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Chapter 1

Lie groups and symmetric spaces
Michelle Chu (UCSB)

These notes are based on a lecture given at the workshop Geometric aspects of Higgs bundles in
Sunriver, OR in May 2019. Unfortunately, we skip proofs and references. However, this material
can be found in many books and notes.

In these notes, manifolds and vector spaces are always finite dimensional. Throughout the notes,
F will be either R of C.

1.1 Lie groups and Lie algebras

Definition 1.1.1. A Lie group G is a group which is also a smooth manifold and such that group
multiplication and group inversion are smooth. A complex Lie group is a Lie group which is a
complex manifold and multiplication and inversion are holomorphic.

Definition 1.1.2. A Lie algebra g over a field K is a vector space over K equipped with a bilinear
map called the Lie bracket

g× g→ g

(X,Y ) 7→ [X,Y ].

satisfying

• [X,X] = 0 for all X ∈ g

• (Jacobi identity) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all Z, Y, Z ∈ g.

The conditions in the definition imply that the Lie bracket is skew-symmetric, i.e. [X,Y ] =
−[Y,X].

Lie groups and Lie algebras are related via left-invariant vector fields. Let `g denote left multi-
plication by g, i.e. `g : h 7→ gh.

Definition 1.1.3. A vector field X on a Lie group G is left invariant if d(`g)h(X(h)) = X(gh) for
all g, h ∈ G.

The Lie bracket [X,Y ] of two vector fields X,Y on G is the vector field [X,Y ] defined by

[X,Y ](f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(G).

The Lie bracket of two left-invariant vector fields is again left-invariant. Therefore, we can associate
to a Lie group G the Lie algebra g of left-invariant vector fields.

5
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Proposition 1.1.4. The linear map L : g→ TeG defined by L(X) = X(e) is an isomorphism.

1.1.1 Classical Lie groups

Exercise. Let V be an n-dimensional vector space over F = R or C. The set GL(V ) of all
invertible F -linear maps is a Lie group. Note that it is a manifold since it is an open subset of
Mn(F ). Multiplication and inversion are polynomial and rational in terms of the matrix entries,
hence smooth. The Lie algebra of GL(V ) is gln(F ) = Mn(F ). The Lie bracket is given by the
commutator [X,Y ] = XY − Y X.

Exercise. The Special linear group and its Lie algebra

SLn(F ) = {A ∈ GLn(F )|det(A) = 1}

sln(F ) = {A ∈ gln(F )|tr(A) = 0}.

Exercise. Let V be a vector space over F with non-degenerate bilinear form with associated matrix
Q (for some choice of basis).

O(Q) = {A ∈ GLn(F )|ATQA = Q}

o(Q) = {A ∈ gln(F )|ATQ = −QA}

These are complex Lie groups and complex Lie algebras when K = C.
Here are some examples arising in this way:

• The orthogonal group O(n) and its Lie algebra o(n) = so(n) given by Q = In.

• The indefinite orthogonal group O(p, q) and its Lie algebra o(p, q) = so(p, q) given by Q =(
Ip 0
0 −Iq

)
.

• The symplectic group Sp(2n, F ) and ts Lie algebra sp(2n, F ) given by Q =

(
0 In
−In 0

)
.

Exercise. For A ∈ Mn(C) let A∗ denote the complex conjugate transpose. The unitary group is
U(n) = {A ∈Mn(C)|A∗A = In}. Its Lie algebra is u(n) = {A ∈ gln(C)|A∗ = −A}.

The special unitary group is SU(n) = {A ∈ SLn(C)|A∗A = In}. Its Lie algebra is su(n) = {A ∈
gln(C)|A∗ = −A and tr(A) = 0}.

The unitary groups are real Lie groups.

1.1.2 Homomorphisms and subgroups

Definition 1.1.5. A Lie group homomorphism φ : H → G is a group homomorphism between
two Lie groups which is also smooth. A Lie algebra homomorphism ϕ : h → g is a homomorphism
between Lie algebras which is

• linear: ϕ(ax+ by) = aϕ(x) + bϕ(y), and

• compatible with the Lie bracket: ϕ([x, y]h) = [ϕ(x), ϕ(y)]h.

Proposition 1.1.6. If φ : H → G is a Lie group homomorphism, then dφe : TeH → Te(G) is a Lie
algebra homomorphism.

A linear representation of a Lie group is a Lie group homomorphism φ : G→ GL(V ). Similarly
a linear representation of a Lie algebra is a Lie algebra homomorphism ϕ : g→ gln(F ).
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Theorem 1.1.1 (Ado’s theorem). Every Lie algebra has a faithful linear representation.

Definition 1.1.7. A Lie subgroup H of G is an abstract subgroup which is also a Lie group and
such that the inclusion is a smooth immersion. A Lie subalgebra h of g is a subspace which is closed
under Lie bracket, i.e. [x, y] ∈ h for all x, y ∈ h.

Proposition 1.1.8. If H is a Lie subgroup of G, then h ' TeH is a Lie subalgebra of g ' TeG.
Alternatively, if h is a Lie subalgebra of the Lie algebra g for a Lie group G, then there exist a unique
connected Lie subgroup H of G.

The above Proposition shows that there is a bijection between Lie subalgebras of g and connected
Lie subgroups of G.

Theorem 1.1.2. If H is any closed subgroup of a Lie group G, then H is a Lie subgroup.

We saw before that to any Lie group we can associate a Lie algebra. The reverse is also true.

Theorem 1.1.3 (Lie’s third theorem). For every Lie algebra g, there is a Lie group G such that g
is Lie algebra isomorphic to its associated Lie algebra.

We might ask whether every Lie group has a linear representation, and it turns out the answer

is no. The canonical examples is S̃L2(R), the universal cover of SL2(R).

1.1.3 The exponential map and the adjoint representation

For each X ∈ TeG there exists a one-parameter subgroup γX such that dγX(t) = tX, so γ′X(0) = X.

Definition 1.1.9. The exponential map is defined as

g→ G

exp(X) = γX(1).

For each X ∈ g, γ(t) = exp(tX) is a one-parameter subgroup with γ′(0) = X. The exponential
map is smooth and d(exp)0 = Id.

Definition 1.1.10. For g ∈ G let Cg : h 7→ ghg−1 be the conjugation map. The adjoint
representation of G is the Lie group homomorphism defined as

Ad : G→ GL(g)

g 7→ d(Cg)e.

The adjoint representation of g is the Lie algebra homomorphism

ad : g → gl(g)

X 7→ adX = [X, ·].

Proposition 1.1.11. The adjoint representation satisfies

• Cg(γX(t)) = γAd(g)(X)(t)

• dAd = ad

• exp(Ad(g)(X)) = g exp(X)g−1

• if G is connected, the kernel of Ad is the center of G.

Going back to the general linear group, for A ∈ GLn, we have exp(A) =
∑∞

0
Ak

k! . For any
g ∈ GLn and X ∈ gln, Ad(g)(X) = gXg−1.

Proposition 1.1.12. If G is any closed subgroup in GLn, then G is a Lie group and its Lie algebra
is given by

g = {A ∈Mn(F )| exp(tA) ∈ G for all t ∈ R}.
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1.1.4 Structure

Definition 1.1.13. Let G be a Lie group with Lie algebra g.

• An ideal i of g is a vector subspace such that [g, i] ⊂ i.

• The derived series of g is defined inductively as g0 = g and gk = [gk−1, gk−1] (these are ideals
in g).

• g is solvable if there is some k for which gk = 0

• The radical of g, denoted rad(g), is the unique maximal solvable ideal.

• g is simple if the only ideals are {0} and g itself.

• g is semisimple if rad(g) = 0, equivalently if g has no solvable ideals, equivalently if g has no
abelian ideals.

Proposition 1.1.14. For any Lie algebra g, the quotient Lie algebra g/rad(g) is semisimple.

Definition 1.1.15. The Killing form of g is the symmetric bilinear form

B : g× g→ F

(X,Y ) 7→ tr(adX ◦ adY )

Theorem 1.1.4 (Cartan’s Second Criterion). g is solvable if and only if B = 0 on [g, g]. g is
semisimple if and only if B is non-degenerate.

Exercise. The Lie algebras sln(F ), o(p, q), sp(2n, F ), u(n), su(n) are semisimple because their Killing
forms are non-degenerate.

Theorem 1.1.5. If g is semisimple, then

• g = g1 ⊕ · · · ⊕ gk where each gi is a simple ideal.

• if h is an ideal in g, then it decomposes uniquely as ⊕j∈Igj for I ⊂ {1, . . . , k}.

• g = [g, g].

Definition 1.1.16. A Lie algebra is compact if it is the Lie algebra of a compact Lie group,
equivalently if its Killing form is negative definite.

Exercise. The Lie algebras o(n), u(n), and su(n) are compact.

1.1.5 Cartan subalgebra and roots

Definition 1.1.17. A Cartan subalgebra h of a semisimple Lie algebra g is a maximal abelian
subalgebra such that if X ∈ h then adX is diagonalizable.

Cartan subalgebras of semisimple Lie algebras are unique up to automorphisms, so all Cartan
subalgebras have the same dimension.

Definition 1.1.18. The rank of a Lie algebra g is the dimension of a Cartan subalgebra. The rank
of a Lie group is the rank of its Lie algebra.

For the remainder of this section we focus on the case of complex semisimple Lie algebras.

Exercise. For sln(C) or gln(C), the subset of diagonal matrices is a Cartan subalgebra.
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In general, non-trivial Cartan subalgebras might not exist.

Theorem 1.1.6. Every complex semisimple Lie algebra g has a Cartan subalgebra h. Moreover, h
is unique up to inner automorphism and h is equal to its normalizer and centralizer in g.

Definition 1.1.19. Let g be a semisimple complex Lie algebra with Cartan subalgebra h. For a
linear map α ∈ h∗ = Hom(h,C), the root space of α is

gα = {X ∈ g|[H,X] = α(H)X for all H ∈ h}.

If gα 6= 0, α is called a root of g (with respect to h). Define ∆ = {α ∈ h∗|gα 6= 0}, the set of non-zero
roots.

Theorem 1.1.7. Let g be complex semisimple, with Cartan subalgebra h and ∆ the non-zero roots.

• The root space decomposition: g = h⊕
∑
α∈∆ gα.

• If α, β ∈ ∆, then [gα, gβ ] ⊂ gα+β .

• {α|α ∈ ∆} spans h∗.

• If α, β ∈ ∆ and α+ β 6= 0 then B(gα, gβ) = 0.

• If α ∈ ∆ then −α ∈ ∆.

• For α ∈ ∆, there is some Hα ∈ h such that B(H,Hα) = α(H) for all H ∈ h.

Exercise. A Cartan subalgebra for sl)n(C) is given by

h = {H = diag(h1, . . . , hn)|hi ∈ C and
∑

hi = 0}.

Let εi ∈ h∗ be the linear function on h which takes the (i, i) entry Let Ei,j denote the matrix with 1
in the (i, j) entry and 0 elsewhere. If H ∈ h it is diagonal and then [H,Ei,j ] = (εi − εj)(H)Ei,j . So
(εi − εj) is a root of g with root space g(εi−εj) = CEi,j and ∆ = {(εi − εj)|i 6= j}.

The Killing form for H = diag(h1, . . . , hn) ∈ h is given by

B(H,H) =
∑
α∈∆

α(H)α(H) = 2n
∑

h2
i

and Hεi−εj = n(Ei,i − Ej,j).

1.1.6 Cartan decomposition

Definition 1.1.20. If g is a real Lie algebra, the complexification of g is the complex Lie algebra
hC = h⊗ C with

[U + iV,X + iY ]gC = [U,X]g − [V, Y ]g + i ([U, Y ]g + [V,X]g) .

Exercise. The complexification of gln(R) is gln(C).

Definition 1.1.21. If g is a complex Lie algebra, a real form of g is a real Lie algebra h such that
hC is isomorphic to g

Theorem 1.1.8. Every complex semisimple Lie algebra has a compact real form.

In general, a complex Lie algebra may not have a real form. Let g be the complex Lie algebra
spanned by X,Y, Z with [X,Y ] = 0, [X,Z] = X, and [Y, Z] = aY . Then g has a real form if and
only if a ∈ R or |a| = 1 (reference: Lie groups, representation theory, and symmetric spaces by
Wolfgan Ziller.)
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Definition 1.1.22. Let g be a real semisimple Lie algebra with killing form B(·, ·). An involution
θ on g is a Lie algebra automorphism with θ2 = Id. Such an involution is a Cartan involution if
Bθ(X,Y ) = −B(X, θ(Y )) is positive definite.

Proposition 1.1.23. Any real semisimple Lie algebra has a Cartan involution, unique up to inner
automorphism.

Exercise. For slnR, θ(X) = −XT defines the Cartan involution.

Complex conjugation on a complex Lie algebra is an involution. If this complex Lie algebra has
a compact real form g, then complex conjugation on gC is the Cartan involution.

Let θ be an involution of real Lie algebra g. As a linear map, θ has two eigenvalues +1 and −1.
Let k and p be the corresponding eigenspaces.

Definition 1.1.24. A Cartan decomposition of g is a decomposition g = k + p. The pair (k, p) is
called a Cartan pair.

If (k, p) is a Cartan pair, then k is a Lie subalgebra of g.

Proposition 1.1.25. Let (k, p) be a Cartan pair

• The Killing form is negative definite on k.

• [k, k] ⊂ k, [p, p] ⊂ k, and [k, p] ⊂ p

• k is a maximal compact subalgebra of g.

Exercise. For slnR, θ(X) = −XT defines the Cartan involution. The corresponding Cartan de-
composition is given by g = k + p where k = sonR and p are the traceless symmetric matrices.

1.2 Symmetric Spaces

Definition 1.2.1. A Riemannian manifold (M, g) is a real, smooth manifold M equipped with an
inner product gp on the tangent space TpM at each point p that varies smoothly from point to point.

Definition 1.2.2. Let (M, g) be a Riemannian manifold

• M is symmetric if for all p ∈M there is some isometry sp : M →M with s2
p = Id and p is an

isolated fixed point. This isometry sp is called an involution at p.

• M is locally symmetric if for all p ∈ M there is some radius r > 0 and some isometry
sp : Br(p)→ Br(p) with sp(p) = p and d(sp)p = −Id.

Proposition 1.2.3. Let (M, g) be a symmetric space.

• The involution sp reverses geodesics through p, i.e. γ is a geodesic with γ(0) = p then
sp(γ(t) = γ(−t).

• M is complete.

• M is homogeneous.

• The isometry group Isom(M) is a Lie group and the stabilizer StabG(p) of a point p is compact.

• The identity component of the isometry group Isom0(M) also acts transitively on M .

We can therefore write M = G/K where G = Isom0(M) and K = StabG(p).
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1.2.1 Cartan involutions

Proposition 1.2.4. Let M be a symmetric space. The involution sp gives rise to an involutive
automorphism

σ = σp : G→ G

g 7→ spgsp.

Furthermore, if Gσ denotes the fixed points of σ, Gσ0 ⊂ K ⊂ Gσ.

Proposition 1.2.5. Let M = G/K with Gσ0 ⊂ K ⊂ Gσ for an involutive automorphism σ of G. If
k and p be the +1 and −1 eigenspaces of dσ then (k, p) is a Cartan pair for g.

We saw before how a symmetric space M can be written as M = G/K where G = Isom0(M)
and K = StabG(p). We now construct a symmetric space from a Lie group.

Proposition 1.2.6. Let G be a connected Lie group and σ : G→ and involutive automorphism such
that Gσ0 is compact. Then for any compact subgroup K with Gσ0 ⊂ K ⊂ Gσ, G/K is a symmetric
space with any G-invariant metric.

Proposition 1.2.7. Let G be a simply connected Lie group with Lie algebra g with Cartan decom-
position g = k + p and K the connected subgroup of G with Lie algebra k.

• There exist and involutive automorphism σ : G→ G such that K = Gσ0 .

• If K is compact, then every G-invariant metric on G/K is symmetric.

We have seen now that a symmetric space gives rise to a Cartan decomposition and also a Cartan
decomposition defines a symmetric space.

1.2.2 Examples of symmetric spaces

Exercise. Simply connected manifolds of constant curvature are symmetric spaces. For example,
hyperbolic space Hn is a symmetric space. We can see this using the Lorentzian model

{v ∈ Rn+1|(v, v) = −1 and xn+1 > 0}

with inner product (x, y) = x1y1 + · · · + xnyn − xn+1yn+1. The isometry group is the Lie group
O+(n, 1) with identity component SO+(n, 1). The stabilizer at a point is the subgroup SO(n). An
involution at a point p is given by sp(v) = −v − 2(v, p)p. We can identify Hn = SO+(n, 1)/SO(n).
The involutive autmorphism is conjugation by In,1.

Exercise. The set M of inner products on Rn is a non-compact symmetric space. If 〈·, ·〉0 is the
standard inner product on Rn then any other inner product can be written as 〈u, v〉 = 〈Lu, v〉0 for L
some self adjoint linear map. Therefore M = {A ∈ GLn(R)|A = AT , A > 0} is the space of positive
definite symmetric matrices. The involution at the identity is sId(A) = A−1.

The Lie group GLn(R) acts transitively by isometries on M via g · A = gAgT . The stabilizer
of Id is O(n) and M = GLn(R)/O(n). The Cartan involution is given by θ(X) = −XT . The
involutive automorphism is given by σ(A) = (AT )−1 and has fixed point set O(n). We get the
Cartan decomposition for g = k + p with k the skew symmetric matrices and p the symmetric
matrices.

The subset SLn(R)/SO(n) is a totally geodesic submanifold.
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1.2.3 Symmetric pairs and geodesic submanifolds

Definition 1.2.8. A symmetric pair (G,K, σ) is Lie group G, a compact subgroup K, and an
involution σ with Gσ0 ⊂ K ⊂ Gσ where G acts on G/K with discrete kernel.

The condition of G acting on G/K with discrete kernel is equivalent to saying that in the Cartan
decomposition g = k + p, g and p do not have any ideal in common.

Exercise. If G/K is a symmetric space, (G,K) may not always be a symmetric pair. One non-
example is the pair (SU(n),SU(n − 1) with symmetric space S2n−1 because there are no automor-
phisms σ with SU(n)σ = SU(n− 1). However, for Sn, (SO(n+ 1),SO(n)) is a symmetric pair.

If on M = G/K with K = StabG(p0) we have g = k + p and AdK(p) ⊂ p. We can then identify
p with Tp0M via X → X∗(p0) where X∗(p) = d

dt |t=0
(exp(tX) · p).

Proposition 1.2.9. Let (G,K) be a symmetric pair with Cartan decomposition g = k+p. If X ∈ p
then γ(t) = exp(tX) · p0 is the geodesic in M with γ(0) = p0 and γ′(0) = X ∈ p ' Tp0

M (from
§1.1.3).

Proposition 1.2.10. • If M is a symmetric space and N ⊂ M is a submanifold such that for
all p ∈M , sp(N) = N , then N is totally geodesic and symmetric.

• Let σ : G→ G be an involutive automorphism and G/K the corresponding symmetric space.
If L ⊂ G with σ(L) ⊂ L, then L/(L ∩K) is a symmetric space such that L/(L ∩K) ⊂ G/K
is totally geodesic.

Proposition 1.2.11. Let G/K be a symmetric space corresponding to the Cartan involution σ
with Cartan decomposition g = k + p. If a ⊂ p is a linear subspace with [[a, a], a] ⊂ a then exp(a) is
a totally geodesic submanifold.

Definition 1.2.12. A flat in M is a totally geodesic Euclidean submanifold in M . It is called
maximal is it is not properly contained in another flat.

The next proposition relates the rank of a symmetric space with rank of a Lie algebra.

Proposition 1.2.13. Let M be a symmetric space with G = Isom0(M).

• Let p ∈M and let g = k+p the Cartan decomposition corresponding to p. There is a bijection
between maximal abelian subalgebras of p and maximal flats of M containing p induced by
the map a 7→ exp(a) · p.

• Every geodesic is contained in some maximal flat.

• For any two maximal flats F1, F2 in M , there is some g ∈ G such that g · F1 = F2.

Let g = k + p be a Cartan decomposition of the Lie algebra for G = Isom0(M). For all X ∈ p,
ad(X) is self-adjoint with respect to the Bθ from the Cartan involution.

Let a be a Cartan subalgebra of p, i.e. a maximal abelian subalgebra and define for any α ∈ a∗

gα = {X ∈ g|ad(H)X = α(H)X for all H ∈ a}

∆ = {α ∈ a∗|g 6= 0}.

Definition 1.2.14. The restricted root space decomposition is

g = g0 ⊕
∑
α∈∆

gα.

Unlike the root space decomposition for complex semisimple Lie algebras, g0 might not be a and
gα might not always be 1-dimensional.
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1.2.4 Classification

Definition 1.2.15. Let (G,K) be a symmetric pair with B the Killing form of g. The pair is of
compact type if B|p < 0, of Euclidean type if B|p = 0, or of non-compact typeif B|p > 0.

A symmetric space is irreducible if it is not a product of two or more symmetric spaces.

Proposition 1.2.16. Let (G,K) be a symmetric pair and M = G/K.

• If M is irreducible, (G,K) is either of compact type, Euclidean type, or non-compac type.

• If M is simply connected, then M is isometric to a Riemannian product M = M0 ×M1 ×M2

with M0 of Euclidean type, M1 of compact type, and M2 of non-compact type.

• If (G,K) is of compact type then G is compact and semisimple and M is compact with non-
negative curvature.

• If (G,K) is of non-compact type then G is non-compact and semisimple and M is non-compact
with non-positive curvature.

• (G,K) is of Euclidean type if and only if [p, p] = 0. If M is simply connected then it must be
isometric to Rn with the Euclidean metric.

Proposition 1.2.17. If (G,K) is a symmetric pair of non-compact type then the inner product
B∗(X,Y ) = −B(σ(X), Y ) of g satisfies

• B∗ is positive definite.

• If X ∈ k then adX : g→ g is skew symmetric.

• If X ∈ p then adX : g→ g is symmetric.

Proposition 1.2.18. If (G,K) is a symmetric pair of non-compact type with Cartan involution σ.

• G is non-compact and semisimple and Gσ and K are connected.

• K is a maximal compact subgroup of G.

• The center of G is in K.

• G is diffeomorphic to K × Rn and G/K is simpl-connected and diffeomorphic to Rn.

For a symmetric pair of non-compact type, the Cartan involution and corresponding Cartan
decomposition are unique up to inner automorphism.

Proposition 1.2.19. Let (G,K) be a symmetric pair of non-compact type where G acts on G/K
with trivial kernel. Then there exists an isometric embedding of G/K into SLn(R)/SO(n) with
totally geodesic image, given by gK 7→ Ad(g) · SO(n).



Chapter 2

Introduction to non-abelian Hodge
theory
Lorenzo Ruffoni (FSU)

It is a theory that gives a correspondence between

(i) (representations ρ : π1S → G) where S a closed surface, g ≥ 2, G reductive complex Lie group
(e.g. GLnC), and

(ii) (Higgs bundles on Riemann surfaces) i.e. X a Riemannan surface structure on S + a bunch
of holomorphic objects on it.

Note that the object (i) is topological, and easy to define but “hard to access” (“few tools
available”); object (ii) is holomorphic, and harder to define, but “easier to access”.

2.1 (Abelian) Hodge theory

(Often G = GL(V ); (non)-abelian refers to G being (non)-abelian. GL(V ) is abelian iff V 1-
dimensional, i.e. G = C∗ = GL1C.) Classically, we have the moduli spaces
MBetti(S,G) = Hom(π1S,C∗) = Hom(H1(S),C∗) = H1(S,C∗).
MdR(S,G) = H1

dR(S,C) i.e. closed 1-forms mod exact 1-forms.
MDol(X) = H1,0(X)⊕H0,1(X) (after fixing X some complex structure on S, where Hp,q(X) =

∂̄-closed (p,q)−forms
∂̄-exact (p,q)−forms

).

These moduli spaces are diffeomorphic (the Betti modul space is the baby version of (i); the Dolbeaut
moduli space is the baby version of (ii).

2.1.1 de Rham complex

Consider the bundle
∧k

T ∗M → M whose smooth sections are k-forms. We write Ak(M) for the
space of smooth k-forms on M . If we can equip M with a complex structure J : TM → TM (i.e. a
R-linear endomorphism such that J2 = id). Then TM ⊗C splits into eigenspaces for J : TM ⊗C =

T 1,0⊕T 0,1 (eigenvalues ±i resp.) Linear algebra then gives us
∧k

(T ∗M⊗C) =
⊕

p+q=k

∧p,q
(T ∗M⊗

C). Let Ap,q(M) denote the space of smooth (p, q)-forms on M , i.e. sections of
∧p,q

(T kM ⊗C). By
definition, a (p, q)-form locally looks like a sum of αi1···ipj1···jq (z) dzi1 · · · dzipdz̄j1 · · · dz̄jq . Moreover,
we have splittings

A1 = A1,0 ⊕A0,1 ;

14
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A2 = A2,0 ⊕A1,1 ⊕A0,2 .

If J is integrable 1 (i.e. if J comes from a complex atlas on M) we can also define holomorphic
sections: T ∗M ⊗ C→M is a holomorphic bundle (the projection is holomorphic.)

We have an exterior differential d : Ak(M) → Ak+1(M). Using J , the differential splits (on a
surface):

d = ∂ ⊕ ∂̄

with
∂ : Ap,q → Ap+1,q and ∂̄ : Ap,q → Ap,q+1 .

Note that ∂̄ = 0 on surfaces. We get the Dolbeault complex

· · · → Ap,q(S)
∂̄−→ Ap,q+1(S)→ . . . .

which gives the Dolbeault cohomology groups

Hp,q(X) =
ker ∂̄

im∂̄

2.1.2 Abel-Jacobi theorem

Recall that H1(S,C∗) is the space of representations π1S → C∗. We want to relate this object with
T ∗ Jac(X), where X is a fixed complex structure on S and Jac(X) is the Jacobian of X i.e. the
space of degree-0 line bundles on X.

Definition 2.1.1. X a Riemann surface: L → X a line bundle if it is holomorphic vector ball of
rank 1. L is degree 0 if and only if L ∼= X × C smoothly (i.e. bundle is topologically / smoothly
[but not necc. holomorphically] trivial.)

Theorem 2.1.1 (Abel-Jacobi). Jac(X) is diffeomorphic to a complex torus, ∼= Cg/Z2g

This is the main idea of the correspondence between T ∗ Jac(X) and H1(S,C∗).

H1(S,C∗) =
H1(S,C)

H1(S,Z)

by universal coefficient theorem applied to the exact sequence 0→ Z→ C →
exp
C∗ → 0. Then

H1
dR(S,C)

H1(S,Z)
=
H1,0(X)⊕H0,1(X)

H1(S,Z)
.

The last step is a black box from harmonic theory (Hodge theory): every 1-form (resp. (p, q)-form)
has a unique harmonic representative. We can rewrite the last term as H1,0(X) ⊕ H0,1(X) =
H0(X,Ω1)⊕H1(X,Ω0) where Ωk the sheaf of holomorphic k-forms on X. The first summand is the
space of holomorphic 1-forms; the second is H0(X,Ω1)∗ by Serre duality. Hence,

H1(S,C∗) = · · · = H0(X,Ω1)⊕H0(X,Ω1)∗/H1(S,Z) = T ∗ Jac(X)

by Abel–Jacobi theory.
In summary:

Hom(π1S,C∗)↔ H1
dR(S,C∗)↔ T ∗Jac(X)

1This is free on orientable surfaces
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Nonabelian version. Hom(π1S,G)↔ flat bundles (E,∇) ↔ Higgs bundles (E,F , ϕ)
(There is the big hammer of harmonic theory hiding in the second ↔.)

