hitchin’s equation. By classical results of Hitchin [58]
and Donaldson [33], such solutions determines a flat SL(2,C) connection together
with a harmonic map of the universal cover Σ̃ into H3 = SL(2,C)/SU(2). This gives
rise to an alternative description of the embedding of M into RPSL(2,C)(Σ).

Let g ∈ Met(Σ) and σ ∈ Q(g) be given. Choose a holomorphic line bundle L→ Σ
with L2 = TΣ and define E = L⊕ L−1. The Levi-Civita connection for g induces a
unique U(1)-connection a ∈ A(L). Then consider the pair

A =
(
a σ̄

2
−σ2 −a

)
∈ A(E) and φ = 1

2

(
0 1
0 0

)
∈ Ω1,0(End(E)) (4.120)

where

σ ∈ Q(J) = Ω1,0(L−2) = Ω1,0(Hom(L,L−1))
σ̄ ∈ Q(J) = Ω0,1(L2) = Ω0,1(Hom(L−1, L))

1 ∈ Ω0(End(TΣ)) = Ω1,0(L2) = Ω1,0(Hom(L−1, L)).

The adjoint section φ∗ is given by

φ∗ = 1
2

(
0 0
1∗ 0

)
∈ Ω0,1(End(E))



4.6. THREE GEOMETRIC MODELS FOR THE MODULI SPACE 207

where 1∗ = 2idvolg ∈ Ω2(Σ,C) = Ω0,1(Σ, T ∗Σ) = Ω0,1(Σ,Hom(L,L−1)) and we used
the sign convention Λ1,1(T ∗Σ) ∼= Λ0,1(T ∗Σ) ⊗ Λ1,0(T ∗Σ). The next lemma asserts
that (A, φ) satisfies the Hitchin equations and yields a flat SL(2,C) connection.

Lemma 4.6.11. Consider the setup described above. The pair (g, σ) satisfies (4.95)
if and only if (A, φ) satisfies the Hitchin equations

FA + [φ ∧ φ∗] = 0, ∂̄Aφ = 0. (4.121)

Moreover, if these conditions are satisfied, then B := A + φ + φ∗ is a flat SL(2,C)
connection.

Proof. The induced curvature form on L and L−1 are i
2Kgvolg and − i

2Kgvolg where
Kg denote the curvature form. Moreover, σ yields a covariant constant section of
Ω1,0(L−2) since ∂̄σ = 0 as quadratic differential and both connections are induced
by the Levi-Civita connection. By the formula in Lemma 2.7.6, it follows

FA =
(
K + |σ|2g 0

0 −K − |σ|2g

)
dvolg

2i

Moreover,[(
0 1
0 0

)
,

(
0 0
1∗ 0

)]
=
(

1 ∧ 1∗ 0
0 −1∗ ∧ 1

)
=
(
−2i 0
0 2i

)
dvolg

and hence

FA + [φ ∧ φ∗] =
(
Kg + 1 + |σ|2g 0

0 −(Kg + 1 + |σ|2)

)
1
2idovlg.

This proves the first part of the lemma. Moreover,

FB = FA + dA(φ+ φ∗) + 1
2 [(φ+ φ∗) ∧ (φ+ φ∗)] = FA + [φ ∧ φ∗]

shows that B = A+ φ+ φ∗ is a flat SL(2,C) connection when FA + [φ∧ φ∗] = 0.

The holonomy representation ρA,φ : π1(Σ) → SL(2,C) of the flat connection
B := A+φ+φ∗ is well-defined up to conjugation and therefore Lemma 4.6.11 yields
again an embedding of M into RPSL(2,C)(Σ).The connection between hyperbolic 3-
manifolds and Hitchin’s equation was observed by Donaldson [33]. For this consider
the following model of hyperbolic space

H3 = SL(2,C)/SU(2), 〈dπ(g)giξ, dπ(g)giη〉 := −2tr(ξη)

for g ∈ SL(2,C) and ξ, η ∈ su(2) where π : SL(2,C) → SL(2,C)/SU(2) denotes
the canonical projection. Let P c and P be the SL(2,C) and SU(2) frame bundle of
E = L⊕ L−1. Then B induces a flat connection on the H3-bundle

P (H3) := P c ×SL(2,C) (SL(2,C)/SU(2)) = P c/SU(2)

and the reduction P ⊂ P c gives rise to a section sA,φ ∈ Ω0(Σ, P (H3).
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Theorem 4.6.12. Suppose (g, σ) satisfies (4.95) and let (A, φ) be the corresponding
solution of Hitchin’s equation (see Lemma 4.6.11). Let sA,φ ∈ Ω0(Σ, P (H3) be the
corresponding section of the associated H3-bundle as described above. Finally, denote
by (Σ̃, g̃, σ̃) be the universal cover of Σ equipped with the lifted Riemannian metric g̃
and quadratic differential σ̃. Then the following holds.

1. sA,φ lifts to a π1(Σ)-equivariant isometric immersion s̃A,φ : (Σ̃, g̃) → H3 and
the second fundamental form of s̃A,φ is given by Re(σ̃).

2. The holonomy representation ρB : π1(Σ) → SL(2,C) of the flat connection
B := A+φ+φ∗ agrees up to conjugation with the image of [g, σ] under (4.119).
In particular, Y := H3/ρB is a smooth almost-Fuchsian manifold and sA,φ
defines a minimal isometric embedding (Σ, g) ↪→ Y with second fundamental
form Re(σ).

Proof. We recall some of the key observations of Donaldson [33]: First, the canonical
isomorphism

iad(P ) ∼= s∗A,φ(T vert(P (H3)) (4.122)

intertwines the connection induced byA on iad(P ) and the connection on (T vert(P (H3))
induced by the flat connection B := A + φ + φ∗ and the Levi-Civita connection of
the hyperbolic metric on H3. Second, the associated section sA,φ satisfies

∇s = (φ+ φ∗) ∈ Ω0(Σ, iad(P )) ⊂ Ω0(Σ,End(E))

where we identify iad(P ) with the space of self-adjoint endomorphism of E. By
(4.121), it follows d∗A(φ + φ∗) = 0, and this is equivalent to ∇∗∇s = 0. Solutions to
the later equation are called twisted harmonic sections – they are represented in any
flat trivialization by harmonic maps into H3.

After this preliminary discussion, we can proceed to the proof of the theorem.
It suffices to verify the first part locally. Let U ⊂ Σ be a contractible holomorphic
coordinate chart and suppose g = λ2(dx2 + dy2) in these coordinates. This chart
provides a trivialization in TΣ = L2 along U and we choose compatible trivializations
of L and L−1. These trivializations are not unitary, and the bundle metric is given by
λ⊕ λ−1. In this trivialization, the section sA,φ is represented by a map s : U → H3.
Moreover,

ds(v) = 1
2

(
0 v
λ2v̄ 0

)
∈ End(C2)

when ds(v) is viewed as section of iad(P ) ⊂ End(E) and

ds(v) = Ls

[
1
2

(
0 λv
λv̄ 0

)]
∈ TsH3

when ds(v) as section of s∗TH3, where Lp : sl(2,C) → TpH3 is defined by Lpξ :=
∂t|t=0pe

tξ. In particular, |ds(v)|2 = λ2|v|2 shows that s is an isometric immersion.
We calculate in the same chart

∇u(ds(v)) = [A(u), ds(v)] = 1
2

( 1
2 (σ̄(u, v) + σ(u, v)) a(u)v + va(u)
−λ2(a(u)v̄ + v̄a(u)) − 1

2 (σ̄(u, v) + σ(u, v))

)
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for vector fields u, v : U → C. It follows from the formula for ds(v) above that

ν(s) :=
( 1

2 0
0 − 1

2

)
.

corresponds to the unit normal vector field along the image of s. Hence its second
fundamental form is given by Re(σ) and this completes the proof of the first part.

By Theorem 4.6.4 there exists a unique quasi-Fuchisan metric gY ∈ AF(Σ) on
Y := Σ×R for which Σ×{0} is a minimal surface with induced metric g and second
fundamental form Re(Σ). This lifts a hyperbolic metric on Ỹ := Σ̃ × R. It follows
from Step 2 and Step 3 in the proof of Theorem 4.6.1 that

Ỹ → H3, (z, t) 7→ exps̃A,φ(z)(tν(s̃A,φ(z)))

is a π1(Σ)-equivariant isometry. This proves the second part and the theorem.

4.6.4 The cotangent bundle of Teichmüller space
We identify the cotangent bundle of Teichmüller space with

T ∗T (Σ) := {(J, σ) | J ∈ J (Σ), σ ∈ Q(J), ∂̄Jσ = 0}/Diff0(Σ).

Remark 4.6.13. Recall that we chose the complex structure on Teichmüller space
to be Ĵ 7→ −JĴ and with this complex structure it would be more natural to identify
Q(Σ)/Diff0(Σ) with the tangent space of Teichmüller space, see Remark 4.3.3. To
obtain nevertheless an identification with the cotangent bundle, we need to define
the complex structure on Q(Σ) by (Ĵ , σ̂) 7→ (−JĴ,−iσ̂) which is consistent with the
first complex structure on M.

The next theorem is a special case of a result due to Uhlenbeck ([117], Theorem
4.4). It shows that M admits a natural embedding into T ∗T (Σ).

Theorem 4.6.14. Let M be the moduli space (4.94). For g ∈ Met(Σ) denote by
Jg ∈ J (Σ) the unique complex structure compatible with g and the orientation of Σ.
Then

M→ T ∗T (Σ), [g, σ] 7→ [Jg, σ] (4.123)

is a smooth embedding.

Remark 4.6.15. The theorem does not hold without the restriction |σ|g < 1, see
[117, 62].

Remark 4.6.16. The hyperkähler structure ofM along the image can be viewed as
the Feix–Kaledin hyperkähler extension [43, 67] of the Weil–Petersson metric along
Teichmüller space.

Proof. Let J ∈ J (Σ) and σ ∈ Q(J). We need to show that there exists a unique
metric g in the conformal class determined by J with |σ|g < 1 and

Kg + |σ|2g = −1 (4.124)
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By uniformization, there exists a unique hyperbolic metric g0 ∈ Met(Σ) which is
compatible with J . Every other metric in the conformal class of g0 has the shape
g = e2ug0 for some smooth function u : Σ→ R.

Step 1: g := e2ug0 ∈ Met(Σ) solves (4.124) if and only if u solves

∆g0u− 1 + e2u + |σ|2g0
e−2u = 0. (4.125)

where ∆g0 = d∗d denotes the positive Laplacian.

The Gaussian curvature changes as Kg = e−2u (∆g0u− 1) and the norm of σ
changes by |σ|2g = |σ|2g0

e−4u. Hence

Kg + |σ|2g + 1 = e−2u (∆g0u− 1 + e2u + |σ|2g0
e−2u)

and this proves Step 1.

Step 2: Fix k ≥ 2 and define F : W k,2(Σ,R)→W k−2,2(Σ,R) by

F (u) := ∆g0u− 1 + e2u + |σ|2g0
e−2u (4.126)

Suppose |σ|g < 1 pointwise, then Lu := dF (u) : W k,2(Σ,R)→W k−2,2(Σ,R) is given
by

Luξ := ∆g0ξ + 2e2uξ − 2|σ|2g0
e−2uξ. (4.127)

and this is a positive self-adjoint isomorphism.

The formula for the derivative is immediate. We then calculate

〈Luξ, ξ〉L2 =
∫

Σ

(
|dξ|2g0

+ 2e2uξ2 − 2|σ|2g0
e−2uξ2)dvolg0

=
∫

Σ

(
|dξ|2g + 2ξ2 − 2|σ|2gξ2)dvolg

=
∫

Σ

(
|dξ|2g + 2(1− |σ|2g)ξ2) dvolg

This is strictly positive for ξ 6= 0 and hence Lu is injective. Since Lu is a lower order
pertubation of the Laplacian ∆g0 , it is a Fredholm operator of index 0, and therefore
also surjective.

Step 3: Let g ∈ MetV (Σ), σ ∈ Q(g) with |σ|g < 1 and suppose (g, σ) satisfies
(4.124). Then there exists a unique smooth path u : [0, 1] → W k,2(Σ,R), t 7→ ut,
such that

∆g0ut − 1 + e2ut + |tσ|2g0
e−2ut = 0 (4.128)

for all t ∈ [0, 1] and g = g0e
2u1 .
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First, let 0 ≤ t0 < 1 and suppose that ut ∈ W k,2(Σ,R) is a smooth family of
functions satisfying (4.128) for t ∈ (t0, 1]. We claim that

∂t|σ|2gt ≥ 0 for all t ∈ (t0, 1]. (4.129)

Indeed, differentiating the equation yields

Lut u̇t + 2t|σ|2g0
e−2ut = 0

where Lut is a positive elliptic operator by Step 2, provided that |tσ|2gt < 1. In
this case, it follows from the maximums principle that u̇t < 0 and then ∂t|σ|2gt =
∂t
(
|σ|2g0

e−4ut
)
> 0. Therefore the set of times t ∈ (t0, 1] for which (4.129) holds is

open, closed and contains 1. It follows that (4.129) is satisfied for all t ∈ (t0, 1]
Next, consider the joint function G : W k,2(Σ,R)× R→W k−2,2(Σ,R) defined by

G(u, t) = ∆g0u− 1 + e2u + |tσ|2g0
e−2u.

We need to show that there exists a unique family ut satisfying G(ut, t) = 0 for all
t ∈ [0, 1] and g = g0e

2u1 . By Step 2, we can apply the inverse function theorem at
G(ut, t) if |tσ|2gt < 1 for gt := g0e

2ut . For t = 1 this is satisfied by assumption, and
the solution exists on some interval (t0, 1]. Moreover, it follows from (4.129) that
the condition |tσ|2gt < 1 remains satisfied for all t ∈ (t0, 1]. This yields uniqueness of
the solution and openness of the maximal existence interval. It remains to show that
ut converges as t → t0. The estimate in Step 2, shows that the family of operators
Lut : W 2,2(Σ,R)→ L2(Σ,R) is uniformly bounded and hence

u̇t = L−1
ut

(
2t|σ|2g0

e−2ut
)
, t ∈ (t0, 1]

is uniformly bounded in W 2,2(Σ,R). Then, by elliptic regularity, u̇t is also uniformly
bounded in W k,p(Σ,R) and therefore ut converges as t→ t0.

Step 4: The inclusion (4.123) is an embedding.

Let g ∈ MetV (Σ), σ ∈ Q(g) with |σ|g < 1 be given and suppose (g, σ) satisfies
(4.124). By Step 3 there exists a unique path u : [0, 1]→W k,2(Σ,R) satisfying

Kgt + |tσ|2gt = −1, gt := g0e
−2ut .

For t = 0, the maximum principle yields that u0 ≡ 0. We may thus recover the metric
g = g1 by following the path of solutions defined G(ut, t) = 0. This shows uniqueness
of solutions within the conformal class under the constraint |σ|g < 1 and this proves
the theorem.
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Chapter 5

Moduli spaces of holomorphic
differentials over Riemann
surfaces

Donaldson introduced in [38] a general moment map framework for the action of the
diffeomorphism group on the space of sections for certain symplectic fibrations. He
then applied this framework to construct Teichmüller space and a hyperkähler ex-
tension parametrizing complex structures together with holomorphic quadratic dif-
ferentials. We generalize his construction in this chapter to holomorphic differentials
of arbitrary degree and tuples of holomorphic differentials of mixed degree. These
moduli spaces are closely related to Hitchin’s higher Teichmüller components [59].
We hope that this might lead to a new construction of the Hitchin component using
the diffeomorphism group instead of the gauge group.

5.1 Introduction
Let (Σ, ρ) be a closed 2-manifold with fixed area form ρ ∈ Ω2(Σ) and assume
genus(Σ) ≥ 2. Let P → Σ denote its SL(2,R) frame bundle. The unit disc bun-
dle Xk ⊂ (T ∗H)k/2 can be identified with pairs (J, γ) consisting of a linear complex
structure J ∈ J (R2) and a symmetric J-complex multilinear form γ : (R2, J)k → C
with |γ| < 1. The space of sections of the associated bundle P ×SL(2,R) Xk then
admits a natural identification with the space

D1
k(Σ) :=

{
(J, τ) | J ∈ J (Σ), τ ∈ Sk(T ∗Σ⊗J C), |τ | < 1

}
(5.1)

which parametrizes complex structures and complex differentials of order k.
The fibre Xk ⊂ (T ∗H)k/2 carries in the case k = 2 a natural symplectic form

coming from the Feix–Kaledin hyperkähler extension of the hyperbolic metric on H.
For k > 2, we do not expect that there exists a hyperkähler setup and obtain instead a
family of symplectic forms on Xk parametrized by a single functions f : [0, 1)→ [0, 1)

213
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with f(0) = 0 and f ′ > 0: There exists a unique SL(2,R)-invariant symplectic form
ωf ∈ Ω2(Xk) satisfying

ωf (i, w) = − i
2
(
1− f(|w|2) + k|w|2f ′(|w|2)

)
dz̄ ∧ dz

− 2i
k
f ′(|w|2) dw̄ ∧ dw + f ′(|w|2) (w̄dz̄dw − wdw̄dz) .

(5.2)

Here is a more geometric description of these forms: (1) The symplectic connections
of ωf yields the standard connection on (T ∗H)k/2 obtained from the Levi–Civita
connection on the hyperbolic plane and (2) the S1 action which rotates the fibres is
Hamiltonian with H(z, w) = − 2

kf
(
Im(z)k|w|2

)
and the Marsden-Weinstein quotient

H−1 (− 2
k r

2) /S1 is symplectomorphic to the hyperbolic plane scaled by (1− f(r2)).
None of these symplectic forms extends over the whole space (T ∗H)k/2 and the restric-
tion to a disc bundle is necessary. The general framework introduced by Donaldson
then yields the following:

Theorem A. The action of Ham(Σ, ρ) on the space {(J, τ) ∈ D1
k(Σ) | ∂̄Jτ = 0} is

Hamiltonian with respect to ωf and with moment map

µ
f
(J, τ) =

(
2KJ + ∆F (|τ |2)− 2c

)
ρ (5.3)

where c := 2π(2− genus(Σ))/vol(Σ, ρ), F : [0, 1)→ R is defined by

F (t) :=
∫ t

0

f(s)
ks
− f ′(s) ds

and ∆ = d∗d is the positive Laplacian of the metric ρ(·, J ·).

Proof. See Theorem 5.2.9.

This theorem is the key step in showing that the moduli space

Mf (k) :=
{

(J, γ) ∈ D1
k(Σ)

∣∣∣∣ ∂̄γ = 0, KJ + 1
2∆F (|γ|2) = c

}/
Symp0(Σ, ρ)

carries a natural symplectic form. It is natural to ask the following:

1. Does there exists a preferred symplectic structure ωf ∈ Ω2(Xk)?

2. Are there symplectic structure ωf for which Mf (k) admits a more concrete or
geometric description?

In the case k = 2 both questions are answered by the Feix–Kaledin hyperkähler
metric. For k > 2 we were unable to find a satisfactory answer to the first question.
However, we found the following answer to the second question:

Theorem B. There exists a unique monotone increasing function Fk : [0, 1] → R
which satisfies Fk(0) = log((k−1)/k), Fk(1) = 0 and te−kFk(t)−ke−Fk(t)+(k−1) = 0.
Define fk : [0, 1)→ [0, 1) by

fk(t) := −
(∫ t

0
u′k(s)s−1/k ds

)
t1/k. (5.4)
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Then (J, τ) 7→ (eFk(|τ |2J )ρ(·, J ·), τ) induces an isomorphism

Mfk(k) ∼=
{

(g, τ)
∣∣∣∣ g ∈ Met(Σ), (Jg, τ) ∈ D1

k(Σ)
∂̄τ = 0,Kg − c

k |τ |
2
g = ck−1

k

}/
Diff0(Σ) (5.5)

where c := 2π(2− 2genus(Σ))/vol(Σ, ρ).

Proof. See Theorem 5.2.10.

In the case k = 2 this yields f2(r) = 1 −
√

1− r which corresponds again to the
Feix–Kaledin hyperkähler metric.

The discussion so far extends rather directly to tuples of complex differentials of
mixed order: Let k = (k1, . . . , kn) ∈ Z with 2 ≤ k1 ≤ · · · ≤ kn and define

D1
k(Σ) :=

{
(J, τ1, . . . , τn)

∣∣ J ∈ J (Σ), τi ∈ Ski(T ∗Σ⊗J C), |τi| < 1
}

(5.6)

A tuple f = (f1, . . . , fn) of functions fi : [0, 1) → [0, 1) with fi(0) = 0 and f ′i > 0
and a weight vector α = (α1, . . . , αn) ∈ (0, 1)n with

∑n
i=1 αi = 1 defines a symplectic

form ωαf on D1
k(Σ), which is obtained by combining the symplectic forms ωfi on

Dki(Σ) weighted with α. We then have the following

Theorem C. The action of Ham(Σ, ρ) on {(J, τ1, . . . , τn) ∈ D1
k(Σ) | ∂̄Jτi = 0} is

Hamiltonian with respect to ωαf and with moment map

µf(J, τ1, . . . , τn) =
(

2KJ + ∆
(

n∑
i=1

αiFi
(
|τi|2

))
− 2c

)
ρ (5.7)

where c := 2π(2− genus(Σ))/vol(Σ, ρ), Fi : [0, 1)→ R are defined by

Fi(t) :=
∫ t

0

fi(t)
kt
− f ′i(t) dt

and ∆ = d∗d is the positive Laplacian of the metric ρ(·, J ·).

Proof. See Theorem 5.3.3.

After taking the action of Symp0(Σ, ρ)/Ham(Σ, ρ), this construction gives rise to
a symplectic form on the moduli space

Mf(k) :=
{

(J, γ) ∈ D1
k(Σ)

∣∣∣∣∣ ∂̄γ = 0, KJ + 1
2∆

(
n∑
i=1

αiFi
(
|τi|2

))
= c

}/
Symp0(Σ, ρ)

The final section discusses the relation between these moduli spaces and Hitchin’s
higher Teichmüller components (see [59]). We also indicate some open questions and
directions for further investigations.
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5.2 Holomorphic differentials of order k
The first section introduces the space Dk(R2) of pairs (J, γ) where J ∈ J (R2) is a
linear complex structure and γ : (R2, J)k → C is a multilinear form of order k. This
is a line bundle over the space J (R2) and we investigate its total space both in the
disc and upper half plane model of J (Σ).

