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In this thesis, we use a fundamental result of Cheng and Yau in affine
differential geometry to study RP™ manifolds. In the 1970s, Cheng and
Yau completely described hyperbolic affine spheres in R*™!. All such
hypersurfaces are asymptotic to the boundary of a sharp convex cone,
and to each such cone there exists (up to scaling) only one affine sphere
asymptotic to the boundary. The affine sphere is invariant by any
unimodular linear automorphism of the cone, and thus the structure
descends to the quotient. By projectivizing, we find a canonical Rie-
mannian metric and two canonical projectively flat connections on any
properly convex RP"™ manifold. One connection represents the given
RP"™ structure and the other the RP"™ structure of the projective dual
manifold.

The main application of this approach comes when n = 2. In this
case, we use a description due to C.-P. Wang of hyperbolic affine spheres
which cover compact surfaces to prove that a compact oriented convex
RP? surface of genus g > 1 is equivalent to a conformal structure on
the surface and a holomorphic section of K3. This recovers a theorem
of Goldman on the deformation space of such surfaces, and we study
the induced structure on the deformation space.
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1. INTRODUCTION

Affine differential geometry and the study of RP" structures on man-
ifolds are two fields in geometry each with a long and rich history. In
short, affine geometry is the study of those properties of hypersurfaces
in R**! which are invariant under the unimodular affine group gener-
ated by SL(n+ 1, R) and translations. The field was very active in the
early part of this century with Blaschke’s monograph on the subject
[3], and subsequently, mathematicians such as Calabi, Cheng, and Yau
have made important contributions.

An RP" structure on an m-manifold, on the other hand, is a sys-
tem of coordinate charts in RP" glued together by transition maps in
PGL(n + 1,R). Ehresmann studied these in the 1930s. The study
of RP? structures has been particularly strong. Kuiper, Benzécri,
Kobayashi, and Thurston have all done important work in the field.
Recently, the field has been quite active, led by Goldman and Choi.

The connection between the two fields is this: For a large and im-
portant class of manifolds M with RP" structure, the convex ones,
M = QJT, with Q a convex domain in some R* C RP" and ' C
PGL(n + 1,R) an appropriate subgroup. Cheng and Yau prove that
any bounded convex {2 uniquely determines a special hypersurface
called a hyperbolic affine sphere which is asymptotic to the cone over
Q in R*™. (For example, if  is a disk, then the affine sphere is just
a hyperboloid and we recover the familiar hyperbolic structure on the
disk.) The SL(n + 1,R) invariance the affine geometry provides up-
stairs means that, under the natural map R*™! \ 0 — RP", we get a
lot of canonical structure on (2 that is invariant under PGL(n + 1, R).
Therefore, all of it descends to our convex RP"™ manifold M. (We
should remark that in [14] Darvishzadeh-Goldman use other invariant

structures on the cone and study a different hypersurface to investigate
RP? surfaces.)

Remark. The PDE required to produce a hyperbolic affine sphere is a
Monge-Ampere equation similar to the one used in complex geometry
to construct a Kahler-Einstein metric of negative scalar curvature. The
affine sphere formulation plays a similar role in the study of manifolds
with convex RP" structures as Kéhler-Einstein metrics do in the study
of Kahler manifolds with ¢; < 0.

Theorem 1. The data of a compact Riemann surface of genus g > 1,
together with a holomorphic section of K3, the tricanonical bundle, is
equivalent to the data of an oriented, compact surface with convex RP?
structure.
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Hence, the deformation space of convex RP? structures on the surface
(which we refer to as Goldman space) has the structure of a holomorphic
5g — 5 dimensional vector bundle over Teichmiiller space (which of
course has complex dimension 3g — 3). We thereby recover

Corollary 1.0.1 (Goldman [19]). The deformation space of convex RP?
structures on an oriented compact surface of genus g > 1 s topologi-
cally a real 16g — 16 dimensional ball.

C.P. Wang shows that an SL(3,R) invariant called the Pick form on
a 2-dimensional hyperbolic affine sphere is equivalent to a holomorphic
section of K3, with the conformal structure given by a natural invariant
metric. Using this fact, together with a classification theorem of Wang
on hyperbolic affine spheres which cover a surface of genus g > 1 in an
appropriate way, we get Theorem 1.

In particular, when the Pick form vanishes, the RP? structure is
the one descending from the hyperbolic disk A. (The Klein model of
the hyperbolic metric on A shows that the hyperbolic isometries of A
are given exactly by the action of those elements of PGL(3,R) which
preserve the set A C RP2) Therefore, the uniformization theorem
shows that the structure preserved is exactly the conformal structure
of the Riemann surface ¥. From this, we see that Teichmiiller space
naturally sits in Goldman space as the zero section of the vector bundle
with fiber H°(Z, K®).