2.2 Bundles

Definition 2.2.1. Say G y F . A fiber bundle with fiber F and structure group G is E
π→ B

where E and B are spaces, π is a continuous surjection, and ∃U = {Uα} an open cover of B s.t.
∃ϕα : π−1(Uα) → Uα × F is a homeomorphism, s.t. for all α, β with Uα ∩ Uβ 6= ∅ we have
ϕβ ◦ ϕ−1

α : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F given by (u, f) 7→ (u, gαβ(u)(f)) with gαβ(u) ∈ G
gαβ : Uα ∩ Uβ → G defines a 1-cocycle {gαβ} ∈ H1(B,G) in the sense of Čech cohomology.

Remark 2.2.2. If G is abelian, H1(B,G) is a group. If G is not, H1(B,G) makes sense as a set
but is not a group.

If G is a complex Lie group, then E is smooth / holomorphic / flat if {gαβ} is smooth / holo-
morphic / locally constant (resp.)

Definition 2.2.3. A flat bundle over S is a smooth bundle with locally constant cocycles gαβ .

Figure 2.1: Flat bundles, a schematic

Example 2.2.4. Cylinder vs. Möbius band, viewed as flat R-bundles over S1:

Figure 2.2: For the cylinder, gαβ ≡ 1; for the Möbius band, gαβ = 1 on V and −1 on W , where
Uα ∩ Uβ =: V

∐
W (as labelled above.)

In this example G = Z2 y R (1 7→ id, −1 7→ (t 7→ −t))
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Let E → S be a flat bundle. Recall that (Uα ∩ Uβ) × F → (Uα ∩ β) × F given by (u, f) 7→
(u, gαβ(f)) where gαβ ∈ G. Define on Uα a (“horizontal”) foliation Fα =

∐
f∈F Fα,f , where Fα,f =

{(u, f) | u ∈ Uα}.

Fact 2.2.5. gαβ constant =⇒ Fα glue to a global foliation F on E transverse to fibers.

In particular, get (“horizontal”) complements to vertical2 subspaces of TE. This induces a
natural lift of paths from S to E with paths contained in F and a on of parallel transport. In
particular a map from (loops in S) (in fact, π1S) to Aut(F ) = G (the holonomy of the flat bundle.)

This gives us a map {flat bundles with structure grp G} ↪→ χ(π1(S), G).
To construct the inverse: let ρ : π1S → G; choose any F s.t. Gy F . Then consider the bundle

Eρ defined by

Eρ = S̃ × F/ ∼

where (s, f) ∼ (γs, ρ(γ)f).

From now on: E smooth complex vector bundle; G = GLnC; F = Cn. On vector bundles, flat
structures can be easily recorded by linear / differential tools.

Definition 2.2.6. A connection on E is a map ∇ : A0(E)→ A1(E) which is R-linear and satisfies
the Leibniz rule

∇(fs) = df · s+ f∇s

where s ∈ A0(E) and f ∈ C∞(S).

∇ extends to all Ak(E) imposing Leibiniz rule.

Definition 2.2.7. The curvature of ∇ is F∇ = ∇2 : A0(E)→ A2(E). ∇ is flat if F∇ = 0.

Remark 2.2.8. A connection is a map ∇ : A0(E)→ A1(E). The difference of 2 connections ∇1,∇2

is a C∞-linear map A0(E)→ A1(E);

∇1 −∇2 ∈ A1(EndE).

2.2.1 Higgs bundles

We describe the correspondence {flat rank-n degree-0 complex vector bundles on S} ↔ {Higgs
bundles on X} (given a Riemann surface structure X on S).

Definition 2.2.9. A Higgs bundle on X is a triple (E, ∂̄, ϕ) where (E, ∂̄) → X is a holomorphic
vector bundle on X (rank-n, degree-0), and ϕ ∈ Ω1(X,EndE) a holomorphic 1-form valued in EndE.

This correspondence goes through harmonic bundles; the → direction was done by Corlette–
Donaldson in ’86; the ← direction follows from results of Hitchin in ’87 and Simpson in ’92)

Slightly more precisely (but still schematically), we have the correspondences

flat bundles(E,∇) harmonic bundles Higgs bundles(E, ∂̄, ϕ)

Donaldson–Corlette
(hol reductive)

Hitchin–Simpson
( polystable)

Theorem 2.2.10. Given E a smooth complex vector bundle on X, ∂̄ a holomorphic structure on
E, h a Hermitian metric on E, there exists a unique connection ∇ (the Chern connection) on E
such that

2i.e. ker dπ
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(1) ∇h = 0 i.e. ∇ is unitary / compatible w.r.t. h;

(2) ∇0,1 = ∂̄

However, F∇ 6= 0 in general. We twist this connection in order to get a flat one.
Any other connection D on E can be split into A+ φ (using metric h: Ah = 0.) Using complex

structure X, split A = A1,0 +A0,1 + φ1,0 + φ0,1.

Definition 2.2.11. A harmonic bundle on X is (E,∇, ∂̄, ϕ, h) where

• E is a smooth complex vector bundle,

• ∇ is a flat connection,

• ∂̄ is a holomorphic structure,

• h is a Hermitian metric (harmonic), and

• ϕ is a holomorphic 1-form with values in EndE

such that ∇ = A1,0 +A0,1 + φ1,0 + φ0,1, ϕ = φ1,0, ∂̄ = A0,1, A0,1φ1,0 = 0

Definition 2.2.12. A metric h is harmonic if and only if the (π1(S), ρ)-equivariant map h : X̃ →
GLnC/SU(n) is harmonic.

If (E,∇) has reductive holonomy, i.e. writing Γ := hol∇(π1S)
Z

, if Ad Γ y g is completely
reducible, then (by Donaldson-Corlette) such harmonic map exists, and hence a harmonic bundle.

For the reverse, given (E, ∂̄, ϕ) a Higgs bundle, can we find h harmonic (i.e. ∇ flat)? Yes, (by
Hitchin-Simpson) if and only if (E, ∂̄, ϕ) is polystable:

Definition 2.2.13. Let E be a holomorphic vector bundle of degree 0. A Higgs bundle (E, ∂̄, ϕ) is
stable if for any holomorphic subbundle L ⊂ E, ϕ(L) ⊂ L =⇒ degL < 0. It is polystable if it is a
direct sum of stable bundles.

Remark 2.2.14. Stable bundles correspond to irreducible representations; polystable bundles cor-
respond to completely reducible representations.

Example 2.2.15. If ϕ = 0, any stable (i.e. any subbundle L ⊂ E has degL < 0) holomorphic
vector bundle E gives a stable Higgs bundle (E, 0). This recovers the following theorem

Theorem 2.2.16 (Narasimhan-Seshadri). {(stable) rank-n degree-0 holomorphic vector bundles on
X} ↔ {unitary representations π1X → SU(n)}



Chapter 3

Complex Projective Structures
Jane Wang (MIT)

3.1 Introduction

In these notes, we introduce complex projective structures and describe various approaches to the
subject. These notes largely follow Dumas’s Complex Projective Structures [Dum09].

We will start by defining projective structures in section 3.2 and giving some examples. We will
let P(S) denote the set of projective structures on a surface, and P (X) be the set of projective
structures with a particular underlying Riemann surface structure. Then, we will use the theory of
Schwarzian derivatives in section 3.3 to better understand the structure of P (X). One of the main
results that we will discuss is that there is an isomorphism,

P (X) ∼= Q(X),

from the set of projective structures on a Riemann surface X to the set of holomorphic quadratic dif-
ferentials on the same surface. Moving on, in section 3.4, we will introduce the grafting construction
that creates projective structures from a complex structure and a measured lamination

Gr: ML× T (S)
∼−→ P(S),

and will see that this map is a homeomorphism. Furthermore, fixing any λ ∈ ML above defines a
homeomorphism. We will also see that there is a natural conformal metric on a projective structure
coming from grafting and will give some properties of this metric. In section 3.5, we will examine
the holonomy map ρ : π1(X)→ PSL2(C), and how the holonomy map interacts with the Schwarzian
parametrization and with the grafting construction. We will see that the projective structures
with Fuchsian holonomy can be parametrized exactly by pairs (λ,X) where λ ∈ MLZ the integral
measured laminations, and X ∼= H2/Γ where Γ is a Fuchsian group, and every Z ∈ P(S) can be
uniquely represented by grafting

Z = Gr2πλ(X).

Similarly, we will find that those projective structures with quasi-Fuchsian holonomy also break up
nicely into

PQF (S) =
⋃

λ∈MLZ(S)

Pλ(S),

where hol: Pλ(S)
∼−→ QF(S), the space of quasi-Fuchsian holonomies on S. In section 3.6, we

briefly review the different perspectives that we have covered, and finish with some results about the
compactification of the space of projective structures. We will see that the Schwarzian and grafting
perspectives are related via their compatifications of P (X).

19
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3.2 The basics

3.2.1 Definition of a projective structure

We start with S an oriented surface. Then, a complex projective structure Z on S is a maximal
atlas of charts on S mapping into CP1 such that the transition maps are Möbius transformations,
maps of the form

f(z) =
az + b

cz + d
.

We will often refer to complex projective structures as projective structures, for short. We say
that two projective structures Z1 and Z2 on S are isomorphic if there is an orientation preserving
diffeomorphism between Z1 and Z2 that pulls pack that projective charts of one surface to the other,
and marked isomorphic if the diffeomorphism can be made homotopic to the identity.

Example 3.2.1. 1. Genus 0. Up to isotopy, the sphere has a unique projective structure given
by S2 ∼= CP1. Here, we take a maximal atlas of open charts on S2 and the transition functions
are just the identity function.

2. Genus 1. Projective structures on a torus are all affine structures. For example, think of
the structure on the torus coming from C/(Z⊕ τZ) or C∗/(z ∼ 2z). In the first example, the
transition functions are translations. In the second, the transition functions are of the form
f(z) = 2kz for z ∈ Z.

3. Fuchsian groups and hyperbolic manifolds. A Fuchsian group Γ is a discrete subgroup
of PSL2(R). Then, there is a natural projective structure on the hyperbolic manifold H/Γ.

4. Kleinian groups and the ideal boundary of hyperbolic 3-manifolds. A Kleinian
group Γ is a discrete subgroup of PSL2(C). Let Ω(Γ) be the domain of discontinuity of Γ,
the complement of the limit set of in CP1 of Γp, for any p ∈ CP1. Then, Ω(Γ)/Γ is the ideal
boundary of a hyperbolic 3-manifold and has a natural projective structure.

5. Quasi-Fuchsian groups. A special type of Kleinian group is a quasi-fuchsian group Q(X,Y ),
a group whose limit set in CP1 is a Jordan curve. This Jordan curve separates the sphere into
two regions, whose quotients by Q(X,Y ) are the Riemann surfaces X and Y .

In general, we will only be working with genus g ≥ 2 surfaces in these notes.

Remark 3.2.2. Projective structures can also be thought of in the context of (G,X) structures,
manifolds M described by an atlas of charts into X with transition functions in the group G. Then,
projective structures are (PSL2(C),CP1) structures.

Remark 3.2.3. A projective structure is always subordinate to a complex structure, so there is a
forgetful map

π : P(S)→ T (S)

from the space of projective structures to the Teichmüller space of complex structures. This map
is surjective because every point in Teichmüller space arises as H/Γ for some Fuchsian group Γ ⊂
PSL2(R).

3.2.2 Holonomy and developing map

A projective structure Z on a surface S always lifts to a projective structure Z̃ on the univeral cover
S̃. For any Z on S, we can find a developing map f : S̃ → CP1 such that the restriction of f to
sufficiently small open sets on S are projective charts. Developing maps are unique up to postcom-
position by a Möbius transformations, and can be thought of intuititively as a way to “unroll” the
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geometric structure of Z onto CP1.

Let f : S̃ → CP1 be a developing map for the projective structure Z on S. Then, for any
γ ∈ π1(S), f ◦ γ is another developing map, and

f ◦ γ = Aγ ◦ f.

The map γ 7→ Aγ is a homomorphism ρ : π1(S) → PSL2(C) called the holonomy representation of
Z. It is well defined up to the action of conjugation by PSL2(C).

Every projective structure Z can be represented as a development-holonomy pair (f, ρ) where
f is the developing map and ρ is the holonomy representation. This pair is uniquely determined
up to the action (f, ρ) 7→ (A ◦ f,AρA−1) by elements A ∈ PSL2(C). We can give pairs (f, ρ) the
compact-open topology, and P(S) then inherits the quotient topology.

3.3 The complex analytic approach

We saw in the previous section that there is surjective map π : P(S) → T (S) from the space of
projective structures to the space of complex structures on a surface. The complex analytic approach
that we pursue in this section will show us that we can identify the fibers of this map with the space
of quadratic differentials on a Riemann surface.

Quadratic differentials. A quadratic differential is a section of the square of the cotangent bundle
of a Riemann surface. Often, we will be concerned only with those quadratic differentials that are
holomorphic. The vector space of holomorphic quadratic differentials on X will be denoted as Q(X),
and the space of all quadratic differentials on a surface S is a complex vector bundle Q(S)→ T (S).
The bundle Q(S) is identified with the holomorphic cotangent bundle of Teichmüller space and is
homeomorphic to R12g−12. Teichmüller space is homeomorphic to R6g−6.

The Schwarzian derivative. Let f : Ω → CP1 be a locally injective holomorphic map from a
connected open subset of C into CP1 . Then, the Schwarzian derivative of f is the holomorphic
quadratic differential

S(f) :=

[(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2
]
dz2.

The Schwarzian derivative satisfies two nice properties:

1. Cocycle property. For locally injective holomorphic maps f and g such that f ◦ g is defined,
we have that

S(f ◦ g) = g∗S(f) + S(g).

2. Möbius invariance. f is a restriction of a Möbius function if and only if S(f) ≡ 0.

We notice that maps f are almost determined by their Schwarzian derivatives. That is, two
functions with the same Schwarzian derivative are related to one another by a Möbius transforma-
tion. The intuition behind the Schwarzian derivative is that it somehow measures the failure of a
holomorphic map to be the restriction of a Möbius transformation.
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Identifying projective structures and quadratic differentials. Let X ∈ T (S), and let
P (X) = π−1(X) ⊂ P(S). Suppose that we want to parametrize the fiber P (X). We can do
this with the Schwarzian derivative as follows. Given Z ∈ P (X), we first identify X̃ ∼= H, where
π1(X) acts on H as a Fuchsian group. Then, the developing map f : X̃ ∼= H → CP1 of Z is a
meromorphic function on H. The Schwarzian derivative ϕ̃ = S(f) is then a holomorphic quadratic
differential on X̃ that is invariant under the action of π1(X). Hence, ϕ̃ descends to a holomorphic
quadratic differential on X, and is called the Schwarzian of the projective structure. Thus, the
Schwarzian defines a map

P (X)→ Q(X).

This map is bijective since given a quadratic differential ϕ̃(z) dz2 on H that is a lift of a quadratic
differen tial on X, there exists a locally injective function f for which S(f) = ϕ(z) dz2. Such a
solution is found by taking the quotient f(z) = u1(z)/u2(z) of two basis solutions to the Schwarzian
equation

u′′(z) +
1

2
ϕ(z)u(z) = 0.

This discussion shows that fibers of the map π : P(S) → T (S) are naturally parametrized by a
complex vector space.

Affine naturality. There are actually many ways in which P (X) ∼= Q(X). Our identification
above depended on our choice of coordinate for X̃ coming from the standard Fuchsian structure on
X. We could have started with a different coordinate and obtained a different Schwarzian derivative.
If Z1, Z2 ∈ P (X), then we can define ϕ(Z2−Z1) in local charts by z∗1S(z2◦z−1

1 ) as the Schwarzian of
Z2 relative to Z1. That is, we are computing the Schwarzian derivative for Z2 in the coordinates of
Z1. Then, P (X) has a natural structure of an affine space modeled on Q(X). Choosing a basepoint

Z0 ∈ P (X) gives an isomorphism P (X)
∼−→ Q(X) by Z 7→ ϕ(Z − Z0).

Schwarzian parametrization. Now, if we choose any section σ : T (S) → P(S), we can form a
bijective Schwarzian parametrization between P(S) and Q(S),

Z 7→ (π(Z), ϕ(Z − σ(π(Z))).

For any continuous section σ, the Schwarzian parametrization is a homeomorphism. The Schwarzian
parametrization also transports the complex manifold and holomorphic vector bundle structure of
Q(S) to P(S). Two σi induce the same complex structure if and only if ϕ(σ1−σ2) is a holomorphic
section of Q(S).

3.4 The geometric approach

In this section, we will examine how we can create projective structures by gluing together simple
pieces. This will give us a way to visualize the geometry of projective structures.

Conformal grafting. Before discussing grafting related to projective structures, let us first define
conformal grafting. We first recall that a conformal metric is an equivalence class of metrics, where
two metrics f and g are equivalent if and only if f = ρg for some positive function ρ > 0. We will
now describe a grafting procedure along curves in S, the set of the simple closed curves on a surface,

gr : S × R+ × T (S)→ T (S).

Suppose that we start with a curve γ ∈ S, t ∈ R+, and X ∈ T (S). Then, to perform the grafting
map, we equip X with its hyperbolic metric and find the geodesic representative of γ. Then, we
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cut along γ and glue in a Euclidean cylinder of height t. The hyperbolic metric on X − γ and
the Euclidean metric on the cylinder then give us a well-defined conformal structure on grtγX, and
therefore also give us a complex structure.

Projective grafting. We can use a variant of this construction to create projective structures
starting from complex structures and simple closed curves. This will be a map

Gr : S × R+ × T (S)→ P(S).

To do this, let γ be a simple closed curve on a Riemann surface X. Up to conjugation, the holonomy
of γ is z 7→ e`z, where ` is the hyperbolic length of the curve γ. Then, for any 0 < t < 2π, let Ãt be
a sector of angle t in the complex plane with vertex at 0. The quotient annulus At := Ãt/(z ∼ e`z)
is then an annulus with a projective structure and holonomy z 7→ e`z through the radius curve. We
can then create a projective structure by inserting At into the standard Fuchsian structure on X.

In the universal cover, this looks like inserting a copy of Ãt for every lift of γ, and transforming
the complementary regions by Möbius transformations so that the pieces fit together.

In the above figure, we show a schematic of this process where we graft in one copy of Ãt along
one lift of γ in X̃. This process looks like inserting a lune at every lift of γ.

Projective grafting along simple closed curves is a lift of conformal grafting through the forgetful
map π : P(S)→ T (S). That is,

π ◦Gr = gr.

Grafting along laminations. We recall that there is a spaceML(S) of measured laminations, a
completion of the space of the weighted simple closed curves. The topology of this space is given by
realizing points λ ∈ML(S) as points in RS by taking their intersection numbers with simple closed
curves. In this way, ML(S) is also a piecewise linear manifold homeomorphic to R6g−g. There is a
continuous extension

Gr :ML(S)× T (S)→ P(S).

Similarly, there is a continuous extension of the conformal grafting map. Grafting along a measured
lamination is like taking the leaves of the measured lamination and thickening each one.

3.4.1 Thurston’s Theorem

It turns out that every projective structure can be obtained from projective grafting in a unique
way. This is the content of the following theorem.

Theorem 3.4.1 (Thurston). The projective grafting map Gr :ML(S)× T (S)→ P(S) is a home-
omorphism.
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Proof sketch. Let us first suppose that Z ∈ P(S) is a projective structure such that the developing
map f : S̃ → CP1 is an embedding. Let Ω be the image of the developing map. We will now
describe a process to invert the projective grafting map and obtain a measured lamination and
complex structure from Z.

1. Thinking of CP1 as the ideal boundary of H3, let Pl(Z) denote the boundary of the convex hull
of CP1 − Ω. Pl(Z) is then a convex pleated plane in H3, an copy of H2 mapped isometrically
into H3, except that it is bent along some geodesics. With the path metric, Pl(Z) is actually
isometric to H2. We notice that π1(X) acts on PL(Z).

2. We can then define the nearest-point projection map κ : Ω → Pl(Z) that sends z ∈ Ω to the
first point in Pl(Z) that is touched by an expanding family of horoballs in H3 based at z.

3. The canonical stratification of Ω then decomposes Ω into 1-dimensional strata that are circular
arcs that map homeomorphically by κ onto bending lines of Pl(Z) and 2-dimensional strata
that map are bounded by circular arcs and that map homeomorphically via κ to the totally
geodesic pieces of Pl(Z).

4. In the case that the projective structure came from grafting along a measured lamination λ
that is a single simple closed curve, the 1-dimensional strata will sweep out lunes and the
2-dimensional strata will correspond to the complementary regions of λ̃ in X̃, and we have
recovered the grafting structure.

Ω

Pl(Z)

In the schematic picture above, Ω is two pieces of H glued along the sides of the shaded lune.
PL(Z) then looks like a copy of H creased along one geodesic. The nearest point projection
will project the left piece of Ω to the left piece of Pl(Z), the right piece to the right piece, and
the lune to the bend line.

5. This process also works if λ is a collection of disjoint simple closed curves, and a limiting
argument shows that we can also do this for arbitrary measured laminations.

In general, if the developing map is not an embedding, we can repeat a variation of this process
where we do everything locally. We work with patches of Ω at a time and develop to get a locally
convex pleated plane in place of Pl(Z) that might not be embedded. Our nearest-point projection
process can also be adapted to work locally.

3.4.2 The Thurston metric

There is a natural metric on a projective surface called the Thurston metric or the projective
metric. We can see this metric either geometrically through grafting, or intrinsically as a variant of
the Kobayashi metric. Recall that the Kobayashi metric on a complex manifold is defined in a way
such that the length of any vector v in the tangent space is the infimum over all lengths given to it
via holomorphically immersed disks equipped with the hyperbolic metric.

With this, the Thurston metric can be defined as either of the following:
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1. In a projective structure GrtγX resulting from grafting along a simple closed curve, the
Thurston metric is the metric that combines the hyperbolic metric on X with the Euclidean
metric on the grafted cylinder. This can be extended to projective structures grafted along
measured laminations by taking appropriate limits.

2. The Thurston metric is also the same as the projective Kobayashi metric, where the length of
a vector in the tangent space is the infimum of its length given by projectively immersed disks
with the hyperbolic metric.

We might wonder why these two definitions give the same metric. The intuition goes some-
thing like this: for a projective structure resulting from grafting along a simple closed curve γ, the
developed image of X looks like H with lunes inserted along every lift of γ. At points in H\γ,
the maximal immersed disk matches with the patch of H\γ that the point is in, and therefore the
projective Kobayashi metric is just the hyperbolic metric. Each lune is R × [0, 1] where each R is
a hyperbolic geodesic. There’s a one-parameter family of maximally immersed disks such that each
of these Rs is a geodesic in one of these disks.

Properties of the Thurston metric.

• The Thurston metric is a conformal metric on the Riemann surface, and locally looks like
ρ(z)|dz| where ρ(z) is a positive density function.

• There is a continuous function that takes projective structures Z ∈ P(Z) to the space of
density functions with the topology of local uniform convergence.

• The area form of a conformal metric is ρ(z)2|dz|2. The Thurston metric gives the surface an
area of 4π(g−1)+`(λ,X), where `(λ,X) is the length of the measured lamination with respect
to the hyperbolic metric on X. This is because the union of the 2-dimensional strata has area
4π(g − 1), the area of a genus g hyperbolic surface. The grafted region if λ is a simple closed
curve then has area t`(γ,X), and we can extend this to ML(S) by continuity.

3.4.3 Some theorems about conformal grafting

We finish with some properties of the conformal grafting map and consequences for projective graft-
ing.

Theorem 3.4.2 (Scannell, Wolf). For each λ ∈ ML(S), the λ-grafting map grλ : T (S)→ T (S) is
a diffeomorphism.

A nice consequence of this theorem is that for any λ ∈ ML(S), the set of projective structures
with grafting lamination λ projects homeomorphically to T (S) by the forgetful map. Alternatively,
we can say that for each λ ∈ML(S), there is a smooth section

σλ : T (S)→ P(S),

given by
σλ(X) = Grλ(gr−1

λ (X)).

If we instead fix a complex structure X and vary the measured lamination, the following holds.

Theorem 3.4.3 (Dumas, Wolf). For each X ∈ T (S), the X-grafting map gr·X :ML(S) → T (S)
is a homeomorphism.
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3.5 Holonomy

We will now examine the holonomy representations of projective structures and how they relate to
grafting and the Schwarzian coordinate systems for P(S).

The character variety. Let R(S) = Hom(π1(S),PSL2(C)). This is an affine C-algebraic variety
as a subset of (PSL2(C))N . The group PSL2(C) acts algebraically on R(S) by conjugation, and we
can form the quotient character variety

X (S) := R(S)//PSL2(C),

where the quotient is defined in the sense of geometric invariant theory. This is, the quotient is
defined as the algebraic variety Y such that the ring of regular functions on Y is isomorphic to the
ring of PSL2(C)-invariant regular functions on R(S).

One can check that the points of X (S) are in bijection with the set of characters, C-valued
functions on π1(S) of the form γ 7→ tr2(ρ(γ)). We note that X (S) is not the same as the quotient
R(S)/PSL2(C). Two conjugacy classes in R(S) may give rise to the same point in X (S). However,
if we restrict our attention to non-elementary representations ρ ∈ R(S), those that do not fix a point
or ideal point, and do not preserve an oriented geodesic, then things are a bit nicer. In this cases,
there is a one-to-one correspondence between conjugacy classes of non-elementary representations
and their characters.

3.5.1 The holonomy map

We recall that for any projective structure, the holonomy representation ρ is determined up to con-
jugacy, and is therefore an element of R(S). The holonomy representation is always non-elementary.
For hyperbolic structures on complex manifolds, the holonomy representation always determines the
geometric structure. For projective structures, this only holds locally.

Theorem 3.5.1 (Hejhal, Earle, Hubbard). The holonomy map hol: P(S)→ X (S) is a local biholo-
morphism.

Some properties of the holonomy map.

• The holonomy map is not injective. One way to see this is by grafting in annular regions
along a simple closed curve with angle a multiple of 2π. This does not change the holonomy
representation.

• The holonomy map is not a covering of its image, because the path-lifting property fails
(Hejhal).

• An element of X (S) arises from a holonomy representation if and only if it is non-elementary
and liftable to SL2(C) (Gallo, Kapovich, Marden).

Connection to the Schwarzian parametrization. Let X ′0(S) be the subset of the character
variety consisting of liftable non-elementary representations. If ρ ∈ X ′0(S), then we can find a
projective structure Z ∈ P(S) with holonomy representation ρ. By our discussion of the Schwarzian
parametrization, there is a whole family of projective structures Z + ϕ for ϕ ∈ Q(X), where X is
the complex structure of Z. Then,

hol(ϕ) = hol(Z + ϕ)

gives a holomorphic embedding of C3g−3 into X (S), a family of projective deformations of ρ.
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3.5.2 Bending Fuchsian groups

We will now move into describing how grafting changes the holonomy representation of a projective
structure. To begin, we will describe algebraically how to bend a Fuchsian group. Suppose that
γ ∈ π1(S) is a simple closed curve on the surface that separates S into S1 and S2. Then,

π1(S) = π1(S1) ∗〈γ〉 π1(S2),

the Z-amalgamated free product of the fundamental groups of the two sides. Let ρ : π1(S) →
PSL2(C) be a Fuchsian representation and A be an elliptic element having the same axis as ρ(γ).
Then, the homomorphism

ρ′(x) =

{
ρ(x), x ∈ π1(S1)

Aρ(x)A−1, x ∈ π1(S2)

is a bending deformation of ρ. The geometry of this new action is that instead of preserving a
hyperbolic plan H2 ⊂ H3, it preserves a locally convex pleated plane. This gives a map

β : S × R+ × T (S)→ X (S),

that extends continuously to
β :ML(S)× T (S)→ X (S).

We note that there is 2π periodicity of the map when dealing with simple closed curves, but this
periodicity does not extend to measured laminations.