The second section discusses the class of symplectic structures ωf on the unit disc
bundle D1

k(R2) ⊂ Dk(R2) and calculate the moment map for the natural SL(2,R)
action.

In the third section, we then apply Donaldson’s framework to this particular
situation. This yields a moment map for the Hamiltonian action on the space of
holomorphic differentials of order k and allows us to construct the moduli space
Mf (k) which fibres over Teichmüller space.

5.2.1 Complex symmetric multilinear forms
Let k ≥ 2 be a positive integer. For J ∈ J (R2) denote the space of J-complex
symmetric multilinear forms of degree k by

Dk(J) : =
{
γ : (R2)k → C

∣∣∣∣ γ is symmetric and
(J, i)-complex multilinear

}
∼=
{
γ : R2 → C

∣∣∣∣ for all α, β ∈ R and v ∈ R2 it holds:
γ(αv + βJv) = (α+ iβ)kγ(v)

}
Let hJ be the hermitian form on (R2, J) determined by the standard area form on
R2 and J , see (4.40). This induces on Dk(J) the following hermitian structure

gDk(γ1, γ2) := Re
(
γ1(v)γ2(v)
hJ(v, v)k

)
, ωDk(γ1, γ2) := Im

(
γ1(v)γ2(v)
hJ(v, v)k

)
JDk(γ)(v) = iγ(v)

where none of these expressions depend on the choice of v ∈ R2\{0}. The spaces
Dk(J) form a hermitian line bundle Dk(R2)→ J (R2) defined by

Dk(R2) := {(J, γ) | J ∈ J (R2), γ ∈ Dk(J)}

and the natural SL(2,R)-action on J (R2) lifts to

SL(2,R)×Dk(R2)→ Dk(R2), Ψ∗(J, γ) := (ΨJΨ−1, (Ψ−1)∗γ).

The upper half-plane model

Denote by Yk the space H× C equipped with the following SL(2,R) action

SL(2,R)× Yk → Yk,

(
a b
c d

)
(z, w) :=

(
az + b

cz + d
, (cz + d)kw

)
.

We think of Yk as (T ∗H)k/2 with the canonical complex structure and induced
SL(2,R) action. The induced metric on the fibre is then given by

|w|2z = Im(z)k|w|2, for (z, w) ∈ Yk.
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Lemma 5.2.1. Define γk : Yk → Hom((R2)⊗k,C) by

γk(z, w) : R2 → C, γk(v) 7→ w̄(v1 − z̄v2)k (5.8)

and define j : H→ J (R2) by (4.39). Then the following holds:

1. γk(z, w) ∈ Dk(j(z)) for every (z, w) ∈ Yk.

2. The fibre map γk(z, ·) : C → Dk(j(z)) is a complex anti-linear isometry for
every z ∈ H.

3. The bundle map (j, γk) : Yk → Dk(R2) is a SL(2,R)-equivariant bijection.

Proof. For the first part, it suffices to check that

A(z) : R2 → C, A(z)v := v1 − z̄v2

is j(z)-holomorphic. With z = x+ iy this amounts to the calculation

A(z)j(z) = 1
y

(1,−z̄)
(
x −x2 − y2

1 −x

)
=
(
x− z̄
y

,
−x2 − y2 + xz̄

y

)
= iA(z).

For the second part, let (z, w) ∈ Yk and denote e1 = (1, 0) ∈ R2. By (4.41) it follows
|hj(z)(e1, e1)| = Im(z)−1 and hence

|γk(z, w)|2 = |Im(z)|k|γk(z, w)e1|2 = |Im(z)|k|w|2 = |w|2z

This shows that the fibre map γk(z, ·) is an isometry. For the third part let

Ψ =
(
a b
c d

)
∈ SL(2,R)

and (z, w) ∈ Yk be given. Then

γk(z, w)(Ψ−1v) = w ((dv1 − bv2)− z̄(−cv1 + av2))k

= w ((c+ z̄d)v1 − (az̄ + b)v2)k

= (cz̄ + d)kw̄
(
v1 −

az̄ + b

cz̄ + d
v2

)k
= γk(Ψ∗(z, w))(v).

This proves equivariance of the bundle map (j, γk) and completes the proof of the
lemma.

The disc model

Denote by Y D
k the space D× C equipped with the following SU(1, 1)-action

SU(1, 1)× Y D
k → Y D

k ,

(
α β

β̄ ᾱ

)
(z, w) :=

(
αz + β

β̄z + ᾱ
, (β̄z + ᾱ)kw

)
.
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As in the upper half-plane model we think of Y D
k as (T ∗D)k/2 with the canonical

complex structure and induced SL(2,R) action. The induced metric on the fibre is
then given by

|w|2z =
(

1− |z|2

2

)k
|w|2

for (z, w) ∈ Y D
k . Recall from Lemma 4.3.1 that the map SL(2,R)→ SU(1, 1) defined

by (
a b
c d

)
7→ 1

2

(
(a+ d) + (b− c)i (a− d)− (b+ c)i
(a− d) + (b+ c)i (a+ d)− (b− c)i

)
(5.9)

is an isomorphism.

Lemma 5.2.2. Let κ := 2−k/2 · e−kπi/4 and define Fk : Yk → Y D
k by

Fk(z, w) :=
(
z − i
z + i

, κ(z + i)kw
)
. (5.10)

This map satisfies the following properties:

1. Fk is biholomorph with inverse Gk : Y D
k → Yk defined by

Gk(ζ, η) =
(

i1 + ζ

1− ζ , κη(1− ζ)k
)

2. Fk is (SL(2,R),SU(1, 1))-equivariant with respect to (5.9) and intertwines the
Riemannian metrics along the fibres.

Proof. A direct calculation, which we leave to the reader, shows that Fk and Gk are
indeed inverse maps.

Next let (z, w) ∈ Yk and (ζ, η) := Fk(z, w) ∈ Y D
k . Then

|η|2ζ = 2−2k

(
1−

∣∣∣∣z − i
z + i

∣∣∣∣2
)k
|z + i|k|w|2 = Im(z)k|w|2 = |w|z

shows that Fk intertwines the Riemannian structures along the fibres.
Finally, let (z, w) ∈ Yk and

Ψ =
(
a b
c d

)
∈ SL(2,R)

be given. Denote the image of Ψ under (5.9) by

Ψ̃ :=
(
α β

β̄ ᾱ

)
:= 1

2

(
(a+ d) + (b− c)i (a− d)− (b+ c)i
(a− d) + (b+ c)i (a+ d)− (b− c)i

)
∈ SU(1, 1).

We then compute

Fk(Ψ(z, w)) = Fk

(
az + b

cz + d
, (cz + d)kw

)
=
(

(a− ic)z + (b− id)
(a+ ic)z + (b+ id) , κ ((a+ ic)z + (b+ id))k w

)
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and

Ψ̃Fk(z, w) = Ψ̃
(
z − i
z + i , κ(z + i)kw

)
=
(

(α+ β)z + i(β − α)
(ᾱ+ β̄)z + i(ᾱ− β̄)

, κ
(
(ᾱ+ β̄)z + i(ᾱ− β̄)

)k
w

)
Using ᾱ + β̄ = a + ic and i(ᾱ − β̄) = b + id it follows Fk(Ψ(z, w)) = Ψ̃Fk(z, w) and
this proves equivariance.

5.2.2 Symplectic structures and moment maps on the fibre
We consider the unit disc bundle in (T ∗H)k/2 as fibre. More precisely, define

Xk :=
{

(z, w) ∈ Yk
∣∣ Im(z)k|w|2 < 1

}
. (5.11)

Using Lemma 5.2.2 and the map (5.10), we can identify Xk with

XD
k :=

{
(z, w) ∈ Y D

k

∣∣∣∣∣
(

1− |z|2

2

)k
|w|2 < 1

}
(5.12)

which is the unit disc bundle in (T ∗D)k/2.

Symplectic structures

Extending Donaldson’s construction of the Feix–Kaledin hyperkähler metric on the
unit disc bundle in T ∗H, we obtain a class of SL(2,R), resp. SU(1, 1), invariant
symplectic forms on Xk and XD

k . As in the hypekähler case, these symplectic forms
do not extend over the total space.

Lemma 5.2.3. Let f : [0, 1) → [0, 1) be a smooth function with f(0) = 0 and
f ′(r) > 0 for all r ∈ [0, 1). Then there exists a unique SU(1, 1)-invariant symplectic
form ωD

f ∈ Ω2(XD
k ) satisfying

ωD
f (0, w) = −2i(1− f(2−k|w|2)) dz̄ ∧ dz − 2i

2kkf
′(2−k|w|2) dw̄ ∧ dw. (5.13)

Moreover, f restricts to the hyperbolic area form along D× {0}.

Proof. Uniqueness of such a metric is follow from the fact that every SU(1, 1)-orbit
contains an element of the form (0, w). Moreover, if ωf ∈ Ω2(XD

k ) is an SU(1, 1)-
invariant 2-form satisfying (5.13), then the assumptions on f imply that ωf is non-
degenerate and restricts to the hyperbolic area form along D× {0}.

It remains to show the existence of a closed SU(1, 1) invariant ωD
f ∈ Ω2(XD

k ) which
satisfies (5.13). For this consider the open subset

X̃ = {(z1, z2) ∈ C2 | 0 < |z1|2 − |z2|2 < 2}.

This is a k-fold covering of XD
k \(D× {0}) with covering map

π : X̃ → XD
k , π(z1, z2) :=

(
z2

z1
, zk1

)
. (5.14)
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Now let F : (0, 2)→ R be a smooth function and consider

ω̃ = i∂̄∂F (|z1|2 − |z2|2)

This is clearly SU(1, 1)-invariant and a direct calculation shows it induces on XD
k \(D×

{0}) the following SU(1, 1)-invariant metric

ωD
F (z, w) = i|w|2/k

(
F ′′(δ)|z|2|w|2/k − F ′(δ)

)
dz̄ ∧ dz

+ iδ(F
′′(δ)δ + F ′(δ))
k2|w|2

dw̄ ∧ dw

− i |w|
2/k(F ′′(δ)δ + F ′(δ))

k|w|2
(zw̄ dz̄dw + z̄w dz̄dw)

where δ := (1− |z|2)|w|2/k. On the fibre over z = 0 this gives

ωD
F (0, w) = −i|w|2/kF ′(|w|2/k) dz̄ ∧ dz

+ i |w|
2/k(F ′′(|w|2/k)|w|2/k + F ′(|w|2/k))

k2|w|2
dw̄ ∧ dw

Now, let f : [0, 1) → [0, 1) be a smooth function with f(0) = 0 and f ′(r) > 0 for
all r ∈ [0, 1) and choose F : (0, 2)→ R such that

f(r2) = 2− 1
2F
′(r2/k)r2/k.

The formula above then transforms to

ωD
F (0, w) = −2i(1− f(2−k|w|2)) dz̄ ∧ dz − 2i

2kkf
′(2−k|w|2) dw̄ ∧ dw

and hence we can take ωD
f := ωD

F ∈ Ω2(XD
k ) and this completes the proof.

Lemma 5.2.4. Let f : [0, 1) → [0, 1) be a smooth function with f(0) = 0 and
f ′(r) > 0 for all r ∈ [0, 1). Then there exists a unique SL(2,R)-invariant symplectic
form ωf ∈ Ω2(Xk) satisfying

ωf (i, w) = − i
2
(
1− f(|w|2) + k|w|2f ′(|w|2)

)
dz̄ ∧ dz

− 2i
k
f ′(|w|2) dw̄ ∧ dw + f ′(|w|2) (w̄dz̄dw − wdw̄dz) .

(5.15)

Moreover, f restricts to the hyperbolic area form along H× {0}.

Proof. This follows from Lemma 5.2.3 and Lemma 5.2.2 by direct calculation.

Remark 5.2.5. For k = 2 and f(r) = 1−
√

1− r we recover the hyperkähler metric
on the unit disc bundle in T ∗H and T ∗D respectively, see Theorem 4.5.1.
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Moment maps for the action on the fibre

Fix ωf ∈ Ω2(Xk) as in Lemma 5.2.4. We calculate in the following a moment map
for the SL(2,R) action on Xk.

Lemma 5.2.6. The Hamiltonian H : Xk → R defined by

H(z, w) = −2
k
f
(
Im(z)k|w|2

)
.

generates with respect to ωf the Hamiltonian vector field

XH(z, w) = (0, iw).

Its flow generates the S1 action on Xk which is given by rotation of the fibres.

Proof. By (5.15) it follows

ι(XH)ωf (0, w) = −2w̄
k
f ′(|w|2)dw + i|w|2f ′(|w|2)dz − i|w|2f ′(|w|2)dz̄

On the other hand holds

dH(z, w) = −2
k
f ′
(
Im(z)k|w|2

)(
Im(z)kw̄dw + kIm(z)k−1|w|2 dz − dz̄2i

)
.

Combining both formulas proves ι(XH)ωf = dH on the fibre z = i. The general case
follows from this, since H, XH and ωf are all SL(2,R)-invariant.

Proposition 5.2.7. The SL(2,R) action on Xk is Hamiltonian with respect to ωf .
It is generated by the moment map µ : Xk → sl∗(2,R) defined by

〈µ(z, w), ξ〉 =
(
f(Im(z)k|w|2)− 1

)
tr(j(z)ξ), for ξ ∈ sl(2,R)

where j : H→ J (R2) is defined by (4.39).

Proof. For w = 0, the proposition follows from Lemma 4.3.7. For 0 < r < 1 consider
the circle bundle

Sr = {(z, w) ∈ Xk | Im(z)k|w|2 = r2}.

By Lemma 5.2.6, this is a level set of the Hamiltonian H which generates the S1

action on Xk, given by rotation of the fibres. Thus Sr/S1 is a Marsden–Weinstein
quotient of Xk and it follows that there exists a function h(r) with

(ωf )(z,w)((ẑ1, ŵ1), (ẑ1, ŵ1)) = h(r)ωH
z (ẑ1, ẑ1) for all (ẑi, ŵi) ∈ T(z,w)Sr

where ωH denotes the hyperbolic area form on H. Evaluating this expression on
(z, w) = (i, r) and the tangent vectors (1, 0), (i,−k2 r) ∈ T(i,r)Sr yields

h(r) = (ωf )(i,r)

(
(1, 0),

(
i,−k2 r

))
= 1− f(r2).

It then follows for (z, w) ∈ Sr and (ẑ, ŵ) ∈ T(z,w)Sr that

ωf (L(z,w)ξ, (ẑ, ŵ)) = h(r)ωH(Lzξ, ẑ) = L(ẑ,ŵ)
((
f(r2)− 1

)
tr(j(z)ξ)

)
.
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where L(z,w) : sl(2,R) → T(z,w)Sr denotes the infinitesimal action and the last step
uses Lemma 4.3.7. Hence the moment map equation is satisfied in this case.

It remains to verify the moment map equation along the fibre. For this define
Vr, Vφ ∈ Vect(Xk\(H× {0})) by

Vr(z, w) =
(

0, w
r

)
, Vφ(z, w) = (0, iw)

and fix a point (z, w) ∈ Xk\(H×{0}). Let ξ ∈ sl(2,R) and assume first that j(z)ξ =
−ξj(z). Then follows j(z)ξ ∈ sl(2,R), iL(z,w)ξ = −L(z,w)(j(z)), and therefore

ωf
(
L(z,w)ξ, Vr

)
= ωf

(
iL(z,w)ξ,

1
r
Vφ

)
= ωf

(
−L(z,w)(j(z)ξ),

1
r
Vφ

)
= 0

Here we used that Vφ is tangential to the S1 action and therefore in the kernel of
(ωf )|TSr×TSr . Since j(z)ξ is complex anti-linear, we also have tr(j(z)ξ) = 0 and the
moment map equation is satisfied is this case.

Finally, assume that ξ ∈ sl(2,R) satisfies j(z)ξ = ξj(z). Then ξ is a multiple of
j(z) and we may assume ξ = j(z). We calculate in this case

ωf
(
L(z,w)j(z), Vr

)
= ωf

((
0, kiw

r

)
, (0, w)

)
= −4rf ′(r2)

and on the other hand

∂r〈µ(z, w), j(z)〉 = ∂r
(
2− 2f(r2)

)
= −4rf ′(r2).

Hence the moment map equation is again satisfied and this completes the proof of
the proposition.

5.2.3 Moduli spaces of differentials of order k
Throughout this section, let (Σ, ρ) be a closed 2-dimensional oriented manifold with
genus(Σ) ≥ 2 and fixed area form ρ ∈ Ω2(Σ). Denote by P → Σ its SL(2,R) frame
bundle, let Xk ⊂ (T ∗H)k/2 be defined by (5.11) and let ωf ∈ Ω2(Xk) be a symplectic
form as in Lemma 5.2.4.

Geometric description of the sections

Denote by (j, γk) : X → J (R2) × Hom((R2)⊗k,C) the bijection defined in Lemma
4.3.5 and recall that the fibre maps γ(ζ, ·) : (T ∗H)k/2ζ → Dk(j(ζ)) are complex
anti-linear isometries. This yields an embedding of the associated bundle P (Xk) :=
P ×SL(2,R) X into a suitable tensor bundle over Σ which is defined by

P (Xk) ↪→ End(TΣ)× Sk(T ∗Σ⊗ C),
[(z, θ), (ζ, η)] 7→

(
θj(ζ)θ−1, θ∗γk(ζ, η)

) (5.16)

for z ∈ Σ, a volume preserving frame θ : R2 → TzΣ and (ζ, η) ∈ Xk. On the space of
section this yields the identification

S(Xk) = D1
k(Σ) := {(J, τ) | J ∈ J (Σ), τ ∈ Dk(Σ, J), |τ |J < 1}

where Dk(Σ, J) denotes the space of complex differentials of order k on (Σ, J).
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Lemma 5.2.8.

1. Any torsion free SL(2,R) connection on TΣ induces connections on P (X) and
End(TΣ)× Sk(T ∗Σ⊗ C) which are compatible with respect (5.16).

2. The inclusion (5.16) is Symp(Σ, ρ)-equivariant

3. The symplectic form ωf on Xk induces a symplectic form on the bundle P (Xk)
(again denoted ωf ) which satisfies

(ωf )(J,τ) ((0, τ̂1), (0, τ̂2)) = −4
k
f ′(|τ |2)ωD(τ̂1, τ̂2)

for (J, τ) ∈ D1
k(Σ) and τ̂i ∈ Dk(J). Here we denote by ωD the pointwise

symplectic structure obtained from Sk(T ∗Σ⊗J C).

Proof. The first two claims are a matter of unravelling the definitions and left to the
reader. The formula for the symplectic form follow from Lemma 5.2.4.

Calculation of the moment map

The symplectic form on P (Xk) integrates a symplectic form on D1
k(Σ) defined by

ωf ((Ĵ1, τ̂1), (Ĵ2, τ̂2)) :=
∫

Σ
ωf ((Ĵ1, τ̂1), (Ĵ2, τ̂2))ρ.

The next theorem calculates a moment map for the action of Ham(Σ, ρ) on D1
k(Σ)

with respect to this symplectic form.

Theorem 5.2.9.

1. Let c := 2π(2−genus(Σ))/vol(Σ, ρ). A moment map for the action of Ham(Σ, ρ)
on D1

k(Σ) is given by

µ
f
(J, τ) =

[
4f ′(|τ |2)

k

(
|∂̄τ |2 − |∂τ |2

)
+ 2(1− f(|τ |2)K − 2c

]
ρ

− 2i∂̄∂f(|τ |2).
(5.17)

where KJ is the Gaussian curvature for the metric ρ(·, J ·) and all covariant
derivatives are induced by its Levi-Civita connection.

2. Define F : [0, 1)→ R by F (t) :=
∫ t

0
f(s)
ks − f

′(s) ds and suppose ∂̄τ = 0. Then

µ
f
(J, τ) =

(
2KJ + ∆F

(
|τ |2
))
ρ (5.18)

where ∆ = d∗d is the positive Laplacian of the metric ρ(·, J ·).

Proof. Let ∇ be the Levi-Civita connection for the metric ρ(·, J ·). The moment map
equation (5.17) follows from Theorem 4.2.4 once we have identified the three compo-
nents of the general moment map in the present context. The constant c follows from
the Gauss–Bonnet theorem and guarantees that µ

f
(J, τ) takes values in the space of



224 CHAPTER 5. MODULI SPACES OF HOLOMORPHIC DIFFERENTIALS

exact 2-forms.

Step 1.1: ωf (∇(J, τ) ∧∇(J, τ)) = 4f ′(|τ |2)
k

(
|∂̄τ |2 − |∂τ |2

)
ρ.

For the Levi–Civita connection, it holds ∇J = 0 and with Lemma 5.2.8 it follows

ωf (∇u(J, τ),∇v(J, τ)) = −4f ′(|τ |2)
k

ωD(∇uτ,∇vτ)

for all u, v ∈ Vect(Σ). Using the relation |∂uτ |2 − |∂̄uτ |2 = ωD(∇uσ,∇Juσ) for any
u ∈ Vect(Σ), it follows (

|∂τ |2 − |∂̄τ |2
)
ρ = ωD(∇τ ∧∇τ).

Combining both expressions proves Step 1.1.

Step 1.2: 〈µ(J,τ), R
∇〉 = 2(f(|τ |2)− 1)Kρ.

Let µ : Xk → sl∗(2,R) be the moment map calculated in Proposition 5.2.7. For
(J, τ) ∈ D1

k(Σ), this yields a section of µ(J,τ) ∈ End0(TΣ)∗ defined by

µ(J,τ)(Ψ) =
(
f
(
|τ |2
)
− 1
)

tr (JΨ)

for Ψ ∈ Ω0(Σ,End0(TΣ)). Step 1.2 follows from this and R∇ = −KJ ⊗ ρ.

Step 1.3: dc(∇µ(J,τ)) = 2i∂̄∂f(|τ |2).

Since ∇J = 0, we obtain

∇uµ(J,τ)(Ψ) = Luf(|τ |2)tr(JΨ)

for all Ψ ∈ Ω0(Σ,End0(TΣ)) and u ∈ Vect(Σ). Let e1, e2 = Je1 be a local orthonor-
mal frame for TΣ and write v ∈ Vect(Σ) as v = v1e1 + v2e2. Then

c(∇µ(J,τ))(v) = −Le1f(|τ |2)tr(Je∗1 ⊗ v)− Le2f(|τ |2)tr(Je∗2 ⊗ v)
= Le1f(|τ |2)v2 − Le2f(|τ |2)v1

= −LJvf(|τ |2).