Also, using result on the conormal map of affine spheres, we find
that by replacing a section U of K* by —U, we recover the projective
dual surface. This recovers the fact that Teichmiiller space is exactly
the fixed locus of the action of projective duality on Goldman space.

Another approach is given by Hitchin in [22]. By means of stable
Higgs bundles on a Riemann surface ¥, he studies the connected com-
ponents of the space of representations Hom(m(X), G)/G for a simple
Lie group G split over R. An RP? structure on an oriented surface in-
duces a holonomy representation into G = PSL(3, R). Using this fact,
Goldman and Choi [12] prove that G(S) coincides with one component
of this representation space, which Hitchin had shown is parametrized
by the space of sections H°(X, K?) & H°(Z, K3). This gives another
complex structure on G(S), but again it is not clear how it is related
to the one we find in Theorem 1. In particular, Hitchin’s construction
depends on an a priori choice of conformal structure on X, while in the
construction used in Theorem 1, the RP? structure determines a metric
and therefore a conformal structure on 3.



2. RP"™ STRUCTURES

RP" is defined as the space of all lines passing through 0 in R"*!.
There is a natural map from R"*! \ 0 — RP" given by p — £, where
¢ is the unique line through p. We also use the notation [p] to denote
this line. The linear automorphisms of RP" are given by the group
PGL(n + 1,R), which is equivalence classes of matrices A € GL(n +
1,R) with A ~ AA for real constants .

We say that an n-dimensional manifold M has an RP" structure if
it admits coordinate charts represented by open sets in RP" and the
transition maps between these coordinate charts are given by maps in
PGL(n + 1,R). We also say M is an RP" manifold. A path in M is
called a geodesic with respect to the RP™ structure if it is a straight
line in each of the coordinate charts.

The RP™ structure on M can clearly be lifted to an RP" structure
on its universal cover M. Then we can define the developing map as
a local diffeomorphism from M — RP" in the following manner. Any
coordinate map for a neighborhood Uy of € M serves to define the
developing map Uy — RP"™. For any adjacent coordinate chart U, the
transition map ensures that there is a unique way to define a map
from U to RP"™ which agrees on the overlap of U and U,. Repeating
this process, we define the developing map from M to RP". Deck
transformations of M are taken to linear automorphisms of RP" by the
developing map, and so define a holonomy map m (M) — PGL(n +
1,R). The developing map is unique up to the action of PGL(n+1, R).

2.1. Convex RP" structures. An RP" manifold is convez if its de-
veloping map is a diffeomorphism onto a domain {2 convex in some
affine R* C RP". In this case, we can realize M = Q/T, where I is a
subgroup of PGL(n + 1, R) which acts discretely and properly discon-
tinously on 2. M is properly convez if €2 is bounded in some such R".
Below we find a canonical projectively flat connection on a properly
convex RP"™ manifold.

2.2. The tautological bundle. We define RP" as the space of all
lines ¢ passing through 0 in R"*!. Then the subset of RP" x R**!
consisting of all (p, £) with p € £ is the total space for the tautological
line bundle T of RP". Given an RP" manifold M, dev—'7 defines the
tautological bundle on M. We say M admits a tautological bundle if
this structure descends to M, i.e. if there is a line bundle on M which
pulls back to M under the action of m; to dev='r. For simplicity, we
denote this line bundle as 7 also.
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The only RP"™ manifolds which we consider in this paper are those
with convex structure. In this case, we have

Proposition 2.2.1. A manifold M with convex RP" structure admits
an oriented tautological bundle.

Proof. Since M is convex, we have M = Q/I'; where Q C R* C RP"
and I' C PGL(n+1,R) is a representation of 7m; M which acts discretely
and properly discontinously. Introduce inhomogeneous coordinates on
R™ O €, and consider the cone over € in R*™! defined by

C(Q) ={(tz,t):z € QCR", t>0}.

It is enough to prove that we can lift the action of I' to a linear action
[ on C(Q2) C R*:

We assume we can lift T to I'. Then let C*(Q) = C(Q)u{0}u—-C(R)
be the union of all lines in Q. Then I acts on C*(Q2). The total space
of the tautological bundle is all pairs

{(p,0) eCEQ) x Q:pef}

modulo the action of " x I'. Since I preserves the set C(Q), the
line bundle is oriented. Sections which take values in C(€)/I" can be
thought of as positive sections.

Now we prove we can lift the action of I': Consider the natural
map 7 : SL(n + 1,R) - PGL(n + 1, R) induced by the projection on
GL(n + 1,R). Then there are two cases: If n is even, then 7 is an
isomorphism; if n is odd, then PGL(n+ 1, R) has two components and
7 is a two-to-one map onto the identity component of PGL(n + 1, R).
However, we can define

SLE(n+ 1,R) = {A € GL(n + 1,R) : | det A| = 1}.