Bending cocycles. Another definition of the bending deformation that emphasizes the geometry
involves the bending cocycle. Suppose that we are bending along a simple closed curve γ by some
fixed angle t. Then, we let γ̃ be the lfit of γ to H2 ∼= S̃. For any two points x, y ∈ (H2 − γ̃), let
g1, . . . , gn be the sequence of lifts of γ that cross the geodesic connecting x and y. Then, we define
the bending cocycle B(x, y) ∈ PSL2(C) as

B(x, y) = E(g1, t)E(g2, t) · · ·E(gn, t),

where E(gi, t) is the elliptic Möbius transformation through axis gi with angle of rotation t. One
can check that B satisfies the cocycle relation and that B(δx, δy) = ρ0(δ)B(x, y)ρ0(δ)−1, for all
δ ∈ π1(S). Then, if ρ0 is the holonomy representation of a Fuchsian group, ρ is the holonomy
representation of the same group bent by t a long γ, and O is any point in (H2 − γ̃), we have that

ρ(γ) = B(O, γO)ρ0(γ).

That is, the bending cocycle records the difference between the Fuchsian holonomy and the bent
Fuchsian holonomy.

Bending and grafting. There is a fundamental relationship between grafting, bending, and the
holonomy map:

hol(GrλY ) = βλ(Y ).

That is, the holonomy of the of the projective structure resulting from grafting a complex structure Y
along a measured lamination λ is exactly the Fuchsian representation of Y bent along the measured
lamination λ.
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Fuchsian holonomy. Let PF (S) = hol−1(F(S)) be the set of all projective structures with Fuch-
sian holonomy. We recall that we can construct such projective structures by starting with the
projective structure on H2/Γ where Γ is a Fuchsian group, and then grafting in annular regions
with 2πn angle along simple closed curves. It turns out that all projective structures with Fuchsian
holonomy arise this way. Let MLZ denote the subset of ML(S) consisting of collections of disjoint
simple closed curves with positive integral weights. We note that MLZ is countable. Then, the
following holds.

Theorem 3.5.2 (Goldman). Let Z ∈ PF (S) and Y = H2/hol(Z) be the hyperbolic surface associ-
ated to the Fuchsian holonomy representation. Then, Z = Gr2πλY for some λ ∈MLZ.

We recall that we used that we had sections σλ : T (S) → P(S) taking a complex structure X
to a the unique projective structure Z grafted along λ with underlying complex structure X. Then,
one can also show the following:

PF (S) =
⋃

λ∈MLZ

σ2πλ(T (S)).

We notice that these two results imply that PF (S) splits up countably many copies of T (S)
indexed by MLZ in two ways:

1. Those elements of PF (S) with underlying complex structure X ∈ T (S) can be naturally
identified with MLZ.

2. Those elements of PF (S) with underlying holonomy representation that of X ∈ T (S) can be
naturally identified with MLZ.

Quasi-Fuchsian holonomy. We can ask if we can parametrize those projective structures with
quasi-Fuchsian holonomy in a similar way. We recall that a quasi-Fuchsian group Q(X,Y ) is a
discrete subgroup of PSL2(C) whose limit set in CP1 is a Jordan curve. This curve then separates
the sphere into two regions Ω+ and Ω− whose quotients by Q(X,Y ) are X and Y . We note here
that PQF (S) is an open subset of P(S).

Theorem 3.5.3 (Goldman). Let Z ∈ PQF (S) have quasi-Fuchsian holonomy and developing map
f : Z̃ → CP1. Let Λ ⊂ CP1 be the Jordan curve that is the limit set of the holonomy group, and Ω±
be the complementary regions. Then,

(1) The quotient of the developed preimage of the limit set Λ(Z) := f−1(Λ)/π1(S) consists of
finitely many disjoint simple closed curves.

(2) The quotient of the developed preimage of Ω−, denoted Z− := f−1(Ω−/π1(S)) is a finite
collection of disjoint annuli with homotopically nontrivial core curves, bounded by pairs of
curves in Λ(Z).

We notice that in the case where Z = X/Ω(X,Y ) is a standardy quasi-Fuchsian structure, the
developed Z̃ maps onto Ω+ and f−1(Λ) and Z− are empty.

In general, Z− is a collection of n disjoint annuli with core curves γ1, . . . γn, where the γi are
nontrivial and can be repeated. Then, we can define the wrapping invariant of a projective structure
Z with quasi-Fuchsian holonomy as

wr(Z) :=
∑
i

γi ∈MLZ(S).

For Fuchsian projective structures, we have that

Z = Gr2πwr(Z)Y.
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We can see this by noticing that if λ is a simple closed curve with multiplicity n, then Z̃ looks like
H2 with a lune of angle 2πn glued in at every lift of the underlying curve γ of λ. A lune of angle 2πn
will map to an n-times cover of CP1, and Ω− will be n sub-lunes. Quotienting out by the Fuchsian
group, this will correspond to n disjoint annuli with core curve γ.

Let us move back to quasi-Fuchsian holonomy. Because the limit set Λ of Q(X,Y ) varies con-
tinuously, the wrapping invariant is also locally constant on PQF (S). Then, PQF (S) breaks up into
countably many components

PQF (S) =
⋃

λ∈MLZ(S)

Pλ(S),

where Pλ(S) = wr−1(λ). The main result here is that the holonomy map

hol : Pλ(S)
∼−→ QF(S)

is a diffeomorphism when restricted to any component. The inverse of this map can either be
constructed by generalizing the projective grafting construction or by deforming Fuchsian represen-
tations into quasi-Fuchsian representations.

3.6 Recap of perspectives, and some connections

In this section, we will review the various perspectives on projective structures that we have taken,
and give some results that tie some of these perspectives together.

Using the Schwarzian derivative, we found that choosing any section σ : T (S) → P(S), we can
form a bijective Schwarzian parametrization between P(S) and Q(S), given by

Z 7→ (π(Z), ϕ(Z − σ(π(Z))).

Using projective grafting, we found a homeomorphism

Gr: ML× T (S)
∼−→ P(S).

We could ask if these two parametrizations of P(S) are related in any way. The answer is yes,
and one of these relations involves the compactifications of the spaces involved.

3.6.1 Compactifications

We have the compactification
ML(S) =ML(S) ∪ PML(S),

by saying that that λi ∈ML(S) converges to [λ] ∈ PML(S) if there exists a sequence of positive ci
for which ciλi → λ and ci → 0. We also have the Thurston compactification

T (S) = T (S) ∪ PML(S),

where a sequence Xn ∈ T (S) converges to [λ] ∈ PML(S) if for every pair of simple closed curves
α, beta,

`(α,Xi)

`(β,Xi)
→ i(α, λ)

i(β, λ)
.

On Teichmüller space, ` denotes the hyperbolic length function, and on the space of measured
laminations, i(α, λ) is the mass of α with respect to the transverse measure on λ.

We also have that
Q(X)−Q(X) ∪ P+Q(X),

where P+Q(X) is the space of positive rays.
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Quadratic differentials and measured laminations. There is a natural map

Λ : Q(X)→ML(S)

that takes a quadratic differential to its horizontal foliation, which is then straightened to a measured
lamination. In the local coordinate, ϕ = dz2, the foliation is induced by the horizontal lines in C
with transverse measure |dy|. We also have a map to the vertical foliation of a quadratic differential,
Λ(−ϕ). The following theorem will be relevant to us.

Theorem 3.6.1 (Hubbard, Masur). For each X ∈ T (S), the map Λ : Q(X) → ML(S) is a
homeomorphism.

One consequence of the Hubbard-Masur theorem is that we can define antipodal maps onML(S)
for every X ∈ T (S). Every λ ∈ML(S) is the horizontal foliation of a unique quadratic differential
q ∈ Q(X). The antipodal map iX then takes λ to the vertical foliation of q.

Limits of fibers. Here are some results on the limits of P(S).

• Using the projective grafting homeomorphism, Gr: ML(S) × T (S) → P(S), the grafting

compactification of P(S) is just ML(S)× T (S).

• By a result of Dumas, the boundary of P (X) in the grafting compactification of P(S) is the
graph of the antipodal involution iX : PML(S) → PML(S). That is, if Grλn

Yn ∈ P (X) for
all n, then

lim
n→∞

λn = [λ] and and only if lim
n→∞

Yn = [iX(λ)].

• Another result of Dumas states that the grafting and Schwarzian compactifications of P (X)
are naturally homeomorphic, and the boundary map P+Q(X)→ PML(S)×PML(S) is given
by

[ϕ] 7→ ([Λ(−ϕ)], [Λ(ϕ)]).

• This compactification result is about comparing two maps fromML(S)→ Q(X), the one com-
ing from the Hubbard-Masur theorem, and the one coming from the Schwarzian parametriza-
tion λ 7→ ϕ(σλ(X)−σ0(X)), where σλ(X) is the a projective structure with grafting lamination
λ and complex structure X. These two mapsML(S)→ Q(X) are not the same, but in a way,
they are asymptotically proportional.

We finish with a result comparing the three maps

π = projection map from P(S) to T (S)

pML = projection to first factor of Gr−1 : P(S)→ML(S)× T (S)

pT = projection to second factor of Gr−1 : P(S)→ML(S)× T (S)

Theorem 3.6.2 (Dumas, Wolf). The maps π, pML, and pT have transverse fibers, and the product
of any two of these maps gives a homeomorphism from P(S) to a product of two spaces of real
dimension 6g − 6.



Chapter 4

Introduction to Opers
Xuesen Na (University of Maryland)

This note is from talk of the same title given in log cabin workshop on Geometric Aspects of
Higgs Bundles organized by Xian Dai, Charles Ouyang and Andrea Tamburelli in May 2019.
The material is mostly based on introductory parts of the notion of SLn-opers and G-opers from
[Aco16, Dal08, San18, Wen16].

Opers plays an important role in the famous and mysterious geometric Langlands conjecture,
which for Σ algebraic curve and G a reductive group states that there is a correspondence between
derived category of quasicoherent sheaves of OX -modules over moduli stack of LG-local systems over
Σ on one hand and D-modules over moduli stack of G-bundles over Σ on the other hand:

OMod (LocLG (Σ))
∼−→ DMod (BunG (Σ)) (4.0.1)

where the important objects on the right side called Hecke eigensheaves corresponds to LG-opers on
the left side. In this talk however we shall focus more on the classical origin from study of ordinary
differential equations on compact Riemann surfaces, which is where oper got its name. We will
introduce SLn opers and more generally G-opers for G a connected complex simple Lie group of
adjoint type and consider some interesting bundle-theoretic properties of these objects. Throughout
the talk X will be a closed Riemann surface of genus g ≥ 2. Let Γ = π1(X), and KX the canonical
line bundle or equivalently the holomorphic cotangent bundle of X.

The name ‘oper’ was coined by Beilinson and Drinfeld [BD05] from differential operators between
line bundles 1. Indeed perhaps the simplest examples, the SL2-opers, comes from study of Sturm-
Liouville operators and is closely related to CP 1-structure on closed Riemann surfaces.

4.1 SL2 oper, Schwarzian derivative and complex projective
structure

We start with an elementary exercise due to Lagrange 2 [Lag79]: given second order ODE

y′′ +Qy = 0 (4.1.1)

on a domain Ω ⊂ C, let y1(z), y2(z) be linearly independent solutions with y2 having no zeros in Ω,
write their ratio as

f(z) =
y1(z)

y2(z)
(4.1.2)

1see page 2 [BD05]
2For more history, see [OT09]

31
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Question 4.1.1. Is it possible to recover coefficient Q in terms of f?

Without loss of generality assume Wronskian W = y1y
′
2− y′1y2 ≡ 1 3, then by simple calculation

we see

f ′ = − 1

y2
2

(4.1.3)

and since we have recovered one of the solutions, we simply take Q = −y′′2/y2, giving

Q =
1

2

[(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
]

(4.1.4)

Definition 4.1.1. Let f be a univalent 4 holomorphic function in Ω ⊂ C, the Schwarzian derivative
is defined by

S(f) = {f, z} =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

(4.1.5)

where the primes means ∂z. Note that Schwarzian derivative does depend on choice of coordinate.

It is an easy albeit tedious calculation to check that S satisfies

• Cocycle property:

S (f ◦ g) = (S(f) ◦ g) (g′)
2

+ S(g) (4.1.6)

which is just like chain rule except with an extra term S(g)

• Möbius invariance: S(f) = 0 iff f is restriction of a Möbius transformation

It follows from these that S(f) = S(g) iff f = ϕ ◦ g for some ϕ restriction of Möbius transforma-
tion.

Definition 4.1.2. A collection of holomorphic functions 5 {F (z)} over a choice of coordinate chart
on X is called a projective connection 6 if they obey transformation law

F (w) (w′)
2

= F (z)− {w, z} (4.1.7)

Note that the second term in transformation law {w, z} is independent of choice of the collection
{F}, therefore difference between any two such collections is a collection of holomorphic functions
transforming like coefficient of dz2 of a quadratic differential. Therefore we see that the set of
projective connections on X form an affine space modelled on H0(X,K2

X)
Recall now the notion of CP 1-structure on X: a coordinate chart of X that takes value in CP 1

and transitions by Möbius transformations, equivalently it is given by a developing pair (f, ρ) where

ρ : Γ→ PSL(2,C) = Möb (4.1.8)

is a representation of fundamental group of X and

f : X̃ → CP 1 (4.1.9)

is a locally injective, holomorphic and ρ-equivariant map called developing map where X̃ is a uni-
versal cover of X. Basically f globalizes coordinate charts and ρ globalizes coordinate transition.

3since there is no y′ term, Wronskian is a constant
4means f ′ has no zero
5Suppose (U, z : U → C) is one coordinate neighborhood, F (z) is actually function on z(U) not U .
6‘connection’ here is in the style of Cartan connection
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In style of the first view-point, given projective connection {F (z)} we may solve

y′′ +
1

2
Fy = 0 (4.1.10)

locally on coordinate neighborhood and let ξ := y1/y2 be ratio between choice of linearly independent
solutions y1, y2. This function ξ viewed as coordinate on CP 1, gives coordinate charts valued in CP 1

whose transition is given by Möbius transformation.
In the style of second view-point, we need only find out how to construct developing map f . Fix

a uniformization X̃
∼−→ H to globalize coordinate chart on X. This gives via pull back from the

projective connection {F}, a single function F̃ : H→ C. 7 Now by solving

y′′ +
1

2
Fy = 0 (4.1.11)

on H and choosing two linearly independent y1, y2, we obtain the developing map

f : H→ CP 1

z 7→ [y1(z) : y2(z)]

Therefore we have shown that there is a one-to-one correspondence between{
projective connections

on X

}
1-1←→

{
CP 1 structures

on X

}
(4.1.12)

We can also recast the differential operator Dy = y′′+ 1
2fy, independent of choice of u, as a global

object on X (instead of on H). Start with the ansatz that our solutions y transforms according to

y(z) = y(w)

(
dw

dz

)−1/2

(4.1.13)

then the nasty terms that inevitably shows up in corresponding formula for y′′ is precisely absorbed
by transformation rule of F (z), giving

y′′(z) +
1

2
F (z)y(z) =

(
y′′(w) +

1

2
F (w)y(w)

)(
dw

dz

)3/2

(4.1.14)

therefore we have a well-defined differential operator 8

K−1/2 D−→ K3/2 (4.1.15)

where we fixed a choice K1/2 of square root 9 of canonical line bundle K. Note that the ambiguity
in choice of square root of K lies in the ambiguity in choosing a square root

√
dw/dz.

The kernel of this differential operator map, viewed as map between sheaves of sections of line
bundles, is a local system V, which is a C-module. That is we have short exact sequence of sheaves
over X

0→ V→ K−1/2 D−→ K3/2 → 0 (4.1.16)
7Here’s why we get a single function F̃ , start with any holomorphic coordinate chart {(Uα, zα)}α∈A on X and the

collection {F} is not a collection of function on Uα but actually on zα(Uα), and given any other coordinate Uα → C
we may use the transfrmation (∗) to get another function. Now let p : H → X be the projection of universal cover
p−1Uα form an open cover of H itself, and for each p−1Uα, pull back via p the corresponding function in the collection
with coordinate map Uα → p−1Uα ⊂ H ⊂ C (e.g. viewing H as Poincarè d isk). Now when we go from one p−1Uα to
the next one on H, the transition of coordinate downstairs on X is actually by identity function.

8takes a smooth (local) section of line bundle K−1/2 to a smooth (local) section of line bundle K3/2. Note this is
not holomorphic homomorphism between line bundles.

9multiplication of line bundles is given by tensor product of line bundles. A choice of square root of cotangent
bundle is also called a spin structure. Recall the space of degree zero line bundles as a group is a torus Pic0X ∼= (S1)2g ,
given any line bundle L of even degree 2d, let L0 ∈ PicdX such that L⊗2

0
∼= L, then for any 2-torsion point N ∈ Pic0X,

i.e. N⊗2 ∼= O, we have (L0 ⊗N)⊗2 ∼= L, and there are precisely 22g 2-torsion points.
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4.2 Crash course on (holomorphic) bundles and connection

From now on we enter the world of bundles and connections, and the language of sheaves of modules
will become inevitable, so here is a crash course in some of the basic concepts.

Definition 4.2.1. • A complex rank n local system is a locally constant sheaf taking value in
Cn. Equivalently it is a sheaf of C-modules where C denote the constant sheaf valued in C.

• A holomorphic rank n vector bundle is a locally free sheaf of OX -modules E where OX is sheaf
of holomorphic functions on X. Locally free means we may fix some local trivializations

EU
∼−→ O⊕nU (4.2.1)

and local sections will then be identified with n-tuple of holomorphic functions, and we may
recover the bundle from transition matrices valued in GL(n,O), i.e. with entries holomorphic
functions.

• A connection on smooth bundle E 10 is a C-linear sheaf homomorphism satisfying Leibniz rule

D : Ω0(E)→ Ω1(E), D(fs) = df ⊗ s+ f∇s (4.2.2)

where Ωk(E) denote (local) k-forms taking value in E. Curvature operator is defined to be
connection operator applied twice:

F (D) = D ◦D (4.2.3)

and one easily checks that the differentiation in Leibniz rule cancels out, and C-linearity
becomes linearity with smooth coefficient, thus F (D) is tensorial, F (D) ∈ Ω2(X,End(E))

• A ∂̄-operator 11 is an operator

∂̄E : Ω0(E)→ Ω0,1(E) (4.2.4)

satisfying Leibniz rule with df replaced by ∂̄f .

• A holomorphic connection is a sheaf map

∇ : E → E ⊗K (4.2.5)

satisfying Leibniz rule with restriction that f be holomorphic

Remark 4.2.2. An equivalent definition for holomorphic vector bundle is a smooth vector bundle
plus an integrable ∂̄-operator, i.e. ∂̄E◦∂̄E = 0. On Riemann surfaces there are no nonzero (0,2)-forms
Ω0,2(X) = 0, integrability is automatic.

Similarly since Ω2,0(X) = 0 as well, a holomorphic connection on Riemann surface is also automati-
cally flat, ∇◦∇ = 0. Moreover given holomorphic vector bundle with holomorphic connection (E ,∇)
we automatically have a flat connection by combining ∂̄-operator

D = ∂̄E +∇ (4.2.6)

Equivalently holomorphic connection is flat because in local holomorphic frame connection matrices
have holomorphic entries, and curvature is expressed as ∂̄ of this matrix.

10simply replace the sheaf O in above definition with sheaf of smooth functions!
11sometimes called pseudo-connection
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Theorem 4.2.3 ([Del06] page 12). There is an equivalence between category of local systems and
category of holomorphic bundles with holomorphic connections

The notions of stability are important in study of moduli problem, the easiest kind of which
involves slope:

Definition 4.2.4. Let E be a holomorphic vector bundle of rank n. Degree of E is defined as first
Chern class of its determinant line bundle, i.e. top exterior power:

deg(E) = c1(ΛnE) (4.2.7)

and slope is defined as the ratio

µ(E) =
deg E
rankE

(4.2.8)

which is a topological invariant since both degree and rank are topological invariant. Now E is called
(slope) stable if for any nonzero proper subbundle F ⊂ E we have

µ(F) < µ(E) (4.2.9)

and if < is replaced by ≤ we call E (slope) semistable. A bundle that is not semistable is called
unstable.

Lemma 4.2.5. Let E1, E2 be semistable bundles and suppose µ(E1) > µ(E2) then there is no non-zero
holomorphic homomorphism f : E1 → E2

Proof. See Prop 4.3 of [NS65] page 547 for details. Roughly speaking holomorphic vector bundles are
algebraic on closed Riemann surfaces over C, we may replace the sheaf O of holomorphic functions
with that of regular functions. If f 6= 0, we consider a kind of Smith normal form for f since O is
now a sheaf of PIDs,

0 V1 E1 V 0

0 W2 E2 W1 0

g

where V1 is (saturation of) kernel of f and g is of full rank (generically an isomorphism) between
bundle V2 and W1 of same rank, therefore induces holomorphic homomorphism of line bundles
detV2 → detW1, thus 12 degV2 ≥degW1 and we have by semistability µ(E1) ≥ µ(V2) ≥ µ(W1) ≥
µ(E2) which contradicts assumption.

Definition/Proposition For any holomorphic vector bundle E there is a unique filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ E` = E (4.2.10)

Let Qi = Ei/Ei−1 and µi = µ(Qi), then this filtraion is required to satisfy

• Each Qi is semistable

• µi > µi+1 for all i

12Think of degree as counting number of zeros minus poles of meromorphic sections. Now holomorphic homomor-
phism can have only zeros, so degree can only go up along it.
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This filtration is called Harder-Narasimhan filtration of bundle E , and the vector

~µ = (µ1, . . . , µ1, . . . , µ`, . . . , µ`) (4.2.11)

where µi is repeated rank(Qi) times, is called HN type of the bundle. Roughly speaking it is
constructed inductively by taking ‘maximally destabilizing subbundle’ which is a subbundle with
maximal possible slope and rank and hence automatically semistable. Note HN filtration for E is
semistable is just 0 ⊂ E .

There is a partial order on the HN types, given by

~λ ≤ ~µ iff
∑
j≤k

λj ≤
∑
j≤k

µj ∀k (4.2.12)

Equivalently if we represent HN type as broken lines connecting (deg, rank) on the plane, each ~µ

will be part of a convex polygon and the partial order ~λ ≤ ~µ is equivalent to one broken line staying
above the other:

We will see later that SLn-opers are characterized precisely by being those unstable bundles that
has maximal HN type.

Proposition 4.2.6. Let V be unstable bundle with an irreducible holomorphic connection ∇, then
HN type ~µ is bounded from above,

µi − µi+1 ≤ 2g − 2 (4.2.13)

Proof. Let 0 = V0 ⊂ . . . ⊂ V` = V be HN filtration, then Qi = Vi/Vi=1 are semistable. We’ll find a
nonzero map between quotients which are semistable and invoke the above lemma.

By irreducibility Vi → V/Vi ⊗ K is nonzero for all i. Let j ≤ i be the smallest such that
Vj → V/Vi ⊗ K is nonzero, then Qj → V/Vi ⊗ K is nonzero. Now let k ≥ i be largest such that
Qj → V/Vk ⊗K nonzero. Then we see that

Qj → Qk+1 ⊗K (4.2.14)

is nonzero. By lemma above and definition of HN filtration we have

µi ≤ µj ≤ µk+1 +
2g − 2

rankQk+1
≤ µk+1 + (2g − 2) ≤ µi+1 + (2g − 2) (4.2.15)

Each holomorphic vector bundle is expressible as direct sum of indecomposable bundles, the
following is a characterization of all those bundles admitting holomorphic conenction:

Theorem 4.2.7 (Weil [Wei38], Atiyah [Ati57]). Holomorphic vector bundle V admits holomorphic
connection ∇ iff each indecomposable factor has degV = 0
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It is also useful to recall the notion of extension of holomorphic bundles. Suppose we have short
exact sequence of holomorphic bundles

0→ S → E → Q → 0 (4.2.16)

we say that E is an extension of Q by S. Here S is a holomorphic subbundle and Q a holomorphic
quotient bundle. Any complex vector bundle admits a hermitian metric, and by taking orthogonal
complement, Q may be realized as a smooth subbundle, and E = S ⊕ Q as smooth bundles. This
allows us to write the ∂̄-operator of E in block form

∂̄E =

(
∂̄S β
0 ∂̄Q

)
(4.2.17)

where β is called second fundamental form and the class [β] ∈ H1(X,S ⊗ Q∗) may equivalently be
identified as image of 1Q under connecting map of the long exact sequence of sheaf cohomology

H0(X,Hom(Q,Q))→ H1(X,Hom(Q,S)) (4.2.18)

The projectivised space PH1(X,Hom(Q,S)) parametrizes all inequivalent 13 non-split extensions.

4.3 SLn-oper, differential equation and holonomy

Definition 4.3.1. An SLn-oper is a triple (V,∇, 0 = V0 ⊂ . . . ⊂ Vn = V) where V is a holomorphic
bundle of rank n with trivial determinant line bundle detV = O, ∇ a holomorphic connection
inducing trivial connection on O, and a full filtration 14 by holomorphic subbundles satisfying

• Griffith transversality: ∇ : Vi → Vi+1 ⊗K

• Non-degerenacy: induced linear map on quotient bundles ∇̄ : Vi/Vi+1
∼−→ Vi+1/Vi ⊗ K is

isomorphism of line bundles

Let G C denote the group of automorphisms of V inducing identity map on detV, called complex
gauge group. G C acts on the space of SLn-opers in obvious manner 15 and let

Opn = {SLn-opers} /G C (4.3.1)

Remark 4.3.2. The filtration above is called an oper structure on (V,∇). Not every holomorphic
bundle admits holomorphic connection, and not all those that admits holomorphic connection admits
oper structure.

Example 4.3.3. For n = 2. Recall we had short exact sequence

0→ V ϕ−→ K−1/2 D−→ K3/2 → 0 (4.3.2)

with V a rank n local system living inside 16 holomorphic line bundle K−1/2. We may extend the
scalar, consider ϕ̃ = ϕ ⊗C O to get a surjective sheaf map V := V ⊗C O � K−1/2. Now V comes
equipped with a canonical holomorphic connection:

∇(fs) := df ⊗ s ∈ K ⊗ V (4.3.3)

and we see that kernel of this surjection is isomorphic to K1/2, therefore we have short exact sequence

0→ K1/2 → V → K−1/2 → 0 (4.3.4)
13It is possible for inequivalent extension to give isomorphic bundle in the middle
14full means rank goes up by one each step, in particular successive quotients are all line bundles
15pulling back filtration and connection etc
16note the apparent discrepancy in rank: in the local system, we are only allowed to combine sections with constant

coefficient whereas in line bundle we may combine them with holomorphic coefficients!
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Claim. (V,∇, 0 ⊂ K1/2 ⊂ V) is an SL2-oper

Proof. : (i) is vacuous. Choose local independent solutions y1, y2 with W (y1, y2) = y1y
′
2− y′1y2 = 1,

these gives sections s1, s2 of V and we may use these to trivialize V locally and K1/2 = ker ϕ̃ is also
trivialized by y2s1 − y1s2. The induced map

∇̄ : K1/2 = V1/V0 → V2/V1 ⊗K = K−1/2 ⊗K = K1/2 (4.3.5)

is given by
f · (y2s1 − y1s2) 7→ f · (y′2y1 − y′1y2) = f (4.3.6)

which is indeed an isomorphism.

More generally we may consider higher order ODE

Dy = y(n) +Q2y
(n−2) + . . .+Qny = 0 (4.3.7)

by imposing similar but much more complicated transformation laws on Qj≥2, the local system of
solutions (the kernel of D as map between two line bundles) is realized in line bundle K(1−n)/2.