Step 3 follows then from the relation d(dg ◦J) = 2i∂̄∂g which holds for every smooth
function g : Σ→ C.

Step 2: Now assume ∂̄τ = 0. Then holds µ
f
(J, τ) =

(
2K + ∆F (|τ |2)

)
ρ.

We work around a point where τ 6= 0 and define h := |τ |2. Since ∂̄τ = 0, we have
|∂h| = |τ ||∂τ | and hence

|∂τ |2ρ = h−1|∂h|2 = − i
2h∂̄h ∧ ∂h. (5.19)
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Next choose holomorphic coordinates and write

ρ = λdx ∧ dy, τ(z) = g(z)dzk

for some positive function λ and a holomorphic function g. The Gaussian curvature
KJ can be computed in these coordinates via

KJ = −1
2λ
−1(∂2

x log(λ) + ∂2
y log(λ)).

Since f(z) is holomorphic, log(|f(z)|2) is harmonic and we compute

∂̄∂ log(h) = 1
4(∂2

x + ∂2
y) log(|f(z)|2λ−k)2i dx ∧ dy

= −k2 i(∂2
x + ∂2

y) log(λ) dx ∧ dy

= ikKJλdx ∧ dy.

This shows

Kρ = − i
k
∂̄∂ log(h). (5.20)

Now plug (5.19) and (5.20) into (5.17) to obtain

µ
f
(J, τ) = 2if ′(h)

kh
∂̄h ∧ ∂h+ 2i(f(h)− 1)

k
∂̄∂ log(h)− 2i∂̄∂f(h)

= 2i∂̄
[
f(h)− 1

k
∂ log(h)− ∂f(h)

]
= 2Kρ+ 2i∂̄

[(
f(h)
kh
− f ′(h)

)
∂h

]
= 2Kρ+ 2i∂̄∂F (h)

This proves Step 2 and the theorem, since 2i∂̄∂F (h) = ∆F (h)ρ.

The moduli space

The space of holomorphic pairs {(J, τ) ∈ D1
k(Σ) | ∂̄τ = 0} ⊂ D1

k(Σ) is a Symp(Σ, ρ)-
invariant complex and hence symplectic submanifold. Theorem 5.2.9 shows that its
Marsden–Weinstein quotient by Ham(Σ, ρ) is given by

M̃f (k) :=
{

(J, γ) ∈ D1
k(Σ)

∣∣∣∣ ∂̄γ = 0, KJ + 1
2∆F (|γ|2) = c

}/
Ham(Σ, ρ)

where c = 2π(2− 2genus(Σ))/vol(Σ, ρ).
Define H := Symp0(Σ, ρ)/Ham(Σ, ρ). Since Ham(Σ, ρ) < Symp0(Σ, ρ) is a nor-

mal subgroup (see [85], Proposition 10.2) this is indeed a quotient group and the flux
homomorphism yields an identification H ∼= H1(Σ, ρ), see Remark 4.4.7. It is not
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hard to see that the H-orbits in M̃f (k) are complex and hence symplectic submani-
folds. The argument is essentially the same as in Lemma 4.4.8. It then follows from
Lemma 4.4.9 that the quotient

Mf (k) :=
{

(J, γ) ∈ D1
k(Σ)

∣∣∣∣ ∂̄γ = 0, KJ + 1
2∆F (|γ|2) = c

}/
Symp0(Σ, ρ)

carries an induced symplectic structure.
For every Riemannian metric g ∈ Met(Σ) there exists a unique complex structure

Jg ∈ J (Σ) which is compatible with g and we define Dk(g) := Dk(Jg,Σ). It then
follows from standard Moser isotopy arguments that

Mf (k) ∼=
{

(g, τ)
∣∣∣∣ g ∈ Met(Σ), τ ∈ Dk(g)
∂̄τ = 0, |τ |g < 1, Kg + 1

2∆F
(
|τ |2
)

= c

}/
Diff0(Σ)

where the isomorphism is induced by (J, τ) 7→ (ρ(·, J ·), τ).
The next proposition provides a simpler model for the moduli space Mf (k) for

a particular choice of f . In the case k = 2, this choice corresponds precisely to the
hyperkähler metric.

Theorem 5.2.10. There exists a unique smooth function Fk : [0, 1)→ (0,∞) with

te−kFk(t) − ke−Fk(t) + (k − 1) = 0, Fk(0) = log
(
k − 1
k

)
(5.21)

This is concave, strictly monotone decreasing and satisfies limt→1 Fk(t) = 0. Define
fk : [0, 1)→ [0, 1) by

fk(t) := −
(∫ t

0
F ′k(s)s−1/k ds

)
t1/k. (5.22)

This is a smooth function with fk(0) = 0 and f ′k > 0 and therefore defines a symplectic
form ωfk on D1

k(Σ). For this symplectic form, there is an isomorphism

Mfk(k) ∼=
{

(g, τ)
∣∣∣∣ g ∈ Met(Σ), τ ∈ Dk(g)
∂̄τ = 0, |τ |g < 1, Kg − c

k |τ |
2
g = ck−1

k

}/
Diff0(Σ)

induced by the map (J, τ) 7→ (eFk(|τ |2J )ρ(·, J ·), τ).

Proof. One checks first that Fk(t) is well-defined, strictly monotone descreasing and
concave. All of this follows by successively applying the implicit function theorem
which we leave to the reader. Next we solve the differential equation

F ′k(t) = fk(t)
kt
− f ′k(t), fk(0) = 0.

The homogeneous equation y′(t) = y(t)/kt has the solution y(t) = ct1/k. Using
variation of constants, we make the ansatz fk(t) = c(t)t1/k for the inhomogeneous
equation. This leads to the formula

fk(t) := −
(∫ t

0
F ′k(s)s−1/k ds

)
t1/k.
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Clearly, fk(0) = 0 and f ′k(t) > 0 are satisfied and we need to argue that fk(1) ≤ 1.
For k = 2 this follows from the explicit formulas

F2(t) = log
(
1 +
√

1− t
)
, f2(t) = 1−

√
1− t.

Now assume k ≥ 3. By monotonicity and concavity of Fk, it follows

−
∫ 1

2

0
F ′k(s)s−1/s ds ≤ −F ′k

(
1
2

)
k

k − 1 ≤ 2 log
(

k

k − 1

)
k

k − 1 .

On the other hand, we have

−
∫ 1

1
2

F ′k(s)s−1/k ds ≤ 21/k log
(

k

k − 1

)
and therefore

−
∫ 1

0
u′k(s)s−1/s ds ≤ 2 log

(
k

k − 1

)
k

k − 1 + 21/k log
(

k

k − 1

)
< 1.

The last estimate holds for all k ≥ 3. We thus have shown that fk : [0, 1) → [0, 1)
gives rise to a symplectic form ωfk on D1

k(Σ).
The moduli spaceMfk(k) parametrizes pairs g ∈ Met(Σ) and τ ∈ Dk(g) satisfying

∂̄τ = 0, |τ |g < 1, Kg + 1
2∆uk(|τ |2) = c.

Define g̃ ∈ Met(Σ) by g̃ = eFk(|τ |2)g. Since Fk is monotone decreasing with limt→1 Fk(t) =
0, it follows that |τ |g̃ < 1 is equivalent to |τ |g < 1. The Gaussian curvature transforms
under this conformal change as follows

Kg̃ = e−Fk(|τ |2g)
(
Kg + 1

2∆guk(|τ |2g)
)

= ce−Fk(|τ |2g).

Using |τ |2g̃ = |τ |2ge−kFk(|τ |2) and (5.21), this yields

Kg̃ = ce−Fk(|τ |2g) = c
|τ |2g
k
e−kFk(|τ |2g) + c

k − 1
k

= c
|τ |2g̃
k

+ c
k − 1
k

.

This completes the proof of the theorem.

5.3 Moduli spaces of differentials of mixed order
Let k = (k1, k2, . . . , kn) ∈ Zn≥2 be a vector of integers and define

Xk :=
{

(z,w) ∈ H× Cn
∣∣ Im(z)ki |wi|2 < 1 for i = 1, . . . , n

}
.

We think of Xk as a subset of (T ∗H)k1/2 ⊕ · · · ⊕ (T ∗H)kn/2. This induces a natural
action of SL(2,R) which is given by

SL(2,R)×Xk → Xk,

(
a b
c d

)
(z, w) :=

(
az + b

cz + d
, (cz + d)kw

)
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where
(cz + d)kw :=

(
(cz + d)k1w1, (cz + d)k2w2, . . . , (cz + d)knwn

)
.

The next lemma introduces a particular class of symplectic forms on Xk. Recall from
Lemma 5.2.4 that a function fi : [0, 1) → [0, 1) with fi(0) = 0 and f ′ > 0 yields a
symplectic form ωfi ∈ Ω2(Xki) on the space

Xki :=
{

(z, w) ∈ H× C
∣∣Im(z)ki |w|2 < 1

}
.

Lemma 5.3.1 (Symplectic structures). Let α = (α1, . . . , αn) ∈ (0, 1)n be a vector
of weights with

∑n
i=1 αi = 1 and let f = (f1, . . . , fn) be a tuple of smooth functions

fi : [0, 1)→ [0, 1) with fi(0) = 0 and f ′i > 0. Denote the canonical projections by

πi : Xk → Xki , πi(z,w) := (z, wi).

and define ωαf ∈ Ω2(Xk) by

ωαf :=
n∑
i=1

αiπ
∗
i ωfi .

Then ωαf is a symplectic form and restricts to the hyperbolic area form on H× {0}.

Proof. Since each of the ωfi is a closed 2-form which restricts to the hyperbolic area
form, it follows that ωαf is also closed and restricts to the hyperbolic area form on
H× {0}.

It remains to show that ωαf is non-degenerate. Along the fibres

(Xk)z = {w ∈ Cn | (z,w) ∈ Xk}

the 2-form ωαf is a product symplectic form and hence non-degenerated. Moreover
there exist unique SL(2,R)-equivariant vector fields V,W ∈ Vect(Xk) with

V (i,w) :=
(

1, ik1

2 w1, i
k2

2 w2, . . . , i
kn
2 wn

)
∈ T(i,w)Xk

W (i,w) :=
(

i,−k1

2 w1,−
k2

2 w2, . . . ,−
kn
2 wn

)
∈ T(i,w)Xk

along the fibre above i. These span the ωαf orthogonal complements of the fibre and
yield a horizontal distribution. Finally, one checks

ωf(V,W ) = 1−
n∑
i=1

αifi
(
|wi|2

)
> 0

and hence ωf is non-degenerated.

Lemma 5.3.2. Fix the symplectic structure ωαf ∈ Ω2(Xk). The SL(2,R) action on
Xk is then Hamiltonian with moment map

µ : Xk → sl∗(2,R), 〈µ(z,w), ξ〉 =
(

n∑
i=1

αifi(Im(z)ki |wn|2)− 1
)

tr(j(z)ξ)

where j : H→ J (R2) is defined by (4.39).
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Proof. The embedding Xk ↪→
∏n
i=1Xki defined by

(z,w) 7→ ((z, w1), (z, w2), . . . , (z, wn))

is SL(2,R)-equivariant and symplectic with respect to the weighted product symplec-
tic structure (α1ω1)⊕ · · · ⊕ (αnωn). The lemma follows thus from Lemma 5.2.7.

Denote by

Dk(R2) :=
{

(J, γ1, . . . , γn) | J ∈ J (R2), γi ∈ Dki(J) for i = 1, . . . , n
}

Then Lemma 4.3.5 yields a map

(j, γ1, . . . , γn) : Xk → Dk(R2)

whose image contains all tuples with |γi| < 1 for all i. This yields for the associated
bundle the identification

P (Xk) ↪→ End(TΣ)× Sk1(T ∗Σ⊗ C)× · · · × Skn(T ∗Σ⊗ C),
[(z, θ), (ζ, η)] 7→

(
θj(ζ)θ−1, θ∗γk1(ζ, η1), . . . , θ∗γkn(ζ, ηn)

) (5.23)

for z ∈ Σ, a volume preserving frame θ : R2 → TzΣ and (ζ, η1, . . . , ηn) ∈ Xk. Its
space of sections is then identified with

S(P (Xk)) ∼= D1
k(Σ) := {(J, τ1, . . . , τn) | J ∈ J (Σ), τi ∈ Dki(J,Σ)), |τi| < 1} .

The symplectic form ωf ∈ Ω2(Xk) integrates to a symplectic form on D1
k(Σ) defined

by

ωf((Ĵ , τ̂1, . . . , τ̂n), (Ĵ ′, τ̂ ′1, . . . , τ̂ ′n)) :=
∫

Σ
ωf((Ĵ , τ̂1, . . . , τ̂n), (Ĵ ′, τ̂ ′1, . . . , τ̂ ′n))ρ

The next theorem shows that the action of Ham(Σ, ρ) on Σ is Hamiltonian and
calculates a moment map for it.

Theorem 5.3.3.

1. The action of Ham(Σ, ρ) on D1
k(Σ) is Hamiltonian with moment map

µαf (J, τ1, . . . , τn) =
n∑
i=1

αiµi(J, τi) (5.24)

where

µ
i
(J, τi) =

[
4f ′i(|τi|2)

k

(
|∂̄τi|2 − |∂τi|2

)
+ 2(1− fi(|τi|2)KJ − 2c

]
ρ

+ 2i∂̄∂fi(|τ |2i ).
(5.25)

In this formula KJ denotes is the Gaussian curvature for the metric ρ(·, J ·)
and all covariant derivatives are induced by its Levi-Civita connection.
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2. Suppose ∂̄γi = 0 for all i. Then

µαf (J, τ) = 2KJρ+
n∑
i=1

(
∆αiFi(|τ |2i )

)
ρ (5.26)

where Fi : [0, 1)→ R is defined by

Fi(t) :=
∫ t

0

fi(t)
kt
− f ′i(t) dt

and ∆ = d∗d is the positive Laplacian of the metric ρ(·, J ·).

Proof. The embedding D1
k(Σ) ↪→

∏n
i=1D1

ki
(Σ) defined by

(J, τ1, . . . , τn) 7→ ((J, τ1), (J, τ2), . . . , (J, τn))

is Symp(Σ, ρ)-equivariant and symplectic with respect to the α-weighted product
symplectic structure. The theorem follows thus directly from Theorem 5.2.9.

After taking the action of Symp0(Σ, ρ)/Ham(Σ, ρ), this construction gives rise to
a symplectic form on the moduli space

Mα
f (k) :=

{
(J, τ) ∈ D1

k(Σ)
∣∣∣∣ ∂̄γ = 0,
KJ + 1

2∆
(∑n

i=1 αiFi
(
|τi|2

))
= c

}/
Symp0(Σ, ρ)

5.4 Hitchin’s higher Teichmüller components
We describe in this section the relation between holomorphic differentials and higher
Teichmüller components introduced by Hitchin [59]. For a more complete overview
of the subject, we refer to [74, 16].

The Hitchin components

Let Gc be a complex simple Lie group and let Gr be the adjoint group of the split
real form of Gc. Denote by Hom∗(π1(Σ), Gr) the space of representations, which act
completely reducible on the Lie algebra of Gr. Hitchin [59] showed that the moduli
space

R∗Gr (Σ) := Hom∗(π1(Σ), Gr)/Gr (5.27)

contains a connected component HGr (Σ) homeomorphic to R(2genus(Σ)−2) dim(Gr). He
called this the Teichmüller component, which by now is often called the Hitchin
component.

There exits a natural inclusion of Teichmüller space T (Σ) into the Hitchin com-
ponent which relies on the notion of the principle 3-dimensional subgroup introduced
by Kostant [72]. This gives rise to a distinguished inclusion PSL(2,R) ↪→ Gr and
therefore

T (Σ) ⊂ R∗PSL(2,R)(Σ)→ R∗Gr (Σ) (5.28)

where we view Teichmüller space as the space of Fuchsian representations (see The-
orem 4.4.13).
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Parametrizing the Hitchin component by holomorphic differentials

Fix a complex structure J ∈ J (Σ) and denote the space of holomorphic differentials
of degree k by

Dk(J) :=
{
τ ∈ Ω0(Σ, Sk(T ∗Σ⊗J C)) | ∂̄Jτ = 0

}
Let p1, . . . , p` be a basis for the ring of invariant polynomials on the Lie algebra of
Gc and denote by mi := deg(pi) their degrees. Hitchin showed that there exists
a parametrization of the Hitchin component HGr (Σ) by the product space of the
bundle of holomorphic differentials of degree mi, i.e.

HGr (Σ) ∼= Dm1(J)⊕Dm2(J)⊕ · · · ⊕ Dm`(J).

The construction of this map uses the theory of Higgs bundles and we will briefly
describe it in the case of Gr = PSL(n + 1,R) below. The general case is somewhat
analogue, but requires considerably more Lie theory.

The case Gr = PSL(n+ 1,R)

The invariant polynomials of sl(n + 1,C) are generated by the coefficients of the
characteristic polynomial

det(t1− ξ) = tn+1 + p2(ξ)tn−2 + · · ·+ pn+1(ξ)

(since p1(ξ) = −tr(ξ) = 0 for ξ ∈ sl(n + 1,C)). Since deg(pi) = i, we seek a
parametrization

HPSL(n+1,R)(Σ) ∼= D2(J)⊕D3(J)⊕ · · · ⊕ Dn+1(J).

One can view the n-fold symmetric power Sn(C2) as the space Cn[z1, z2] of homoge-
neous polynomials of degree n. This has the natural basis zn1 , zn−1

1 z2, . . . , z
n
2 and is

thus isomorphic to Cn+1. The action of SL(2,C) on C2 induces an action on Sn(C2)
which gives rise to an irreducible representation SL(2,C) → SL(n + 1,C). The cor-
responding inclusion PSL(2,C) ↪→ PSL(n+ 1,C) agrees with the one obtained from
Kostant’s theory of the principle 3-dimensional subgroup.

Next, choose a holomorphic line bundle L→ Σ with L2 = TΣ and define

W = Sk(L−1 ⊕ L) = L−n ⊕ · · · ⊕ Ln.

We view W as holomorphic vector bundle with structure group S1 ⊂ SL(n+1,C). For
τk ∈ Dk(J) ⊂ Ω0,1(Σ,Hom(Ln, Ln−2k) define the Higgs field Φ ∈ Ω0,1(Σ,End0(W ))
by

Φ :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 1

τn+1 τn · · · τ2 0

 .

where 1 ∈ Ω1,0(Σ, L2) = Ω1,0(Σ,Hom(Li, Li+2) are canonically defined. Using stan-
dard results on stable Higgs bundles, it is not hard to show that the pair (W,Φ) is a
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stable Higgs bundle. It therefore admits an irreducible unitary connection A ∈ A(W )
which is compatible with the holomorphic structure of W and satisfies the equation

FA + [Φ ∧ Φ∗] = 0.

A formal consequence of this equation is that B := A + Φ + Φ∗ defines an irre-
ducible flat SL(n+1,C)-connections. Hitchin showed that this connection has in fact
holonomy in SL(n+ 1,R) and hence gives rise to a representation

ρΦ : π1(Σ)→ SL(n+ 1,R)

which is uniquely determined by the Higgs bundle (W,Φ) up to conjugation. The
induced representations in R∗PSL(n+1,R)(Σ) then parametrize the Hitchin component
HPSL(n+1,R)(Σ) as τk ∈ Dk(J) varies.

Mapping class group invariant structures

In the representational point of view, the mapping class group appears as the group
of outer automorphism of the fundamental group

MCG(Σ) ∼= Out(π1(Σ)) := Aut(π1(Σ)(Inn(π1(Σ))

(see Theorem 4.4.12). This group acts naturally onR∗Gr (Σ) and preserves the Hitchin
component. This follows from the fact, that the mapping class group preserves the
Teichmüller component of Fuchsian representations in R∗PSL(2,R)(Σ) and the inclusion
(5.28) is mapping class group equivariant.

The parametrization of the Hitchin component

hJ : Dm1(J)⊕Dm2(J)⊕ · · · ⊕ Dm`(J)→ HGr (Σ)

sketched above depends on the choice of a complex structure J ∈ J (Σ) and does not
yields any mapping class group invariant structures on the Hitchin component.

Now consider the case Gr = PSL(n,R) and define

D := {(J, τ3, . . . , τn) | J ∈ J (Σ), τk ∈ Dk(J)} /Diff0(Σ).

The parametrizations of Hitchin then combine to a mapping class group equivariant
map

D → HPSL(n,R)(Σ), [J, τ3, . . . , τn] 7→ hJ(0, τ3, . . . , τn). (5.29)

Labourie [75] showed that this map is surjective and conjectured that it is in fact a
homeomorphism. This conjecture has been verified for n = 3 by Labourie [73] and
Loftin [79].

Moreover, using (5.29) one obtains mapping class group equivariant maps

Mα
f (3, 4, . . . , n)→ HPSL(n,R)(Σ)

which are conjecturally embeddings. It would be interesting to understand the push-
forward of the Kähler structure onMα

f (3, 4, . . . , n) under this map. This gives rise to
mapping class group invariant structures along the image and one might hope that
these structures extend to mapping class group invariant structures on the Hitchin
component, or more generally, they might suggest how such a structure can be ob-
tained.



Chapter 6

The Ricci form and
Calabi–Yau Teichmüller space

This chapter summarizes joint work with Oscar Garcia–Prada and Dietmar A. Sala-
mon [50]. We show that the Ricci form yields a moment map for the action of the
group of exact volume preserving diffeomorphims on the space of almost complex
structures. This gives rise to an extended Weil–Petersson symplectic form on the
Calabi–Yau Teichmüller space of isotopy classes of complex structures with real first
Chern class zero and nonempty Kähler cone. We also discuss variants of the theory
for Kähler–Einstein pairs which have not been included into our joint paper. The
presentation in this chapter is rather brief and we only sketch the arguments for the
more technical results. Full details can be found in our joint article [50].