#:SL*(n+1,R) - PGL(n + 1, R)
is always a two-to-one map with kernel {£I}.
Now consider v € T which acts on 2. Then there are two lifts of 7
in SL*(n + 1,R). One of them will preserve C(f2) and the other will

interchange C(2) and —C(2). The former gives a canonical choice of
lift which acts on C'(2). O

2.3. Projectively flat connections. There is an equivalent way of
defining RP" manifolds in terms of affine and projective connections.
A projectively flat connection on T M defines an RP" structure on M.
The geodesics for the RP™ structure are the geodesics for V. A key
element in this correspondence follows from Cartan’s theory of normal
projective connections. We outline a simplified version which works
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for connections which are projectively flat. For the general case, see
Kobayashi [23] or Hermann [21].

Two connections V! and V2 on TM are projectively equivalent if
there is a one-form p such that

VLY = VAY + p(X)Y + p(Y)X,

where X and Y are tangent vector fields. This action of p is called a
projective transformation. An equivalent condition is that the geodesics
of V! and V? are the same as sets. A connection is projectively flat if
it is locally projectively equivalent to a flat connection.

Proposition 2.3.1. Let L be a trivial line bundle over M and £ be
a nonvanishing section of L. A torsion-free connection V on T'M 1s

projectively flat if and only if there exists a connection V on the vector
bundle E =TM & L such that for some (0,2)-tensor 3

VxY = VxY +B(X,Y)é
2.3.1 ~
(23.1) R
and the curvature R of V must satisfy
(2.3.2) R=)a®I,

where A is a two-form on M and I is the identity in End(TM & L).
The connection V satisfying these conditions is unique.

We call this V the normal connection associated to V.

Sketch of proof. This result is standard. The curvature tensor R is
defined in the usual way:

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.
R is an End(T'M)-valued two-form. The Ricci tensor is defined by
Ric(Y,Z) =tr{X — R(X,Y)Z}.
Note that unlike in the case of Riemannian curvature, Ric is not always
symmetric in Y and Z. Define P(X,Y’) by
P(X,Y) = —[nRic(X,Y) + Ric(Y, X)].
Then the Weyl tensor, which is invariant under projective transforma-
tions, is defined by
W(X,Y)Z=R(X,Y)Z-P(X,Y)Z+P(Y,X)Z—-P(Y,Z)X+P(X, Z)Y.
The condition on projective flatness, i.e. the existence of p giving a

projective transformation to a flat connection, is equivalent to W =0
and

(2.3.3) (VxP)(Y, Z) = (VyP)(X, Z).
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We note that if n > 2, then W = 0 implies (2.3.3).
On the other hand, compute the R from (2.3.1)

R(X,Y)Z = R(X,Y)Z+B(Y,2)X - B(X, Z)Y +1(X,Y, Z)¢,

R(X,Y)¢ = [B(X,Y)-B(Y, X)[,
where 7 is a certain skew-symmetrization of V3. Using these equations
for R, we see the curvature constraint (2.3.2) is equivalent to (1) W = 0,
(2) 8 = —P, and (3) ¥(X,Y,2) = —(VxP)(Y, Z) + (VyP)(X, Z) =
0. Therefore, by (2.3.3) the projective flatness of V is equivalent to
the existence of the normal connection, which satisfies the curvature
condition (2.3.2). O

This proposition allows us to construct an RP" structure on a man-
ifold equipped with a projectively flat connection V. Consider a base
point z in M, and the universal cover M. Any two paths from z to y
in M induce by V-parallel transport linear maps between F, and E,.
Then (2.3.2) and the Ambrose-Singer holonomy theorem [24] show that
these maps are equivalent up to homothety; i.e. they define a projective
isomorphism from P(E,) to P(E,). Then &, as a section of E, defines
the developing map from M to RP" by [¢] € P(E,) for all y € M. See
e.g. Goldman [20] for details.

The geodesics with respect to the RP™ structure are the same (as
sets) as the geodesics of V, and in fact an RP™ structure on a manifold
M 1is equivalent to a projective equivalence class of projectively flat
connections on M.

2.4. Special results on RP? structures. In this section we record
some results in the special case n = 2. See the survey article of Choi
and Goldman for a good overview of this material [13]. Goldman also
has notes [18] which are useful.

In the applications below, we will be mainly interested in the theory
of compact oriented RP? surfaces of genus g > 2. We begin with a
fundamental result on such surfaces which are convex, which is due to
Kuiper [25] and Benzécri [2]:

Proposition 2.4.1. If S is a compact, oriented RP? surface of genus
g > 2, it must be properly convexr. Furthermore, the boundary 02 is
always strictly conver and C*, and must be either an ellipse or a Jordan
curve which is nowhere C2.