Theorem 4.3.4 (Hejhal 1975 [Hej75], Di Franesco, Itzykson, Zuber 1991 [DFIZ91]). D : K(1−n)/2 →
K(1+n)/2 is well-defined differential operator, then 12Q2

n(n2−1) is a projective connection. Moreover,

there exists linear combinations wk of Qn, Qn−1, . . . , Q2 and their derivatives with coefficients poly-
nomials in Q2 and its derivatives that transforms as k-differentials for all k ≥ 3. The first two are
given by

w3 = Q3 −
n− 2

2
Q′2

w4 = Q4 −
n− 3

2
Q′3 +

(n− 2)(n− 3)

10
Q′′2 −

(n− 2)(n− 3)(5n+ 7)

10n(n2 − 1)
Q2

2

Space of such operators D is affine space modeled on the Hitchin base

B =

n⊕
j=2

H0(X,Kj
X) (4.3.8)

We again get a short sequence

0→ V ϕ−→ K
1−n

2
D−→ K

1+n
2 → 0 (4.3.9)

Let (L,∇) be a flat line bundle (a line bundle equipped with a holomorphic connection), we may
instead consider

0→ V ϕ−→ L⊗K
1−n

2
D−→ L⊗K

1+n
2 → 0 (4.3.10)

The following result answer the question: which local systems can be realized as monodromy of
differential equations, which we may view as a restricted version of Riemann-Hilbert correspondence

Theorem 4.3.5. A representation ρ : Γ → SL(n,C) can be realized in L (by nth order ODE as
above) iff (1) ρ is irreducible, (2) H0(X,V∗ρ ⊗ L) 6= 0 and (3) Ln = K−n(n−1)/2

Proof. ⇒: (1) follows from a theorem of Hejhal, monodromy of differential operator must be irre-

ducible. We’ll be able to prove later. (2) also clear since Vρ
ϕ⊗CO−−−−→ L is a nonzero section. Given

linearly independent solutions y1, . . . , yn the Wronskian∣∣∣∣∣∣∣
y1 . . . yn
...

...

y
(n−1)
1 . . . y

(n−1)
n

∣∣∣∣∣∣∣ (4.3.11)
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provides a nowhere vanishing section of Ln ⊗Kn(n−1)/2 thus globally trivializes it 17.

⇐: by (2) we may take ϕ : Vρ → L and restrict to local system Vρ
ϕ−→ L. By (1) irreducibility, i.e.

there is no proper sub C-modules in Vρ, kerϕ = 0 so ϕ is injective. Now (3) says L differs from
K−(n−1)/2 by an n-torsion line bundle 18 we have

L = L0 ⊗K−(n−1)/2 (4.3.12)

L0 has flat connection since its degree is zero. Local sections of L is of the form y = 1 ⊗ w with 1
representing parallel section of L0 wrt flat connection and we may define derivative to be

y(j) := 1⊗ w(j) (4.3.13)

Take local frame (vi) of Vρ and we get by setting

Dy =

∣∣∣∣∣∣∣
ϕ(v1) . . . ϕ(vn) y
...

...
...

ϕ(v1)(n) . . . ϕ(vn)(n) y(n)

∣∣∣∣∣∣∣ (4.3.14)

that Dy ∈ LKn and kerD = Vρ.

Now for rank n local system V (realized by nth order ODE) in K(1−n)/2 we get a holomorphic
bundle V = V ⊗ O with canonical holomorphic connection and a natural SLn-oper structure by
defining

Vi =

{∑
i

fi ⊗ vi
∣∣∣∑

i

f
(j)
i ϕ(vi) = 0 ∀j ≤ k − 1

}
(4.3.15)

with (vi) a local frame of V. We get exact sequences

0 Vn−k−1 Vn−1 K 1−n
2 +k 0

∑
i fi ⊗ vi

∑
i f

(k)
i ϕ(vi)(dz)

k

For k = 0 we recover the sequence

0→ Vn−1 → V ϕ−→ K
1−n

2 → 0 (4.3.16)

Let’s check oper conditions: (i) given
∑
i fi ⊗ vi ∈ Vn−k we have

∇

(∑
i

fi ⊗ vi

)
=
∑
i

(dfi)⊗ vi =
∑
i

(f ′i ⊗ vi) dz (4.3.17)

which is indeed in Vn−k+1 ⊗ K, this proves Griffith transversality. (ii) For non-degeneracy: on the
one hand

Vn−k−1 Vn−k ⊗K Vn−k/Vn−k−1 ⊗K = K 1−n
2 +k+1

∑
i fi ⊗ vi

∑
i f

(k+1)
i ϕ(vi)(dz)

k+1

∇

17of course y1, . . . , yn are only defined locally but we may arrange it such that they transition via constant SLn
matrices so Wronskian will remain constant

18i.e. a line bundle whose nth tensor product by itself is trivial line bundle
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so ∇̄ : Vn−k−1/Vn−k−2 → Vn−k/Vn−k−1 ⊗K is indeed isomorphism.
Next we will prove Hejhal’s theorem

Theorem 4.3.6. Holonomy representation of SLn-oper is irreducible

First a lemma about the last quotient line bundle in the filtration and determinant line bundles
of members of the filtration:

Lemma 4.3.7. Ln ∼= K−n(n−1)/2 and detVj = Lj ⊗Knj−j(j+1)/2 with L = V/Vn

Proof. This is a simple computation using isomorphism provided in non-degeneracy condition:

detVj = (detVj−1 ⊗ (Vj/Vj−1)) = . . . =

j⊗
`=1

V`/V`−1

=

j⊗
`=1

LKn−` = LjKnj−
∑n

1 ` = LjKnj−j(j+1)/2

where we have V`/V`−1
∼= V`+1/V`⊗K ∼= . . . ∼= V/Vn−1⊗Kn−` = LKn−`. Take j = n and we have

O = detVn = LnKn2−n(n+1)/2 = LnKn(n−1)/2

of Hejhal’s theorem. Let 0 6= W ⊂ V be ∇-invariant holomorphic subbundle then (W,∇|W) is a
holomorphic bundle with holomorphic connection. Consider W ∩ V =:Wi.

Wi/Wi−1 Wi+1/Wi ⊗K

Vi/Vi−1 Vi+1/Vi ⊗K∼

From commutative diagram above we see that Wi/Wi−1 ↪→Wi+1/Wi⊗K is injective as sheaf map.
Let ri = rank(Wi/Wi−1) and let ` be the smallest such that r` = 1, so 0 = r1 = . . . = r`−1, r` =
. . . = rn = 1. We have sequence of injective sheaf maps between line bundles

Wi/Wi+1 → . . .→Wn/Wn−1 ⊗Kn−i → V/Vn−1 ⊗Kn−i = LKn−i (4.3.18)

thus

deg(Wi/Wi−1) ≤ deg (V/Vn−1)⊗Kn−i = degL+ degKn−i = (g − 1)(n− 2i+ 1) (4.3.19)

and

degW =

m∑
i=`

degWi/Wi−1 = −(`− 1)(n− `+ 1)(g − 1) (4.3.20)

this must vanish sinceW carries holomorphic connection, but it occurs only if ` = 1 thusW = V

Next we show a uniqueness theorem for SLn-opers

Theorem 4.3.8. An SLn-oper structre on (V,∇) is uniquely determined by L = V/Vn−1. In
particular isomorphism class of V is constant on any connected component of Opn.

Strategy: basically we show that each Vj is successively the unique non-split extension from the
one below. The following diagram will be referred to often in the proof:
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0

0 LKn−j

0 Vj−1 V Rj−1 0

0 Vj V Rj 0

LKn−j 0

0

∼

Lemma 4.3.9.

H1(X,LKn−j ⊗R∗i ) =

{
0 i ≥ j − 1

H1(X,K) i = j
(?)

Proof. Fix j and use induction on i backwards. Note by Serre duality we have H1(X,K) ∼=
H0(X,O)∗ which is isomorphic to C, since the only global holomorphic functions on closed Rie-
mann surfaces are constants 19. For first step in induction let i = n − 1, we have Rn−1 = L and

H1(X,LKn−jR∗n−1) = H1(X,Kn−j) =

{
0 n− j − 1 > 0

H1(X,K) n = j + 1
(4.3.21)

Consider second column in the big diagram above with j replaced by i, dualized and tensored by
LKn−j and its associated long exact sheaf cohomology sequence, we have

→ H1(X,LKn−k ⊗R∗i )→ H1(X,LKn−jR∗i−1)
∼−→ H1(X,Ki−j)→ 0 (4.3.22)

where first group is zero by induction.

Lemma 4.3.10. H1(Vj ⊗R∗i ) = (?) as in previous Lemma

Proof. Fix i, proceed by induction on j. Start with j = 1, V1 = LKn−1 by previous Lemma. For
induction step, consider long exact sequence associated with first row of big diagram after -⊗R∗i , we
get

. . .→ H1(Vj−1 ⊗R∗i )→ H1(Vj ⊗R∗i )
∼−→ H1(LKn−j ⊗R∗i )→ 0 (4.3.23)

where the first group is zero by induction

Lemma 4.3.11. H1(Vj−1 ⊗ (LKn−j)∗) = H1(X,K) ∼= C

Proof. Dualize second column of the big diagram and -⊗Vj−1 then take long exact sheaf cohomology
sequence gives

→ H1(Vj−1 ⊗R∗i )→ H1(Vj−1 ⊗R∗j−1)
∼−→ H1(Vj−1 ⊗ (LKn−j)∗)→ 0 (4.3.24)

where the first group is zero by previous lemma.

19and for higher powers of K by same argument we see that H1 will be zero since the corresponding space will be
dual to space of global sections for some line bundle with negative degree
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Now the group mentioned in last lemma is precisely the Ext group for the first column of the
big diagram, therefore we see that either the successive extension for the filtration in oper structure
is trivial i.e. split or it is the unique non-split extension. I’ll skip the argument that the extension
class is indeed not split which is not hard to show, see [Wen16] for the rest of the diagram-chasing.

Proof. Now we finish proof of the theorem. Each Vj is shown to be the unique non-split extension
of LKn−j by Vj−1, therefore V is uniquely determined by L which by Ln ∼= K−n(n−1)/2 is uniquely
determined by an n-torsion line bundle, the n2g choices of which are discrete, so must remain locally
constant on Opn.

Corollary 4.3.12. L is uniquely determined by holonomy ρ, so we get embedding,

Opn ↪→M
(n)
B

(V,∇) 7→ ρ

Proof. Suppose (V,∇1), (V,∇2) have same monodromy representation ρ, but correspond to different
line bundles L � M . Consider short exact sequence 0 → L∗M → V∗ ⊗M → V ∗n−1 ⊗M → 0 and
corresponding long exact sequence of sheaf cohomology,

0→ H0(L∗M)→ H0(V∗ ⊗M)→ H0(V∗n−1 ⊗M)→ . . . (4.3.25)

where first group is zero 20, and by assumption second group is non-trivial, so there must also be,
by exactness of above sequence a nonzero holomorphic homomorphism Vn−1 → M . Now consider
short exact sequence 0→ L∗Kj−n → V∗j → V∗j−1 → 0, after ⊗M for j < n we get

0→ H0(L∗Kj−nM)→ H0(V∗j ⊗M)→ H0(V∗j−1 ⊗M)→ . . . (4.3.26)

where first group is zero by degree reason, and nonvanishing of second group will always imply
nonvanishing of the third, by induction we see that eventually we’ll have H0(V∗1M) 6= 0 but now V1

is a line bundle and deg(V∗1M) = −2(n− 1)(g − 1) < 0 which is a contradiction.

We have seen by now that to each nth order differential operator one can associate an SLn-oper,{
LK

n−1
2

D−→ LK
1+n

2

n-th order ordinary differential operator

}
↔ Opn =

{
SLn-opers

}
/G C (4.3.27)

and given an SLn-oper the three conditions for local system Vρ to be realizable in line bundle L are
satisfied. Now it follows from Hejhal’s theorem cited earlier that

Theorem 4.3.13 (Beilinson-Drinfeld [BD05]). The embedding Opn ↪→M
(n)
B gives an isomorphism

between connected components of Opn and (affine) Hitchin base
⊕n

j=2H
0(X,Kj

X)

Remark 4.3.14. We have seen that for n ≥ 2, SLn-opers must be unstable, e.g. line subbundle V1

has degree (n− 1)(g − 1) > 0 whereas degV = 0, so the subbundle has a bigger slope.

Recall we have

Theorem 4.3.15 (Narasimhan-Seshadri 1965 [NS65]). A holomorphic vector bundle V of degree
zero is stable iff it arise from irreducible unitary representation of fundamental group.

it is now an easy consequence that any SLn-oper for n ≥ 2, the bundle V cannot admit flat
unitary connection

20since these are global holomorphic sections of a degree zero non-trivial line bundle, any non-zero such sections
must not have any zeros (or else its degree will be positive) but that gives a global trivialization!



CHAPTER 4. INTRODUCTION TO OPERS 43

Corollary 4.3.16 (Teleman 1960 [Tel60]). Monodromy of a differential equation

y(n) +Q2y
(n−2) + . . .+Qny = 0 (4.3.28)

cannot be unitary

Recall HN type of holomorphic bundle with holomorphic connection is bounded from above by
the condition µi−µi+1 ≤ 2g−2, now by what we’ve proved above, the SLn-oper filtration saturates
this bound:

degVj/Vj−1 = (n+ 1− 2j)(g − 1) (4.3.29)

In fact the if we write the slope of successive quotients repeated as many times as rank, as when we
defined HN type for HN filtratoin, we will get the tuple

~µ = ((n− 1)(g − 1), . . . ,−(n− 1)(g − 1)) (4.3.30)

jumping down by 2g − 2 from each component to the next. In fact one can show:

Proposition 4.3.17. (V,∇) is an SLn-oper, then the oper filtration is precisely the Harder-
Narasimhan filtration.

Proof. Suffices to show Vj+1/Vj ⊂ V/Vj is maximal destabilizer subbundle (which is how HN filtra-
tion was constructed). Let µmax(V/Vj) denote the maximal slope of any subsheaf 21. Proceed by
induction on j from n− 1. j = n− 1 case is clear since V/Vn−1 is a line bundle. Now assume

µmax(V/Vj+1) = (n− 1− 2(j + 1))(g − 1)(= µ(Vj+2/Vj+1)) (4.3.31)

Let F ⊂ V/Vj be maximally destabilizer subsheaf which is necessarily semistable. Since Vj+1/Vj is
also a subsheaf we have

µ(F) ≥ µ(Vj+1/Vj) > µ(Vj+2/Vj+1) = µmax(V/Vj+1) (4.3.32)

we see that F → V/Vj+1 must be zero by Lemma 4.2.5.

It can also be shown that given holomorphic bundle with holomorphic connection (V,∇) that has
maximal Harder-Narasimhan type, it admits an SLn-oper structure and the filtration is precisely
given by HN filtration.

Theorem 4.3.18. Among holomorphic vector bundles with holomorphic connection, SLn-opers are
characterized by having maximal HN type.

Fact Given any algebraic family of vector bundles {Vt}t∈T parametrized by e.g. a variety T , HN
type is upper-semicontinuous: i.e.

{t ∈ T |~µ (Vt) ≥ ~µ0} (4.3.33)

is closed for any fixed HN type ~µ0, or more intuitively HN type can only jump up not down. It
follows that the set of maximal HN type is closed and further

Corollary 4.3.19.

Opn ↪→M
(n)
B (4.3.34)

is a proper embedding

21also of any subbundle, since any subsheaf can be saturated, i.e. taking the smallest subbundle containing it, which
is of degree ≥ that of the subsheaf
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4.4 G-opers

More generally we may define G-oper for G connected complex simple Lie group, I will briefly go
over its definition and introduce some results about its properties reminiscent of what we proved
above.

First we will recall some basic notions

Definition 4.4.1. A (holomorphic) principal G-bundle PG → X is a G (holomorphic) fibre bundle
over X equipped with right G action that covers 1X (i.e. action respects fibres). A holomorphic
connection on PG is a holomorphic 1-form 22 taking value in Lie algebra of G

ω : TPG → g (4.4.1)

satisfying

• R∗gω = Ad(g−1) · ω, i.e. equivariant wrt G-action

• ω(X]) = X for X ∈ g and X] vertical vector field corresponding to infinitesimal G-action.

Given ρ : G → GL(V ) representation on a vector space V we may associate a vector bundle 23

to PG via PG(V ) = PG ×ρ V := PG× V/ ∼ where

(p, v) ∼ (p · g, ρ(g)−1v) (4.4.2)

A V -valued holomorphic k-differential β̄ is called G-equivariant if R∗gβ̄ = ρ(g)−1 · β̄ for all g ∈ G,

and called horizontal if ιȲ ◦ β̄ = 0 for all Ȳ vertical vector field 24, i.e. if it vanishes whenever
contracted with vertical vectors

Proposition 4.4.2. Any horizontalG-equivariant k-differential β̄ comes from a unique β ∈ Ωk(PG(V ))
via pullback

Example The curvature tensor for a principal G-connection ω is defined by

F (ω) = dω +
1

2
[ω ∧ ω] (4.4.3)

which is G-equivariant and horizontal, therefore it comes from a 2-form in Ω2(PG ×Ad g).

Definition 4.4.3. Let H < G be a subgroup, a reduction of structure group of PG to H is simply
a sub-fibre bundle with fibres H which is itself a principal H-bundle via restriction of original right
action, i.e. PH ⊂ PG.

Given G-connection ω on PG we may use any reduction to H to get

TPH → TPG
ω−→ g→ g/h (4.4.4)

which is G-equivariant and horizontal, thus by above proposition comes from ψ ∈ Ω1(PH ×Ad g/h
called second fundamental form of ω.

Now G-connection ω is called irreducible if ψ ≡ 0 for any H = P some proper parabolic subgroup
25.

22we may think of its kernel as giving a notion of horizontal directions at each point
23PG itself may be glued from copies of U ×G and the transitions are functions U ∩ V → G. One way to think of

associated bundle is a bundle whose transition are these functions composed with ρ.
24a vector field is vertical if it is along fibre, i.e. killed by pushforward p∗
25a subgroup P < G is parabolic if G/P is compact
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Let B < G be a Borel subgroup, and b < g corresponding Lie algebras and x ∈ b a regular
semisimple element, eigenspace decomposition of g corresponding to it

g =

K⊕
i=−K

gi (4.4.5)

is called height-grading, let gj :=
⊕k

i=j gi, we get filtration

gK ⊂ . . . ⊂ g0 ⊂ g−1 ⊂ . . . ⊂ g−K = g (4.4.6)

where summing up to g0 gives back the Borel subalgebra b and b/g1 = t is a Cartan subalgebra,
with respect to which the positively indexed part correspond to positive root spaces. This also gives,
after quotient out by b the filtration

g−1/b ⊂ g−2/b ⊂ . . . ⊂ g/b (4.4.7)

which is B-invariant and can be shown to be independent of choice of x.
We have G-equivariant isomorphism identifying tangent space to flag variety G/B to associated

bundle viewing G as principal-B-bundle over G/B:

T (G/B) ∼= G×B g/b (4.4.8)

Proposition 4.4.4. There exists a unique dense open B-orbit O ⊂ g−1/b with respect to adjoint
B-action corresponding to projection onto each g−α being nonzero, where α is any simple root.

Definition 4.4.5. A G-oper is a triple (PG, PB , ω), where PB is a reduction of structure group of
PG to B, and ω is a holomorphic flat connection on PG such that

• There exists unique Ψ̃ making the diagram commute

PB ×Ad g−1/b

TX PB ×Ad g/b

Ψ̃

Ψ

• for all v ∈ TX, v 6= 0 we have Ψ̃(v) ∈ PB ×Ad O where O is the dense open B-orbit in above
proposition.

I will end by mentioning a theorem in Beilinson-Drinfeld original paper that started the modern
study on opers which now looks quite familiar after our hard work on SLn opers.

Theorem 4.4.6 (Beilinson Drinfeld 1991, §3.1.4 [BD91]). Given (PG, PB , ω) a G-oper

• Oper structure is unique, i.e. PB ⊂ PG is the Harder-Narasimhan flag

• Aut(PG, ω) = 1

• (PG, ω) cannot be reduced to non-trivial parabolic subgroup, i.e. the connection ω is irre-
ducible.



Chapter 5

Convex projective structures on
surfaces
Martin Bobb (UT Austin)

Motivation: in higher dimension hyperbolic geometry is rigid, so we should be open to allow defor-
mation into real projective structures to have any hope for a deformation theory.

5.1 (G,X)-structures

Definition 5.1.1. Let G be a Lie group acting strongly effectively and transitively 1 on a connected
manifold X. A (G,X)-structure on M is an atlas {(U,ϕU )} with images in X and transition
functions in G.

This gives a developing map dev : M̃ → X, and a holonomy representation hol : π1(M) → G (see
Chapter 3 on complex projective structures).

Theorem 5.1.1 (Ehresmann-Thurston principle). If M is a compact (G,X)-manifold and ρ0 is its
holonomy, then ρ sufficiently close to ρ0 is also the holonomy of some (G,X)-structure on M .

Example 5.1.2. (PSL(2,R),H2)-structures, are (Riemannian) hyperbolic metrics
(PGL(n+ 1,R),RPn)-structures are real projective structures
(Aff(n),An) are affine structures.

5.2 Convex projective structures

We care about (SL(3,R),RP2)-structures.

Definition 5.2.1. A subset Ω ⊂ RPn is a convex projective domain when it is open, does not
contain a projective line and is convex.

Facts:

1. We can define a Hilbert metric on Ω. Take two points x, y. There is a unique line going
through intersecting Ω at z and w. Define the distance between x and y as

dΩ(x, y) =
1

2
log([z : x : y : w])

1g|U = h|U on some open nbd U if and only if g = h

46
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2. Aut(Ω) = Stab(Ω) in SL±(n+ 1,R) acts by isometries for this metric;

3. if Ω is an ellipsoid, then you get the Klein model for hyperbolic space.

Definition 5.2.2. Let Γ < Aut(Ω) be discrete and cocompact, then we say Ω is divisible and Γ is
dividing.

Remark 5.2.3. A random convex domain will have trivial automorphism group.

Definition 5.2.4. Ω∗ = {w ∈ (RPn)∗ | w ∩ Ω = ∅}

The dual domain can be thought as hyperplanes disjoint from the domain.

Theorem 5.2.1. If Ω is convex, then Ω∗ is convex. Moreover if Γ y Ω dividing, then Ω∗ x Γ
dividing.

Definition 5.2.5. A convex projective manifold M is a (SL±(n + 1,R),RPn)-manifold such that
the developing map is a diffeomorphism onto some convex projective domain.

Remark 5.2.6. So these are actually complete structures, i.e. quotients of the domain Ω. So they
are determined by their holonomy. Convexity is nevertheless natural for real projective structures on
a closed surface: Choi proved in his thesis that any projective structure on a surface decomposes into
π-annuli (specific non-convex projective structures on annuli) and convex structures with boundary
having diagonalizable holonomy with distinct eigenvalues.

5.3 Bending and bulging

Bending is defined for any (G,X)-structure. Given ρ0 : π1(M)→ G some holonomy, let C ⊆M be
a separating submanifold. We get an amalgamated free product decomposition for π1(M). Consider
the centralizer of the image of π1(C) in G. For any path in that, we can bend the representation
and get a path of representations. Anytime you have non trivial centralizer you get at least locally
holonomies of nearby geometric structures.

In the convex projective setting: suppose that ρ0 : π1(S)→ SO(2, 1) < SL(3,R) is the holonomy
of a hyperbolic structure. The holonomy around a closed geodesic will be conjugate to a diagonal
matrix.

ρ0(C̃) ∼

 eλ

1
e−λ

 .

The centralizer is

Z

 eλ

1
e−λ

 =

〈 es

1
e−s

 ,

 e−t

e2t

e−t

〉

and we can do bending. The geometric picture corresponding to it is that the convex domain gets
bulged in the direction of some collection of points (coming from neutral fix points of the matrices in
the centralizer). Bending using the second family of matrices, we get a so called bulge deformation.
By Ehresmann-Thurston principle these are projective structures, but a priori it is not clear that
these should be convex projective. They actually turn out to be convex projective for all times t.
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5.4 Convex projective structures on surfaces

Let B(S) the space of convex projective structures on S. Let Hit3(S) be the Hitchin component for
SL(3,R) repesentations. The character variety has two more components: one containing the trivial
representation and one containing Barbot representations (coming from upper block embedding of
SL(2,R) into SL(3,R)), which are Anosov, at least for a bit. The Hitchin component is of course
the one containing Teichmuller space, i.e. the irreducible embedding of SL(2,R) into SL(3,R).

Theorem 5.4.1 (Goldman). hol : B(S)→ Hit3(S) is a diffeomorphism.
In particular, dim(B) = 16g − 16.

Ehresmann-Thurston principle tells us that hol is a local diffeomorphism, but actually Goldman
theorem implies it is a global diffeomorphism.

Remark 5.4.1. There is a retraction of B(S) onto T (S) which is mapping class group invariant;
this is seen as a retraction of Hit3(S) onto the real locus. In particular the mapping class group
acts properly on B(S). If you parametrize teichmüller space by quadratic differentials then fibers of
this retraction are cubic differentials.

5.5 Flatness in higher dimension

Example 5.5.1. Let Ω = ∆n be the interior of the convex hull of a basis in RPn. So it is a triangle
in dimension 2. Automorphisms of this domain are given by permutations of the points and all the
diagonal matrices

Aut(Ω) = Rn oSn

This feels a lot like Euclidean isometries, and indeed this Ω is bilipschitz to Euclidean space. So
there is flatness going on here. By Bieberbach the only compact convex projective manifolds coming
from actions on this domain are virtually tori.

When n > 2, since the Hilbert metric only feels the plane on which these triangles live, these
triangles are flat subspaces. Benoist (2006) proved that a divisible domain with properly embedded
triangles in RP3 has a quotient which is an amalgam of cusped hyperbolic 3-manifolds glued along
cusp cross sections (covered by these triangles).

5.6 Goldman parametrization of B(S)

Let us start with a divisible convex domain Γ y Ω ⊂ RP2.

Lemma 5.6.1. If there exists a segment in ∂Ω, then Ω must be the triangle.

Proof. By contradiction let σ = [a, b] be a segment in the boundary of Ω. Let c ∈ ∂Ω \ σ. Consider
the triangle T = T (a, b, c) and a sequence of points yi in it converging to some y ∈ [a, b]. Let K
be a compact set such that ΓK = Ω. Let γi ∈ Γ st γiyi ∈ K. Notice that in the Hilbert metric
d(yi, [a, c])→∞ and d(yi, [b, c])→∞. Let Ti = γiT . Then γiT subconverges to some T∞, which is a
triangle. Furthermore its edges at infinity are infinitely far from a point yi ∈ Ω, hence its boundary
is contained in ∂Ω, so it must be the whole thing.

More generally (Danciger, Kassell.) if Ω ⊂ RPn is divisible and there is a segment in the
boundary, then it contains a properly embedded triangle. This happens if and only if the domain
is not δ-hyperbolic for the Hilbert metric. Notice that this does not say that the triangle contains
the edge. Notice that as mentioned before the Hilbert metric on a triangle is bilipschitz (hence
quasi-isometric) to the Euclidean plane. Indeed triangles are isometric to the hex-metric on R2.
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Lemma 5.6.2. If Ω is divisible and not a triangle, then the boundary is C1.

Proof. Suppose it is not at z ∈ ∂Ω. Then there are at least two supporting lines, and all the positive
linear combinations are supporting lines, so there is a segment in the boundary of the dual domain.
By the previous lemma, Ω is a triangle. But then our domain is a triangle (in general (Ω∗)∗ = Ω).

Therefore we get that if S = Ω/Γ is a convex projective surface (closed and with negative Euler
characteristic), then ∂Ω is C1. This is an Anosov behavior.

Proposition 5.6.1 (Goldman). ∀γ ∈ Γ either it is the identity or it is conjugate to a diagonal
matrix with distinct eigenvalues (µ, 1

µλ , λ) with 0 < µ < 1 < λ.

Proof. We have to exclude the following cases:

1. there is a complex eigenvalue. This gives a fixed point, so the action is not poper. Discard.

2. there is a real jordan block of rank 2. This gives two fixed points; the lines between them
supports the second one, hence we get segments in the boundary. Discard by previous lemmas.

3. a rank 3 jordan block. This gives a cusp, so a curve of length 0. Discard.