6.1 Introduction
Let (M,ρ) be a closed 2n-dimensional manifold with fixed volume form ρ. The
space J (M) of almost complex structures on M , compatible with the orientation
determined by ρ, carries the natural symplectic form defined by

Ωρ,J(Ĵ1, Ĵ2) :=
∫
M

1
2tr
(
Ĵ1JĴ2

)
ρ. (6.1)

We define the Ricci form Ricρ,J ∈ Ω2(M) associated to the volume form ρ and an
almost complex structure J ∈ J (M) by

Ricρ,J(u, v) := 1
4tr ((∇uJ)J(∇vJ)) + 1

2tr
(
JR∇(u, v)

)
+ 1

2dλ
∇
J (6.2)

for u, v ∈ Vect(M), where ∇ is a torsion free ρ-connection on M and the 1-form λ∇J
is defined by λ∇J (u) := tr ((∇J)u) for u ∈ Vect(M). The next theorem can be derived
as a special case of Donaldson’s moment map [38] (see Theorem 4.2.4). However, in
[50] we give a direct and independent proof of this result.

Theorem A (Ricci form). The Ricci form Ricρ,J ∈ Ω2(M) does not depend on
the choice of the connection ∇ used to define it, represents the cohomology class

233
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2πc1(TM, J) and agrees with the usual definition of the Ricci form on Kähler man-
ifolds. The map J 7→ 2Ricρ,J satisfies the moment map equation for the action of
the exact volume preserving diffeomorphism group on the space of almost complex
structures.

Proof. See Theorem 6.2.1.

A useful generalization of the moment map equation involves the 1-form Λρ ∈
Ω1(J (M),Ω1(M)) defined by

Λρ(J, Ĵ)(u) := tr
(

(∇Ĵ)u+ 1
2 ĴJ∇uJ

)
(6.3)

for u ∈ Vect(M), where ∇ is a torsion free ρ-connection on M . The linearisation of
Ricρ,J when varying J in direction Ĵ is given by 1

2dΛρ(J, Ĵ) and we show in Lemma
6.2.5 that ∫

M

Λρ(J, Ĵ) ∧ ι(v)ρ = ΩJ,ρ(Ĵ ,LvJ) (6.4)

for all v ∈ Vect(M). This setup leads to a new construction of the Weil–Petersson
symplectic form on Calabi–Yau Teichmüller space

T0(M) :=
{
J ∈ Jint(M)

∣∣∣∣ c1(TM, J) = 0 ∈ H2(M,R)
and J admits a Kähler form

}/
Diff0(M). (6.5)

This moduli space has been studied extensively in the polarized cased [64, 90, 98]
and for K3-surfaces, see [44] Chapter 16. The Bogomolov–Tian–Todorov theorem
[11, 111, 113] asserts that T0(M) is a smooth manifold. However, it is not Hausdorff
in general [54, 120]. The construction of the Weil–Petersson metric involves three
main steps:

1. The natural inclusion of

T0(M,ρ) := {J ∈ Jint,0(M) |Ricρ,J = 0} /Diff0(M,ρ) (6.6)

into Teichmüller space T0(M) is a bijection.

2. The group Diff0(M,ρ)/Diffex(M,ρ) acts trivially on

T ex
0 (M,ρ) := Jint,0(M,ρ)/Diffex(M,ρ). (6.7)

Hence, T0(M,ρ) = T ex
0 (M,ρ) embeds into the Marsden–Weinstein quotient of

J (M) and carries a natural closed 2-form.

3. The space of integrable structures Jint(M) ⊂ J (M) is not a symplectic subman-
ifold and it is not obvious that the closed 2-form on T0(M,ρ) is non-degenerated.
We give a complete characterization of the kernel of the restriction of the sym-
plectic form which then proves non-degeneracy of the Weil–Petersson symplectic
form.
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The tangent spaces at the space of integrable complex structures are

TJJint(M) = ker
(
∂̄J : Ω0,1(M,TM)→ Ω0,2(M,TM)

)
. (6.8)

If Ricρ,J = 0 and ∂̄J Ĵ = 0 then there exist smooth functions f, g : M → R such that

Λρ(J, Ĵ) = −df ◦ J + dg (6.9)

Moreover, for every integrable J ∈ Jint(M) with vanishing real first Chern class and
non-empty Kähler cone, there exists a unique volume form ρJ with RicρJ ,J = 0 and∫
M
ρJ = V .

Theorem B (Weil–Petersson symplectic form). The Weil–Petersson symplectic
form on T0(M,ρ) is given by

ΩJ(Ĵ1, Ĵ2) =
∫
M

(
1
2 tr
(
Ĵ1JĴ2

)
− f1g2 + f2g1

)
ρJ (6.10)

for J ∈ Jint(M) with vanishing real first Chern class and non-empty Kähler cone,
Ĵi ∈ Ω0,1(M,TM) with ∂̄J Ĵi = 0 and fi, gi defined by (6.9). This symplectic form is
Diff0(M) equivariant and thus the mapping class group acts on T0(M) by symplecto-
morphism.

Proof. See Theorem 6.3.5.

The Weil–Petersson symplectic form on Teichmüller spaces gives rise to a symplec-
tic connection on the bundle E0(M) of isotopy classes of Ricci-flat Kähler structures
over the space B0(M) of symplectic forms with vanishing first Chern class.

Theorem C (A symplectic connection). The projection E0(M) → B0(M) is a
submersion and for every Ricci flat Kähler structure (ω, J) on M and for every closed
2-form ω̂, there exists a unique element Ĵ = Aω,J(ω̂) ∈ Ω0,1

J (M,TM) satisfying

ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ ′ = 0 and Ĵ ′ = (Ĵ ′)∗

and the tangency conditions

∂̄J Ĵ = 0, Λρ(J, Ĵ) = −d〈ω̂, ω〉 ◦ J, ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉.

This connection is Diff0(M)-equivariant and satisfies Aω,J(dι(v)ω) = LvJ for all
v ∈ Vect(M) with dι(Jv)ρ = 0.

Proof. See Theorem 6.3.6

The final section discusses variants of the theory for Kähler–Einstein manifolds
which have not been included into our joint paper. Fix a volume form ρ ∈ Ω2n(M)
and cohomology classes a, c ∈ H2(M) such that 2πc = κa for some κ ∈ R. Denote by
Sa(M,ρ) ⊂ Ω2(M) the space of symplectic forms on M with volume form ωn/n! = ρ
and denote by Jc(M) the space of almost complex structures with c1(TM, J) = c.
We call a ∈ H2(M,R) a Lefschetz class when · ∪ an−1 : H1(M,R)→ H2n−1(M,R) is
an isomorphism. By the hard Lefschetz theorem, every Kähler class is Lefschetz. The
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converse is not true in general, see [123, 45, 84] and the references therein. We show
that under this assumptions Sa(M,ρ) is a symplectic manifold with the Lefschetz
symplectic form

Ωω(ω̂1, ω̂2) :=
∫
M

λ1 ∧ λ2 ∧
ωn−1

(n− 1)! (6.11)

for ω ∈ Sa(M,ρ) and exact 2-forms ω̂ ∈ Ω2(M) with ω̂∧ωn−1 = 0, where λi ∈ Ω1(M)
satisfy dλi = ω̂ and λi∧ωn−1 is exact. The motivation for this symplectic form comes
from a moment map description of the equation ωn/n! = ρ.

Theorem D (Kähler–Einstein pairs). The action of Diffex(M,ρ) on the product
space Jc(M)× Sa(M,ρ) is Hamiltonian for the product symplectic form

ΩJ,ω((Ĵ1, ω̂1), (Ĵ2, ω̂2)) :=
∫
M

1
2 tr
(
Ĵ1JĴ2

)
ρ− 2κλ1 ∧ λ2 ∧

ωn−1

(n− 1)! (6.12)

where λi ∈ Ω1(M) satisfy dλi = ω̂ and λi ∧ ωn−1 is exact. A moment map for this
action is given by µ : Jc(M)× Sa(M,ρ)→ Ω2

ex(M) defined by

µ(J, ω) = 2(Ricρ,J − κω). (6.13)

Proof. See Theorem 6.4.3.

This leads to a Weil–Petersson metric on the Teichmüller space of Kähler–Einstein
manifolds with a fixed symplectic form ω ∈ Sa(M). Although this yields a new
perspective on the subject, the symplectic form has been studied extensively, see
[71, 98, 105].

6.2 The Ricci form
6.2.1 Linear complex structures
Denote the space of linear complex structures on R2n which are compatible with the
standard orientation by

J (R2n) := {J ∈ SL(2n,R) | J2 = −1}. (6.14)

The group SL(2n,R) acts transitively on J (R2n) by conjugation. Since every J ∈
J (R2n) has trace zero, one can view J (R2n) ⊂ sl(2n,R) as an adjoint orbit. It
follows from this setup that J (R2n) carries a canonical symplectic form for which the
SL(2n,R) action is Hamiltonian. More explicitly, the tangent space at J ∈ J (R2n)
is given by

TJ(R2n) :=
{
Ĵ ∈ R2n×2n | JĴ + ĴJ = 0} = {[ξ, J ] | ξ ∈ sl(2n,R)

}
. (6.15)

and the symplectic form τ ∈ Ω2(J (R2n)) is defined by

τJ(Ĵ1, Ĵ2) := 1
2tr
(
Ĵ1JĴ2

)
= −tr ([ξ1, ξ2]J) (6.16)
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for ξi ∈ sl(2n,R) and Ĵi = [ξi, J ]. The symplectic from τ is of type (1, 1) with
respect to the complex structure Ĵ 7→ −JĴ . The corresponding symmetric form is
indefinite and thus turns J (R2n) into a pseudo-Kähler manifold. It follows from the
general setup that the SL(2n,R) action on J (R2n) is Hamiltonian with moment map
µ : J (R2n)→ sl(2n,R)∗ defined by

〈µ(J), ξ〉 := −tr (Jξ) for ξ ∈ sl(2n,R). (6.17)

6.2.2 The Ricci form as a moment map
Let (M,ρ) be a closed oriented 2n-dimensional manifold and let P → M denote its
SL(2n,R) frame bundle. The space of sections of the associated bundle P ×SL(2n,R)
J (R2n) admits a canonical identification with the space of almost complex structures

J (M) :=
{
J ∈ Ω0(M,End(TM))

∣∣∣∣ J2 = −1 and J is compatible
with the orientation of M

}
. (6.18)

This is a symplectic submanifold with the induced symplectic form

ΩJ,ρ(Ĵ1, Ĵ2) := 1
2

∫
M

tr
(
Ĵ1JĴ2

)
ρ (6.19)

for Ĵ1, Ĵ2 ∈ Ω0,1
J (M,TM). We are now in the general framework considered by

Donaldson [38] and the next theorem can be obtained as a special case of Theorem
4.2.4. In [50] we give a direct and independent proof of this result.

Theorem 6.2.1 (The Ricci form). Define Ricρ,J ∈ Ω2(M) by (6.2).

1. Ricρ,J ∈ Ω2(M) is closed and independent of the torsion free ρ-connection ∇
used to defined. It satisfies the naturality condition

Ricφ∗ρ,φ∗J = φ∗Ricρ,J , for all φ ∈ Diff(M) (6.20)

and the scaling property

Ricefρ,J = Ricρ,J + 1
2d(df ◦ J), for all f ∈ Ω0(M). (6.21)

2. The map J 7→ 2Ricρ,J satisfies the moment map equation for the action of
the group Diffex(M,ρ) of exact volume preserving diffeomorphism on the space
J (M).

Remark 6.2.2. The Ricci form is only in the Calabi–Yau case a honest moment
map. Otherwise it takes values in the space of closed 2-forms, which is not quite
the dual space of the space of exact divergence free vector fields. Nevertheless, the
moment map equation for the Ricci form is well-posed and satisfied in every case, see
Remark 4.2.5.

Proof. It can be deduced from Donaldson’s moment map in Theorem 4.2.4 that Ricρ,J
is closed, independent of the connection ∇ used to define it and satisfies the moment
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map equation, see Theorem 4.2.4. In [50] we give direct arguments for all these
properties without invoking Theorem 4.2.4.

(6.20) follows easily from (6.2), once we know that it is independent of the con-
nection ∇. Equation (6.21) is equivalent to

d

dt

∣∣∣∣
t=0

Ricρt,J = d (d(ρ̂/ρ) ◦ J)

for any smooth path t 7→ ρt of positive volume forms with ρ0 = ρ and ∂t|t=0ρt = ρ̂.
This equation can be shown by a direct computation which we leave to the reader.

Now suppose ω ∈ Ω2(M) is a closed 2-form compatible with J such that ωn/n! =
ρ. Let ∇ be the Levi-Civita connection of the Riemannian metric ω(·, J ·) and define
∇̃ := ∇ − 1

2J∇J . One can check that ∇̃ preserves ρ, J and the metric. Moreover,
the Ricci form of (ρ, J) is given by Ricρ,J = 1

2 tr(JR∇̃). It follows from this that (6.2)
coincides with the usual definition of the Ricci form in the Kähler setting and Ricρ,J
represents the cohomology class 2πc1(TM, J).

Theorem 6.2.3. Let (M,J, ω) be a 2n-dimensional Kähler manifold and define ρ :=
ωn

n! ∈ Ω2n(M).

1. There exists a diffeomorphism φ ∈ Diff0(M) such that Ricρ,φ∗J = 0 if and only
if c1(TM, J) = 0.

2. Let φ : M → M be an orientation preserving diffeomorphism. If Ricρ,φ∗J =
Ricρ,J , then φ∗ρ = ρ.

Proof. Suppose first c1(TM, J) = 0. Then Ricρ,J is exact and there exists a function
f with

d(df ◦ J) = 1
2Ricρ,J ,

∫
M

e−fρ =
∫
M

ρ.

By Moser isotopy, there exists φ ∈ Diff0(M) with φ∗(e−fρ) = ρ and it follows with
(6.20) and (6.21) that

Ricρ,φ∗J = Ricφ∗(e−fρ),φ∗J = φ∗Rice−fρ,J = φ∗
(

Ricρ,J −
1
2d(df ◦ J)

)
= 0.

This proves the first part. For the second part assume Ricρ,φ∗J = Ricρ,J = 0 and
define f by φ∗ρ = e−fρ. Then follows with (6.20) and (6.21)

1
2d(df ◦ J) = Ricρ,J − Rice−fρ,J = −Ricφ∗ρ,J = −φ∗Ricρ,φ∗J = 0

Thus f is constant and
∫
M
e−fρ =

∫
M
ρ then yields f ≡ 0.

Remark 6.2.4 (Bott–Chern cohomology). The Kähler assumption in the pre-
vious theorem was made for convenience. One can show for any integrable complex
structure J that Ricρ,J represents the first Bott–Chern class of the holomorphic tan-
gent bundle in H1,1

BC(M,J) :=
(

ker d ∩ Ω1,1
J (M)

)
/
{
d(df ◦ J) | f ∈ Ω0(M)

}
. Then

there exists a diffeomorphism φ with Ricρ,φ∗J = 0 if and only if the first Bott–Chern
class of (TM, J) vanishes.
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Theorem 6.2.3 implies that Teichmüller space admits the description

T0(M) ∼= T0(M,ρ) := {J ∈ Jint,0(M) |Ricρ,J = 0} /Diff0(M,ρ). (6.22)

For this we used Diff0(M,ρ) = Diff0(M)∩Diff(M,ρ) which follows from a parametrized
version of Moser isotopy.

6.2.3 The 1-form Λρ(J, Ĵ)
Define the 1-form Λρ ∈ Ω1(J (M),Ω1(M)) by (6.3). One can check that the lineari-
sation of Ricρ,J , when varying J in direction Ĵ , is given

R̂icρ(J, Ĵ) = 1
2dΛρ(J, Ĵ). (6.23)

The next lemma can thus be view as generalization of the moment map equation.

Lemma 6.2.5. The 1-form Λρ ∈ Ω1(J (M),Ω1(M)) does not depend on the torsion
free ρ-connection ∇ used to define it, satisfies the naturality condition

Λφ∗ρ(φ∗J, φ∗Ĵ) = φ∗Λρ(J, Ĵ), for all φ ∈ Diff(M) (6.24)

and the generalized moment map equation∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = ΩJ,ρ(Ĵ ,LvJ) (6.25)

for every v ∈ Vect(M) and Ĵ ∈ Ω0,1
J (M,TM).

Proof. We prove (6.25). This equation implies in turn that Λρ is indeed independent
of the connection ∇ used to defined. Using

(LvJ)u = J∇uv −∇Juv + (∇vJ)u

for u, v ∈ Vect(M), we obtain

tr
(
ĴJLvJ

)
= tr

(
−Ĵ∇v − ĴJ∇J·v + ĴJ∇vJ

)
= tr

(
−2Ĵ∇v + ĴJ∇vJ

)
and thus

Λρ(J, Ĵ)(v) = tr
(

(∇Ĵ)v + 1
2 ĴJ∇vJ

)
= tr

(
∇(Ĵv)− Ĵ∇v + 1

2 ĴJ∇vJ
)

= tr
(
∇(Ĵv)

)
+ 1

2tr
(
ĴJLvJ

)
for every v ∈ Vect(M). Since tr

(
∇(Ĵv)

)
ρ = dι(Ĵv)ρ is exact, it follows∫

M

Λρ(J, Ĵ) ∧ ι(v)ρ =
∫
M

Λρ(J, Ĵ)(v)ρ = 1
2

∫
M

tr
(
ĴJLvJ

)
ρ = ΩJ,ρ(Ĵ ,LvJ)

and this completes the proof of the lemma.
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6.2.4 Scalar curvature
Let ω ∈ Ω2(M) be a symplectic form with ωn

n! = ρ and denote by

J (M,ω) := {J ∈ J (M) | J is compatible with ω } (6.26)

the space of compatible complex structures. The scalar curvature of the pair (J, ω)
is defined by

Sω,J := 2〈Ricω,J , ω〉 = 2Ricω,J ∧ ωn−1/(n− 1)!
ωn/n! ∈ Ω0(M). (6.27)

As a Corollary of Theorem 6.2.1, we then obtain the following well-known theorem
of Quillen, Fujiki [48] and Donaldson [34].

Corollary 6.2.6 (Donaldson–Fujiki–Quillen). The map J 7→ Sω,J is a moment
map for the action of Ham(M,ω) on J (M,ω).

Proof. Define vH ∈ Vect(M) by ι(vH)ω = dH. Then ι(vH)ρ := d
(
H ωn−1

(n−1)!

)
and it

follows from Theorem 6.2.1 that the differential of the map

J 7→
∫
M

Sω,JH
ωn

n! =
∫
M

2Ricω,J ∧H
ωn−1

(n− 1)!

is given by Ĵ 7→ ΩJ,ρ(Ĵ ,LvJ). This proves the Corollary.

6.3 The Weil–Petersson symplectic form
We establish first some important properties for Ricci-flat Kähler manifolds and then
uses these to investigate the subsubspace Jint,0(M) ⊂ J (M) of integrable complex
structures with non-empty Kähler cone and vanishing real first Chern class. The
restriction of the symplectic form (6.19) to Jint,0(M) is not symplectic and we com-
pletely characterize its kernel in Proposition 6.3.3. After this preparatory work, we
derive an explicit formula for the Weil–Petersson symplectic form on Teichmüller
space in Theorem 6.3.5. We briefly indicate how this gives rise to a symplectic con-
nection on the space of isotopy classes of Ricci flat Kähler structures in Theorem
6.3.6.

6.3.1 Ricci-flat Kähler manifolds
For v ∈ Vect(M) define fv ∈ Ω0(M) by fvρ = dι(v)ρ. The starting point for our
discussion is the identity

Λρ(J,LvJ) = 2ι(v)Ricρ,J − dfv ◦ J + dfJv (6.28)

which holds for every integrable complex structure J ∈ Jint(M) and v ∈ Vect(M).
Our derivation of this identity in [50] goes by a lengthy computation which we omit
here. We also need the following technical lemma.
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Lemma 6.3.1. Let (M,J, ω) be a 2n-dimensional closed Kähler manifold with ρ :=
ωn

n! and let v ∈ Vect(M). Then the following holds

1. LvJ ∈ Ω0(M,End(TM)) is self-adjoint if and only if dι(v)ω ∈ Ω1,1
J (M).

2. ι(J∂̄∗J Ĵ∗)ω = Λρ(J, Ĵ).

3. ι(v)ω is harmonic if and only if dι(v)ω = dι(Jv)ω = 0.

Proof. Define ω̂ = dι(v)ω. From the identity

ω̂(u, u′)− ω̂(Ju, Ju′) = 〈(LvJ)u− (LvJ)∗u, u′〉

we see that LvJ ∈ Ω0(M,End(TM)) is self-adjoint if and only if dι(v)ω is of type
(1, 1) and this proves the first part.

For the second part, note first that LvJ = 2J(∂̄Jv). By (6.25) we then have∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
2

∫
M

tr
(
ĴJLvJ

)
ρ = −〈Ĵ∗, ∂̄Jv〉

=
∫
M

ω(J∂̄∗J Ĵ∗, v)ρ =
∫
M

ι(J∂̄∗J Ĵ∗)ω ∧ ι(v)ρ

for all v ∈ Vect(M) and this proves the second part.
We prove the third part. For every 1-form λ ∈ Ω1(M) it holds

∗λ = −λ ◦ J ∧ ωn−1

(n− 1)! . (6.29)

and hence ∗ι(v)ω = ι(Jv)ρ. Therefore, dι(v)ω = dι(Jv)ω = 0 implies that ι(v)ω
is harmonic. Assume conversely that ι(v)ω is harmonic. Then dι(v)ω = 0 and
dι(Jv)ρ = 0 by (6.29). Hence LvJ is self-adjoint, by the first part of the lemma.
Since LJvJ = JLvJ is also self-adjoint, dι(Jv)ω is an exact (1, 1) form and there
exists f ∈ Ω0(M) with dι(Jv)ω = d(df ◦ J) and

d(df ◦ J) ∧ ωn−1

(n− 1)! = dι(Jv)ρ = 0.

By (6.29) it follows that d∗df = 0. Hence f is constant and dι(Jv)ω = 0. This
complete the proof of the lemma.

Proposition 6.3.2. Let (M,J, ω) be a 2n-dimensional closed Kähler manifold with
ρ := ωn

n! and Ricρ,J = 0.

1. Let v ∈ Vect(M). Then LvJ = 0 if and only if ι(v)ω is harmonic.

2. Let Ĵ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ = 0. Then there exist unique smooth functions

f, g : M → R such that

Λρ(J, Ĵ) = −df ◦ J + dg,

∫
M

fρ =
∫
M

gρ = 0. (6.30)
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Proof. Assume first that ι(v)ω is harmonic. Then LvJ is self-adjoint by Lemma 6.3.1
and (6.28) yields

ι(∂̄∗J ∂̄Jv)ω = −1
2 ι(J∂̄

∗
JLvJ)ω = −1

2Λρ(J,LvJ) = 0.

Hence ∂̄Jv = 0 and so LvJ = 0. Assume conversely LvJ = 0. Then follows from
(6.28) that fv = fJv = 0 and by (6.29) d ∗ ι(v)ω = dι(Jv)ρ = 0. Moreover, it follows
Lemma 6.3.1, that dι(v)ω is an exact (1, 1)-form and hence there exists f ∈ Ω0(M)
with d(df ◦ J) = dι(v)ω. Since d(df ◦ J) ∧ ωn−1 = 0, it follows from (6.29) that
d∗df = 0. Hence f is constant and dι(v)ω = 0. This completes the proof of the first
part.

For the second part, we show first that

∂̄J Ĵ = 0, ∂̄∗J Ĵ = 0 =⇒ Λρ(J, Ĵ) = 0. (6.31)

For this define v := ∂̄∗J Ĵ
∗ ∈ Vect(M). By Lemma 6.3.1, it follows ι(v)ω = −Λρ(J, JĴ).

The holomorphic Poincaré lemma and (6.28) show then that dι(v)ω is an exact
(1, 1)-form. Using Lemma 6.3.1 again, it follows that LvJ is self-adjoint. Hence
∂̄J ∂̄

∗
J(Ĵ∗ − Ĵ) = ∂̄Jv is also self-adjoint and therefore

0 = 〈∂̄J ∂̄∗J(Ĵ∗ − Ĵ), (Ĵ∗ − Ĵ)〉L2 = 〈∂̄∗J(Ĵ∗ − Ĵ), ∂̄∗J(Ĵ∗ − Ĵ)〉L2 = ||∂̄∗J Ĵ∗||2L2 .

This shows ∂̄∗J Ĵ∗ = 0 and hence Λρ(J, Ĵ) = 0 by Lemma 6.3.1. This completes the
proof of (6.31).

Now let Ĵ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ = 0 be given and choose v ∈ Vect(M) such

that ∂̄∗J(Ĵ − LvJ) = 0. Then follows from (6.31) that Λρ(J, Ĵ) = Λρ(J,LvJ) and
(6.30) follows from (6.28) with f = fv and g = fJv.

6.3.2 The space of integrable complex structures
Denote by Jint(M) the space of integrable complex structures which are compatible
with the orientation of M . The Newlander–Nierenberg theorem shows that an almost
complex structure is integrable if and only if the Nijenhuis tensor NJ(u, v) := [u, v]+
J [Ju, v] + J [u, Jv]− [Ju, Jv] vanishes. Differentiating this conditions yields

TJJint(M) =
{
Ĵ ∈ Ω0,1(M,TM) | ∂̄J Ĵ = 0

}
. (6.32)

In the next proposition we assume that J ∈ Jint(M) admits a Ricci-flat Kähler
form. We show that TJJint(M) ⊂ TJJ (M) is not a symplectic subspace and more
precisely the kernel of the restriction of the symplectic form Ωρ,J defined by (6.19)
to TJJint(M) is the space {LvJ | dι(v)ρ = dι(Jv)ρ = 0}.

Proposition 6.3.3. Let (M,J, ω) be a 2n-dimensional closed Kähler manifold. De-
fine ρ := ωn

n! and assume that Ricρ,J = 0. Let Ĵ ∈ Ω0,1(M,TM) with ∂̄J Ĵ = 0 be
given. Then

ΩJ,ρ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1(M,TM) with ∂̄J Ĵ ′ = 0

if and only if Ĵ = LvJ for some v ∈ Vect(M) with dι(v)ρ = dι(Jv)ρ = 0.
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Proof. Let v ∈ Vect(M) with dι(v)ρ = dι(Jv)ρ = 0 and let Ĵ ∈ Ω0,1(M,TM) with
∂̄J Ĵ = 0. With f, g : M → R defined by (6.30), it follows from (6.25) that

Ωρ,J(Ĵ ,LvJ) =
∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ =
∫
M

(−df ◦ J + dg) ∧ ι(v)ρ

=
∫
M

fdι(Jv)ρ− gdι(v)ρ = 0.

This shows that LvJ is in the kernel of Ωρ,J restricted to TJJint(M). Conversely, let
Ĵ ∈ Ω0,1(M,TM) be given with ∂̄J Ĵ = 0 and ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1

J (M,TM)
with ∂̄J Ĵ ′ = 0. Choose v ∈ Vect(M) with ∂̄∗J(Ĵ −LvJ) = 0. Then ∂̄J(Ĵ −LvJ)∗ = 0
by Lemma 6.3.4 below. Hence there exists a 2-form σ ∈ Ω0,2

J (M,TM) with ∂̄∗Jσ =
(Ĵ−LvJ)∗. It follows ∂̄J ∂̄∗Jσ = 0 and hence ∂̄∗Jσ = 0. This shows Ĵ = LvJ . Moreover,
(6.28) yields

Ωρ,J(LuJ,LvJ) =
∫
M

(2Ricρ,J(u, v) + fufJv − fJufv) ρ (6.33)

for all u ∈ Vect(M). Since Ricρ,J = 0, (6.33) vanishes for all u ∈ Vect(M) if and only
if fv = fJv = 0. This completes the proof of the proposition.

Lemma 6.3.4. Let (M,J, ω) be a closed 2n-dimensional Kähler manifold. Define
ρ := ωn

n! and assume that Ricρ,J = 0. Let Ĵ ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵ = 0 and

∂̄∗J Ĵ = 0. Then ∂̄J Ĵ
∗ = 0 and ∂̄∗J Ĵ∗ = 0.

Sketch of proof: The proof is inspired by [40]. Choose a hermitian line bundle L→M
with c1(L) = c1(TM, J), a Hermitian connection ∇L, and an n-form θ ∈ Ω0,n

J (M,L)
which satisfies d∇Lθ = 0 and cn〈θ ∧ θ〉 = ρ where cn = 1 if n is even and cn = −i
when n is odd. Now there exists for every Ĵ ∈ Ω0,1

J (M,TM) a unique β = βĴ ∈
Ωn−1,1
J (M,L) satisfying

iι(u)β − ι(Ju)β = ι(Ĵu)θ for all u ∈ Vect(Σ). (6.34)

Then one can show that

∂̄∗J Ĵ = 0 ⇐⇒ (∂̄∇LJ )∗β = 0
∂̄J Ĵ = 0 ⇐⇒ ∂̄∇LJ β = 0

and Ricρ,J = iF∇L . Thus Ricρ,J = 0, ∂̄J Ĵ = 0 and ∂̄∗J Ĵ = 0 imply iF∇L = 0,
∂̄∇LJ β = 0 and (∂̄∇LJ )∗β = 0. It now follows from the Akizuki–Nakano theorem (see
[29], Chapter VII) that

(∂∇LJ )∗∂∇LJ β + ∂∇LJ (∂∇LJ )∗β = (∂̄∇LJ )∗∂̄∇LJ β + ∂̄∇LJ (∂̄∇LJ )∗β = 0.

This shows (∂∇LJ )∗β = 0 and ∂∇LJ β = 0 and therefore (∂̄∇LJ )∗(∗β) = 0 and ∂̄∇LJ (∗β) =
0. Since iι(u) ∗ β − ι(Ju) ∗ β = −cnι(Ĵ∗u)θ it follows that ∗β corresponds to Ĵ∗ up
to the factor −cn. Hence ∂̄J Ĵ∗ = 0 and ∂̄∗J Ĵ

∗ = 0 and this completes the proof.
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6.3.3 The Weil–Petersson symplectic form
Denote the space of integrable complex structures on M with vanishing real first
Chern class and nonempty Kähler cone by

Jint,0(M) :=
{
J ∈ Jint(M)

∣∣∣∣ c1(TM, J) = 0 ∈ H2(M,R)
and J admits a Kähler form

}
(6.35)

Fix a volume form ρ ∈ Ω2n(M) and denote the space of Ricci-flat complex structures
by

Jint,0(M,ρ) := {J ∈ Jint,0(M) |Ricρ,J = 0} . (6.36)

The inclusion Jint,0(M,ρ) ⊂ Jint,0(M) yields a bijection between the spaces

T0(M) := Jint,0(M)/Diff0(M) (6.37)
T0(M,ρ) := Jint,0(M,ρ)/Diff0(M,ρ) (6.38)

by Theorem 6.2.3. It follows from Theorem 6.2.3 and (6.20) that for every J ∈
Jint,0(M) there exists a unique volume form ρJ ∈ Ω2n(M) such that

RicρJ ,J = 0 and
∫
M

ρJ = V :=
∫
M

ρ. (6.39)

By Yau’s theorem [124, 125], there exists a Kähler form ω ∈ Ω2(M) with ωn

n! = ρJ .
Hence we are in position to apply the various results on Ricci-flat Kähler manifolds.
By Propositon 6.3.2, Diff0(M,ρ)/Diffex(M,ρ) acts trivially on

T ex
0 (M,ρ) := Jint,0(M,ρ)/Diffex(M,ρ). (6.40)

Therefore, by Theorem 6.2.1, T0(M) ∼= T ex
0 (M,ρ) embeds into the Marsden–Weinstein

quotient of J (M) by Diffex(M,ρ). The symplectic form on this quotient is obtained
by restriction of the symplectic form ΩJ,ρ defined by (6.19). It follows from Proposi-
tion 6.3.3 that this yields a non-degenerated symplectic form on Teichmüller space.

Theorem 6.3.5 (The Weil–Petersson symplectic form). Let M be a closed
connected orientend 2n-dimensional manifold and fix V > 0. For a complex structure
J ∈ Jint,0(M) define ρJ ∈ Ω2n(M) by (6.39). For Ĵ1, Ĵ2 ∈ Ω0,1

J (M,TM) with ∂̄J Ĵi =
0 define fi, gi : M → R as in Proposition 6.3.2. The Weil–Petersson symplectic form
on T0(M) is then given by

ΩJ(Ĵ1, Ĵ2) =
∫
M

(
1
2 tr
(
Ĵ1JĴ2

)
− f1g2 + f2g1

)
ρJ . (6.41)

This symplectic form is Diff0(M) equivariant and thus the mapping class group acts
on T0(M) by symplectomorphism.

Proof. It follows from (6.20) and (6.24) that the Weil–Petersson form (6.41) is Diff0(M)-
equivariant. We show next that it is descends to the quotient

T[J]T0(M) = {Ĵ ∈ Ω0,1
J | ∂̄J Ĵ = 0}

{LvJ | v ∈ Vect(M)} . (6.42)
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By equivariance, we may assume in the following that Ricρ,J = 0 and ρ = ρJ . Then
follows from (6.28)

Λρ(J,LvJ) = −dfv ◦ J + dfJv (6.43)

for every v ∈ Vect(M), where fvρ = dι(v)ρ and fJvρ = dι(Jv)ρ. Now let Ĵ ∈
Ω0,1
J (M,TM) be given and define f, g : M → R as in Proposition 6.3.2. Then follows

from (6.25)

ΩJ(Ĵ ,LvJ) =
∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ− gdι(v)ρ+ fdι(Jv)ρ

=
∫
M

−df(Jv) + dg(v)ρ+ dg ∧ ι(v)ρ− df ∧ ι(Jv)ρ = 0

Hence (6.41) descends to a well-defined 2-form on the quotient space T[J]T0(M).
It follows from Proposition 6.3.3 that it is non-degenerated. Finally, consider the
quotient

T[J]T0(M,ρ) = {Ĵ ∈ Ω0,1
J | ∂̄J Ĵ = 0, R̂icρ(J, Ĵ) = 0}

{LvJ | v ∈ Vect(M) with dι(v)ρ = 0} (6.44)

where R̂icρ(J, Ĵ) is the linearization of Ricρ,J , when varying J in direction Ĵ . It
follows from (6.23) and (6.43) that

ΩJ(Ĵ1, Ĵ2) =
∫
M

1
2tr
(
Ĵ1JĴ2

)
ρ

for Ĵi ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ = 0 and R̂icρ(J, Ĵ) = 0. Hence the Weil–Petersson

symplectic form (6.41) corresponds on T0(M,ρ) to the canonical symplectic form on
the Marsden–Weinstein quotient and it is therefore closed.

Let ω ∈ Ω2(M) be a symplectic form with vanishing real first Chern. Define

Jint,0(M,ω) := {J ∈ Jint,0(M) | J is compatible with ω}
T (M,ω) := Jint,0(M,ω)/ (Diff0(M) ∩ Symp(M,ω))

(6.45)

Then T (M,ω) ⊂ T0(M) embeds as a complex submanifold with respect to the com-
plex structure Ĵ 7→ −JĴ . The Weil–Petersson symplectic form restrics to a Kähler
form along T (M,ω) and the symmetric form

〈
Ĵ1, Ĵ2

〉
:=
∫
M

(
1
2tr
(
Ĵ1Ĵ2

)
− f1f2 − g1g2

)
ρJ (6.46)

is positive definite on T[J]T (M,ω) and negative definite on its symplectic complement
in T[J]T (M).
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6.3.4 A symplectic connection
Denote by S0(M) ⊂ Ω2(M) the space of symplectic forms on M with vanishing first
Chern class which admit an integrable compatible complex structure. Define

E0(M) :=
{

(ω, J)
∣∣∣∣ ω ∈ S0(M), J ∈ Jint(M),
J compatible with ω and Ricω,J = 0

}/
Diff0(M) (6.47)

and

B0(M) := S0(M)/Diff0(M). (6.48)

Then E0(M) and B0(M) are finite dimensional manifolds and the canonical projection
E0(M) → B0(M) is a surjective submersion. The fibre over [ω] ∈ B0(M) is the Te-
ichmüller space T0(M,ω) defined by (6.45). Hence the pullback of the Weil–Petersson
symplectic form defines a closed 2-form on E0(M) which is non-degenerated along the
fibres. Such a 2-form defines a symplectic connection on the fibration. The horizontal
subspaces of this connection are defined as the symplectic complements of the vertical
subspaces along the fibres. This can be described by a Diff0(M)-equivariant family
of 1-forms

Aω,J : Ω2
cl(M)→ Ω0,1

J (M,TM) (6.49)

where Ω2
cl(M) denotes the space of closed 2-forms on M . The horizontal lift of

[ω̂] ∈ T[ω]B0(M) is then given by [(ω̂,Aω,J(ω̂)] ∈ T[ω,J]E0(M).

Theorem 6.3.6 (A symplectic connection). Let (ω, J) be a Ricci-flat Kähler
structure on M . For every closed 2-form ω̂, there exists a unique element Ĵ =
Aω,J(ω̂) ∈ Ω0,1

J (M,TM) satisfying

ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ ′ = 0 and Ĵ ′ = (Ĵ ′)∗

and the tangency conditions

∂̄J Ĵ = 0, Λρ(J, Ĵ) = −d〈ω̂, ω〉 ◦ J, ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉.

This connection is Diff0(M)-equivariant and satisfies Aω,J(dι(v)ω) = LvJ for all
v ∈ Vect(M) with dι(Jv)ρ = 0.

Proof. We omit the proof. We give a complete proof of this theorem, including a
calculation of the curvature of this connection, in [50] Theorem 4.3.

6.4 Kähler–Einstein manifolds
Let (M,ρ) be a 2n-dimensional closed oriented manifold with volume form ρ. For
a ∈ H2(M,R) denote by

Sa(M,ρ) :=
{
ω ∈ Ω2(M)

∣∣∣∣ dω = 0, [ω] = a,
ωn

n! = ρ

}
(6.50)
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the space of symplectic forms in the cohomology class of a with volume form ρ. Let
c ∈ H2(M,R) with 2πc = κa for some κ ∈ R and denote by

Jc(M) := {J ∈ J (M) | c1(TM, J) = c} (6.51)

the space of almost complex structures with first Chern class c. Ultimately one is
interested in the subspace of compatible pairs (J, ω) which implies the additional
constraint c1(ω) = c. It is convenient for our discussion and for the derivation of the
moment map equation to omit this assumption in the general setup. The Kähler–
Einstein equation for (J, ω) ∈ Jc(M)× Sa(M,ρ) is given by

Ricω,J − κω = 0. (6.52)

The goal of this section is to provide a moment map description for the Kähler–
Einstein equation. We call a ∈ H2(M,R) a Lefschetz class when ·∪an−1 : H1(M,R)→
H2n−1(M,R) is an isomorphism. The starting point is a moment map description for
the volume constraint ωn

n! = ρ in Proposition 6.4.1. This gives rise to a natural sym-
plectic structure on Sa(M,ρ) when a is Lefschetz class. The left-hand side of (6.52)
yields then a moment map for the action of Diffex(M,ρ) on Jc(M)× Sa(M,ρ) for a
suitably weighted product symplectic form. This leads to a Weil–Petersson metric
on the Teichmüller space of Kähler–Einstein manifolds with a fixed symplectic form
ω ∈ Sa(M).

6.4.1 The volume form as moment map

Assume first that a ∈ H2(M, 2πZ) and let P → M be a principal S1 bundle with
2πc1(P ) = a. Denote by

ASymp(P ) := {A ∈ A(P ) | (iFA)n 6= 0} (6.53)

the space of S1-connections on P with symplectic curvature. The next proposition
shows that the volume form (iFA)n

n! provides a moment map for the action of the
gauge group.

Proposition 6.4.1 (The volume form as moment map). The 2-form

ΩA(Â1, Â2) :=
∫
M

Â1 ∧ Â2 ∧
(iFA)n−1

(n− 1)! (6.54)

is a symplectic form ASymp(P ). The action of the gauge group G(P ) on ASymp(P ) is
Hamiltonian with respect to this symplectic structure with moment map

〈µ(A), ξ〉 =
∫
M

Im(ξ) (iFA)n

n! (6.55)

for all A ∈ ASymp(P ) and ξ ∈ Ω0(M, iR).
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Proof. The exterior differential of (6.54) is given by Cartan’s formula as

(dΩ)A(Â1, Â2, Â3) =
∫
M

Â2 ∧ Â3 ∧ diÂ1 ∧
(iFA)n−2

(n− 2)!

+
∫
M

Â3 ∧ Â1 ∧ diÂ2 ∧
(iFA)n−2

(n− 2)!

+
∫
M

Â1 ∧ Â2 ∧ diÂ3 ∧
(iFA)n−2

(n− 2)!

= i
∫
M

d
(
Â1 ∧ Â2 ∧ Â3

)
∧ (iFA)n−2

(n− 2)! = 0

Hence (6.54) defines a closed 2-form and it is clearly non-degenerated, since (iFA)n 6=
0. This proves that (6.54) defines indeed a symplectic form on ASymp(P ). Next,
differentiating the moment map equation yields

〈dµ(A)Â, ξ〉 =
∫
M

ξdÂ ∧ (iFA)n−1

(n− 1)! =
∫
M

−dξ ∧ Â ∧ (iFA)n−1

(n− 1)! = ΩA(−dξ, Â).

This completes the proof of the proposition, since −dξ is the infinitesimal action of
A for the left action of the gauge group.

We call a = [ω] ∈ H2(M,R) a Lefschetz class when an 6= 0 and

Ln−1
a : H1(M)→ H2n−1(M), [λ] 7→ [λ] ∪ an−1 = [λ ∧ ωn−1] (6.56)

is an isomorphism. The hard Lefschetz theorem asserts that every Kähler class is
Lefschetz, while the opposite is generally not true (see [123, 45, 84] and the references
therein). The Lefschetz condition is needed in order to obtain a symplectic form of
the space Sa(M,ρ): By Proposition 6.4.1, it follows that

M :=
{
A ∈ ASymp(M)

∣∣∣∣ (iFA)n

n! = ρ

}/
G(P ) (6.57)

is a Marsden–Weinstein quotient for the action of the gauge group and thus carries a
natural symplectic structure induced by (6.54). This fibres over the space Sa(M,ρ)
of symplectic forms where the projection map is defined by

π :M→ Sa(M,ρ), π([A]) := iFA. (6.58)

The tangent spaces of M and Sa(M,ρ) are given by

T[A]M = {Â ∈ Ω1(M, iR) | dÂ ∧ Fn−1
A = 0}

{dξ | ξ ∈ Ω0(M, iR)} (6.59)

TωSa(M,ρ) := {ω̂ ∈ Ω2(M) | ω̂ is exact, ω̂ ∧ ωn−1 = 0}. (6.60)

and the derivative of (6.58) is

dπ([A]) : T[A]M→ TiFASa(M,ρ), dπ([A])[Â] = idÂ
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Hence, the fibres p−1(ω) ∼= H1(M, iR) are symplectic submanifolds ofM if and only
if a is a Lefschetz class. Under this assumption, the symplectic form onM induces a
natural symplectic form on Sa(M,ρ) which we describe in the next lemma. It turns
out that the formula for the Lefschetz symplectic form remains well-defined for any
Lefschetz class a and does not require rationality.

Lemma 6.4.2 (The Lefschetz symplectic form). Suppose a ∈ H2(M,R) is a
Lefschetz class.

1. Let ω ∈ Sa(M,ρ) and ω̂ ∈ Ω2(M) be exact with ω̂ ∧ ωn−1 = 0. Then there
exists λ ∈ Ω1(M) such that

dλ = ω̂ and λ ∧ ωn−1 is exact. (6.61)

If λ1, λ2 ∈ Ω1(M) are two solutions of (6.61), then λ1 − λ2 is exact.

2. The Lefschetz symplectic form on Sa(M,ρ) is defined by

Ωω(ω̂1, ω̂2) =
∫
M

λ1 ∧ λ2 ∧
ωn−1

(n− 1)! (6.62)

for ω ∈ Sa(M,ρ) and ω̂i ∈ Ω2(M) exact with ω̂i∧ωn−1 = 0, where λi ∈ Ω1(M)
satisfy (6.61).

Proof. Let ω̂ = dλ0 ∈ Ω2(M) be an exact 2-form with ω̂ ∧ωn−1 = 0. Then τ := λ0 ∧
ωn−1 is closed and surjectivity of (6.56) implies that there exists a closed λ1 ∈ Ω1(M)
such that τ − λ1 ∧ ωn−1 is exact. Hence λ := λ0 − λ1 satisfies (6.61). Injectivity of
(6.56) shows that any two solutions of (6.61) differ by an exact 1-form. This proves
the first part.

Suppose λ ∈ Ω1(M) satisfies (6.61) and let f ∈ Ω0(M). Then∫
M

df ∧ λ ∧ ωn−1

(n− 1)! = −
∫
M

f ∧ dλ ∧ ωn−1

(n− 1)! = 0

shows that (6.62) is well-defined. Its exterior differential is given by

(dΩ)ω(ω̂1, ω̂2, ω̂3) =
∫
M

λ2 ∧ λ3 ∧ ω̂1 ∧
ωn−2

(n− 2)!