5.6.1 Goldman Parametrization

It is the analogue of Fenchel-Nielsen parametrization of Teichmuller space. Let S = Ω/Γ for a
divisible convex set, be a closed surface with negative E uler characteristic. Choose {Pi} a pants
decomposition. We need to parametrize convex projective structures on a pair of pants P where
holonomy of boundary curves is as in the above proposition. For each curve in the pants decom-
position we get two parameters essentially coming from the eigenvalues of the holonomy, say we
take

λ

µ
and λµ ,

where the first measures the length of the curve in the Hilbert metric, and the second one measures
how far you are from being hyperbolic (= 1 if and only the holonomy can be made into a hyperbolic
isometry). But then there are two more internal parameters: given a pair of pants decompose into
two ideal triangles. For triangles the situation is the following: on a triangle there is a unique
projective structure; but the ones coming from a pants decomposition have more data, namely
supporting hyperplanes. The deformation space of projective structures on an ideal triangle is R.
Hence the space of convex projective structure on the pair of pants P is 8-dimensional, actually
equal to R8.

Now given a pair of pants we get 8 parameters, and there are 2g−2 of them. But we over counted
curves, so remove 3g−3. Then keep track of gluing data (Fenchen-Nielsen and bulging parameters).
So a total of 16(g − 1) parameters.

Theorem 5.6.3 (Benoit,Koszul). If F(M) ⊂ χ(M,SL±n ,R) are holonomies of convex projective
structures, then it is open and closed.

Therefore the Hitchin component is entirely made of holonomies of convex projective structures.



Chapter 6

Analytic perspective on convex
projective geometry
Xian Dai (Rice University)

Let S be a compact oriented surface of genus g ≥ 2.

Theorem 6.0.1. There exists a correspondence between convex RP2-structures on S and pairs
(J, U) of a complex structure and a holomoprhic cubic differential on it.

Idea of proof. For the forward direction, let S = Ω/Γ for some convex domain Ω ⊂ R2 ⊂ RP2.
Define a Monge-Ampere type PDE, and get a hyperbolic affine sphere H which is asymptotic to the
cone over Ω ⊆ RP2 in R3. Get an affine metric on H, hence one on S. We also get a connection,
and from it we get the cubic differential.

Outline:

1. Affine geometry, its invariants

2. Affine spheres, examples

3. Formulate hyperbolic affine spheres in R3, associated PDEs

4. John Loftin’s Theorem

6.1 Affine geometry

Goal: study hypersurfaces in Rn+1 and properties thereof which are invariant under the group of
special affine transformations (i.e. SL(n+1,R) and translations, so volume is preserved).

Given H a smooth hypersurface, we want a vector field ζ along H which is transverse to H at all
points and is invariant under special affine transformations in the sense that for any special affine ϕ
we have

ϕζH = ζϕ(H)

. Such vector is called affine normal.
We get equations of Gauss and Weingarten for affine normal ζ

DXY = ∇XY + h(X,Y )ζ,X, Y ∈ TH
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DXζ = −s(X) + Γ(X)ζ

where D is the flat connection on Rn+1. Requirement for the affine normal:

a) Γ(x) = 0 (equivalent to “equiaffine condition”);

b) |det(X1X2 . . . XnJ)| = 1, h(Xi, Xj) = δij , Xi ∈ TyM

The affine normal is well-defined up to sign; by convention, we pick ζ towards convex part of M .
Another geometric characterization due to Blaschke: take a point, take local parallel planes to

the tangent plane, intersect with H and take center of mass of the resulting plane curve; this defines
a curve starting at the point, the tangent of which at the point is the affine normal. (this is not
quite the right thing, but kind of, up to constants and reasonable parametrizations of the curve).

Definition 6.1.1. ∇ is called the Blaschke connection; when H is strictly locally convex, h(X,Y )
is positive definite and is called the affine metric. S is the affine shape operator.

6.1.1 Affine spheres

Definition 6.1.2. If all of the affine normal lines meet at a point p, H is called an affine sphere
(with center p.) When p =∞ (i.e. affine normals all parallel) H is called an improper (or parabolic)
affine sphere

Proposition 6.1.3. Affine sphere is improper ⇐⇒ S = λI, λ = 0.

Proof. If affine normals are parallel (in synthetic Euclidean sense), we can find λ nonvanishing
function s.t. λζ is a parallel section (under Euclidean parallel transport):

0 = DX(λζ) = X(λ)ζ + λDXζ = X(λ)ζ − λS(X)

for all X. This happens if and only is iff S(X) = 0 and λ is constant.

Proposition 6.1.4. For a proper affine sphere, S = αI where α 6= 0

Proof. ⇐: If S(X) = λX, consider the vector field Y = f(x) + 1
λζ. where f : H → Rn+1 is an

isometric immersion. Then

DXY = DX

(
f(x) +

1

λ
ζ

)
= Xf +

1

λ
DXζ = f∗X −

1

λ
f∗(SX) = 0

Hence Y (x) is constant, which =⇒ that affine normals meet at Y (x).
=⇒ : if all affine normals meet, the p = y(x) = f(x) + λζ is the center and

0 = DXp = DXf(X) +DX(λζ) = F∗(X) + (Xλ)ζ + f∗(λS(X))

f∗(X) = f∗(λS(X)) =⇒ S(X) = 1
λX.

Proper affine spheres come in two types: if affine normals point away from the center, the affine
sphere is called hyperbolic; else if they point towards the center, the affine sphere is elliptic.

Example 6.1.5. Improper: f(x, y) =
(
x, y, 1

2 (x2 + y2)
)
; ζ = (0, 0, 1).

Example 6.1.6. Elliptic: x2

a2 + y2

b2 + z2

c2 = 1. (Ellipsoid; affine-equivalent to a sphere.)

Example 6.1.7. Hyperbolic: x2 + y2 − z2 = 1
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6.2 Hyperbolic affine spheres

Let us consider a hyperbolic affine sphere. Up to rescaling and translation we can assume the center
is at 0 and λ = −1, so that ζ(x) = f(x), i.e. the affine normal is just the position vector.

Theorem 6.2.1 (Cheng-Yau). Given a bounded convex domain Ω ⊆ Rn, there exists a unique
properly embedded hyperbolic affine sphere1 asymptotic to the cone over Ω. Indeed it will be given
by

H = {− 1

u(x)
(1, x) | x ∈ Ω}

if we think of Ω as being embedded in the inhomogenous affine chart x0 = 1, where u is a smooth
solution, continuous up to the boundary, which is the unique convex soltuion of the Monge Ampere
PDE

detD2u =

(
−1

u

)n+2

, u = 0 on ∂Ω

where D2 is the Hessian. Moreover any such hyp affine sphere is asymptotic to the boundary of the
cone given by the convex hull of H itself.

The affine metric is given by

h = − 1

u(x)

∂2u

∂xi∂xj
dxidxj

Also properness of the embedding is equivalent to completeness of h.

6.2.1 Pick form

Define a 3-tensor C, called Pick form on the tangent space TH to an affine sphere H as

C : TH⊗3 → R

C(X,Y, Z) = h(∇XY −∇hXY, Z)

1From now on center at 0 and mean curvature λ = −1
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where ∇ is Blaschke connection and ∇h is the levi civita of h.
Let us see it is symmetric. Let KX = ∇−∇h be the endomorphism measuring the difference of

the two connections.

∇Xh(Y,Z) = ∇X(h(Y,Z))− h(∇XY, Z)− h(Y,∇XZ)

and we have ∇hXh = 0. By Codazzi we have

∇Xh(Y,Z) = ∇Y h(X,Z)

moreover by torsion freeness we have
KXY = KYX

hence we get that h(Y,KXZ) is symmetric in X,Y . This is actually just a scalar multiple of C.
Moreover tr(KX) = 0. (Apolarity condition). Follows from equiaffine condition (preservation of
volume).

Remark 6.2.1. For the standard hyperboloid the pick form is identically zero. This is not obvious,
follows for a long tricky computation.

6.3 Hyperbolic affine spheres in R3

Let’s now consider case n = 2 (following C.P. Wang). What are the conditions for a 2-dimensional
surface to be an affine hyperbolic sphere in terms of conformal geometry given by affine metric.
Suppose we have a metric and we choose local conformal coordinates for it on the surface x = x+ iy.
The affine metric in this conformal class will be

h = eψ|dz|2

for some function ψ. The parametrization for our surface can be written as

f : D→ R3

The equations reduce now to

DXY = ∇XY + h(X,Y )f

DXf = X

because s(X) = −X and we want also the condition that det(X1, X2, f)2 = 1, with X1, X2 an
orthnormal basis for h. Use X1 = e−1/2ψfx and X2 = e−1/2ψfy. Now complexify everything by
tensoring with C and consider the frame {fz, fz̄, f}. Then we get

h(fz, fz) = 0

same for z̄ and
h(fz, fz̄) = 1/2eψ

Dfzfz = fzz

and similarly

Dfz̄fz = fz̄z

.
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The structure equations become

fzz = ψzfz + Ue−ψfz̄

fz̄z̄ = Ūe−ψfz + ψz̄fz̄

fzz̄ =
1

2
eψf

where U is a cubic differential.
The Levi-Cività connection may be written in term of ψ.
From apolarity condition trkX = 0∀X ∈ TxH: there are only two terms: Ciii, Cī̄īi 6= 0 (where i

is for ∂z, ī for ∂z̄.) and C111 = 1
2e
ψC 1̄

11 = U , ∂̄U = 0; C1̄1̄1̄ = 1
2e
ψC1

1̄1̄. Thus U is the complexified
Pick differential.

Take the structure equations above + integrability condition (mixed partials commute, Frobenius
theorem), to get

ψzz̄ + |U |2e−2ψ − 1

2
eψ = 0 Uz̄ = 0

Remark 6.3.1. These are the Hitchin equations for SL(3,R) Higgs bundles.

Suppose we are given U which is holomorphic w.r.t. z, we can find ψ, h solving the PDE above.
That is expressed in local coordinates, if we want a global PDE on a compact Riemann surface Σ
of genus g ≥ 2, we introduce h0 = eφ|dz|2 a hyperbolic metric of constant curvature −1. We then
write the affine metric h = eφ+u|dz|2 = eψ|dz|2, φ + u = ψ. Now u is a global function and we get
ageometric PDE

∆0u+ 4‖U‖20e−2u − 2eu + 2 = 0

.

Proposition 6.3.2. This has a unique C∞ solution.

Proof. Existence: (from general PDE theory) suffices to find subsolution, supersolution. u ≡ 0 is a
subsolution; for supersolution: define G = max g(x) ≥ 0, let m be positive root of 2x3−2x2−G = 0;
u ≡ logm is a supersolution.

Smoothness: elliptic regularity.
Uniqueness: maximal principle.

Hence, there esists a unique C∞ affine metric with given U .
Now, if we know U and h, we can solve for f in the structure equations, and thus find the affine

sphere in R3.

Proposition 6.3.3 (Wang). A hyperbolic affine sphere H with mean curvature -1 and center 0
admitting P ≤ SL3R acting properly discontinuously is entirely determined by a conformal structure
on S and a holomorphic cubic differential U of K3.

Theorem 6.3.4 (Loftin). {Convex RP2 structures on S} ↔ {(J, U)}

Corollary 6.3.5 (Goldman). The deformation space of convex RP2 structures is the bundle of
holomorphic cubic differentials (a holomorphic vector bundle) over Teichmüller space (which is the
Hitchin component.)

Remark 6.3.6. If we run the same process for genus 1: get

∆0u+ 4‖U‖20e−2u − 2eu = 0

K3 trivial; ‖U‖20 constant. If this constant is 0, there are no solutions to the PDE. If nonzero:
u constant. Hence h = eug0 is flat. But but all affine spheres in R3 with flat affine metrics are
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classified. In particular only one of them is hyperbolic, called the Titeica surface xyz = C > 0
(x, y, z > 0.)

=⇒ any properly convex RP2 structure on a genus-1 surface has developing image Ω a triangle.



Chapter 7

Anosov representations
Max Riestenberg (UT Austin)

Significant parts of these notes were taken from a series of talks by Dick Canary at a “Graduate
school on Geometry of Teichmuller spaces” held by the Simons Center for Geometry and Physics in
April 2019. Any mistakes are my own. Many of the theorems discussed in these notes are much more
general in the source material; here we almost exclusively focus on projective Anosov representations
in SL(d,R), and state the theorems in this context only.

7.1 Brief history

Anosov structures were introduced by Labourie in 2004 as dynamical structures on negatively curved
manifolds [Lab06]. His primary application was to prove that Hitchen representations are discrete
and faithful. In 2012, Guichard and Wienhard extended his definition to define Anosov representa-
tions for Gromov hyperbolic groups to semisimple Lie groups, and showed Anosov representations
of surface groups model geometric structures [GW12]. In 2013, Kapovich, Leeb and Porti gave
several new characterizations of Anosov representations as generalizations of convex cocompact rep-
resentations in rank 1 and initiated a systematic study of geometric structures associated to Anosov
representations [KLP18].

For any semisimple (even reductive) Lie group G, there are in general several (finitely many)
possible notions of Anosov one can study. In this talk, we will mainly focus on the case of projectively
Anosov representations of surface groups in SL(d,R). In some sense this case is the most basic and
crucial to the theory. We will also discuss the link between projective Anosov representations and
convex cocompact actions on projective space due to Danciger, Gueritaud and Kassel [DGK18b],
including the special case of pseudo-Riemannian hyperbolic geometry [DGK18a].

7.2 Motivation: Convex cocompact representations

Let Γ be a finitely generated free group or closed surface group of genus at least 2. Given a
representation ρ : Γ → PSL(2,R), we consider the orbit map Γ → H2 given by γ 7→ γx0 for
some basepoint x0. We view Γ as a hyperbolic metric space by constructing its Cayley graph and
using the word metric. We say that ρ is convex cocompact if this orbit map is a quasi-isometric
embedding. (The terminology “convex cocompact” should call to mind a geometric structure; this
will be addressed later.)

Example: If S is a closed surface of genus at least 2, and ρ : π1(S)→ PSL(2,R) is discrete and
faithful, then the orbit map is a quasi-isometry, and notice that H2/ρ(π1(S)) is homeomorphic to
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S. In particular, there is a dictionary between geometric structures on S and convex cocompact
representations.

7.2.1 Stability

Lemma 7.2.1 (Stability of convex cocompact representations). If ρ0 : Γ → PSL(2,R) is convex
cocompact, then there is a neighborhood of ρ0 in Hom(Γ, PSL(2,R)) consisting entirely of convex
cocompact representations.

Proof. We will use a local-to-global principle of hyperbolic metric spaces: Given (L,A), there exists
s, L′, A′ such that if the restriction of the orbit map to an s-ball in the Cayley graph is an (L,A)
quasi-isometric embedding, then the orbit map is (globally) a (L′, A′) quasi-isometric embedding.

Armed with that, assume ρ0 is convex cocompact, so there exists (L0, A0) such that the orbit map
is an (L0, A0)-quasi-isometric embedding. In particular, it is a (say) (2L0, A0 + 1)-quasi-isometric
embedding when restricted to an s = s(2L0, A0 + 1)-ball. Now for ρ near enough ρ0, ρ is also a
(2L0, A0 + 1) on an s-ball, hence by the local-to-global principle is convex cocompact.

For a proof of the local-to-global principle, see my answer here.

7.2.2 Limit maps and dynamics

For a hyperbolic metric space X, define its Gromov boundary ∂∞X to be the space of geodesic
rays up to bounded equivalence. It has a topology with the informal description “geodesic rays
that stay near for a long time are close together.” A quasi-isometric embedding f : X → Y of
hyperbolic metric spaces induces an embedding f̂ : ∂∞X → ∂∞Y . If f is a quasi-isometry, f̂ is a
homeomorphism, so the boundary of a hyperbolic metric space is well-defined. We may immediately
conclude the following:

Lemma 7.2.2 (Limit maps of convex cocompact representations). If ρ : Γ→ PSL(2,R) is convex
cocompact, then there is a ρ-equivariant embedding ξρ : ∂∞Γ→ ∂H2 called the limit map.

Moreover, ξ is dynamics-preserving. Dynamics-preserving means that ξ takes the attracting
fixed point of γ to the attracting fixed point of ρ(γ). We can see this easily in the case Γ is a closed
hyperbolic surface group, because of equivariance.

7.2.3 Linear algebra

We now start looking towards higher rank Lie groups. Rather than slog through the general Lie
theory, we will lean on our knowledge of linear algebra to study G = SL(d,R). Any matrix a ∈
SL(d,R) may be written in the form a = kdk′ where k, k′ ∈ SO(d) and d is a diagonal matrix with
entries

dii = σi(a) and σi(a) ≥ σi+1(a) for all i

Notice that σ1(a) is the operator norm of a and is the length of the major axis of a(Sd−1). In
general if i ≥ 2, σi(a) is the length of the ith minor axis of a(Sd−1). Let U(a) := 〈ke1〉 be the major
axis of a(Sd−1), and let H(a) := 〈ke1, ke2, . . . ked−1〉 be the “attracting hyperplane.”

For actions on the hyperbolic plane as the upper half space with basepoint x0 = i, we have

d(x0, ρ(γ)x0) = log
σ1(ρ(γ))

σ2(ρ(γ))
.

(Points in H2 correspond to inner products on R2, which is why singular values show up here.) By
equivariance, it’s enough to ask that distances to the basepoint satisfy the quasi-isometry condition,

https://math.stackexchange.com/questions/1396257/are-local-quasi-geodesics-already-quasi-geodesics-in-hyperbolic-spaces
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so ρ is convex cocompact if and only if there exist L ≥ 1 and A ≥ 0 so that

1

L
|γ| −A ≤ log

σ1(ρ(γ))

σ2(ρ(γ))
≤ L|γ|+A

where |γ| is the word length of γ. In fact, an easy argument shows that

d(x0, γx0) ≤ max
i
d(x0, γix0)|γ|,

where the maximum is over generators γi, holds for any action of a finitely generated group on a
metric space, so we only ever need the lower bound.

Exercise (Cartan property). If ρ is convex cocompact and γn → z ∈ ∂Γ then

U(ρ(γn))→ ξ(z) and ξ(γ+
n )→ z

where γ+ is the attracting fixed point of γ.

The minimal translation length on H2 of an element g ∈ PSL(2,R) is given by

α1(g) := log
λ1(g)

λ2(g)
= inf
x∈H2

d(x, gx)

where λi is the modulus of the ith eigenvalue of (a lift of) g. Write ‖γ‖ for the translation length of
γ on the Cayley graph

‖γ‖ := min
x∈Γ

d(x, γx).

The following somewhat surprising result tells us that the orbit map coarsely preserves distances
to the basepoint if and only if the representation coarsely preserves translation lengths.

Exercise (“Proximality result”). An action ρ : Γ→ PSL(2,R) is convex cocompact if and only if

(1/L)‖γ‖ −A ≤ α1(ρ(γ)) ≤ L‖γ‖+A.

A far reaching generalization of this result is due Delzant-Guichard-Labourie-Mozes and [GGKW17a]
prove an analogue of this result for Anosov representations.

7.2.4 Geometric structures

If S is a closed hyperbolic surface, the space of convex cocompact representations of π1(S) into
PSL(2,R) is both open (by what we proved) and closed (by the Margulis lemma). (The Margulis
lemma implies that the set of discrete faithful representations of π1(S) is closed and discrete faithful
representations of π1(S) are automatically convex cocompact.) The space of convex cocompact
representations are two components of Hom(π1(S), PSL(2,R)). The quotient of each of these is a
copy of the Teichmüller space of S. The Teichmüller space of S is homeomorphic to a ball of (real)
dimension 6g − 6.

On the other hand, Hom(Fn, PSL(2,R)) = PSL(2,R)n is connected and the set of convex
cocompact representations is open but not closed.

Teichmüller theory enjoys interesting deformations (e.g. bending), limit maps, and associated
geometric structures. For any word hyperbolic group Γ we can define ρ : Γ→ PO(n, 1) ∼= Isom(Hn)
to be convex cocompact if some (equivalently, every) orbit map is a quasi-isometric embedding. The
same theory goes through: the space of such representations is open, we have associated equivariant
limit maps, and associated geometric structures. The name “convex cocompact” comes from the
following fact:
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Theorem 7.2.3. An action ρ : Γ → PO(n, 1) is convex cocompact if and only if there exists a
convex subset C of Hn such that ρ(Γ) acts properly discontinuously and cocompactly on C.

For example, quasifuchsian representations ρ : π1(S) → H3 are convex cocompact. In fact the
theory of convex cocompact representations works for any rank 1 symmetric space of noncompact
type: these are the real, complex, quaternionic and octonionic hyperbolic spaces.

7.2.5 Failures of naive generalizations

“Higher Teichmüller theory,” perhaps better called higher rank geometry, is the study of represen-
tations of Gromov hyperbolic groups into higher rank Lie groups. Here we mean the real rank of
the reductive Lie group G, which is the dimension of a maximal flat in its associated Riemannian
symmetric space. Each such representations correspond to an action by isometries on the associated
symmetric space. However, a naive notion of convex compactness for representations Γ→ G fails to
share the good properties we want.

If we use the quasi-isometric embedding definition, stability fails: the Morse lemma and local to
global principle of hyperbolic metric spaces fails for the Euclidean plane, so it fails for any higher
rank symmetric space. In fact, Guichard produced an example of a representation

ρ : F2 → SL(2,R)× SL(2,R) ⊂ SL(4,R)

whose orbit map is a quasi-isometric embedding but ρ is a limit of representations which fail to be
discrete and faithful. (Take two complete hyperbolic structures on a pair of pants, with one cuff
being hyperbolic in one structure but a cusp in the other, and vice versa for another cuff.)

If we seek actions which act cocompactly on convex subsets of symmetric spaces, we find too few
representations (with too limited deformation theory).

Theorem 7.2.4 (Kleiner-Leeb [KL06], Quint [Qui05]). If ρ : Γ → SL(d,R) acts properly and
cocompactly on a convex subset C of the symmetric space, then ρ “essentially” comes from a
representation of a rank one Lie group into SL(d,R).

We will study “Anosov representations”, which generalize convex cocompact representations
in rank 1, are stable, have limit maps, and often have associated actions which are proper and
cocompact on domains of discontinuity.

7.3 Anosov Representations

For a given semisimple Lie group G, there are several possible notions of Anosov that can be
studied. We will focus on projective Anosov representations into SL(d,R). We start with a simple
characterization due to Guichard and Wienhard in terms of limit maps.

Each Grassmanian Gr(k, d) of k-planes in Rd plays a role as a sort of boundary for the symmetric
space associated to SL(d,R).

Definition 7.3.1 (Limit map). Let Γ be Gromov hyperbolic and ρ : Γ → SL(d,R) be a represen-
tation. A limit map ξkρ for ρ is a continuous ρ-equivariant map

ξkρ : ∂Γ→ Gr(k, d).

Two limit maps ξk and ξd−k are transverse if whenever x 6= y in ∂Γ then ξk(x)⊕ ξd−k(y) = Rd.
If k ≤ d− k then ξk and ξd−k are compatible if ξk(x) ⊂ ξd−k(x) for all x ∈ ∂Γ.

Theorem 7.3.2 (Guichard-Wienhard [GW12]). Let ρ : Γ→ SL(d,R) be an irreducible representa-
tion of a hyperbolic group. Then ρ is projective Anosov if and only if it has compatible transverse
limit maps ξ1 and ξd−1.
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We don’t have a definition of Anosov yet, so we can’t yet prove this theorem, but let’s at least
see what mileage we get out of having an irreducible representation and compatible transverse limit
maps. Note that there are many flavors of Anosov besides projective Anosov, and they don’t admit
a characterization quite as simple as this one. Part of what this result tells us is that projective
Anosov representations are easier to work with than other flavors.

Let ρ : Γ→ SL(d,R) be an irreducible representation of an infinite hyperbolic group with a limit
map ξ1 : ∂Γ → P(Rd). By equivariance, ξ1(∂Γ) is preserved by ρ(Γ), hence so is its span, which
is then an invariant subspace and must be all of Rd by irreducibility. If γ+ is the attracting fixed
point of γ in ∂Γ, then ξ1(γ+) is an attracting fixed point for the action of ρ(γ) on P(Rd), i.e. ξ1(γ+)
is an attracting eigenline for ρ(γ). We say that ξ1 is dynamics-preserving. It follows that ρ(γ) is
proximal, i.e. its eigenvalue of maximal modulus is real and has multiplicity one. Similarly, one may
show that ξd−1(γ−) is the repelling hyperplane of ρ(γ).

We’ve displayed nice dynamical properties of this representation. This is really the (original)
defining feature of Anosov representations: they carry the good properties of the geodesic flow on a
negatively curved space over to some associated bundle.

7.3.1 Labourie’s original definition

Assume Γ = π1(M) for M a closed negatively curved manifold. Its unit tangent bundle UM has a
geodesic flow which is Anosov. In detail:

We have the identification

UM̃ =
(
∂M̃ × ∂M̃ −∆

)
× R = (∂Γ× ∂Γ−∆)× R

and in these coordinates the geodesic flow is φ(x, y, s) = (x, y, s + t). The geodesic flow is clearly
invariant under the Γ action γ(x, y, s) = (γx, γy, s), as it must be since Γ acts by isometries; hence

it descends to UM ∼= UM̃/Γ. We have the splitting into stable, invariant and unstable subbundles:

T (UM) = V− ⊕ V0 ⊕ V+

where

if v is a section of V− then ‖(φt)∗v‖ ≤ Ce−at‖v‖
if v is a section of V0 then ‖(φt)∗v‖ = ‖v‖
if v is a section of V+ then ‖(φt)∗v‖ ≥ Debt‖v‖

for some constants a, b, C,D > 0. We say the flow is contracting on V− and dilating on V+. (In
some places, the condition on V+ is called “expanding,” but we will reserve that terminology for a

dynamical notion due to Sullivan.) (Draw a picture for M̃ = H2.)
These properties are independent of the norm ‖·‖ on UM ; if they hold for one such norm, then

they hold for any continuously varying norm. The idea of an Anosov representation ρ : Γ → G to
a semisimple Lie group G is to mimic these dynamics on a bundle associated to ρ. In case Γ is a
general Gromov hyperbolic group, Guichard and Wienhard extend this definition by using a flow
space associated to Γ defined by Gromov in place of UM̃ [GW12].

We will use the associated bundle Eρ = Ẽ/Γ where Ẽ is the trivial bundle

Ẽ = UM̃ × Rd

and Γ acts on Ẽ as the group of covering transformations in the first factor and via ρ in the second
factor. The bundle Eρ over UM has a “flat connection” which means that a smooth curve in UM
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lifts to a curve which is locally constant in the (local) Rd factor. The geodesic flow φt on UM lifts

to a flow ψt on Eρ parallel to the flat connection. Explicitly, the flow ψ̃t on Ẽ given by

ψ̃t((x, y, s), v) = ((x, y, s+ t), v) = (φ̃t(x, y, s), v)

descends to a flow ψt on Eρ. If ρ has transverse limit maps ξ1 and ξd−1, one gets an equivariant
splitting

Ẽ = Ξ̃⊕ Θ̃

where Ξ̃ is the line bundle over UM̃ whose fiber over (x, y, s) is the line ξ1(x) and Θ̃ is the hyperplane

bundle over UM̃ whose fiber over (x, y, s) is the hyperplane ξd−1(y). By equivariance of the limit
maps, this descends to a splitting

Eρ = Ξ⊕Θ.

Notice that the flow ψt preserves the splitting Eρ = Ξ⊕Θ by construction.

Definition 7.3.3 ((close cousin to) Labourie’s definition of Anosov). A representation ρ : Γ →
PSL(d,R) with compatible transverse limit maps is projective Anosov if the flow is contracting
on Hom(Θ,Ξ) = Ξ ⊗ Θ∗. Equivalently, for some (every) continuous norm ‖·‖ on Eρ, there exists
C, a > 0 such that if m ∈ UM, v ∈ Ξm, w ∈ Θm and t > 0 then

‖ψt(v)‖φt(m)

‖ψt(w)‖φt(m)
≤ Ce−at ‖v‖m

‖w‖m
.