+
∫
M

λ3 ∧ λ1 ∧ ω̂2 ∧
ωn−2

(n− 2)!

+
∫
M

λ1 ∧ λ2 ∧ ω̂3 ∧
ωn−2

(n− 2)!

=
∫
M

d (λ1 ∧ λ2 ∧ λ3) ∧ ωn−2

(n− 2)! = 0

and hence (6.62) is closed. Finally, let λ ∈ Ω1(M) satisfy (6.61) and suppose∫
M

λ ∧ λ′ ∧ ωn−1

(n− 1)! = 0 for all λ′ ∈ Ω1(M) satisfying (6.61).
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It follows from linear algebra that every (2n − 1)-form on M can be written as
λ′′ ∧ ωn−1 and therefore∫

M

λ ∧ η = 0 for all exact η ∈ Ω2n−1(M).

This implies that λ is closed and thus (6.62) is non-degenerated.

We thus have shown that the space of symplectic forms Sa(M,ρ) is a symplectic
manifold. This is the main ingredient for the moment map interpretation of the
Kähler–Einstein equations in the next subsection.

6.4.2 The Kähler–Einstein condition as moment map
Let c ∈ H2(M,R) with 2πc = κa for some κ ∈ R and define Jc(M) by (6.51). Equip
the product space Jc(M)× Sa(M,ρ) with the symplectic form

ΩJ,ω
(

(Ĵ1, ω̂1), (Ĵ1, ω̂1)
)

=
∫
M

1
2tr
(
Ĵ1JĴ2

)
ρ− 2κλ1 ∧ λ2 ∧

ωn−1

(n− 1)! (6.63)

where λi ∈ Ω1(M) satisfy (6.61).

Theorem 6.4.3 (Kähler–Einstein pairs). Let a ∈ H2(M,R) be a Lefschetz class,
such that (6.56) is an isomorphism. Let κ ∈ R and c ∈ H2(M,R) with 2πc = κa.
Then the action of Diffex(M,ρ) on Jc(M)×Sa(M,ρ) is Hamiltonian with respect to
(6.63) and with moment map

µ : Jc(M)× Sa(M,ρ)→ Ω2
ex(M), µ(J, ω) = 2 (Ricρ,J − κω) . (6.64)

This map is equivariant and takes values in the space of exact 2-forms. For every
v ∈ Vect(M) and αv ∈ Ω2n−2(M) with dαv = ι(v)ρ is holds

∂t

∫
M

2 (Ricρ,Jt − κωt) ∧ αv = ΩJt,ωt ((∂tJt, ∂tωt), (LvJt, dι(v)ωt)) (6.65)

for every smooth path R→ Sa(M,ρ)× Jc(M), t 7→ (Jt, ωt).

Proof. For (J, ω) ∈ Jc(M)× Sa(M,ρ), it holds

[Ricρ,J − κω] = 2πc− κa = 0 ∈ H2(M,R)

and hence µ(J, ω) is exact. Equivariance of µ(J, ω) follows from (6.20). Next, let
v ∈ Vect(M) and αv ∈ Ω2n−2(M) with dαv = ι(v)ρ be given. For ω ∈ Sa(M,ρ) and
ω̂ ∈ Ω2(M,R) exact with ω̂ ∧ ωn−1 = 0 choose λ ∈ Ω1(M) satisfying (6.61). Then
follows ∫

M

ω̂ ∧ αv =
∫
M

dλ ∧ αv =
∫
M

λ ∧ ι(v)ω ∧ ωn−1

(n− 1)! = Ωω(ω̂, dι(v)ω).

The moment map equation (6.65) follows from this and Theorem 6.2.3.
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Remark 6.4.4 (A variant using the extended gauge group.). There is a variant
of this story which yields the volume constraint ωn/n! = ρ and the Kähler–Einstein
equation Ricρ,J −κω = 0 simultaneously as moment map equations. For this assume
that 2πa ∈ H2(M,Z) and let P → M be the principal S1 bundle with Chern class
2πc1(P ) = a. Denote by G̃(P ) the group of all bundle automorphism of P which
cover exact volume preserving diffeomorphism on (M,ρ). One can then verify that
the action of G̃(P ) on the product space Jc(M) × ASymp(P ) is Hamiltonian for a
suitably weighted product symplectic from and it is generated by the moment map

〈µ(J,A), V 〉 =
∫
M

2 (Ricρ,J − κ(iFA)) ∧ αv − 2iκ
∫
M

A(V )
(

(iFA)n

n! − ρ
)

for (J,A) ∈ Jc(M) × ASymp(P ) and V ∈ Lie(G̃(P )) ⊂ Vect(P ), where A(V ) ∈
Ω0(M, iR) denotes its A-vertical part, v ∈ Vect(M) is the exact divergence free
vector field covered by V , and αv ∈ Ω2n−2(M) satisfies dαv = ι(v)ρ.

Denote the subspace of compatible pairs in Jc(M)× Sa(M,ρ) by

Cc,a(M,ρ) := {(J, ω) ∈ Jc(M)× Sa(M,ρ) | J compatible with ω} . (6.66)

Differentiating the compatibility condition shows that

T(J,ω)Cc,a(M,ρ) :=
{

(Ĵ , ω̂) | ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉
}
.

Lemma 6.4.5 (Compatible pairs). Equip Jc(M) × Sa(M,ρ) with the symplectic
form (6.63) and let (J, ω) ∈ Cc,a(M,ρ). The kernel of the restriction of the symplectic
form to T(J,ω)Cc,a(M,ρ) is the subspace{

(Ĵ , ω̂) ∈ TJJc(M)× Sa(M,ρ)

∣∣∣∣∣ Ĵ∗ = −Ĵ , R̂icρ(J, Ĵ)− κω̂ = 0
ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉

}

where Ĵ∗ is the adjoint with respect to the metric 〈·, ·〉 = ω(·, J ·).

Proof. First, suppose that (Ĵ , ω̂) ∈ T(J,ω)Cc,a(M,ρ) satisfies

ΩJ,ω
(

(Ĵ , ω̂), (Ĵ ′, ω̂′)
)

= 0 for all (Ĵ ′, ω̂′) ∈ T(J,ω)Cc,a(M,ρ)

For every v ∈ Vect(M) with ι(v)ρ = dαv, Theorem 6.4.3 shows

ΩJ,ω =
(

(Ĵ , ω̂), Lv(J, ω)
)

= 2
∫
M

(
R̂icρ(J, Ĵ)− κω̂

)
∧ αv.

This implies R̂icρ(J, Ĵ)− κω̂ = 0. For every self-adjoint (Ĵ ′)∗ = Ĵ ′, we have

Ω(J,ω)

(
(Ĵ , ω̂), (Ĵ ′, 0)

)
= 1

2

∫
M

tr
(
ĴJĴ ′

)
ρ.

This implies Ĵ = −Ĵ∗ and proves one inclusion.
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For the other inclusion, we show that every (Ĵ ′, ω̂′) ∈ T(J,ω)Cc,a(M,ρ) can be
written as

(Ĵ ′, ω̂′) = Lv(J, ω) + (Ĵ ′′, 0)

where v ∈ Vect(M,ρ) is an exact divergence free vector field and (Ĵ ′′)∗ = Ĵ ′′. Indeed,
by Lemma 6.4.2 there exists λ ∈ Ω1(M) such that ω̂′ = dλ and λ ∧ ωn−1 is exact.
Define v ∈ Vect(M) by ι(v)ω = λ. Then ω̂′ = Lvω and ι(v)ρ is exact. The claim
follows now from the fact, that (Ĵ ′′, 0) ∈ T(J,ω)Cc,a(M,ρ) is equivalent to Ĵ ′′ = (Ĵ ′′)∗.
This completes the proof of the lemma.

In order to obtain a finite dimensional moduli spaces, consider the space of inte-
grable pairs

Ec,a(M,ρ) := {(J, ω) ∈ Jint,c(M)× Sa(M,ρ) | J compatible with ω}. (6.67)

Then a natural set of questions are the following.

Question 6.4.6.

1. Is Cc,a(M,ρ) a symplectic submanifold? By Lemma 6.4.5 this is equivalent to
the following: Let (J, ω) ∈ Cc,a(M,ρ), let Ĵ ∈ Ω0,1

J (M,TM) and let ω̂ ∈ Ω2
ex(M)

be exact. Suppose

ω̂ ∧ ωn−1 = 0, ω̂(·, ·)− ω̂(J ·, J ·) = 〈(Ĵ − Ĵ∗)·, ·〉,

Ĵ∗ = −Ĵ , R̂icρ(J, Ĵ)− κω̂ = 0.

Does this imply Ĵ = 0 and ω̂ = 0?

2. Is Ec,a(M,ρ) a symplectic submanifold?

We did not succeed in ansering these questions at the time of writing and hope to
come back to this in the future. In any case, both spaces Cc,a(M,ρ) and Ec,a(M,ρ)
can be viewed as symplectic fibrations over Sa(M,ρ).

It follows from similar arguments as in Theorem 6.2.3 that every Diff0(M)-orbit
in Ec,a(M,ρ) contains a solution of the Kähler–Einstein equations which is unique up
to the action of Diff0(M,ρ). Define the space of Kähler–Einstein pairs by

Kc,a(M,ρ) := {(J, ω) ∈ Ec,a(M,ρ) |Ricρ,J − κω = 0}. (6.68)

The inclusion of Kc,a(M,ρ) ⊂ Ec,a(M,ρ) yields then a bijective correspondence

Ec,a(M,ρ)/Diff0(M) ∼= Kc,a(M,ρ)/Diff0(M,ρ) (6.69)

A much more difficult question in this context is the following: Let (M,J, ω) be
a Kähler manifold. Does there exists a Kähler potential h : M → R such that the
corresponding Kähler form ωh := ω + i∂∂̄h satisfies the Kähler–Einstein equations?
In the cases where the canonical bundle of M is trivial or ample, it was proven
by Yau [124, 125] and Aubin [5] that there always exist solutions for the Kähler–
Einstein equations with κ ≤ 0. On the contrary, when the anti-canonical bundle is
ample, then there are known obstructions to the existence of Kähler–Einstein metrics.
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Donaldson–Chen–Sun [20, 21, 22] proved in this case that the existence of Kähler–
Einstein metrics is equivalent to a particular algebraic geometric notion of K-stability.

The Marsden–Weinstein quotient of Jc(M)× Sa(M,ρ) by Diffex(M,ρ) is

Mex := {(J, ω) ∈ Jc(M)× Sa(M,ρ) |Ricρ,J − κω = 0} /Diffex(M,ρ) (6.70)

and it follows from general principles that the symplectic form (6.63) descends to a
symplectic form on Mex. In order to relate this to the moduli space (6.68), we need
to understand the further quotient

M := {(J, ω) ∈ Jc(M)× Sa(M,ρ) |Ricρ,J − κω = 0} /Diff0(M,ρ) (6.71)

Suppose Ricρ,J − κω = 0 and let u, v ∈ Vect(M) be given such that ι(u)ω and ι(v)ω
are harmonic 1-forms. It follows from (6.25), (6.28) and Lemma 6.3.1 that

Ω(J,ω)(Lu(J, ω),Lv(J, ω)) = 2κ
∫
M

ι(u)ω ∧ ι(v)ω ∧ ωn−2

(n− 2)! (6.72)

This shows that the Diff0(M,ρ)/Diffex(M,ρ) orbits in Mex are symplectic submani-
folds when κ 6= 0. In the case κ = 0, we saw in Proposition 6.3.2 that this action is
trivial. It hence follows that M always carries a natural symplectic structure.

The next lemma shows that Diff0(M,ρ)/Diffex(M,ρ) acts freely when κ < 0 and
Diff0(M,ρ) = Diffex(M,ρ) when κ > 0.

Lemma 6.4.7. Let (M,ω, J) be a closed connected 2n-dimensional Kähler manifold
and define ρ := ωn

n! . Assume there exists κ ∈ R such that Ricρ,J − κω = 0.

1. Assume κ > 0. Then H1(M,R) = 0 and Diff0(M,ρ) = Diffex(M,ρ).

2. Assume κ < 0. Then for every 0 6= v ∈ Vect(M) it holds LvJ 6= 0.

Proof. Assume first κ > 0 and choose v ∈ Vect(M) such that ι(v)ω is harmonic. It
follows from Lemma 6.3.1, that (LvJ)∗ = LvJ , dι(v)ρ = dι(Jv)ρ = 0 and

ι(κv + ∂̄∗J ∂̄Jv)ω = ι(v)Ricρ,J + 1
2 ι(∂̄

∗
J((LvJ)J)∗)ω

= ι(v)Ricρ,J −
1
2Λ(J,LvJ) = 0.

where the last equation follows from (6.28). Hence κv + ∂̄∗J ∂̄Jv = 0 and therefore
v = 0. This completes the proof of the first claim.

Next, assume κ < 0 and let v ∈ Vect(M) with LvJ = 0. It follows from Lemma
6.3.1 that dι(v)ω is an exact (1, 1)-form and hence there exists F : M → R with
d(dF ◦ J) = dι(v)ω. Then (6.28) implies

0 = Λρ(J,LvJ) = 2ι(v)Ricρ,J − dfv ◦ J + dfJv = 2κι(v)ω − dfv ◦ J + dfJv

and therefore d(d(2κF − fv) ◦ J) = 0. Hence 2κF − dfv is constant. Using (6.29),
it follows that fv = −d∗dF and thus 2κF − d∗dF = 0. The maximum principle
then implies that F is constant and therefore fv = 0. By the same argument, since
LJvJ = 0, we obtain fJv = 0. Thus 0 = Λρ(J,LvJ) = 2κι(v)ω by (6.28) and this
yields v = 0. This proves the second part of the lemma.
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For a fixed symplectic form ω ∈ Sa(M,ρ) consider the Teichmüller space

Jint,c(M,ω) := {J ∈ Jint,c(M) | J compatible with ω and Ricρ,J = κω}
Tc(M,ω) := Jint,c(M,ω)

/
Symp(M,ρ) ∩Diff0(M,ρ).

(6.73)

This embeds into the moduli space M defined by (6.71) and the symplectic form on
M restricts to a Kähler form on Tc(M,ω) for the complex structure Ĵ 7→ −JĴ . More
generally, the moduli spaces (6.69) yield a fibration

Ka,c(M)/Diff0(M,ρ)→ Sa(M,ρ)/Diff0(M,ρ) (6.74)

with fibres Tc(M,ω). The embedding of Ka,c(M)/Diff0(M,ρ) into M gives then rise
to a closed 2-form on the total space of this fibration, which restricts to the Weil–
Petersson symplectic form along the fibres. It gives therefore rise to a symplectic
fibration on (6.74). Although this yields a new perspective on the subject, the Weil–
Petersson metric on Teichmüller space (6.73) and its curvature properties have been
studied extensively, see [71, 98, 105] and the references therein.



Chapter 7

Universal Hitchin moduli
spaces

This chapter contains joint work with Oscar Garcia–Prada, Luis Álvarez-Consul and
Mario Garcia-Fernandez. We investigate variants of Hitchin’s equations [58] on a
Riemann surface Σ. In contrast to the classical theory, we do not fix the complex
structure on the surface and calculate moment maps for the action of the extended
gauge group. This yields various universal Hitchin moduli spaces which fibre naturally
over Teichmüller space with fibre being the corresponding Hitchin moduli space. Most
of the material is still work in progress and has not yet been explored in full detail.

7.1 Introduction
The Hitchin’s self-duality equations [58] on a Riemann surface Σ can be viewed as
hyperkähler extension of the Atiyah–Bott picture for the Yang–Mills equations [4].
Let G be a compact Lie group, let (Σ, J) be a closed Riemann surface and let P → Σ
a principal G bundle. The space

A(P )× Ω1,0
J (Σ, ad(P )⊗ C) (7.1)

is isomorphic to the cotangent bundle T ∗A(P ) and hence carries a natural hy-
perkähler structure. The Hitchin equations for a pair (A, φ) ∈ A(P )×Ω1,0

J (Σ, ad(P )⊗
C) are given by

FA + [φ ∧ φ∗] = 0, ∂̄Aφ = 0. (7.2)

These occur as hyperkähler moment map for the action of the gauge group G(P )
and the moduli space of solutions to Hitchin’s equation carries therefore a natural
hyperkähler structure. All this requires a fixed complex structure on Σ as back-
ground data. The Hitchin moduli spaces for different complex structures are all
diffeomorphic, but carry different hyperkähler metrics. We investigate in the follow-
ing variants of this setup where the complex structure on Σ is not fixed and the gauge
group is extended by a subgroup of the diffeomorphism group. This leads to moduli

255
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spaces which naturally fibre over Teichmüller space with fibre being the correspond-
ing Hitchin moduli space.

We consider three variants which we describe in the following. In all these cases
let (Σ, ρ) be a closed 2-dimensional surfaces equipped with a fixed area form ρ. For
a principal bundle P → Σ we denote by G̃(P ) its extended gauge group . This fits
into the exact sequence

1→ G(P )→ G̃(P )→ Ham(Σ, ρ)→ 1. (7.3)

and consists of bundle isomorphisms covering Hamiltonian diffeomorphisms on Σ.
Every connection A ∈ A(P ) defines a splitting of the Lie algebras

Lie(G̃(P ))
∼=−→ Ω0(Σ, ad(P ))⊕ {v ∈ Vect(Σ) | dι(v)ρ is exact},

V 7→ (A(V ), v := π∗V )
(7.4)

which corresponds to the splitting of Lie(G̃(P )) ⊂ Vect(P ) into its A-horizonal and
A-vertical component.

Real reductive groups. Suppose G = (G,H, θ,B) is a real reductive group, that
is a quadruple consisting of a real Lie group G with reductive Lie algebra g, a maximal
compact subgroup H ⊂ G, a Cartan involution θ : g → g which defines a splitting
g = h ⊕ m and a θ- and G-invariant bilinear form B : g × g → R (see Section 7.3
for more details). The adjoint representation of G restricts to the so-called isotropy
representation ι : H → Aut(m). Now let P → Σ be a principal H bundle and denote
by P (m) := P ×ι m the associated m-bundle. In this setting, the holomorphicity
condition of the Higgs field has no interpretation in terms of moment maps and we
consider the configuration space

X1 :=
{

(J,A, φ)
∣∣∣∣ J ∈ J (Σ), A ∈ A(P )
φ ∈ Ω1,0

J (Σ, P (m)⊗ C), ∂̄A,Jφ = 0

}
. (7.5)

This carries the following symplectic structure induced by the bilinear form B

Ω(A,φ)

(
(Â1, φ̂1), (Â2, φ̂2)

)
:= −

∫
Σ
B(Â1 ∧ Â2) + 2Re

(
B(φ̂∗1 ∧ φ̂2)

)
(7.6)

Theorem A. The natural action of G̃(P ) on X1 is Hamiltonian with moment map

〈µ(J,A, φ), V 〉 = −
∫

Σ
B (A(V ), FA − [φ∗ ∧ φ]) +

∫
Σ
H (2KJ − c) ρ

where V ∈ Lie(G̃(P )), with vH = π∗V ∈ Vect(Σ) and A(V ) ∈ Ω0(Σ, ad(P )) defined
by (7.4) and vH is the Hamiltonian vector field for H : Σ→ R, and c := 4π(2g−2)

vol(Σ,ρ) .

Proof. This is established in Proposition 7.3.2, which is obtained from a more general
moment map calculation in Theorem 7.3.1.
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Complex reductive groups. Assume that G is a compact group and P → Σ a
principal G bundle. We consider the space

X2 := J (Σ)×A(P )× Ω1(Σ, iad(P )). (7.7)
For every fixed J , there is a natural identification of A(P ) × Ω1(Σ, iad(P )) with
A(P ) × Ω0,1

J (Σ, ad(P ) ⊗ C). The hyperkähler structure on (7.1) then gives rise the
following three symplectic structures on X2:

(Ω1)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ−

∫
Σ

tr
(
Â1 ∧ Â2

)
−
∫

tr
(
ψ̂1 ∧ ψ̂2

)
(Ω̂2)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ+ i

∫
Σ

tr
(
Â1 ∧ ∗J ψ̂2 − Â2 ∧ ∗J ψ̂1

)
+ i
∫

Σ
tr
(
Â1 ∧ ψ ◦ (−Ĵ2)− Â2 ∧ ψ ◦ (−Ĵ1)

)
.

(Ω3)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ− i

∫
Σ

tr
(
Â1 ∧ ψ̂2 − Â2 ∧ ψ̂1

)

(7.8)

The last term in the definition of Ω̂2 is needed for obtaining a closed form.
Theorem B. The action of G̃(P ) on X2 is the Hamiltonian for all three symplectic
forms with moment maps

µ1(J,A, ψ) =
((

FA + 1
2[ψ ∧ ψ]

)
, (2KJ − 2c)ρ+ dtr (ψΛρ(dAψ))

)
(7.9)

µ̂2(J,A, ψ) = (idA ∗ ψ, (2KJ − 2c)ρ+ id ∗ tr (ψΛρ(FA))) (7.10)

µ3(J,A, ψ) =
(

idAψ, (2KJ − 2c)ρ+ idtr
(
ψΛρ

(
FA + 1

2[ψ ∧ ψ]
)))

(7.11)

where c := 2π(2genus(Σ)− 2)/vol(Σ, ρ) and
Λρ : Ω2(Σ, ad(P )⊗ C)→ Ω0(Σ, ad(P )⊗ C)

is the natural map induced by ρ. All three moment maps take values in the space
Ω2(Σ, ad(P ))⊕Ω2

ex(Σ) which we identify with the dual space of Lie(G̃(P )) using (7.4).
Proof. See Theorem 7.4.5.

Note that this theorem does not quite yields a hyperkähler moment map on X2
Nevertheless, we have

(J,A, ψ) ∈ µ−1
1 (0) ∩ µ̂−1

2 (0) ∩ µ−1
3 (0) ⇐⇒

 dAψ = 0, d∗Aψ = 0
FA + 1

2 [ψ ∧ ψ] = 0
2KJ = c

.