The flow is also automatically contracting on Ξ, by a simple tensor analysis.

In this framework, stability of Anosov representations follows immediately from a standard result
in dynamics that hyperbolic systems are stable [Lab06].

7.3.2 Examples

Any real hyperbolic convex cocompact representation is projective Anosov, e.g. Fuschian repre-
sentations and quasifuchsian representations. Also any word hyperbolic group dividing a convex
projective domain is projective Anosov by work of Benoist. Perhaps the most famous examples
are Hitchen representations, defined as follows. For each d there is an irreducible representation
τ : SL(2,R)→ SL(d,R), unique up to conjugation. Now given any hyperbolic structure on a closed
surface ρ : π1(S) → PSL(2,R) we can lift to a representation ρ̂ : π1(S) → SL(2,R) and post-
compose τ ◦ ρ̂ to obtain a representation to SL(d,R). These representations and their deformations
are called Hitchen representations. (Hitchen proved these are a component of the character vari-
ety, and Labourie proved that all Hitchen representations are Anosov representations and therefore
discrete and faithful.)

7.3.3 (Some) properties and characterizations

The following theorem records (some) basic properties of Anosov representations.

Theorem 7.3.4 (Labourie, Guichard-Wienhard, Gueritaud-Guichard-Kassel-Wienhard). Let Γ be
a Gromov hyperbolic group and let ρ : Γ→ SL(d,R) be a projective Anosov representation. Then

• ρ is discrete with finite kernel; and

• Some (/every) orbit map from Γ to the associated symmetric space is a quasi-isometric em-
bedding; and

• There is a neighborhood U of ρ in Hom(Γ, SL(d,R)) consisting of representations which are
projective Anosov; and
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• Out(Γ) acts properly discontinuously on the space of (conjugacy classes) of projective Anosov
representations of Γ into SL(d,R); and

• There exists J and B such that

α1(ρ(γ)) = log
λ1(ρ(γ))

λ2(ρ(γ))
≥ J‖γ‖ −B

We also have a nice characterization of Anosov representations, in terms of linear algerba (in
general, root theory). This result is parceled out in stages of increasingly strong hypotheses and
conclusions.

Theorem 7.3.5 ([GGKW17a] Thm 1.1). Let Γ be a word-hyperbolic group and ρ : Γ→ SL(d,R)
be any representation.

• If there exists a constant C > 0 such that

log
σ1(ρ(γ))

σ2(ρ(γ))
≥ 2 log|γ| − C

then there exist continuous, ρ-equivariant limit maps ξ1 : ∂Γ → P(Rd) and ξd−1 : ∂Γ →
P((Rd)∗).

• If moreover for any γ ∈ Γ

log
σ1(ρ(γn))

σ2(ρ(γn))
− 2 log|n| → +∞

as |n| → +∞ then ξ1 and ξd−1 are dynamics preserving.

• If moreover for any geodesic ray (γn) in the Cayley graph the sequence

log
σ1(ρ(γn))

σ2(ρ(γn))

is CLI then ξ1 and ξd−1 are transverse and ρ is projective Anosov.

We say a sequence of real numbers is CLI (has coarsely linear increments) if it is a quasi-isometry
N→ R+.

The previous results are tied together into a few slightly different equivalance statements. More-
over, it is (surpisingly!) possible to use eigenvalues instead of singular values for forming equivalent
characterizations.

Theorem 7.3.6 ([GGKW17a] Thm 1.3 and Thm 1.7). Let Γ be Gromov hyperbolic. For any
representation ρ : Γ→ SL(d,R), the following conditions are equivalent:

• ρ is projective Anosov

• There exist continuous, ρ-equivariant, dynamics-preserving, and transverse maps ξ1 : ∂Γ →
P(Rd) and ξd−1 : ∂Γ→ P((Rd)∗), and we have

log
σ1(ρ(γ))

σ2(ρ(γ))
→ +∞

as γ →∞ in Γ.
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• There exist continuous, ρ-equivariant, dynamics-preserving, and transverse maps ξ1 : ∂Γ →
P(Rd) and ξd−1 : ∂Γ→ P((Rd)∗), and there exists constants c, C > 0 such that

log
σ1(ρ(γ))

σ2(ρ(γ))
≥ c|γ| − C

for all γ ∈ Γ.

• For any geodesic ray (γn) in the Cayley graph starting at the identity, the sequence

log
σ1(ρ(γn))

σ2(ρ(γn))

is lower-CLI. The CLI constants are not assumed to be uniform (they can depend on the ray).

• There exist continuous, ρ-equivariant, dynamics-preserving, and transverse maps ξ1 : ∂Γ →
P(Rd) and ξd−1 : ∂Γ→ P((Rd)∗), and we have

log
λ1(ρ(γ))

λ2(ρ(γ))
→ +∞

as ‖γ‖ → ∞ in Γ.

• There exist continuous, ρ-equivariant, dynamics-preserving, and transverse maps ξ1 : ∂Γ →
P(Rd) and ξd−1 : ∂Γ→ P((Rd)∗), and there exists a constant d > 0 such that

log
λ1(ρ(γ))

λ2(ρ(γ))
≥ d|γ|∞

for all γ ∈ Γ. Here |γ|∞ := limn|γn|/n is the stable length; it is comparable to the translation
length. (In general, on the Lie group side, the relevant quantity comes from the Lyapunov
projection.)

All of the above theorems hold for any flavor of Anosov representation in any reductive Lie group,
suitably adjusted. For example, one considers the ith singular value gap, or in general any collection
of simple restricted roots. Nonetheless, projective Anosov representations are in a sense the most
basic and crucial to the theory.

Proposition 7.3.7 ([GW12] Prop 1.6). A representation ρ : Γ → G is Anosov if and only if there
is a real vector space V with a non-degenerate indefinite quadratic form F and a homomorphism
φ : G→ O(V, F ) such that φ ◦ ρ is “projective Anosov in O(V, F )”.

The notion “projective Anosov in O(V, F )” is equivalent to asking that ρ(Γ) lands in O(V, F )
and after further postcomposing by the inclusion O(V, F ) ↪→ SL(V ) the result is projective Anosov.
This notion is studied closely in [DGK18a].

7.3.4 Domains of discontinuity

Observe that if M has a (G,X) structure, M and X have the same dimension. So an “Anosov
structure” on M , encoded by an Anosov representation ρ : π1(M)→ G is rarely a (G,X) structure
on M , if X is the associated symmetric space; it is a looser “dynamical” structure. However, Anosov
representations often do yield geometric structures on manifolds associated to M . For example,
Hitchen representations of a surface group π1(S) in PSL(4,R) correspond naturally to “properly
convex foliated projective structures” on the unit tangent bundle of S [GW08].

A typical goal is to associate geometric structures to Anosov representations. Guichard and
Wienhard proved this is possible when Γ is a free or surface group.



CHAPTER 7. ANOSOV REPRESENTATIONS 64

Choose a manifold Z that G = SL(d,R) acts naturally on, e.g. Z = P(Rd). To an Anosov
representation ρ : Γ → G, we want to associate a nonempty open domain of discontinuity Ω ⊂ Z
which ρ(Γ) preserves and such that the action is properly discontinuous and cocompact. Such a
domain is called a proper cocompact domain of discontinuity.

Theorem 7.3.8 (Guichard-Wienhard [GW12]). Let Γ be the fundamental group of a connected
surface of negative Euler characteristic, and let ρ : Γ → SL(d,R) be Anosov. Then there exists a
nonempty proper cocompact domain of discontinuity Ω ⊂ G/AN ∼= F+.

Here we have G = KAN the Iwasawa decomposition of G, which for G = SL(d,R) can be taken
to be K = SO(d), A = positive diagonal matrices with entries in nondecreasing order, N = upper
triangular matrices with 1’s on the diagonal. In this case the space G/AN is naturally isomorphic to
the space F+ of oriented complete flags on Rd (up to a simultaneous sign reversal on all subspaces
if d is even).

Generally speaking, we look for proper cocompact domains of discontinuity in (partial) flag
manifolds associated to Anosov representations. Kapovich, Leeb and Porti develop a systematic
construction of such domains corresponding to “balanced ideals” in the Weyl group. Stecker proved
that for fully Anosov representations, such as Hitchen representaions, every cocompact domain of
discontinuity comes from a balanced ideal [Ste18]. The number of balanced ideals grows extremely
quickly in d and the theory is expected to have rich combinatorics. This perspective is generalized
by Stecker and Treib, allowing one to play the same game in oriented flag manifolds [ST18]. However
not all existing domains are predicted by this theory; for example the domains we will study due to
Danciger, Gueritaud and Kassel are not.

7.3.5 Proper actions on homogeneous spaces

[GGKW17a] also prove results about proper actions on homogenous spaces associated to Anosov
representations. These results have a different flavor; rather then find some preferred subset, e.g. by
throwing away the limit set, they show the action on the whole homogeneous space is proper. Their
result is a corollary of a properness criterion due to Benoist and Kobayashi:

Theorem 7.3.9 ([Ben96], [Kob98]). Let G be a reductive Lie group and H,Γ two closed subgroups
of G. Then Γ acts properly on G/H if and only if for any compact subset C of a the intersection
(µ(Γ) + C) ∩ µ(H) ⊂ a is compact.

Based on this properness criterion, a strengthening of the notion of properly discontinuity was
introduced in [KK16]: a discrete subgroup Γ ⊂ G is said to act sharply on G/H if the set µ(Γ) drifts
away from µ(H) at infinity “with a nonzero angle,” i.e. there are constants c, C > 0 such that for
all γ ∈ Γ,

da(µ(γ)), µ(H)) ≥ c‖µ(γ)‖ − C, .

One can roughly think of sharpness as a quantification of proper discontinuity; many but not all
properly discontinuous actions are sharp. For an Anosov representaton we always have a set of roots
α ∈ θ such that α(µ(γ)) tend to infinity. Thus if a subgroup H has µ(H) in the kernel of every root
in θ, we can witness the drift of µ(Γ) away from µ(H).

Corollary 7.3.10 ([GGKW17a] Cor 1.9). Let Γ be a Gromov hyperbolic group, G a real reductive
Lie group, and θ ⊂ ∆ a nonempty subset of the simple restricted roots of G. For any Pθ-Anosov
representation ρ : Γ→ G, the group acts sharply on G/H for any closed subgroup H of G such that
µ(H) ⊂ ∪α∈θ kerα.

We pick out just a sample of the applications given in [GGKW17a].

Corollary 7.3.11 ([GGKW17a] Cor 1.10). Let ρ : π1(S)→ SL(d,R) be Hitchen.
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• if k < d− 1 and H = SL(k,R) or

• if |d− 2k| > 1 and H = SO(d− k, k) or

• if d = 2k and H = SL(d,C)× U(1) then

ρ(Γ) acts sharply on G/H.

Again, roughly speaking, the point is that for Hitchen representations, we have every singular
value gap, so we can see ρ(Γ) drift away from, say, the reducible copy of SL(k,R) because it doesn’t
have enough singular value gaps.

7.4 Convex cocompactness in real projective geometry

Our goal in this section is to prove a theorem by Danciger, Geuritaud and Kassel that relates
projective Anosov representations and a notion of convex cocompact actions on projective space
[DGK18b]. Part of what makes this theorem special is that we can recover the Anosov property
from a geometric structure; there is not a way to do that for Anosov representations in general. We
will need some basic notions from projective geometry. We write V = Rd and we identify P(V ∗)
with the space of hyperplanes in P(V ) by the map [α] ∈ P(V ∗) 7→ kerα.

We say a subset Ω of P(V ) is properly convex if it its closure is contained in an affine chart and is
convex in that chart. (Since affine lines in the chart are projective lines, this notion is independent of
the chosen affine chart.) We say Ω is strictly convex if moreover its boundary contains no nontrivial
projective line segment and we say Ω is C1 if each point of its boundary has a unique supporting
hyperplane (a hyperplane H ∈ P(V ∗) is supporting at z ∈ ∂Ω if H is disjoint from the interior of
Ω).

Any properly convex open subset Ω of P(V ) can be endowed with the Hilbert metric

dΩ(x, y) :=
1

2
log[a, x, y, b]

where a, b are the intersections of a projective line from x to y with ∂Ω, and [a, x, y, b] is the cross
ratio. The metric space (Ω, dΩ) is proper and complete, and the group

Aut(Ω) = {g ∈ PGL(V ) | g · Ω = Ω}

acts by isometries. In particular, any discrete subgroup Γ preserving Ω acts on Ω properly discon-
tinuously. The orbital limit set ΛorbΩ (Γ) is the set of accumulation points of some Γ-orbit in Ω; we
have ΛorbΩ (Γ) = Γz ∩ ∂Ω for any z ∈ Ω. By strict convexity, the orbital limit set doesn’t depend on
the choice of z ∈ Ω.

Let Γ be an infinite discrete subgroup of PGL(V ), and let Ω be a Γ-invariant properly convex open
subset of P(V ) whose boundary is strictly convex and C1. The action of Γ on Ω is convex cocompact
if the convex hull in Ω of the orbital limit set ΛorbΩ (Γ) of Γ in Ω is nonempty and has compact
quotient by Γ. The group Γ is strongly convex cocompact in P(V ) if it admits a convex cocompact
action on some nonempty properly convex open subset Ω of P(V ) whose boundary is strictly convex
and C1. This notion is due to Crampon-Marquis, who studied more general geometrically finite
actions in projective space.

We say a subgroup Γ of PGL(V ) is projective Anosov if the inclusion map is a projective Anosov
representation.

Theorem 7.4.1 ([DGK18b]). Let Γ be an infinite discrete subgroup of PGL(V ). Then Γ is strongly
convex cocompact if and only if Γ is projective Anosov and Γ preserves some nonempty properly
convex open subset of P(V ).
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Examples: If the dimension of V is even then the image of a Hitchen representation in PGL(V )
is never convex cocompact, because the limit curve in projective space is not nulhomotopic.

Proof. We will assume Γ is irreducible; this is not essential but makes the argument a bit shorter
because we can use the theorem of [GW12] mentioned above.

Let’s assume that Γ is strongly convex cocompact and show that it is projective Anosov. By
assumption there exists a properly convex open subset Ω of P(V ) which is strictly convex and C1,
and there is a closed convex subset C of Ω such that Γ preserves C and Ω and acts cocompactly on
C.

Here’s the sketch: First we show that (C, dΩ) is a Gromov hyperbolic metric space. Then Γ
is hyperbolic by Milnor-Šwarc. Also, we get a boundary map by identifying ∂Γ with ∂iC, and
we get the dual boundary map by using the unique supporting hyperplane. Thus compatibility is
immediate.

For transversality, suppose that ξ(η) ∈ ξ∗(η′). Our goal is to show that η = η′. The projective line
segment [ξ(η), ξ(η′)] is contained in ξ∗(η′), hence in the ideal boundary ∂iC. Again by assumption
there are no nontrivial line segments in the boundary so we deduce that η = η′.

We assumed Γ is irreducible and we have compatible transverse limit maps, so by [GW12] we
conclude Γ is projective Anosov. (Note that irreducibility is really not essential here. It is only
slightly more work to demonstrate the singular value gap criterion in [GGKW17a] or [KLP14].)

For the converse, we now assume Γ is projective Anosov and preserves some nonempty properly
convex open subset of P(V ) and we will show that Γ is strongly convex cocompact.

We must have ξ(∂Γ) ⊂ ∂Ω and we let C be the convex hull of ξ(∂Γ) in Ω.
To show that the action of Γ on C is cocompact, we use the fact (from [KLP18] or [GGKW17a])

that Anosov implies expanding, related to Sullivan’s characterization of convex cocompactness in
real hyperbolic space. That is, for any point z ∈ ΛΓ, there exists an element γ ∈ Γ, a neighborhood
U of z in P(V ), and a constant c > 1 such that for any x, y ∈ U ,

d(γx, γy) ≥ c d(x, y).

Here, for a metric on projective space we can choose any inner product on V and use

d([v], [w]) := |sin∠(v, w)|.

A little exercise shows that if we change to any bilipschitz equivalent metric, the action is still
expanding.

Suppose for the sake of contradiction that the action of Γ on C is not cocompact and let let (εn)
be a sequence of real numbers converging to 0. For any m, the set Km := {z ∈ C | d(z,ΛΓ) ≥ εm}
is compact, hence there exists a Γ-orbit contained in C \Km. By proper discontinuity of the action
on C, the supremum of d(·,ΛΓ) on this orbit is achieved at some point zm ∈ C and by construction
0 < d(zm,ΛΓ) ≤ εm. Then for all γ ∈ Γ,

d(γzm,ΛΓ) ≤ d(zm,ΛΓ).

Up to subsequence, we may assume that (zm) converges to some z ∈ ΛΓ. Since the action is
expanding, we can choose γ, U, c as above. For any m we have z′m ∈ ΛΓ such that d(γzm,ΛΓ) =
d(γzm, γz

′
m). For large enough m we have zm, z

′
m ∈ U , so

d(γzm,ΛΓ) = d(γzm, γz
′
m) ≥ cd(zm, z

′
m) ≥ cd(zm,ΛΓ) > 0

which contradicts c > 1.
Now in fact the domain Ω may not be strictly convex and C1; however it is possible to build a

“smoothification” since the action of Γ is properly discontinuous. This process is a bit technical and
involves many choices and the smooth substitute Ωsmooth constructed for Ω isn’t canonical in any
way. A precise statement is
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Lemma 7.4.2 ([DGK18b] Lemma 9.2). Let Γ be an infinite discrete subgroup of PGL(V ) and Ω
a nonempty Γ-invariant properly convex open subset of P(V ). Suppose Γ acts convex cocompactly
on Ω. Fix a uniform neighborhood Cu of Ccor, the convex hull of the (full) orbital limit set. Then
the convex core Ccor admits a Γ-invariant, properly convex, closed neighborhood Csm ⊂ Cu which
has C1, strictly convex nonideal boundary.

Of course the interior of Csm is nonempty, so we can use that as a suitable replacement for Ω.
Note that Ccor must be contained in the interior of Csm.

[DGK18b] also deals with the case of convex cocompact actions for groups which are not hyper-
bolic, e.g. Z2 (see Theorem 1.17). Of course these groups cannot be Anosov, but this notion is stable
and an interesting open question is to ask if there is a generalization of Anosov which accommodates
these groups. DGK prove that such groups never have unipotent elements, so this notion is expected
to be quite distant from the notion of “relatively Anosov” actions defined by Kapovich and Leeb
[KL18].

7.5 Convex cocompactness in pseudo-Riemannian hyperbolic
geometry

By a theorem of Guichard and Wienhard mentioned above, a representation is Anosov (any flavor)
if and only if we can post-compose it to be projective Anosov in O(p, q). Thus the case of projective
Anosov representations in PO(p, q) is especially interesting.

For any positive integers (p, q), let Rp,q be the vector space Rp+q endowed with a nondegenerate
bilinear form 〈·, ·〉 of signature (p, q). Let PO(p, q) be the image of O(p, q) in PGL(p+q). As above,
we say an infinite subgroup Γ of PO(p, q) is projective Anosov if the inclusion Γ ↪→ PO(p, q) ↪→
PGL(p+ q) is projective Anosov. In particular Γ must be discrete.

Define
Hp,q−1 := {[x] ∈| 〈x, x〉 < 0}

and
∂Hp,q := {[x] ∈| 〈x, x〉 = 0}.

We say a subset Λ of the boundary is negative if for every [x] 6= [y] ∈ Λ, we have 〈x, y〉 < 0. The
following characterization of negative subsets shows its usefulness.

Lemma 7.5.1 ( [DGK18a] Lemma 3.2). Let Λ be a subset of ∂Hp,q with at least 3 points. Then
the following are equivalent:

• Λ is negative;

• every triple of distinct points of Λ is negative;

• every triple of distinct points of Λ spans a triangle fully contained in Hp,q outside the vertices.

This lets us build a convex hull out of negative limit sets, even though Hp,q−1 is not properly
convex in general.

Theorem 7.5.2 ([DGK18a] Thm 1.11). For any positive integers p, q and any irreducible discrete
subgroup Γ of PO(p, q), Γ is Hp,q−1-convex cocompact if and only if Γ projective Anosov, and the
proximal limit set ΛΓ ⊂ ∂Hp,q−1 is negative.

It is worth observing that

Proposition 7.5.3. If a closed subset Λ of ∂Hp,q−1 is connected and transverse then it is negative
or positive.
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We should mention here that the notion of transversality in pseudo-Riemannian hyperbolic ge-
ometry is slightly different from the notion in projective geometry. We say a subset Λ ⊂ ∂Hp,q−1 is
transverse if for every x 6= y ∈ Λ, we have x /∈ y⊥, and we say a limit map ξ1 is transverse if it is
transverse to ξd−1(x) := ξ1(x)⊥ in the usual sense. Roughly speaking, the proof works by defining
a “sign” function on the space Λ(3) of unordered distinct triples in Λ. The function is continuous on
a connected space (this is where the work is hidden), and by transversality never takes the value 0.
Hence, the sign is either negative or positive.

Note that being positive in the boundary of Hp,q−1 is equivalent to being negative in the boundary
of Hq,p−1. So if we have connected boundary but drop the negativity assumption, we still get the
partial converse:

Theorem 7.5.4 ([DGK18a]). If Γ is a projective Anosov subgroup of PO(p, q) and ∂Γ is connected,
then Γ is Hp,q−1-convex cocompact or Hq,p−1-convex cocompact.

They also construct lots of new examples of Anosov representations from right-angled Coxeter
groups.



Chapter 8

An introduction to Θ-positivity
Giuseppe Martone (University of Michigan)

This note was prepared to complement my May 2019 talk at the Workshop “Geometric aspects
of Higgs bundles” organized by Xian Dai, Charles Ouyang, and Andrea Tamburelli. It is with
great pleasure that I thank the organizers for inviting me and giving me the opportunity to speak. I
would also like to thank all the participants of the workshop for contributing to such a great learning
experience.

This note is primarily based on the paper “Positivity and higher Teichmüller theory” by Guichard
and Wienhard [GW18].

8.1 Introduction

Let S be a connected, orientable, closed surface of genus g > 1 and let G be one of the Lie groups

PSL(d,R),PSp(2n,R),SO(p, q).1 (8.1.1)

We are primarily interested in the space of G-conjugacy classes of group homomorphisms from the
fundamental group of S into G. A well-known issue is that this space is not necessarily Hausdorff.
One defines the representation variety R(S,G) as the Hausdorff space of G-conjugacy classes of
reductive group homomorphisms from π1(S) to G.

Anosov representations [Lab06, GW] are preferred elements of R(S,G) sharing many algebraic,
dynamical and geometric properties. A representation ρ ∈ R(S,G) is Anosov with respect to a set Θ
of simple roots for G (see §8.2). In §§8.3-8.5 we discuss three of the prominent/motivating examples
of Anosov representations: Fuchsian, Hitchin and maximal representations.

Notably, Anosov representations are “stable” in the sense that the space of Anosov represen-
tation is open in R(S,G). The spaces of Hitchin and maximal representations are also closed in
R(S,G). However, for more general Lie groups, Anosov representations can fail to fill connected
components of the representation variety. For example, Fuchsian representations can be deformed
in the representation variety R(S,PSL(2,C)) to representations that are not Anosov.

Guichard and Wienhard [GW18] introduced a unified framework to study Hitchin and maximal
representations via the definition of Θ-positive structures for Lie groups G. Here, Θ is, again, a set
of simple roots. A Θ-positive representation is then a representation “well-behaved” with respect to
a Θ-positive structure. See §8.6.

The pairs (G,Θ) such that G admits a Θ-positive structure are classified by Theorem 8.6.2
[GW18, Theorem 4.3]. In particular, Hitchin and maximal representations are Θ-Anosov, they are

1We narrow our focus to these groups for the sake of brevity, referring to [GW18] for the general theory.

69



CHAPTER 8. AN INTRODUCTION TO Θ-POSITIVITY 70

Θ-positive with respect to the same Θ, and they fill connected components of the corresponding
representation varieties.

Conjecture 8.1.1. [GLW] The space of Θ-positive representations is closed in R(S,G).

Furthermore, the connected components of Hitchin and maximal representations are exotic in
the respective representation varieties, in the sense that they are not distinguished by classical
topological invariants [Hit92, GW].

Conjecture 8.1.2. [GW18] If G has a Θ-positive structure, the representation variety R(S,G) has
exotic connected components.

In §8.8, we briefly discuss evidence in support of Conjecture 8.1.2 provided by [AABC+19].

8.2 Generalities on Lie theory

In this section, we collect the Lie theoretic tools we will need in the following sections. Standard
references are [Ebe96, Hel78].2

8.2.1 Generalities on PSL(d,R)

Let G = PSL(d,R), then g = Lie(G) is the space of traceless d× d matrices. We choose the Cartan
subspace a of traceless diagonal matrices. Let us identify a with the set {(x1, . . . , xd) : x1 + · · ·+xd =
0} by recording the diagonal entries in decreasing order. We choose a+ = {(x1, . . . , xd) ∈ a : x1 ≥
· · · ≥ xd} to be fundamental Weyl chamber.

A positive (restricted) root α ∈ Σ+ ⊂ a∗ is a functional which is positive on a+. Recall that Σ+

is positively generated by elements in ∆ = {α1, . . . , αd−1} with αj(x1, . . . , xd) = xj − xj+1. Given
Θ ⊂ ∆, the standard Θ-parabolic subgroup of G is the Lie subgroup PΘ whose Lie algebra is

a⊕
⊕
α∈Σ+

gα ⊕
⊕

α∈Span(∆−Θ)∩Σ+

g−α

where gβ = {Y ∈ g : [X,Y ] = β(X)Y, for all X ∈ a} is the restricted root space of β. Note that for
G = PSL(d,R), the standard ∆-parabolic subgroup is the subgroup of upper triangular matrices.
The quotient G/P∆ is identified with the space of (complete) flags in Rd.

Finally, note that G is a real form of PSL(d,C) as g⊗R C is isomorphic to the Lie algebra gC of
PSL(d,C). Furthermore, G is a split real form because dimR a (the real rank of G) is equal to the
dimension over C of a(ny) maximal abelian subalgebra of gC.

8.2.2 Generalities on PSp(2n,R)

Let G = PSp(2n,R). The symmetric space XG of G admits a G-invariant complex structure, and it
is biholomorphic to the Siegel upper half space

XG = Sym(n,R) + iPos(n,R),

where Sym(n,R) is the vector space of symmetric n × n matrices and Pos(n,R) is the cone in
Sym(n,R) of positive definite matrices. By definition, this means that PSp(2n,R) is a Hermitian
Lie group of tube-type. The reader might be familiar with the case n = 1, when the Siegel upper

2Thanks to past and present editions of the Log Cabin workshops, many “specialized” surveys on the Lie theory
background needed for our purposes are available at http://gear.math.illinois.edu/programs/workshops/logcabin-
workshops.html.

http://gear.math.illinois.edu/programs/workshops/logcabin-workshops.html
http://gear.math.illinois.edu/programs/workshops/logcabin-workshops.html
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half space reduces to the upper half space model of H2 of the hyperbolic plane. We choose a Cartan
subspace and a positive Weyl chamber to be

a = {(x1, . . . , xn,−xn, . . . ,−x1) ∈ R2n} ∼= Rn, and

a+ = {(x1, . . . , xn,−xn, . . . ,−x1) : x1 ≥ · · · ≥ xr ≥ 0}

We can define simple roots αj(x1, . . . , xn,−xn, . . . ,−x1) = xj − xj+1, for j = 1, . . . , n. In the
context of maximal representations, we will focus on the standard {αn}-parabolic subgroup Pαn

.
The quotient G/Pαn

is the space of Lagrangians, i.e. maximal (with respect to inclusion) isotropic
subspace in the given symplectic vector space R2n. Note that Lagrangians have dimension n.