The equations dAψ = 0, d∗Aψ = 0, and FA + 1
2 [ψ ∧ ψ] = 0 correspond to the

Hitchin equations (7.2) under the identification of A(P )×Ω1(Σ, iad(P )) with A(P )×
Ω0,1
J (Σ, ad(P )⊗ C).
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Fibrations over Donaldson’s moduli space. Consider the configuration space

X3 := Q1(Σ)×A(P )× Ω1(Σ, iad(P )). (7.12)

where Q1(Σ) denotes the space of pairs (J, σ) consisting of a complex structure
J ∈ J (Σ) and a quadratic differential σ ∈ Ω0(Σ, S2(T ∗Σ ⊗J C)) with pointwise
norm |σ|J < 1. Donaldson [38] observed that the space Q1(Σ) carries a hyperkähler
structure whose hyperkähler quotient (after taking the action of the flux group into
account) yields the Feix–Kaledin hyperkähler extensionM of Teichmüller space. See
Chapter 4.5 in this thesis for a detailed exposition of this hyperkähler structure and
the moment map calculation. We expect that the space X3 carries three symplectic
forms for which the action of the extended gauge group is Hamiltonian. This should
give rise to a moduli space which fibres over M with fibres being the corresponding
Hitchin moduli spaces.

This is still work in progress and has not yet been written up. There are two
intriguing aspects which we would like to mention: First, there is a construction of
Donaldson [38] which associates to every element inM a solution of the SU(2) Hitchin
equations over Σ and thus M really parametrizes pairs of solutions to Hitchin’s
equation (see Lemma 4.6.11). Second, the resulting moduli space is naturally a
hyperkähler fibration over the hyperkähler spaceM. It is probably too optimistic to
expect that they combine to a hyperkähler structure on the whole moduli space, but
this is certainly something to be investigated more closely.

7.2 The extended gauge group
Let (Σ, ρ) be a closed oriented surface with fixed area form ρ, let G be a real Lie
group, and let P → Σ be a principal G bundle. The purpose of this section is to
define various extensions of the gauge group of P by subgroups of the diffeomorphism
group of Σ and to introduce our notation for it. We also establish Cartan’s fromula
in this context.

7.2.1 Hamiltonian extension
The extended gauge group G̃(P ) is defined as the group of bundle automorphisms
ψ : P → P which cover Hamiltonian diffeomorphisms ϕ : Σ→ Σ. It fits into an exact
sequence with the gauge group G(P ) of the P

1→ G(P )→ G̃(P )→ Ham(Σ, ρ)→ 1. (7.13)

The Lie algebra of the extended gauge group G̃(P ) ⊂ Vect(P ) fits into an exact
sequence with the Lie algebras of the gauge group and the Hamiltonian group:

1→ Lie(G(P ))→ Lie(G̃(P ))→ Lie(Ham(Σ, ρ))→ 1. (7.14)

and every connection A ∈ A(P ) defines a splitting

Lie(G̃(P ))
∼=−→ Ω0(Σ, ad(P ))⊕ {v ∈ Vect(Σ) | dι(v)ρ is exact},

V 7→ (A(V ), v = π∗V ).
(7.15)
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which is defined by decomposing V ∈ Lie(G̃(P )) ⊂ Vect(P ) into its A-horizontal
and A-vertical part. Here we identify in the usual way the Lie algebra of the gauge
group Lie(G(P )) = Ω0(Σ, ad(P )) with equivariant vertical vector fields on P . We
identify Lie(Ham(Σ, ρ)) = C∞(Σ)/R with Hamiltonian vector fields following the
sign conventions dH = ρ(vH , ·).

We always use the splitting (7.15) defined by some connection A ∈ A(P ) to
describe the dual Lie algebra of the extended gauge group. The dual space of
Lie(Ham(Σ, ρ)) = C∞(Σ)/R can be identified with the space Ω2

ex(Σ) of exact 2-forms
on Σ, where the dual pairing is defined

Ω2
ex(Σ)× C∞(Σ)/R→ R, 〈τ, [H]〉 :=

∫
Σ
Hτ (7.16)

Suppose g carries an invariant inner product 〈·, ·〉. The dual space of Lie(G(P )) =
Ω0(Σ, ad(P )) can then be identified with Ω2(Σ, ad(P )) via the pairing

Ω2(Σ, ad(P ))× Ω0(Σ, ad(P ))→ R, 〈η, ξ〉 :=
∫

Σ
〈η, ξ〉. (7.17)

7.2.2 Extension by diffeomorphism groups
The extension of the gauge group by Symp0(Σ, ρ) and Diff0(Σ) are defined completely
analogue to the Hamiltonian case. They fit into the exact sequences

1→ G(P )→ G̃Symp0(P )→ Symp(Σ, ρ)→ 1 (7.18)
1→ G(P )→ G̃Diff0(P )→ Diff0(Σ)→ 1. (7.19)

The various extensions of the gauge are naturally embedded into each other by G̃(P ) ⊂
G̃Symp0(P ) ⊂ G̃Diff0(P ). As before, every connection A ∈ A(P ) provides a splitting
of the corresponding Lie algebra sequences

Lie(G̃Symp0(P ))
∼=−→ Ω0(Σ, ad(P ))⊕ {v ∈ Vect(Σ) | dι(v)ρ = 0} (7.20)

Lie(G̃Diff0(P ))
∼=−→ Ω0(Σ, ad(P ))⊕Vect(Σ) (7.21)

which we both denote by V 7→ (A(V ), v = π∗V ).

7.2.3 A Cartan formula
Let W be a real vector space, let γ : G→ GL(W ) a representation and consider the
associated vector bundle

γ(P ) := P ×γ W := (P ×W )/G (7.22)

where G acts diagonally on P ×W by g∗(p, w) := (pg−1, γ(g)w). Any ψ ∈ G̃Diff0(P )
defines a bundle map

γ(ψ) : γ(P )→ γ(P ), γ(ψ)[p, w] = [ψ(p), w] (7.23)
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covering the same diffeomorphism as ψ. This induces a natural action of G̃Diff0(P )
on the space of k-forms with values in γ(P ) given by

G̃Diff0(P )× Ωk(Σ, γ(P ))→ Ωk(Σ, γ(P ))
(ψ∗α)(z, ẑ1, . . . , ẑk) := γ(ψ)−1α(ϕ(z), dϕ(z)ẑ1, . . . , dϕ(z)ẑk)

(7.24)

where ϕ ∈ Diff0(Σ) denotes the diffeomorphism covered by ψ. The following lemma
calculates the infinitesimal action of (7.24).

Lemma 7.2.1. Fix a connection A ∈ A(P ) and denote by

γ̇ := dγ(1) : g→ End(W ) (7.25)

the infinitesimal representation. Let V ∈ Lie(G̃Diff0(P )) and denote its flow by ψt ∈
G̃Diff0(P ). For α ∈ Ωk(Σ, γ(P )) it holds

LV α := d

dt

∣∣∣∣
t=0

(ψt)∗α = −γ̇(A(V ))α+ dAι(v)α+ ι(v)dAα (7.26)

where A(V ) ∈ Ω0(Σ, ad(P )) and v = π∗V ∈ Vect(Σ) are defined by (7.19).

Proof. By linearity, it suffices to establish the formula for vertical and horizontal
vector field separately. Suppose first V is vertical and π∗V = 0. Then

LV α := d

dt

∣∣∣∣
t=0

γ(e−tA(V ))α = −γ̇(A(V ))(α)

and (7.26) is satisfied.
Next let s ∈ Ω0(Σ, γ(P )) and assume that V is horizontal. Denote by γ∗V ∈

Vect(γ(P )) the composition of V with TP → TP × W → Tγ(P ). Then γ∗V is
horizontal for the induced connection on γ(P ) and its flow is γ(ψt). Hence

LV s := d

dt

∣∣∣∣
t=0

γ(ψt)−1 ◦ s ◦ ϕt = −(γ∗V )(s) + ds(v) = ι(v)dAs (7.27)

where ϕt ∈ Diff0(Σ, ρ) is the diffeomorphism covered by ψt and v := π∗V ∈ Vect(Σ).
This proves (7.26) for k = 0.

For the general case let V be horizontal and define as before v := π∗V ∈ Vect(Σ).
By linearity we may assume that α = s ⊗ τ with s ∈ Ω0(Σ, γ(P )) and τ ∈ Ωk(Σ).
From (7.27) and Cartan’s formula on differential forms it follows

LV (s⊗ τ) = (LV s)⊗ τ + s⊗ (Lvτ)
= (ι(v)dAs)⊗ τ + s⊗ (ι(v)dτ + dι(v)τ)
= ι(v) (dAs ∧ τ + s⊗ dτ) + (dAs) ∧ (ι(v)τ) + s⊗ (dι(v)τ)
= ι(v)dA(s⊗ τ) + dA(s⊗ ι(v)τ).

This establishes (7.26) for k > 0 and completes the proof.
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7.3 Higgs bundles for real reductive groups
Following Knapp [70], a real reductive Lie group is a quadruple (G,H, θ,B) consisting
of the following data:

• G is a real Lie group with reductive Lie algebra g

• H ⊂ G is a maximal compact subgroup with Lie algebra h ⊂ g

• θ : g→ g is a Lie algebra involution which defines a decomposition

g = h⊕m

where h = Lie(H) is the +1 eigenspace of θ and m is the −1 eigenspace. More-
over, the multiplication map from H × exp(m)→ G is a diffeomorphism

• B : g×g→ R is a G-invariant and θ-invariant symmetric nondegenerate bilinear
form such that the associated symmetric form

Bθ : g× g→ R, Bθ(ξ, η) := −B(ξ, θ(η))

is positive definite.

Let P → Σ be a principal H bundle. The adjoint representation Ad : G → g
restricts to the so-called isotropy representation

ι : H → GL(m). (7.28)

Its infinitesimal representation dι(1) : h → GL(m) is given by the Lie bracket on g,
i.e. (dι(1)η)ξ = [η, ξ]. Denote the associated bundle with fibre m by

P (m) := P ×ι m. (7.29)

The bilinear form B extends uniquely to a complex bilinear from on m⊗C, which we
still denote B. The space A(P )×Ω1(Σ, P (m)⊗C) carries then the natural symplectic
form

Ω(A,φ)

(
(Â1, φ̂1), (Â2, φ̂2)

)
:= −

∫
Σ
B(Â1 ∧ Â2) + 2Re

(
B(φ̂∗1 ∧ φ̂2)

)
(7.30)

The factor 2 in introduced for consistency with the original setting considered by
Hitchin for complex reductive groups. Morover, the adjoint φ∗ is defined by the same
formula as in the unitary case. To be precise, in local coordinates (x, y) of Σ we can
write

φ̂ = (ξ1 + iη1)dx+ (ξ2 + iη2)dy.

with ξj , ηj taking values in m.The adjoint is then given by

φ̂∗ = (−ξ1 + iη1)dx+ (−ξ2 + iη2)dy.

This does not depend on the conformal structure of Σ.
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7.3.1 Moment map calculation for a fixed conformal structure

We show that the action of G̃Diff0(P ) on the space A(P )×Ω1(Σ, P (m)⊗C) is Hamil-
tonian for the symplectic form (7.30).

Theorem 7.3.1. Let V ∈ Lie(G̃Diff0(P )) ⊂ Vect(P ) and denote its flow by ψt ∈
G̃Diff0(P ). Then holds for all (A, φ) ∈ A(P )× Ω1(Σ, P (m)⊗ C)

d

dt

∣∣∣∣
t=0

ψ∗t (A, φ) =
(

dAA(V ) + ι(v)FA
−[A(V ), φ] + dAι(v)φ+ ι(v)dAφ

)
(7.31)

where A(V ) ∈ Ω0(Σ, ad(P )) and v := π∗V ∈ Vect(Σ) are defined by (7.21). The
G̃Diff0(P ) action on A(P )× Ω1(Σ, P (m)⊗ C) is Hamiltonian with moment map

〈
µDiff0(A, φ), V

〉
=
∫

Σ
B (A(V ), −FA + [φ∗ ∧ φ])

+ 2
∫

Σ
B (φ∗ ∧ ι(v)dAφ)

(7.32)

where V ∈ Lie(G̃Diff0(P )), and A(V ) ∈ Ω0(Σ, ad(P )) and v := π∗V ∈ Vect(Σ) are
defined as above by (7.21).

Proof. The proof consists of three steps: We calculate the moment map for the action
G̃(P ) on A(P ) and Ω1(Σ, P (m)×C) separately. The formula for the second moment
map is expressed by choosing a connection A ∈ A(P ) and we verify in the last step
that it is independent of this choice.

Step 1: The infinitesimal action on the space of connections is given by

LVA := d

dt

∣∣∣∣
t=0

ψ∗tA = dAA(V ) + ι(v)FA

and the equation∫
Σ
B
(

(dAA(V ) + ι(v)FA) ∧ Â
)

= − d

dt

∣∣∣∣
t=0

∫
Σ
B (At(V ), FAt)

holds for any smooth family {At}t∈R with A0 = A and ∂t|t=0At = Â.

The infinitesimal action of V ∈ Lie(G̃Diff0(P )) ⊂ Vect(P ) on the connection 1-
forms A ∈ A(P ) ⊂ Ω1(P, h) is given by Cartan’s formula as:

LVA = dι(V )A+ ι(V )dA = dA(V ) + [A,A(V )] + ι(V )
(
dA+ 1

2[A ∧A]
)

= dAA(V )− ι(v)FA
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For Â ∈ Ω1(Σ, ad(P )) it then follows∫
Σ
B
(

(dAA(V ) + ι(v)FA) ∧ Â
)

=
∫

Σ
B
(
dAA(V ) ∧ Â

)
+
∫

Σ
B
(
ι(v)FA ∧ Â

)
= −

∫
Σ
B
(
A(V ) ∧ dAÂ

)
−
∫

Σ
B
(
ι(v)Â, FA

)
= −∂Â

∫
Σ
B (A(V ), FA)

Step 2: Fix a connection A ∈ A(P ). The infinitesimal action of V ∈ Lie
(
G̃Diff0(P )

)
on the space Ω1(Σ, P (m)⊗ C) is given by

LV φ := d

dt

∣∣∣∣
t=0

ψ∗t φ = −[A(V ), φ] + dAι(v)φ+ ι(v)dAφ.

Moreover,

Re
∫

Σ
2B
(

(−LV φ)∗ ∧ φ̂
)

= d

dt

∣∣∣∣
t=0

(∫
Σ
B (A(V ), [φ∗t ∧ φt]) + 2

∫
Σ
B (φ∗t , ι(v)dAφt)

)

for any smooth family {φt}t∈R with φ0 = φ and ∂t|t=0 φt = φ̂.

The formula for the infinitesimal action follows from Lemma 7.2.1. We then
calculate

Re
∫

Σ
2B
(

(−LV φ)∗ ∧ φ̂
)

= 2Re
∫

Σ
B
(

[A(V ), φ]∗ ∧ φ̂
)
− 2Re

∫
Σ
B
(

(dAι(v)φ+ ι(v)dAφ)∗ ∧ φ̂
)

= 2
∫

Σ
B (A(V ), [φ∗ ∧ φ]) + 2Re

∫
Σ
B
(
φ∗ ∧ (ι(v)dAφ̂) + φ̂∗ ∧ (ι(v)dAφ)

)
= ∂φ̂

∫
Σ
B (A(V ), [φ∗ ∧ φ]) + 2∂φ̂

∫
Σ
B (φ∗ ∧ ι(v)dAφ)

This proves the moment map equation and Step 2.

Step 3: The moment map in Step 2 does not depend on A, i.e.

d

dt

∣∣∣∣
t=0

(∫
Σ
B (At(V ), [φ∗ ∧ φ]) + 2

∫
Σ
B (φ∗ ∧ ι(v)dAtφ)

)
= 0

for any smooth family {At}t∈R.
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A direct calculation yields

d

dt

∣∣∣∣
t=0

(∫
Σ
B (At(V ), [φ∗ ∧ φ]) + 2

∫
Σ
B (φ∗ ∧ ι(v)dAtφ)

)
=
∫

Σ
B
(
Â(v), [φ∗ ∧ φ]

)
+ 2Re

∫
Σ
B
(
φ∗ ∧ ι(v)[Â ∧ φ]

)
=
∫

Σ
B
(
Â ∧ ι(v)[φ∗ ∧ φ]

)
+ 2Re

∫
Σ
B
(

[ι(v)φ∗, φ] ∧ Â
)

=
∫

Σ
B
(
Â ∧ ι(v)[φ∗ ∧ φ]

)
+
∫

Σ
B
(
ι(v)[φ∗, φ] ∧ Â

)
= 0

where the penultimate equation follows from the identity

2Re ([ι(v)φ∗, φ]) = ι(v)[φ∗ ∧ φ].

This completes the proof of Step 3 and the theorem.

7.3.2 Integrability conditions
Denote by J (Σ) the space of complex structures on (Σ, ρ), which are compatible
with ρ. This can be viewed as an infinite dimensional symplectic manifold, where the
symplectic structure is given by

ΩJ(Ĵ1, Ĵ2) := 1
2

∫
Σ

tr
(
Ĵ1JĴ2

)
(7.33)

(see Section 4.4 in this thesis for more details). Consider the space of triple (J,A, φ),
consisting of a complex structure J , a connection A and a holomorphic Higgs field φ:

X :=
{

(J,A, φ)
∣∣∣∣ J ∈ J (Σ), A ∈ A(P )
φ ∈ Ω1,0

J (Σ, P (m)⊗ C), ∂̄A,Jφ = 0

}
. (7.34)

This is a symplectic submanifold of J (Σ)×
(
A(P )× Ω1(Σ, P (m)⊗ C)

)
for the prod-

uct symplectic form obtained from (7.33) and (7.30). The extended gauge group G̃(P )
acts naturally on this space in a Hamiltonian fashion and we have the following.

Proposition 7.3.2. The extended gauge group G̃(P ) acts in a Hamiltonian way on
the space X defined by (7.34) with moment map

〈µ(J,A, φ), V 〉 = −
∫

Σ
B (A(V ), FA − [φ∗ ∧ φ]) +

∫
Σ
H (2KJ − 2c) ρ

where V ∈ Lie(G̃(P )), with vH = π∗V ∈ Vect(Σ) and A(v) ∈ Ω0(Σ, ad(P )) defined
by (7.15) and vH is the Hamiltonian vector field for some function H : Σ→ R, and
c := 2π(2g−2)

vol(Σ,ρ) .

Proof. It follows from Theorem 7.3.1 and integration by parts, that the action of
G̃(P ) on A(P )× Ω1(Σ, P (m)⊗ C) is Hamiltonian with moment map

〈µ̃(A, φ), V 〉 =
∫

Σ
B (A(V ), −FA + [φ∗ ∧ φ]) +

∫
Σ

2HdB (φ∗, Λ(ι(v)dAφ))
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where V ∈ Lie(G̃(P )) with vH = π∗V ∈ Vect(Σ) and Λρ : Ω2(Σ, P (m) ⊗ C) →
Ω0(Σ, P (m) ⊗ C) is the natural map defined by ρ. The holomorphicity condition
∂̄A,Jφ = 0 is equivalent to dAφ = 0 and thus the second integral vanishes.

Moreover, it follows from Theorem 4.4.2 that J 7→ (2KJ − 2c)ρ is a moment map
for the action of Ham(Σ, ρ) on J (Σ). The proposition follows by combining these
two moment maps.

The zero set of the moment map equation consists of triples (J,A, φ) where ρ(·, J ·)
defines a constant curvature metric on Σ and (A, φ) satisfies the Hitchin equations
∂̄Aφ = 0, FA = [φ∗ ∧ φ] for the complex structure J .

7.4 Higgs bundles for complex reductive groups

First, we recall for fixed J ∈ J (Σ) the hyperkähler structure introduced by Hitchin
on the space

A(P )× Ω1,0
J (Σ, ad(P )⊗ C) ∼= A(P )× Ω1(Σ, iad(P )) ∼= A(P c).

On A(P )×Ω1(Σ, iad(P )), it turns out that two of the hyperkähler symplectic forms
are independent of J . The action of the extended gauge group G̃Diff0(P ) is Hamilto-
nian for these symplectic structures and we calculate moment maps for this action in
Theorem 7.4.2.

We then incorporate the conformal structure on Σ into our data and consider
triples (J,A, ψ) consisting of a complex structure J and a Higgs pair (A,ψ). The hy-
perkähler structure on the space of Higgs pairs and the symplectic form on J (Σ) give
rise to three symplectic structures. The action of the extended gauge group G̃Diff0(P )
is Hamiltonian for all three symplectic forms and we calculate the corresponding mo-
ment in Theorem 7.4.5. This gives rise to a moduli space which naturally fibres over
Teichmüller space with the corresponding Hitchin moduli space as fibre.

Throughout this section, we assume that G ⊂ U(n) is a compact real Lie group
with Lie algebra g ⊂ u(n) and invariant inner product

〈ξ, η〉g = tr(ξ∗η) = −tr(ξη) (7.35)

induced from the unitary group.

7.4.1 The space of Higgs pairs – the unitary point of view

Fix a complex structure J ∈ J (Σ). The space of Higgs pairs

A(P )× Ω1,0
J (Σ, ad(P )⊗ C). (7.36)

is an affine space over the linear space Ω1(Σ, ad(P ))×Ω1,0(Σ, ad(P )⊗C) and Hitchin
[58] introduced the following hyperkähler structure on the space.
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The Riemannian structure is given by

g(A,φ)((Â1, φ̂1), (Â2, φ̂2)) := −
∫

Σ
tr
(
Â1 ∧ ∗Â2

)
+ Im

∫
2tr
(
φ̂∗1 ∧ φ̂2

)
(7.37)

To be more explicit, choose a local holomorphic coordinate z = x+ iy (with respect
to J) and write Â and φ̂ as

Â = adx+ bdy, φ̂ = (ξ + iη)dz = (ξ + iη)dx+ (−η + iξ)dy.

with a, b, ξ, η taking values in the real Lie algebra g ⊂ u(n). Then

φ̂∗ = (−ξ + iη)dz̄ = (−ξ + iη)dx+ (η + iξ)dy

and the integrand appearing in the formula for the metric is given by

− tr
(
Â1 ∧ ∗Â2

)
+ Im (2 tr (φ∗1 ∧ φ2))

= −tr (a1a2 + b1b2) dx ∧ dy − 4tr (ξ1ξ2 + η1η2) dx ∧ dy

The inner product on Ω1,0(Σ, ad(P )⊗C) agrees up to a factor of 2 with the standard
Riemannian structure on Ω1(Σ, ad(P ) ⊗ C) induced by J and the invariant inner
product of g.