Remark 8.2.1. The Lie group PSp(2n,R) is a split real form of PSp(2n,C). In particular, Theorem
8.6.2 states that it has two Θ-positive structures. For this note, we will narrow our focus to the
{αn}-positive structure.

8.2.3 Generalities on SO(3, 4)

In this section, we follow the exposition in [GW18, §4.5]. We identify the group SO(3, 4) with the
special orthogonal group associated to the quadratic form Q of signature (3, 4) given by

Q(x1, x2, x3, x4, x5, x6, x7) = 2(x1x7 − x2x6 + x3x5 − x2
4).

With our usual identification between traceless diagonal matrices and vectors in R7, choices for a
Cartan subpace and a positive Weyl chamber are

a = {(x1, x2, x3, 0,−x3,−x2,−x1) ∈ R7} ∼= R3, and

a+ = {(x1, x2, x3, 0,−x3,−x2,−x1) : x1 ≥ x2 ≥ x3 ≥ 0}.

The simple roots are αj(x) = xj − xj+1, j = 1, 2, 3.

8.3 Fuchsian representations

For this section let G = PSL(2,R) = PSp(2,R).

8.3.1 Anosov property

A hyperbolic metric on S with holonomy ρ induces an isometry S̃ → H2 which extends to a contin-
uous π1(S)-equivariant map between visual boundaries

ξρ : ∂∞S̃ → ∂∞H2 = RP1 = G/P∆ = Flag(R2).

The limit map ξρ is injective, continuous, and for every γ ∈ π1(S)− id, the image of the attracting
fixed point ξρ(γ

+) is the attracting eigenline of ρ(γ). By [GW12, Theorem 1.8], as G is a rank 1 Lie
group, this suffices to show that Fuchsian representations are Anosov with respect to the parabolic
subgroup P∆ = Pα1

.

8.3.2 Maximality

Let us define the Euler number e(ρ) ∈ Z of a representation ρ ∈ R(S,G).

The representation ρ gives a π1(S)-action on S̃ × H2. Denote by Eρ the quotient under this
action, and note that Eρ is a fiber bundle over S with fiber H2. Thus, there exists a section which

we can write as σ̃ : S̃ → H2. We use σ̃ to define a π1(S)-invariant closed two-form on S̃ as follows.
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Let g be the hyperbolic metric on H2 and let J be the natural complex structure. For X,Y ∈
TxH2, set ω1(X,Y ) = g(JX, Y ). Note that ω1 is a two-form (in particular, it is closed). The

pull-back σ̃∗ω1 is a π1(S)-invariant closed two-form on S̃. The Euler number is e(ρ) = 1
2π

∫
S
σ̃∗ω1.

Theorem 8.3.1. The Euler number is independent on the choice of the section σ of Eρ. Moreover,
e(ρ) ∈ Z, and

1. Milnor-Wood inequality [Mil]: for every ρ ∈ R(S,G), we have |e(ρ)| ≤ 2g − 2;

2. [Gol88] The representation ρ is Fuchsian if and only if |e(ρ)| = 2g − 2.

In other words, a representation ρ ∈ R(S,G) is Fuchsian if and only if it has maximal Euler
number.

8.3.3 Positivity on a projective line

The orientation on S induces a cyclic order on ∂∞S̃. Let (x, y, z) be a triple of cyclically oriented

points in ∂∞S̃. We can choose a representative in the conjugacy class of the Fuchsian representation

ρ with corresponding limit map ξρ such that ξρ(x) =

[
1
0

]
, and ξρ(z) =

[
0
1

]
. Then, ξρ(y) =

[
t
1

]
with

t > 0. This fact can be rephrased as to say that ξρ(y) = u · ξρ(z) for u a matrix in the subsemigroup
of SL(2,R)

U>0 =

{[
1 t
0 1

]
: t > 0

}
With some work, this observation leads to:

- a parametrization of the space of Fuchsian representations via positive crossratio coordinates,
depending on a choice of a maximal geodesic lamination [Thu81, Bon96];

- a combinatorial proof, using the Perron-Frobenius theorem, of well-known properties of Fuch-
sian representations: e.g. for every non-trivial γ ∈ π1(S), ρ(γ) has a simple positive real
eigenvalue, and, therefore, it is diagonalizable.

8.4 Hitchin positivity

8.4.1 The Hitchin component

Let G = PSL(d,R). When d ≥ 3, Hitchin [Hit92] proved that R(S,G) has either 3 or 6 connected
components, depending on the parity of d. One of these components contains the image of the
Fuchsian space of S under the irreducible representation of PSL(2,R) into PSL(d,R). We denote
this Hitchin component by H(d, S).

Theorem 8.4.1.

a) [Hit92] The Hitchin component is topologically trivial: H(d, S) ∼= R(d2−1)(2g−2).

b) [Lab06] Hitchin representations are Anosov with respect to the parabolic subgroup P∆.

c) [FG06] The limit map ξρ : ∂∞S̃ → Flag(Rd) = G/P∆ of a Hitchin representation is positive.

In this section we explain the statement of Theorem 8.4.1.c by defining positivity for triples of
flags in G/P∆.
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8.4.2 Flag positivity

We describe the positivity properties of the limit map ξρ by studying the moduli space of generic
triples of flags (F1, F2, F3), i.e. flags such that

dim(F
(a)
1 + F

(b)
2 + F

(c)
3 ) = min{d, a+ b+ c}. (8.4.1)

Condition 8.4.1 is our running assumption. We wish to define the subset Flag(Rd)3 of positive triples
of flags.

As a first step, set d = 3 and let F1, F2, F3 be flags. Note that the flag Fi is a pair (pi, `i) where
pi ∈ RP2 and `i is a projective line passing through pi. Our genericity assumption corresponds to
assuming pi 6∈ `j ∪ `k for {i, j, k} = {1, 2, 3}.

Note that p1, p2, p3, `1 ∩ `3 form a projective frame in RP2. Moreover, the line `2, passing
through p2, cannot pass through the points p1, p3 because of condition 8.4.1. By keeping track of
the intersection between the lines `1 and `3, one sees that the PGL(3,R)-moduli space of triples of
flags consists of two 1-dimensional connected components. The triple ratio parametrizes this space.

Choose representatives v1, v2, v3 (resp. ϕ1, ϕ2, ϕ3) for the projective classes p1, p2, p3 (resp.
`1, `2, `3). The triple ratio is the projective invariant

T (F1, F2, F3) =
ϕ1(v2)ϕ2(v3)ϕ3(v1)

ϕ1(v3)ϕ2(v1)ϕ3(v2)
∈ R− {0}.

A triple of flags (F1, F2, F3) is positive if T (F1, F2, F3) > 0.
For d > 3, and a, b, c ∈ Z>0, a+b+c = d, one defines triple ratios Tabc(F1, F2, F3) by considering

triple ratios of the quotients of F1, F2, F3 in the three-dimensional spaces

Rd/(F (a−1)
1 + F

(b−1)
2 + F

(c−1)
3 ).

A triple of flags (F1, F2, F3) in Rd is positive if all of its triple ratios are positive.
Theorem 8.4.1.c states that the limit map ξρ of a Hitchin representation ρ sends cyclically oriented

triples of points in ∂∞S̃ to positive triples of flags. Fock and Goncharov [FG06] used this positivity
property to bridge between Hitchin representations and Lusztig’s theory of total positivity.

Finally, consider the subsemigroup U>0 of SL(d,R) defined by

U>0 =


1 ?

. . .

0 1

 : non-vanishing minors are positive


where we think of a minor m as a function SL(d,R)→ R and a minor m is non-vanishing if it is not
identically zero on the space of upper triangular matrices.

Given (F1, F2, F3) a triple of flags, up to the action of PGL(d,R), we can assume

F
(a)
1 = Span(~e1, . . . , ~ea), and F

(b)
2 = Span(~ed, . . . , ~ed−a+1)

The triple of flags (F1, F2, F3) is positive if there exists a unipotent matrix u ∈ U>0 such that
F3 = u · F2.

8.5 Maximal positivity

For this section we let G = PSp(2n,R).
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8.5.1 Maximality of the Toledo invariant

We define the Toledo invariant by mimicking the discussion in §8.3.2. Consider ρ ∈ R(S,G) and

define the bundle Eρ given by the π1(S)-action on the trivial bundle S̃ ×XG. Note that Eρ is a flat
bundle with contractible fiber XG. A smooth section of Eρ corresponds to a π1(S)-equivariant map

σ̃ : S̃ → XG.
As XG is a Hermitian symmetric space, it has a G-invariant complex structure J . For X,Y in the

tangent bundle TXG and g the Riemannian metric on XG, define the closed (see [BILW05, Lemma
2.1]) 2-form ωG(X,Y ) = g(JX, Y ).

Since σ̃ is π1(S)-equivariant, we can integrate σ̃ ∗ ωg on S. The resulting number T (ρ) is the
Toledo number of ρ.

Theorem 8.5.1.

1. The Toledo number T (ρ) of ρ ∈ R(S,G) does not depend on the choice of σ. Moreover, T (ρ)
is an integer and it satisfies |T (ρ)| ≤ r(2g − 2).

2. [BIW, BILW05] A representation ρ in R(S,G) is maximal if |T (ρ)| = r(2g − 2). Maximal
representations are Pαn

-Anosov.

Recall from §8.2 that G/Pαn
is the space of maximal isotropic subspaces, called Lagrangians in

the symplectic vector space
(
R2n, 〈 , 〉

)
. Two Lagrangians L1, L2 are transverse if L1 ∩ L2 = {0}.

We now define a notion of positivity for a triple (L1, L2, L3) of pairwise transverse Lagrangians.
Consider the quadratic form QL1,L2,L3 on L1 ⊕ L2 ⊕ L3 defined by

(x1, x2, x3) 7→
3∑
i=1

〈xi, xi+1〉

where x4 = x1, by convention. As we assume that the Lagrangians are pairwise transverse, the
Maslov index of (L1, L2, L3), denoted by τ(L1, L2, L3) is the signature of QL1,L2,L3

and it is such
that

τ(L1, L2, L3) ∈ {−n,−n+ 2, . . . , n− 2, n}.

Definition 8.5.2. A triple of Lagrangian subspaces (L1, L2, L3) is positive if τ(L1, L2, L3) = n.

Theorem 8.5.3 ([BIW]). A representation ρ is maximal if and only if the limit map ξρ sends

positive triples of points in ∂∞S̃ to positive triples of Lagrangians.

Once again, one can describe positivity of a triple of Lagrangians in terms of a subgroup of
G = Sp(2n,R).

Fix a symplectic basis (e1, . . . , er, f1, . . . fr) of R2n and consider a triple of transverse Lagrangians
(L1, L2, L3). We can identify a Lagrangian L with a 2n × n matrix with columns a basis of L. Up

to the G-action, we can then assume that L1 =

[
Idn
0

]
and L2 =

[
0

Idn

]
. Then, the triple (L1, L2, L3)

is positive if

L3 =

[
Idn M
0 Idn

]
L2

where M is a positive definite matrix in Pos(n,R). Finally, note that the matrices of the form[
Idn M
0 Idn

]
as above defines a subsemigroup U�0 of Sp(2n,R).



CHAPTER 8. AN INTRODUCTION TO Θ-POSITIVITY 75

8.6 Θ-positivity

In sections §8.4,8.5, we described seemingly unrelated notions of positivity for generic triples in
the flag spaces G/PΘ for opportune choices of a subset Θ of simple roots. Guichard and Wien-
hard [GW18] provided a general framework to understand these notions via the introduction of
Θ-positivity.

The Levi subgroup LΘ of the parabolic subgroup PΘ is the intersection between PΘ and its
opposite. Denote by L◦Θ the connected component of the identity of the Levi subgroup.

Set pΘ = Lie(PΘ) and lΘ = Lie(LΘ). Finally denote by uΘ the direct sum of restricted root
spaces such that pΘ = lΘ ⊕ uΘ.

The adjoint action of LΘ on uΘ gives a weight space decomposition of uΘ into vector subspaces
uβ for β in the dual of the center of lΘ. We say that β is indecomposable if β ∈ Θ.

Definition 8.6.1. The Lie group G admits a Θ-positive structure if for all β ∈ Θ there exists an
L◦Θ-invariant sharp convex cone in uβ .

Let us give more details in the concrete case of PSL(3,R). Observe that L∆ is the set of diagonal
matrices in PSL(3,R) and L◦∆ is isomorphic to R2

>0. Moreover,

l∆ = a, and u∆ = gα1
⊕ gα2

⊕ gα1+α2
, (8.6.1)

where

gα1
=

λ
0 1 0

0 0 0
0 0 0

 , gα2
=

λ
0 0 0

0 0 1
0 0 0

 , gα1+α2
=

λ
0 0 1

0 0 0
0 0 0

 ,

Note that as l∆ = a is an abelian Lie algebra, the decomposition of u∆ into weight spaces for the
L∆ adjoint action coincides with the decomposition in Equation 8.6.1. In this case, uβ = gβ and β
is indecomposable if β ∈ ∆ = {α1, α2}.

Theorem 8.6.2 (Theorem 4.3 [GW18]). A semisimple Lie group G admits a Θ-positive structure
if and only if

1. G is a split real form (e.g. PSL(d,R)) and Θ = ∆;

2. G is of Hermitian type of tube type (e.g. PSp(2n,R)) and Θ = {αr};

3. G is locally isomorphic to SO(p, q), p 6= q and Θ = {α1, . . . , αp−1}.

4. Exceptional Lie group cases.

In [GW18, §4.3], Guichard and Wienhard use the Θ-positive structure of a group G to define a
subsemigroup U>0

Θ extending the subsemigroups defined in §§8.4-8.5.

Definition 8.6.3. Assume F1, F2, F3 are pairwise transverse elements inG/PΘ. The triple (F1, F2, F3)
is Θ-positive if there exists u ∈ U>0

Θ such that F2 = u · F3.

Definition 8.6.4. Let G be a semisimple Lie group with a Θ-positive structure. A representation
ρ : π1(Σg) → G is Θ-positive if there exists a ρ-equivariant positive map ξρ : RP1 → G/PΘ sending
positive triples in RP1 to Θ-positive triples in G/PΘ.

Conjecture 8.6.5 ([GLW]). A Θ-positive representation is Θ-Anosov. The set of Θ-positive rep-
resentations is open and closed in the representation variety.

Conjecture 8.6.6 ([GW18]). If G carries a Θ-positive structure, there are exotic components in
the representation variety of G.
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8.7 Positivity in SO(3, 4)

Let us briefly focus on the case G = SO(3, 4) = SO(Q). The case G = SO(3, q) is discussed in details
in [GW18, §4.5], and we follow their exposition.

Theorem 8.6.2 leads us to consider Θ = {α1, α2}. In this case, the quotient G/PΘ is the space
of isotropic flags V1 ⊂ V2 with dimVi = i. The Levi subgroup LΘ is the subgroup of SO(Q) given
by block-diagonal matrices of the form

αλ,A =


λ1

λ2

A
1/λ2

1/λ1



where A is in SO(q), for q the quadratic defined by J =

0 0 1
0 −1 0
1 0 0

.

The weight space decomposition of uΘ via the adjoint action of LΘ gives indecomposable sub-
spaces

uα1
= {xE12 + xE67 : x ∈ R} ∼= R

uα2
=

Xv =


0 0 0 0
0 v> 0 0
0 0 Jv 0
0 0 0 0
0 0 0 0

 : v =

v1

v2

v3



∼= R3

where we denote by Eij the matrix with 1 in the ijth position and zeros elsewhere. One can check
that the cone in uα2

given by {(v1, v2, v3) : v1 > 0, v2
2 < v1v3} verifies Definition 8.6.1.

8.8 Positivity and exotic components

The Non-Abelian Hodge correspondence between R(S,G) and (a subspace of) the space of Higgs
bundles provides analytic tools for the study of the connected components of the representation
variety. In the cases of G a split real form or a Hermitian Lie group of tube-type, the representa-
tion variety R(S,G) has “exotic” connected components that are not detected by classical bundle
invariants. In the case of G = PSL(d,R), PSp(2n,R), the exotic components contain positive rep-
resentations. This fact was extended in [AABC+19] to the case G = SO(p, q). See also [Col17] for
earlier results.

Theorem 8.8.1. Let p < q. Let r : π1S → SO0(p, p − 1) be a Hitchin representation and let
α : π1S → O(q − p+ 1) be any representation. Then,

ρ = r ⊗ detα⊗ α : π1S → SO(p, q)

is a Θ-positive representation. For q > p + 1, the representation variety R(S, SO(p, q)) has exotic
components which contain the Θ-positive representation ρ.



Chapter 9

Anosov representations in affine
geometry
Feng Zhu (University of Michigan)

9.1 Affine geometry

Affine geometry is what remains of Euclidean geometry if we forget the metric notions of distance
and angle. What is left: the notion of a straight line; parallelism; projective notions

We can give a more precise definition in terms of (G,X)-structures. Let X be a connected smooth
manifold, and G < Diffeo(X) satisfy the following analyticity condition: if g1, g2 ∈ G and there is
an open subset U ⊂ X such that g1, g2 are equal when restricted to U then g1 = g2

Definition 9.1.1. A (G,X)-structure on a topological manifold M is an atlas of charts on M with
values in X and transition maps in G. Such an atlas may be called a (G,X)-atlas, and manifold
equipped with such a structure a (G,X)-manifold.

This means that a (G,X)-structure gives M , locally, the geometry of X with it (sub)group of
symmetries G.

Example 9.1.2. (i) A hyperbolic structure on a surface Σ is equivalent to a (PSL(2,R),H2)-
structure on Σ.

(ii) A Euclidean structure on a n-manifold Mn is equivalent to a (SO(n) n Rn,Rn)-structure on
Σ.

Definition 9.1.3. An affine structure on a n-manifold Mn is a (Aff(Rn),Rn)-structure on Mn,
where Aff(Rn) = GL(Rn)nRn) is the group of affine transformations

Equivalently, we can in terms of think of quotients of affine space:

Theorem 9.1.4 (Affine Killing-Hopf Theorem). Let M be a geodesically complete flat affine man-
ifold. Then M is affinely equivalent to Rn/Γ, where Γ ∼= π1M is a discrete group of affine transfor-
mations of Rn. In particular, Γ acts freely and properly discontinuously.

Example 9.1.5. Any Euclidean structure on M is an affine structure on M .

Example 9.1.6. Consider the quotient of the punctured plane R2 \ {0} by the map x 7→ 2x (or,
equivalently, by the equivalence relation x ∼ 2x.) This is called the Hopf torus. It is an example of
an incomplete affine structure.

77
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Why affine geometry? Historical interest
A natural interpolation between Euclidean and projective geometry (See also: equivalence of crystal-

lographic groups, next)

Algebraic geometry
Theoretical physics

9.1.1 General motivating question

We can ask if there is any sort of classification, and/or nice structure theory, of affine manifolds.
Where would the representation theory come in?
The study of affine manifolds is already a mix of representation theory and geometry, so ... not

entirely a surprise maybe? See also:
hyperbolic structures on closed surfaces ←→ Fuchsian representations
hyperbolic structures on 3-manifolds ←→ Kleinian groups
Let’s start by looking at the special case of Euclidean ones, where there are some nice answers:

Definition 9.1.7. A (n-dimensional) crystallographic group is a discrete group of Euclidean isome-
tries acting cocompactly on Euclidean (n-)space. Two crystallographic groups are equivalent if they
are conjugate by affine transformations of Rn

Equivalently, these are fundamental groups of compact Euclidean manifolds (or orbifolds, if we
allow torsion.)

Example 9.1.8. For n = 2, the 17 wallpaper groups (Fedorov 1891; Pólya 1924)
For n = 3, 230 space groups (or 219, depending on if you allow equivalence via orientation-reversing
transformations) (Fedorov; Schönflies 1891)

Theorem 9.1.9 (Bieberbach 1910). Any n-dimensional crystallographic group contains a Zn gen-
erated by translations as a finite-index subgroup.

Conversely, Zassenhaus (1948) showed that conversely any group that is the extension of Zn by
a finite group acting faithfully is crystallographic. Hence compact Euclidean manifolds are all, up
to taking finite-index covers, tori.

If we move from the Euclidean to the affine world, things are rather more mysterious.

Definition 9.1.10. An affine crystallographic group is a discrete group of affine transformations
acting cocompactly on affine (n-)space.

The first Bieberbach theorem as stated is no longer true in this setting:

Example 9.1.11. Some setup: if we write points x ∈ Rn as (n+1)-vectors (x, 1)T , we may represent

the action of (τ(γ), l(γ)) ∈ Rn oGL(Rn) by the (n+ 1)-by-(n+ 1) square matrix

(
`(γ) τ(γ)
0 1

)
,

since we have (
`(γ) τ(γ)
0 1

)(
x
1

)
=

(
l(γ)x + τ(γ)

1

)
.

In this representation, the Rn appears as the subgroup

{(
I x
0 1

)}
. Now observe

Γ =




1 0 0 a
0 1 0 b
0 a 1 c
0 0 0 1

 ∣∣∣ a, b, c ∈ Z
 ⊂ Aff(R3)

is an affine crystallographic group acting on R3: it is clearly discrete; cocompactness follows since
any point in R3 is equivalent under the action of Γ to some point (x, y, z) with x, y, z ∈ [−1, 1] (pick
a = −bxc, b = −byc, and c = −bz − ayc.) However,
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• Γ ∩ Rn spans only a 2-dimensional subspace (we must have a = 0), and

• the linear part l(Γ) =


 1 0 0

0 1 0
0 a 1

 ∣∣ a ∈ Z
 is not finite.

There is a conjecture about a potential replacement:

Conjecture 9.1.12 (Auslander 1964). Affine crystallographic groups are virtually solvable.

Auslander’s Conjecture has been proven in special cases: n ≤ 3 (Fried–Goldman, 1983); when
`(Γ) preserves a quadratic form of signature (n − 1, 1), i.e. `(Γ) ⊂ Isom(Rn−1,1) (Goldman–
Kamishima, 1984; Carrière, 1989)1 (Note that if `(Γ) preserves a quadratic form of signature (n, 0),
we are back in the Euclidean world.) Main idea behind all of these: “cohomological argument”,
using virtual cohomological dimension of Γ.

The state of the art on this Conjecture, using dynamical ideas:

Theorem 9.1.13 (Abels–Margulis–Soifer, 2012). Auslander conjecture holds for n ≤ 6.

Why the dimensional restrictions? Proof looks at semisimple part of Zariski closure of Γ and
`(Γ) and does casework based on that; list of possible semisimple parts gets longer with dimension
...

Milnor: Can we remove the cocompactness assumption, i.e. are all groups acting properly discon-
tinuously on Rn by affine transformations virtually solvable?

Tits alternative: equivalent to non-abelian free group acting properly on Rn.

Margulis constructed examples of such actions. These are complete affine manifolds with funda-
mental group isomorphic to non-abelian free groups (!)

Fried–Goldman (1983) show that the linear part of such an action on R3 must have linear part
in (some conjugate of) SO(2, 1) in GL(3,R). Drumm (1993) shows that any discrete subgroup of
SO(2, 1) can appear as the linear part.

Abels–Margulis–Soifer (2002) that there exist discrete subgroups of SO(n+ 1, n)nR2n+1 acting
properly on R2n+1 iff n is odd. Recent work of Smilga (2014–2016–) extends this to a characterisation
for all Gn V (with suitable assumptions.)1

9.2 Building a Margulis spacetime

Remark 9.2.1. Γ y Rn a properly discontinuous affine action =⇒ ∀γ of infinite-order, γ·v+τ(γ) =
v should have no solution in v ∈ Rn, hence 1 is an eigenvalue of γ. =⇒ 1 is an eigenvalue of all
g in the Zariski closure (of the linear part of ρ(Γ) in GL(V ).) In Lie group language, 0 must be a
weight of the linear part of ρ.

Idea of proof, as described by F. Guéritaud. “Refine the idea that 1 must be an eigenvalue.”
g ∈ SO(2, 1) n R2,1 acts on R2,1 with expanding, contracting, and neutral eigendirections

e+, e−, e0 resp. with a well-defined sign for the translational part. The sign is the same for g−1.
Then show that translation lengths are coarsely additive under mutiplication in Γ [“at least for
sufficiently transverse elements.”] The signed translation length can be used to see that these representations

are infinitesimal deformations of Fuchsian representations; the signed translation length is a derivative.

1Goldman–Kamishima, 1984: Auslander conjecture holds for complete compact flat Lorentz manifolds. Carrière,
1989: Compact flat Lorentz manifolds are complete. Grunewald–Margulis, 1989: Classification is known.
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Key tool to make this precise: the Margulis invariant. This is a function αρ : Γ→ R associated
to a representation ρ : Γ→ SO(2, 1)nR3, given by

αρ(γ) := Q
(
τρ(γ), ν(ξ(γ−), ξ(γ+))

)
where τρ denotes the translation part, ξ is the Anosov / Fuchsian limit map, Q is the Lorentzian
bilinear form, and ν : SO0(1, 2)/(P+

0 ∩ P
−
0 )→ R3 is a “neutral section” [g] 7→ [g · (0n−1, 1, 0n−1)T ].

Informally, this measures interaction between the translation part and the north-south dynamics
of the linear part; more precisely, we may identify it as a bona fide (signed) translation length
along a special axis, given by the eigenline for the eigenvalue 1, where we normalize the sign by
choosing a positive eigenbasis (v+, v0, v−) with 〈v+, v−〉 < 0. We note that determining this signed
translation length is equivalent to writing the translation part τ(γ) in this eigenbasis, and looking
at the coefficient for v0.

Key properties:

• α(γn) = nα(γ) for all n ≥ 1

• α(γ−1) = α(γ)

• α(γ) = 0 iff γ has a fixed point

• if γ is ε-hyperbolic (i.e. the attracting and repelling fixed points are at least ε apart), then
|α(γ)| ∼ ‖τ0(γ)‖ (where τ0 is the translation along the central i.e. eigenvalue-1 direction) with
constants depending only on ε

• (“almost-additivity”) if γ and δ are ε-hyperbolic and ε-transverse, then

α(γδ)− (α(γ) + α(δ)) ≤ F (d(x0, `(γ)), d(x0, `(δ)), |α(δ)|, |α(γ)|)

Lemma 9.2.2 (Opposite sign lemma). Let γ, δ be ε-hyperbolic and ε-transverse with α(γ) < 0 <
α(δ). Then 〈γ, δ〉 does not act properly discontinuously on R2,1.

There is also a converse to this (see Theorem 9.4.13 below), and in this sense this obstruction
characterizes proper discontinuity in this case.

Other counterexamples to Milnor

Danciger–Guéritaud–Kassel [DGK18c] constructed examples of proper affine actions of right-angled
Coxeter groups. This is a large class of examples which includes, for instance, closed surface groups.
Note these are still not counter-examples to the Auslander conjecture, e.g. the surface group actions
they construct are in dimension d ≥ 6 and not cocompact.

9.3 Anosov representations (and friends)

These have been the subjects of previous talks; roughly, they are classes of representations, of word-
hyperbolic groups (often surface groups or free groups) into semisimple Lie groups (e.g. PSL(d,R),
SO(n, n− 1), or PSO(n, n)) with “good” dynamical / geometric properties.
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9.3.1 Parabolics and flags

A representation is Anosov with respect to some given / chosen parabolic subgroup P < G; G/P is
naturally a flag manifold.

For example if we choose P = P1 to be the stabilizer of a line in G = PSL(d,R) (up to conjugacy,
this is the group of block upper-triangular matrices with a 1-by-1 block in the upper-left, and a large
(d − 1)-by-(d − 1) block in the lower-right), then G/P is (homeomorphic to) the projective space
P(Rd).

More generally, if P = Pk is the stabilizer of a k-plane in G = PSL(d,R), then G/P is the
Grassmannian of k-planes in Rd; Pi ∩ Pj is the stabilizer of a flag consisting of an i-plane nested in
a j-plane (assuming i < j), and G/(Pi ∩ Pj) is the space of such flags.