The hyperkähler structure consists of the three complex structures

I1(Â, φ̂) := (∗Â, iφ̂) (7.38)

I2(Â, φ̂) := (i(φ̂+ φ̂∗), iÂ1,0) (7.39)

I3(Â, φ̂) := (φ̂− φ̂∗,−Â1,0) (7.40)

where Â1,0, Â0,1 ∈ Ω1(Σ, ad(P )⊗ C) are defined by

Â0,1 = Â− i(∗Â)
2 , Â1,0 = Â+ i(∗Â)

2 .

Both of them determine Â uniquely through the relations Â = Â1,0 + Â0,1 and
Â1,0 = −(Â0,1)∗. The corresponding Kähler forms are

(Ω1)(A,φ)((Â1, φ̂1), (Â2, φ̂2)) := −
∫

Σ
tr
(
Â1 ∧ Â2

)
− Re

∫
2tr
(
φ̂∗1 ∧ φ̂2

)
(7.41)

(Ω2)(A,φ)((Â1, φ̂1), (Â2, φ̂2)) := Re
∫

Σ
2tr
(
Â1 ∧ φ̂2 − Â2 ∧ φ̂1

)
(7.42)

(Ω3)(A,φ)((Â1, φ̂1), (Â2, φ̂2)) := Im
∫

Σ
2tr
(
Â1 ∧ φ̂2 − Â2 ∧ φ̂1

)
(7.43)
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The first symplectic form naturally extends to a symplectic form defined on the larger
space A(P )× Ω1(Σ, ad(P )⊗ C) via the same formula:

(Ω̃1)(A,φ)((Â1, φ̂1), (Â2, φ̂2)) := −
∫

Σ
tr
(
Â1 ∧ Â2

)
− Re

∫
2tr
(
φ̂∗1 ∧ φ̂2

)
(7.44)

for A ∈ A(P ), Âi ∈ Ω1(Σ, ad(P )) and φ, φ̂i ∈ Ω1(Σ, ad(P )⊗ C).

Proposition 7.4.1. The natural G̃Diff0(P ) action on A(P ) × Ω1(Σ, ad(P ) ⊗ C) is
Hamiltonian with respect to the Ω̃1 and with moment map

〈µ(A, φ), V 〉 = −
∫

Σ
tr (A(V )(FA + [φ∗ ∧ φ]))− 2

∫
Σ

tr (φ∗ ∧ ι(v)dAφ) (7.45)

where V ∈ Lie(G̃Diff0(P )), A ∈ A(P ), φ ∈ Ω1(Σ, ad(P )⊗C), and A(V ) and v := π∗V
are defined by (7.21).

Proof. This is a special case of Theorem 7.3.1. For this note that Gc is real reductive
group with maximal compact subgroup G, bilinear form B(ξ, η) = tr(ξη) and Cartan
involution θ(ζ) = −ζ∗. We obtain different signs in front of the Higgs fields in the
moment map equation, which are due to the identification m = ig.

7.4.2 The space of Higgs pairs – the self-adjoint point of view

Fix J ∈ J (Σ) and identify the space Higgs pairs (7.36) with

A(P )× Ω1(Σ, iad(P )). (7.46)

The identification is obtained by the map (A, φ) 7→ (A,ψ := φ∗ + φ) with inverse
(A,ψ) 7→ (A, φ = ψ1,0). We summarize in the following the hyperkähler structure on
(7.46) which corresponds to the hyperkähler structure on (7.36).

The Riemannian structure is given by

g(A,ψ)

(
(Â1, ψ̂1), (Â2, ψ̂2)

)
:= −

∫
Σ

tr(Â1 ∧ ∗Â2) +
∫

Σ
tr(ψ̂1 ∧ ∗ψ̂2) (7.47)

Let P c := P ×G Gc denote the complexified bundle. Then there is a natural isomor-
phism

A(P )× Ω1(Σ, iad(P ))→ A(P c), (A,ψ) 7→ A+ ψ (7.48)

and this is an isometry with respect to the standard Riemannian structure on A(P c).
This amounts to the formula

g(A,ψ)((Â1, ψ̂1), (Â2, ψ̂2)) = Re
∫

Σ
tr
(

(Â1 + ψ̂1)∗ ∧ ∗(Â2 + ψ̂2)
)
.
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The hyperkähler structure consists of the three complex structures

I1(Â, ψ̂) := (∗Â,− ∗ ψ̂) (7.49)
I2(Â, ψ̂) := (iψ̂, iÂ) (7.50)
I3(Â, ψ̂) := (∗iψ̂,− ∗ iÂ) (7.51)

which satisfy the quaternionic relations. Their corresponding Kähler forms are

(Ω1)(A,ψ)((Â1, ψ̂1), (Â2, ψ̂2)) := −
∫

Σ
tr
(
Â1 ∧ Â2 + ψ̂1 ∧ ψ̂2

)
(7.52)

(Ω2)(A,ψ)((Â1, ψ̂1), (Â2, ψ̂2)) := i
∫

Σ
tr
(
Â1 ∧ ∗ψ̂2 − Â2 ∧ ∗ψ̂1

)
(7.53)

(Ω3)(A,ψ)((Â1, ψ̂1), (Â2, ψ̂2)) := (−i)
∫

Σ
tr
(
Â1 ∧ ψ̂2 − Â2 ∧ ψ̂1

)
(7.54)

Let P c := P ×G Gc denote the complexified bundle. Under the isomorphism (7.48),
the complex structure I2 and Ω2 corresponds to the standard hermitian structure on
A(P c), since I2(A+ ψ) = i(A+ ψ) and

(Ω2)(A,ψ)((Â1, ψ̂1), (Â2, ψ̂2)) = Im
∫

Σ
tr
(

(Â1 + ψ̂1)∗ ∧ ∗(Â2 + ψ̂2)
)
.

The two remaining symplectic forms Ω1 and Ω3 correspond to the standard holomor-
phic symplectic form on A(P c) by the following relation

(Ω1 − iΩ3)(A,ψ) ((Â1, ψ̂1), (Â2, ψ̂2)) = −
∫

Σ
tr
(

(Â1 + ψ̂1) ∧ (Â2 + ψ̂2)
)
.

Moreover, the symplectic forms Ω1 and Ω3 are independent of the conformal structure
on Σ and they are preserved by the natural action of the extended Gauge group
G̃Diff0(P ). The next proposition shows that this action is in fact Hamiltonian and
calculates the corresponding moment maps.

Proposition 7.4.2. Let V ∈ Lie(G̃Diff0(P )) ⊂ Vect(P ) and denote its flow by gt ∈
G̃Diff0(P ). Then holds

LV (A,ψ) := d

dt

∣∣∣∣
t=0

g∗t (A,ψ) =
(

dAA(V ) + ι(v)FA
− [A(V ), ψ] + ι(v)dAψ + dAι(v)ψ

)
for all (A,ψ) ∈ A(P )×Ω1(Σ, iad(P ) where A(V ) and v := π∗V are defined by (7.21).
The G̃Diff0(P ) action on A(P )×Ω1(Σ, iad(P ) is Hamiltonian with respect to Ω1 and
Ω3 and with moment maps

〈(µ1 − iµ3)(A,ψ), V 〉 = −
∫

Σ
tr ((A(V ) + ι(v)ψ)FA+ψ) (7.55)

where V ∈ Lie(G̃Diff0(P )), A ∈ A(P ), and ψ ∈ Ω1(Σ, iad(P )).
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Proof. The formula for the infinitesimal action follows from Step 1 in the proof of
Theorem 7.3.1 and Lemma 7.2.1. Using the isomorphism (7.48), the infinitesimal
action can be expressed as

LV (A,ψ) = dAA(V ) + ι(v)FA − [A(V ), ψ] + ι(v)dAψ + dAι(v)ψ
= ι(v)FA+ψ + dA+ψ(A(V ) + ι(v)ψ)

It then follows

(Ω1 − iΩ3)(A,ψ)((Â, ψ̂),LV (A,ψ))

=
∫

Σ
tr
(

(ι(v)FA+ψ + dA+ψ(A(V ) + ι(v)ψ)) ∧ (Â+ ψ̂)
)

= −
∫

Σ
tr
(

(ι(v)Â+ ι(v)ψ̂)FA+ψ

)
−
∫

Σ
tr
(

(A(V ) + ι(v)ψ)dA+ψ(Â+ ψ̂)
)

= ∂(Â,ψ̂)

∫
Σ
−tr ((A(V ) + ι(v)ψ)FA+ψ) .

and this proves the moment map equation.

The action of G̃(P ) does not preserve the second symplectic structure Ω2 which
depends on the conformal structure of Σ. For the action of the (not extended) gauge
group G(P ) it was observed by Hitchin [58] that this action is Hamiltonian with
moment map (A,ψ) 7→ −idA ∗ ψ.

7.4.3 The full configuration space
Three symplectic forms

We consider the configuration space

J (Σ)×A(P )× Ω1(Σ, iad(P )). (7.56)

This carries three non-degenerate 2-forms which arise as combination of the symplec-
tic structure on J (Σ) and the three symplectic structures on A(P )×Ω1(Σ, iad(P )).

(Ω1)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ−

∫
Σ

tr
(
Â1 ∧ Â2

)
−
∫

tr
(
ψ̂1 ∧ ψ̂2

)
(Ω2)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ+ i

∫
Σ

tr
(
Â1 ∧ ∗J ψ̂2 − Â2 ∧ ∗J ψ̂1

)
(Ω3)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ− i

∫
Σ

tr
(
Â1 ∧ ψ̂2 − Â2 ∧ ψ̂1

)
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These forms are clearly non-degenerated and Ω1 and Ω3 are closed as product forms.
Since the Hodge ∗-operator in the definition of Ω2 depends on J , this is not a product
symplectic form and Lemma 7.4.3 shows that it is not closed! However, we can slightly
modify Ω2 and define

(Ω̂2)(J,A,ψ)

(
(Ĵ1, Â1, ψ̂1), (Ĵ2, Â2, ψ̂2)

)
:= 1

2

∫
Σ

tr
(
Ĵ1JĴ2

)
ρ+ i

∫
Σ

tr
(
Â1 ∧ ∗J ψ̂2 − Â2 ∧ ∗J ψ̂1

)
+ i
∫

Σ
tr
(
Â1 ∧ ψ ◦ (−Ĵ2)− Â2 ∧ ψ ◦ (−Ĵ1)

)
.

Lemma 7.4.4 below shows that Ω̂2 is indeed a symplectic form which agrees with Ω2
along the slices {J} × A(P )× Ω1(Σ, iad(P )) and J (Σ)× {(A,ψ)}.

Lemma 7.4.3. The exterior derivative of Ω2 is the three-form:

(dΩ2)(J,A,ψ)

(
(Ĵ1, Â1, ψ1), (Ĵ2, Â2, ψ2), (Ĵ3, Â3, ψ3)

)
= (−i)

∫
Σ

tr

 3∑
j=1

Âj+1 ∧ (ψ̂j+2 ◦ Ĵj)− Âj+2 ∧ (ψ̂j+1 ◦ Ĵj)


where the indices are understood cyclic modulo 3.

Proof. Fix a point (J,A, ψ) ∈ J (Σ)×A(P )× Ω1(Σ, iad(P )) and choose

(Ĵj , Âj , ψj) ∈ TJJ (Σ)⊕ Ω1(Σ, ad(P ))⊕ Ω1(Σ, iad(P ))

for j = 1, 2, 3. Moreover, choose a 3-parameter familiy (Jr,s,t, Ar,s,t, ψr,s,t) with

(J0,0,0, A0,0,0, ψ0,0,0) = (J,A, ψ)

∂r(Jr,s,t, Ar,s,t, ψr,s,t)|(r,s,t)=(0,0,0) = (Ĵ1, Â1, ψ1)

∂s(Jr,s,t, Ar,s,t, ψr,s,t)|(r,s,t)=(0,0,0) = (Ĵ2, Â2, ψ2)

∂t(Jr,s,t, Ar,s,t, ψr,s,t)|(r,s,t)=(0,0,0) = (Ĵ3, Â3, ψ3).

Then the exterior derivative is given by

(dΩ2)(J,A,ψ)

(
(Ĵ1, Â1, ψ1), (Ĵ2, Â2, ψ2), (Ĵ3, Â3, ψ3)

)
= ∂r

[
(Ω2)(Jr,s,t,Ar,s,t,ψr,s,t) (∂s(Jr,s,t, Ar,s,t, ψr,s,t), ∂t(Jr,s,t, Ar,s,t, ψr,s,t))

]
+ ∂s

[
(Ω2)(Jr,s,t,Ar,s,t,ψr,s,t) (∂t(Jr,s,t, Ar,s,t, ψr,s,t), ∂r(Jr,s,t, Ar,s,t, ψr,s,t))

]
+ ∂t

[
(Ω2)(Jr,s,t,Ar,s,t,ψr,s,t) (∂r(Jr,s,t, Ar,s,t, ψr,s,t), ∂s(Jr,s,t, Ar,s,t, ψr,s,t))

]
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where the right hand side is evaluated at (r, s, t) = (0, 0, 0). Since ∗Jψ = ψ ◦ (−J),
its differential in direction Ĵ is given by ∂Ĵ(∗Jψ) = ψ ◦ (−Ĵ). It thus follows from
the chain rule that the first term is given by

1
2

∫
Σ

tr
(

(∂r∂sJ)JĴ3 + Ĵ2Ĵ1Ĵ3 + Ĵ1J(∂r∂sJ)
)

+ i
∫

Σ
tr
(
∂r∂sA ∧ ∗Jψ3 + Â2 ∧ ∗J∂r∂tψ + Â2 ∧ ψ3 ◦ (−Ĵ1)

)
− i
∫

Σ
tr
(
∂r∂tA ∧ ∗Jψ2 + Â3 ∧ ∗J∂r∂sψ − Â3 ∧ ψ2 ◦ (−Ĵ1)

)
The other two terms are given by cyclic permutations. All terms involving second
order partial derivatives cancel out when summing all three equations up. Moreover,
tr(Ĵ1Ĵ2Ĵ3) = 0, since Ĵ1Ĵ2Ĵ3 anti-commutes with J . The remaining terms yield the
claimed formula for the exterior derivative.

Lemma 7.4.4. Ω̂2 defines a symplectic form on J (Σ)×A(P )× Ω1(Σ, iad(P )) and
it agrees with Ω2 along the slices J (Σ)× {(A,ψ)} and {J} ×A(P )×Ω1(Σ, iad(P )).

Proof. It follows along the lines of the proof of Lemma 7.4.3 that Ω̂2 is closed. It
clearly restricts to Ω2 along the slices J (Σ)×{(A,ψ)} and {J}×A(P )×Ω1(Σ, iad(P )).
For non-degeneracy let (J,A, ψ) ∈ J (Σ)×A(P )×Ω1(Σ, iad(P )) and (Ĵ , Â, ψ̂) in the
tangent space of (J,A, ψ) be given. Define

(Ĵ ′, Â′, ψ̂′) := (−JĴ, λiψ̂, λiÂ)

where λ ∈ R is a constant to be determined. Then

(Ω̂2)(J,A,ψ)

(
(Ĵ , Â, ψ̂), (Ĵ ′, Â′, ψ̂′)

)
= 1

2

∫
Σ

tr(Ĵ2)ρ+ λ

∫
Σ

tr
(
−Â ∧ ∗Â+ ψ̂ ∧ ∗ψ̂

)
− iλ

∫
Σ

tr
(
Â ∧ (ψ ◦ JĴ)− iψ̂ ∧ (ψ ◦ Ĵ)

)
This is strictly positive as λ→ 0 and thus Ω̂2 is non-degenerated.

Three moment maps

The following theorem calculates moment maps for the action of G̃(P ) with respect
to all three symplectic forms.

Theorem 7.4.5. Let V ∈ Lie(G̃Diff0(P )) ⊂ Vect(P ) and denote its flow by gt ∈
G̃Diff0(P ). Then holds

LV (J,A, ψ) = d

dt

∣∣∣∣
t=0

g∗t (J,A, ψ) =

 2∂̄J(v)
dAA(V )ι(v)FA

− [A(V ), ψ] + ι(v)dAψ + dAι(v)ψ


for all (J,A, ψ) ∈ J (Σ) × A(P ) × Ω1(Σ, iad(P ), where v := π∗V ∈ Vect(Σ) and
A(V ) ∈ Ω0(Σ, ad(P )) are defined by (7.21). The G̃(P ) action on J (Σ) × A(P ) ×
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Ω1(Σ, iad(P ) is Hamiltonian with respect to Ω1, Ω̂2 and Ω3 and with moment maps

µ1(J,A, ψ) =
((

FA + 1
2[ψ ∧ ψ]

)
, (2KJ − 2c)ρ+ dtr (ψΛρ(dAψ))

)
(7.57)

µ̂2(J,A, ψ) = (idA ∗ ψ, (2KJ − 2c)ρ+ id ∗ tr (ψΛρ(FA))) (7.58)

µ3(J,A, ψ) =
(

idAψ, (2KJ − 2c)ρ+ idtr
(
ψΛρ

(
FA + 1

2[ψ ∧ ψ]
)))

(7.59)

where c := 2π(2genus(Σ)− 2)/vol(Σ, ρ) and

Λρ : Ω2(Σ, ad(P )⊗ C)→ Ω0(Σ, iad(P )⊗ C)

is the natural map induced by ρ. All three moment map take values in the space
Ω2(Σ, ad(P ))⊕Ω2

ex(Σ) which we identify with the dual space of Lie(G̃(P )) using (7.16)
and (7.17).

Proof. The formula for the infinitesimal action and the moment map equations for
µ1 and µ3 follow from Theorem 4.4.2, Proposition 7.4.2 and integration by parts.

We verify the moment map equation for µ̂2. Let V ∈ Lie(G̃(P )) with π∗V = vH
for some Hamiltonian H : Σ→ R. Using integration by parts, we have

〈µ̂2(J,A, ψ), V 〉

= i
∫

Σ
tr
(
A(V )dA ∗J ψ

)
+
∫

Σ
H (2KJ − 2c) ρ− i

∫
Σ

tr
(
ι(vH)FA ∧ ∗Jψ

)
The proof consists of differentiation this expression in all three arguments.

We first differentiate the moment map into direction (Ĵ , 0, 0). The first order
change of ∗Jψ = ψ ◦ (−J), when varying J in direction Ĵ , is ψ ◦ (−Ĵ) and thus

∂(Ĵ,0,0)〈µ̂2(J,A, ψ), V 〉

= ∂Ĵ

∫
Σ
H(2KJ − c)ρ+ i

∫
Σ

tr
(
A(V )(dAψ ◦ (−Ĵ))− ι(vH)FA ∧ ψ ◦ (−Ĵ)

)
= 1

2

∫
Σ

(−2∂̄JvH)JĴρ+ i
∫

Σ
tr
(

(−dAA(V )− ι(vH)FA) ∧ ψ ◦ (−Ĵ)
)

= (Ω̂2)J,A,ψ((−LV (J,A, ψ)), (Ĵ , 0, 0))

where the penultimate equation follows from Theorem 4.4.2.
Next, we differentiate the moment map into direction (0, Â, 0).

∂(0,Â,0)〈µ̂2(J,A, ψ), V 〉

= i
∫

Σ
tr
(
ι(vH)ÂdA ∗ ψ +A(V )[Â ∧ ∗ψ]− ι(vH)dAÂ ∧ ∗ψ

)
= i
∫

Σ
tr
(
−Â ∧ ∗[A(V ), ψ]

)
+ i
∫

Σ
tr
(

(−dAι(vH)Â− ι(vH)dAÂ) ∧ ∗ψ
)
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Using Lemma 7.2.1 we can express the last term by Lie derivatives. We use the
notation ṽH ∈ Vect(ad(P )) for the A-horizontal lift of vH and identify horizontal
equivariant differential forms of the total space of ad(P ) with differential forms on Σ
taking values in ad(P ). Then follows

i
∫

Σ
tr
(
−dAι(vH)Â− ι(vH)dAψ) ∧ ∗ψ

)
= i
∫

Σ
tr
(
LṽH (Â) ∧ ψ ◦ J

)
= i
∫

Σ
−tr

(
Â ∧ LṽH (ψ ◦ J)

)
= i
∫

Σ
−tr

(
Â ∧ (((LṽHψ) ◦ J) + ψ ◦ LvHJ)

)
= i
∫

Σ
tr
(
Â ∧

(
∗dAι(vH)ψ ∗ ι(vH)dAψ + ψ ◦ (2∂̄JvH)

))
= i
∫

Σ
tr
(

(dAι(vH)ψ + ι(vH)dAψ) ∧ ∗Â
)
− i
∫

Σ
tr
(
Â ∧ ψ ◦ (−2∂̄JvH)

)
Combining this with the computation above shows

∂(0,Â,0)〈µ̂2(J,A, ψ), v〉 = (Ω̂2)J,A,ψ((−Lv(J,A, ψ)), (0, Â, 0)).

Finally, we differentiate the moment map into direction (0, 0, ψ̂).

∂(0,0,ψ̂)〈µ̂2(J,A, ψ), V 〉 = i
∫

Σ
tr
(
A(V )dA ∗ ψ̂ − ι(vH)FA ∧ ∗ψ̂

)
= i
∫

Σ
tr
(

(−dAA(V )− ι(vH)FA) ∧ ∗ψ̂
)

= (Ω̂2)J,A,ψ((−LV (J,A, ψ)), (0, 0, ψ̂))
This completes the proof of the moment map equation.

The moduli space

The three moment maps µ1, µ̂2 and µ3 calculated in Theorem 7.4.5 do not combine to
a hyperkähler moment map. Nevertheless, when one considers their joint vanishing
locus, the moment map equations greatly simplify and uncouple:

(J,A, ψ) ∈ µ−1
1 (0) ∩ µ̂−1

2 (0) ∩ µ−1
3 (0) ⇐⇒

 dAψ = 0, d∗Aψ = 0
FA + 1

2 [ψ ∧ ψ] = 0
2KJ = c

By uniformization and Moser isotopy, Teichmüller space has the symplectic descrip-
tion

T (Σ) := J (Σ)/Diff0(Σ) ∼= {J ∈ J (Σ) |KJ = c} /Symp0(Σ, ρ)
(see Chapter 4.4 for more details). Consequently,(

µ−1
1 (0) ∩ µ̂−1

2 (0) ∩ µ−1
3 (0)

)
/G̃Symp0(P )

fibres over Teichmüller space, with the fibre being the corresponding Hitchin moduli
space.
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