For example if P = B is the stabilizer of a full flag in G = PSL(d,R) (up to conjugacy, this is
the group of upper-triangular matrices; it is the Borel subgroup), then G/P is the space of full flags,
which we will denote FB .

In SO(n, n− 1), we define Grk(Rn,n−1) to be the Grassmannian of isotropic k-planes (if k ≤ n−1;
otherwise we define it as the Grassmannian of k-planes whose orthogonal complements are isotropic);
P ′′k := Pk ∩ SO(n, n− 1) is s.t. SO(n, n− 1)/P ′′k

∼= Grk(Rn,n−1.
The same holds in PSO(n, n) (and we write P ′k := Pk∩PSO(n, n)) except PSO(n, n)∩Grn(Rn,n)

(the Grassmannian of isotropic n-planes) has 2 orbits Gr±n (Rn,n) = PSO(n, n)/P±n , where P+
n is the

stabilizer of the span of (e1, . . . , en) and P−n is the stabilizer of the span of (e1, . . . , en−1, en+1).

9.3.2 Anosov representations

Theorem 9.3.1 (Definition / Theorem; [GGKW17b]). ρ : Γ → G is P -Anosov if there exists a
continuous, Γ-equivariant, dynamics-preserving, transverse limit map ξ : ∂∞Γ → G/P , and the
eigenvalue gaps λ1

λ2
(ρ(γ)) grow uniformly exponentially in stable length |γ|∞ := limn→∞

1
n |γ

n|.

In fact, it suffices to assume word-hyperbolicity of the abstract group and uniform exponential
growth of the eigenvalue gaps (the existence of the limit maps then follows as a consequence:

Theorem 9.3.2 (Kassel–Potrie). If that Γ is word-hyperbolic and ρ : Γ → G satisfies λ1

λ2
(ρ(γ)) ≥

Ceµ|γ|∞ , then ρ is P1-Anosov.

Very informally: the representation steers sufficiently clear of flats where complicated interactions
between the flats happen, so that hyperbolic dynamics / behavior in the large is preserved.

Example 9.3.3. • Fuchsian representations ρ : π1Σg → PSL2R (or ρ : Fr → PSL2R with
hyperbolic boundary holonomy (representing totally geodesic boundary) are P1-Anosov (i.e,
B-Anosov in this case.)

• (Benoist) strictly convex real projective holonomies ρ : π1M → PSLnR are P1-Anosov.

(In dimension 2, this is again the same as B-Anosov; more generally, this is not true,)

• (Labourie) Hitchin representations ρ : π1Σg → PSLnR are B-Anosov.

Key properties of Anosov representations ρ : Γ→ G:

• | ker ρ| <∞;

• ρ(Γ) discrete in G;

• orbit maps γ 7→ ρ(γ)x0 are quasi-isoemtric embeddings;

• Anosovness is an open condition.
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9.3.3 Hitchin representations

Let G be PSL(2n,R), PSO(n, n), or SO(n, n − 1). Let Γ := π1Σg be a surface group. χ(Γ, G) :=
Hom(Γ, G)/G has two Teichmüller components of discrete faithful representations corresponding to
hyperbolic structures on Σg. These come from a principal representation τG : PSL(2,R)→ G.

(Informally: the principal representation is “as generic as possible” / “does not create additional symmetries”.)

For example, for G = PSL(d,R), τG = τd is defined via the induced action on the symmetric
power SL(2,R) y Sd−1R2 ∼= Rd, which yields

τd

(
λ

1/λ

)
=


λd−1

λd−3

. . .

λ1−d

 .

For G = SO(n, n−1), the same map works (i.e. we can check that it in fact lands in SO(n, n−1).)
For G = PSO(n, n), τG = ιn,n◦τd, where ιn,n : SO(n, n−1) ↪→ PSO(n, n) is the natural inclusion

induced by the splitting Rn,n = Rn,n−1 ⊕ R0,1. Note that

τG

(
λ

1/λ

)
= ιn,n ◦ τd

(
λ

1/λ

)
=



λ2(n−1

λ2(n−2)

. . .

1
1

. . .

λ−2(n−1)


Definition 9.3.4. A G-Hitchin reprsentation is a representation ρ : Γ → G in the connected
component of Hom(Γ, G)/G containing τG(PSL(2,R)).

Theorem 9.3.5. G-Hitchin representations are B-Anosov (i.e. they are Anosov with respect to all the

parabolics ... )

Moreover, we have the following stronger characterization, in terms of positivity:

Theorem 9.3.6 (Labourie, Guichard, Fock-Goncharov). ρ : Γ → G is G-Hitchin iff there exists
a continuous ρ-equivariant limit map ξ : ∂∞Γ → G/B which sends (oriented) triples in ∂∞Γ to
positive triples in (the flag space) FB .

This gives us, among other things, even more transversality 2 which will be useful later:

Proposition 9.3.7 ([DZ18],Corollary 3.7). Let % : Γ → PSO(n, n) be Hitchin; then the Anosov
limit curve ξ : ∂Γ→ FB′ satisfies

ξ(n−1)(x) +
(
ξ(n−1)(z) ∩ ξ(n+2)(y)

)
+ ξ

(n)
± (y) = R2n

for all (y, z, x) ∈ ∂Γ(3).

2And transversality is key. Often, the more transversality the limit maps have, the “nicer” properties we can show
for our representation.
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9.4 Anosov representations in affine geometry

We recall that {affine structures on M} ←→ {proper actions of π1M on Rn by affine transfor-
mations}. Below we (a) look briefly at use of Anosov reps to study the exotic affine structures
which are Margulis spacetimes; (b) study more carefully the use of Anosov reps in [DZ18] to look
at proper affine actions by closed surface groups (i.e. affine structures on manifolds homotopic to
closed surfaces)

9.4.1 Affine Anosov representations and Margulis spacetimes

Anosov representations are representations of word-hyperbolic groups into semisimple Lie groups G.
Extend this to Go V , where V is a vector space on which G acts by linear transformations. Why?
Because these are / could be groups of affine transformations, and maybe we can then say things
about affine geometry?

Definition 9.4.1. A faithful representation ρ : Γ→ SO0(n− 1, n)nR2n−1 is affine Anosov if

1. there exist a continuous, injective, equivariant limit map ξ : ∂∞Γ→ X (the “generic” orbit of
pairs of isotropic spaces);

2. (informally) there is contraction along the Gromov geodesic flow;

3. there is an equivariant map s : ŨΓ → R2n−1 which is Hölder-continuous and differentiable
along flow lines, and the derivative of s along flow lines is not orthogonal, w.r.t. the Lorentz
quadratic form, to ν(ξ+, ξ−) (informally, “the [variation in the] translation part is sufficiently
transverse”)

Theorem 9.4.2 ([GT17], Theorem 0.1 = 7.1 + 7.3). A representation of a word-hyperbolic group Γ
into SO0(n, n−1)nRn,n−1 is affine Anosov if and ony if its linear part is Anosov w.r.t the stabilizer
of a maximal isotropic plane, and it acts properly on Rn,n−1

Theorem 9.4.3 ([Gho18], Theorem 0.0.3). If ρ : Γ → SO0(n, n) is Anosov w.r.t. the stabilizer of
an oriented isotropic (n− 1)-plane, then ρ(Γ) y SO0(n, n)/SO0(n− 1, n) is proper if and only if ρ
is Anosov in SL(2n,R) wrt the stabilizer of an oriented n-plane.

In particular, if we let Γ be a nonabelian free group, then this says that affine Anosov represen-
tations give rise to Margulis spacetimes; conversely, Margulis spacetimes with Anosov linear parts
give rise to affine Anosov representations.

We can interpret affine representations in SO0(1, 2)nR3 as tangent directions in space of Anosov
representations in SO0(1, 2), or as tangent directions of deformations in SO0(2, 2) of Anosov rep-
resentations in SO0(1, 2). i.e. we can nterpret affine SO0(n − 1, n) representations as infinitesimal
SO0(n, n) representations.

Proposition 9.4.4 ([Gho18], Proposition 0.0.1, §2?). Suppose Γ is word-hyperbolic and

• u = d
dt

∣∣
t=0

ρt where ρt : Γ→ SO0(n, n) is an analytic one-parameter family of representations;

• v0 ∈ R2n a fixed vector of SO0(n− 1, n); and

• ρ0(Γ) Anosov wrt stabilizer of a maximal isotropic plane in Rn−1,n.

Then ρ(Γ) := (ρ, uv0)(Γ) is a subgroup of the right affine group s.t. for any γ ∈ Γ\{id},the Margulis
invariant αρ(γ) is proportional to d

dt

∣∣
t=0

log λn

λn+1
(ρt(γ)) (these are the middle eigenvalues.)

Also get affine actions “by deformation”:
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Theorem 9.4.5 ([Gho18], Theorem 0.0.4). Suppose Γ is word-hyperbolic and

• u = d
dt

∣∣
t=0

ρt where ρt : Γ→ SO0(n, n) is an analytic one-parameter family of representations;

• ρ0(Γ) ⊂ SO0(n− 1, n) ⊂ SO0(n, n) such that affine action (ρ0, uv0)(γ) y Rn−1,n is proper.

Then there exists an ε > 0 such that for all t ∈ (0, ε), the groups ρt(Γ) act properly on

SO0(n, n)/SO0(n− 1, n) ∼= R2n−1.

Combining this with an earlier result of Abels–Margulis–Soifer, get

Corollary 9.4.6 ([Gho18], Corollary 0.0.5). There exist proper affine actions of Fk, k even, on

SO0(n, n)/SO0(n− 1, n)

which (when written as 2n-by-2n matrices) lie in SO0(n, n).

9.4.2 Affine actions of surface groups: linear part not Hitchin

Theorem 9.4.7 (Danciger–Zhang, Theorem 1.1). If π1S → GLdR n Rd is a proper affine action,
then the linear part does not lie in a Hitchin component.

This restricts the situation described in the first Ghosh–Treib result when Γ is a surface group:
there are no proper affine actions with Hitchin linear part (but it may still have Anosov linear part—
e.g. Barbot representations are Anosov but not Hitchin), hence no corresponding affine Anosov
representations (but those may still exist, just with non-Hitchin Anosov linear part.)

Compare this e.g. to the case of free groups acting properly by affine transformations on R3—
those are B-Anosov, by Fried–Goldman. The Danciger–Zhang theorem tells us that for surface
groups in higher rank, proper affine actions, if they exist, must necessarily look rather different.

Proof sketch for Danciger–Zhang : Four steps! Step 1 feels like trickery. Step 2 is neat, though
it does not use Anosov representations. Step 3 requires substantial work with Margulis invariants /
length functions. Step 4 is the main technical step which uses the theory of Anosov representations.
Below we described the steps in slightly more detail.

9.4.3 Reduction to SO(n, n− 1)

By considering Zariski closures (or: mild trickery using Lie / algebraic groups), reduce to case of
SO(n, n− 1):

Theorem 9.4.8 (Guichard, in preparation). If ρ : Γ→ SLd(R) is Hitchin, then the Zariski closure

ρ(Γ)
Z

must contain the principal SL2R, i.e. the image of the irreducible representation τd : SL2R→
SLdR.

There is a shortish list of algebraic subgroups with this property:

1. SLdR;

2. the principal SL2R;

3. SO(n, n− 1), if d = 2n− 1 is odd;

4. Sp(2n,R), if d = 2n is even

5. if d = 7, the 7-dimensional representation of G2 in SO(4, 3).



CHAPTER 9. ANOSOV REPRESENTATIONS IN AFFINE GEOMETRY 85

Suppose ρ is the linear part of a proper affine action and is the lift of a representation in
the PSLdR-Hitchin component. If ρ′ is any lift of the same to SLdR, then we can show that

ρ(Γ)
Z
⊃ ρ′(Γ)

Z
, so ρ(Γ)

Z
contains the principal SL2R. As observed above, any element of ρ(Γ)

Z

has 1 as an eigenvalue. If d is even, the principal SL2R contains elements which do not satisfy this;
hence in our case = 2n− 1 must be odd.

Still using the observation that 1 is an eigenvalue, and via more mild trickery with algebraic
groups, we obtain that the projection GL2n−1R→ SL2n−1R is injective between the Zariski closures

ρ(Γ)
Z
→ ρ′(Γ)

Z
, i.e. ρ(Γ)

Z
= ρ′(Γ)

Z
, so ρ(Γ)

Z
must in fact be conjugate to (2), (3), or (5). In all

of these cases ρ(Γ)
Z
< SO(n, n− 1), so ρ(Γ) < SO(n, n− 1).

Hence we have reduced our original statement to

Theorem 9.4.9 ([DZ18], Theorem 1.2). If π1S → SO(n, n− 1)nRn,n−1 is an action by isometries
of En,n−1 with linear part a SO(n, n− 1)-Hitchin representation, then the action is not proper.

9.4.4 Geometric transition

By performing a geometric transition, we obtain a deformation path in SO(n, n): En,n−1 may be
seen as a geometric limit of (scaled copies of) Hn,n−1 in the following sense. Both Hn,n−1 and En,n−1

naturally embed in real projective geometry. The projective model for Hn,n−1 is given by

Hn,n−1 :=
{

[x] ∈ P(R2n) : 〈x, x〉n,n < 0
}

with metric coming from the restriction of 〈·, ·〉n,n to the tangent spaces of the hyperboloid {x :
〈x, x〉n,n = 1 which double-covers Hn,n−1. PSO(n, n) < PGL(2n,R) preserves Hn,n−1 (and its ori-
entation) and is the (op) isometry group of this metric (a geodesically complete pseudo-Riemannian
metric of signature (n, n − 1).) For the projective model of En,n−1 we may take the parallel affine
hyperplane

En,n−1 := {[x1 . . . L2n−1 : 1]} ⊂ P(R2n)

with metric given by the restriction of 〈·, ·〉n,n to the relevant vector subspace (this is a complete
flat metric of signature (n, n − 1).) The subgroup of PGL(2n,R) which preserves this affine chart
and its flat metric (and orientation) gives the isometry group

Isom+(En,n−1) =

{[
A v
0 1

]
∈ PGL(2n,R) : A ∈ SO(n, n− 1)v ∈ R2n−1

}
.

Consider a differentiable path r 7→ gr :=

[
Ar vr
wTr br

]
in PSO(n, n) based at g0 = ι(h), where

h ∈ SO(n, n − 1). Here Ar is a (2n − 1)-by-(2n − 1) matrix, vr, wr ∈ R2n−1, and br ∈ R (all
well-defined up to simultaneously changing signs.)
g0 = ι(h) =⇒ A0 = h, v0 = w0 = 0, b0 = 1. Let cr ∈ PGL(2n,R) be the projective transformation

given by

[
1
r id2n−1 0

0 1

]
.

Observe that cr PSO(n, n)c−1
r → SO(n, n−1)nR2n−1 (in the Chabauty topology on closed subgroups

of PSL(2n,R)), as r → 0, since

lim
r→0

crgrc
−1
r = lim

r→0

[
Ar

1
rvr

rwTr br

]
=

[
h u
0 1

]
∈ SO(n, n− 1)nR2n−1

where u := d
dr

∣∣
r=0

vr. Note moreover [0 : · · · : 0 : 1] =: x0 ∈ Hn,n−1 ∩ En,n−1.

In fact, the action PSO(n, n) y Hn,n−1 converges to the action SO(n, n− 1)nR2n−1 y En,n−1

under conjugation by cr, in the following sense: let r 7→ xr be a differentiable path in Hn,n−1 based
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at x0 = [0 : · · · : 0 : 1] (note Stab(x0) = ι(SO(n, n− 1)).) For all r small enough, crxr ∈ En,n−1, so
crxr converges to some limit x′ ∈ En,n−1. (If we write Rn,n−1 = Tx0Hn,n−1, the tangent vector to xr
at r = 0 is precisely the displacement vector x′−x0.) Moreover, crgrxr = crgrc

−1
r (crxr)→ (h, u)x′.

Hence En,n−1 is a geometric limit of Hn,n−1 as subgeometries of real projective geometry, in the
sense of Cooper–Danciger–Wienhard.

Define %crr : Γ → PSL(2n,R) by %crr (γ) := cr%(γ)c−1
r . By the calculation above, limr→0 %

cr
r =

(ρ, u) is a representation into SO(n, n − 1) n R2n−1 with linear part ρ and translation part the
ρ-cocycle u : Γ → R2n−1. Moreover, we may write any affine action with irreducible linear part as
the limit of such a transition path:

Lemma 9.4.10 ([DZ18], Lemma 8.1). If (ρ, u) : Γ → SO(n, n − 1) n R2n−1 is any surface group
representation with irreducible linear part ρ, then there exists a path %r : Γ→ PSO(n, n) such that
%0 = ι ◦ ρ and limr→0 %

cr

r = (ρ, u) as above.

Proof. ρ irreducible =⇒ ι ◦ ρ : Γ→ PSO(n, n) has finite centralizer, =⇒ ι ◦ ρ is a smooth point of
Hom(Γ,PSO(n, n)) by work of Goldman. Hence any tangent direction there is integrable; picking a
suitable one, (see [DZ18] for details) we win.

9.4.5 Interlude: isotropic Grassmannians and flag manifolds

We remark that SO(n, n−1)-Hitchin representations are always PSL(2n−1)-Hitchin (via the natural
inclusion), and, after composing with the natural inclusion ιn,n : SO(n, n−1) ↪→ PSO(n, n) described
above, are always PSO(n, n)-Hitchin. However, PSO(n, n)-Hitchin representations are not PSL(2n)-
Hitchin via the natural inclusion there.

We remark that SO(n, n− 1)/B′′, where B′′ is the Borel subgroup of SO(n, n− 1), is the space
of flags F (1) ⊂ · · · ⊂ F (2n−1) where F (k) ∈ Grk(Rn,n−1) and F (2n−1−k) = (F (k))⊥.

Also, PSO(n, n)/B′, where B′ is the Borel subgroup of PSO(n, n), is the space of flags

F (1) ⊂ · · · ⊂ F (n−1) ⊂ F (n)
+ , F

(n)
− ⊂ F (n+1) ⊂ · · · ⊂ F (2n−1)

where F (k) ∈ Grk(Rn,n), F
(n)
± ∈ Gr±n (Rn,n), and F (2n−k) = (F (k))⊥.

Any given H0 ∈ Grn−1(Rn,n) is contained in a unique H± ∈ Gr±n (Rn,n). This gives us natural
projection maps ω̄pm : Grn−1(Rn,n)→ Gr±n which are fiber bundles with RPn−1 fibers.

For example, (figure and description from [DZ18]) Gr1(R2,2) ⊂ Gr1(R4) = RP3 is the doubly-
ruled hyperboloid. The lines of one of the rulings make up Gr+

2 (R2,2) while the lines of the other
make up Gr−2 (R2,2) The projection maps ω̄± map a point of Gr1(R2,2) to the line of the + / - (resp.)
ruling containing it.
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9.4.6 Unexpected Anosovness via Margulis invariant functional

In fact we get a deformation subpath of Anosovs in PSL2nR:

Theorem 9.4.11 ([DZ18], Theorem 8.7). Let ρ : Γ→ SO(n, n− 1) be Anosov with respect to the
stabilizer of an isotropic (n− 1)-plane. Let u : Γ→ R2n−1 be a ρ-cocycle such that the affine action
(ρ, u) y Rn,n−1 is properly discontinuous. Let %r : Γ→ PSO(n, n) be any path so that %0 = ιn,n ◦ ρ
and %c

r

r → (ρ, u). Then for all sufficiently small r > 0, ι2n ◦ %r : Γ→ PSL(2n,R) is Anosov wrt the
stabilizer Pn of a n-plane in R2n.

For this we use Margulis invariants (see above.) To obtain a converse to the opposite sign lemma
(Lemma 9.2.2) we work with currents:

Let S be a hyperbolic surface, Γ = π1S, and let ϕt denote the geodesic flow on T 1S.

Definition 9.4.12. A(n oriented) geodesic current µ on S is a finite ϕt-invariant Borel emasure on
the unit tangent bundle T 1S. We denote the space of geodesic currents on S by C(S)

These are a nice space containing the space of (oriented) closed geodesics (a “completion” /
“closure” of sorts.) Moreover, by Banach-Alaoğlu, the space of currents of total mass 1 is compact.

Theorem 9.4.13 (Goldman-Labourie-Margulis, Ghosh-Treib). Suppose the linear part of an affine
action (ρ, u) ∈ SO(n, n− 1)nR2n−1 is Anosov wrt the stabilizer of an isotropic (n− 1)-plane. Then

(1) There exists a unique continuous linear functional α(ρ,u) : C(S) → R such that α(ρ,u)(µc) =
α((ρ, u)(γ)) for all c = [γ] ∈ CG(S).

(2) (ρ, u)(Γ) y En,n−1 is properly discontinuous iff α(ρ,u)(µ) 6= 0 for all µ ∈ C(S).

α(ρ,u) is variously called the Margulis invariant functional, the Labourie-Margulis invariant, or
“Labourie’s diffusion of the Margulis invariant”.

Note (2) implies the Opposite Sign Lemma and its converse. Moreover, we can define an analo-
gous length function L% : C(S)→ R which gives the translation length L on Hn,n−1 (along a special
“slow axis” which is the analogue of our neutral line) when restricted to CG(S).

By examining the two geometries and the relation between them, we obtain

Lemma 9.4.14 ([DZ18], Lemma 8.2). Let (ρ, u) : Γ→ SO(n, n− 1)nR2n−1 be any representation
whose linear part ρ : Γ→ SO(n, n− 1) is Anosov (wrt stabilizer of an isotropic (n− 1)-plane.) Let
%r : Γ → PSO(n, n) be a differentiable path based at %0 = ι ◦ ρ and satisfying limr→0 %

cr
r = (ρ, r).

Then the length functions α(ρ,u),L%r : C(S)→ R satisfy

lim
r→0

1

r
L%r (·) = α(ρ,u)(·)

and the convergence is uniform on compact subsets of C(S).

Proof of Theorem 9.4.11. Theorem 9.4.13 gives us a well-defined, nowhere zero Margulis invariant
functional α(ρ,u). Since the space of current is connected, α(ρ,u) always has the same sign, WLOG
+. By compactness, there exists ε > 0 such that α(ρ,u)(C1(S)) > ε > 0. From Lemma 9.4.14, for
all r > 0 sufficiently small, L%r (C1(S)) > r ε2 . Below, assume r is sufficiently small for this to hold.
Given a fixed hyperbolic metric on S, the stable length |γ|∞ is biLipschitz to the length `([γ]),
with constant say M . Using that L% restricts to the translation length L, we then have, for every
γ ∈ Γ\{id}, an inequality on the Lyapunov projections

λn(%r(γ)) ≥Mr
ε

2
|γ|∞ > 0

Moreover we can build the Anosov limit map ξ by composing ξ
(n)
+ with the inclusion Gr+

n (Rn,n) ↪→
Grn(R2n) (since, writing γ+ = limm→∞ γm ∈ ∂Γ, ξ

(n)
+ (γ+) is the attracting fixed point for %(γ) y

Grn(R2n).) Hence the [GGKW17b] characterization of Anosov reps in terms of limit maps + regular
growth of Lyapunov projections (Definition / Theorem 9.3.1), we are done,
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9.4.7 Ruling out Anosovness via lots of transversality

But nonesuch exist:

Theorem 9.4.15 ([DZ18], Theorem 1.3). If % : π1S → PSO(n, n) is a PSO(n, n)-Hitchin represen-
tation, then ι2n ◦ % : π1S → PSL(2n,R) is not Pn-Anosov.

The proof here (or really, of the key Lemma below) uses Anosovness, Fock–Goncharov positivity:
(although [DZ18] remark that you can replace this with Labourie’s condition (H) here—basically,
you need a little more transversality than the Anosov condition along gives you ...)

Proof of Theorem 1.3. Suppose ι2n ◦ % is Pn-Anosov. %, being Hitchin, is Anosov w.r.t. the Borel
subgroup B′ < PSO(n, n). This, combined with Pn-Anosov, implies that ι2n ◦ % is B-Anosov
in PSL(2n,R). Furthermore, the Anosov limit map are “preserved under the inclusion”, with a
consistent choice of sign (say, +) for the isotropic part.

If n is odd, transversality will fail for the isotropic part (to see: Remark 2.8), and we get a
contradiction.

If n is even: use the following key

Lemma 9.4.16 ([DZ18], Lemma 5.1). Given a Hitchin representation ρ : Γ→ PSO(n, n), the subset
ξ(n−1)(∂Γ) ⊂ Grn−1(Rn,n) is a differentiable submanifold that is everywhere tangent to the fibers
of the natural projection ω̄+ : Grn−1(Rn,n)→ Gr+

n (Rn,n), and therefore contained in a single fiber.

But now ξ(n−1)(∂Γ) contained in a single fiber =⇒ ξ(n)(x1) = ξ
(n)
+ (x1) = ξ

(n)
+ (x2) = ξ(n)(x2),

which contradicts injectivity of ξ(n). Modulo the proof of the Lemma (below), we are done.

Proof of Lemma 5.1. Consider the affine chart of Grn−1(R2n) consisting of all (n − 1)-planes t
ξ(n+1)(y). We get local coordinates given by

Hom
(
ξ(n−1)(x), ξ(n+1)(y)

)
=

⊕
1≤i<n≤j≤2n

Hom(Li, Lj)(x, y).

For each y < z ≤ x < y in ∂Γ, ξ(n−1)(z) is in this affine chart; write in coordinates as (uij(y, z, x))1≤i<n≤j≤2n.
Fock–Goncharov positivity (or Labourie’s Property (H) with k = n − 2?) yields the strengthened
transversality statement in Proposition 9.3.7, and translating that statement into our coordinates
we obtain that un−1,n(y, z, x) 6= 0 for all y < z < x < y in ∂Γ ([DZ18], Lemma 5.2.) Since the ui,j
are ρ-equivariant, by compactness of T 1S, there exists C > 0 such that

‖ui,j(y, z, x)‖(y,z,x) ≤ C

for all i ≤ i < n ≤ j ≤ 2n, and in addition 1
C ≤ ‖un−1,n(y, z, x)‖(y,z,x) ([DZ18], Lemma 5.3.)

Now write the tangent cone Cx at x to the curve ξ(n−1)(∂Γ) in linear coordinates on our affine
patch. This part is slightly mysterious to me. But once you’ve done it, we can use Anosov dynamics
(and equivariance) to show that all of the coordinates of things in Cx are zero, except possibly for
the (n − 1, n) coordinate ([DZ18], Lemma 5.4.). Hence Cx is contained in the line corresponding
to Hom(Ln−1, Ln)(x, y) in our coordinates. A quick argument (the cocycle condition, + [DZ18],
Lemma 5.2) shows that it is in fact the whole line ([DZ18], Lemma 5.5.). Hence ξ(n−1)(∂Γ) is a dif-
ferentiable submanifold of dimension one (although the parametrization by ξ(n−1) is not necessarily
C1!). Working in affine charts for Grn−1(R2n), the tangent space to the fiber above ξ(n−1)(x) of the
projection under consideration is Hom(ξ(n−1)(x), Ln(x, y)) ⊃ Hom(Ln−1, Ln)(x, y). Hence our limit
curve is tangent to the fiber at an arbitrary point x, i.e. everywhere, as desired.
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Recap of argument!

(1) If we have a proper affine action with a Hitchin linear part, we may as well assume (d = 2n− 1
is odd and) the linear part is SO(n, n− 1)-Hitchin.

(2) Produce a deformation path of PSO(n, n)-Hitchin representations

(3) Using the proper affine action, show that (possibly after passing to a shorter subpath) these are
also Pn-Anosov.

(4) By messing around with limit maps, show that PSO(n, n)-Hitchin representations can never be
Pn-Anosov: contradiction.

9.4.8 What about the other components?

For d ≥ 3, Hom(π1Σg,PSLdR) has 3 or 6 components (depending on whether d is odd or even; in
the even case pairs of them are identified by reversing orientation.) One (or two, resp.) of these are
Hitchin; representations in the other are “very different and still quite mysterious” ...
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