Another fundamental result is the decomposition theorem of Gold-
man [19]. For any surface S as above, we can find a set of disjoint
closed RP%-geodesics which cut the surface into many pairs of pants.
Goldman explicitly determines real parameters needed to describe each
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pair of pants as an RP? surface and the gluing data needed to put them
back together to form S. This analog of Fenchel-Nielsen coordinates
provides global coordinates on Goldman space and provides Goldman’s
original proof of Corollary 1.0.1.

We should also mention the work of Choi [9, 10, 11] that any compact
RP? surface with x(S) < 0 can be decomposed in a canonical way into
convex pieces. Together with Goldman’s coordinates, Choi’s results
extend the preceding proposition to every component of the space of
RP? structures on S, not just the one corresponding to convex surfaces.

2.5. A symplectic form on Goldman space. There is a natural
symplectic form on Goldman space, which is described using the lan-
guage of affine connections [20]. Given an RP? structure on a compact
surface S, we can always find a projectively flat, torsion-free connec-
tion on the tangent bundle T'S whose geodesics are the RP? geodesics.
Any two such connections which are projectively equivalent give rise
to the same RP? surface. In order to study the deformation problem,
we consider any two connections to be equivalent if they are related
by an action of Diffy(S), the identity component of the diffeomorphism
group of S. The deformation space of RP? structures on S is the space
of all projectively flat, torsion-free connections on S, modulo projective
equivalence and the action of Diffy(.5).

(Below we describe Goldman space slightly differently. For a given
convex RP? structure on S, we find a canonical metric on S, which
gives it the structure of a Riemann surface. Also, the RP? structure
provides the extra data of a holomorphic section of K3, and we are
able to find within the projective equivalence class a canonical torsion-
free projectively flat connection corresponding to the RP? structure.
Conversely, given a conformal structure and a section of K3, we can
construct the canonical projectively flat connection which determines
the convex RP? structure. Of course in this picture, the action of Diff,
is taken care of by the Teichmiiller theory of Riemann surfaces.)

Now we briefly describe Goldman’s construction of the symplectic
form on Goldman space. Let Conn be the affine space of all connections
on T'S. First consider the following natural symplectic structure on
Conn:

(2.5.1) w(oy,09) = / stroy Atrog — tr(o1 A o).
s

(This differs in sign from the form Goldman defines.) Here the o;
are in the tangent space to Conn, i.e. we view them as sections of
T*(S)®End(TS). The traces are over the endomorphism part and the
wedge products over the one-form part.
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Now we perform two successive symplectic reductions. First the
torsion tensor is used to define a map from Conn to Q!(S)* which is an
equivariant moment map for the action of 2!(S) on Conn by projective
equivalance. Thus we have a symplectic structure on Conng, the space
of torsion-free connections modulo projective equivalence.

There is a notion of projective curvature tensor which is used to
define a map from Conng to Q'(S). This in turn is an equivariant
moment map for the natural action of Diff; on Conng. Therefore,
the symplectic form above defines a symplectic structure on Goldman
space. (This also works for other components of the space of RP?
structures on S.)

3. AFFINE DIFFERENTIAL GEOMETRY

The material in Subsections 3.1, 3.2, and 3.3 is standard. Most
of it can be readily found in the book of Nomizu-Sasaki [30]. Other
good sources are the papers of Calabi [4, 5] and Cheng-Yau [8], and
Blaschke’s monograph [3].

Affine differential geometry is concerned with those properties of hy-
persurfaces in R**! which remain invariant under the unimodular affine
group consisting of affine transformations x +— Az + b with det A = 1.
While much of the formal theory works for any hypersurface which is
nondegenerate (i.e. one which can be locally written as the graph of
a function with nondegenerate Hessian), we only consider hypersur-
faces which are strictly convex. Only in this case is the affine metric a
Riemannian metric.

Given a hypersurface immersion f : H — R**!  consider a transver-
sal vector field £ on H. We have the equations:

Dxf.(Y) = f.(VxY) + h(X,Y)E,
(3.0.1) { Dig): _fE(SX))—i— r(g()g. )

X and Y are tangent vectors, D is the canonical flat connection induced
from R*™! V is a torsion-free connection, h is a symmetric form on
T,(H), S is an endomorphism of T, (M), and 7 is a one-form. (When
it is not confusing, we will drop the f, and just consider X and Y as
vectors in R"1))

A good choice of transversal field £ allows us to study the geometry
of f(M). For example, the standard metric on R"*! allows us to define
a normal vector field (at least if H is oriented). If £ is this normal field,
(3.0.1) becomes the familiar Gauss equation in Riemannian geometry.
V in this case is the Levi-Civita connection on H with respect to the
induced metric and h is the second fundamental form. This choice of
€, since it respects the metric on R™*!, induces a lot of structure on
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FIGURE 1. The Affine Normal

H which is invariant under the group of transformations z — Az + b
with A € SO(n + 1,R). In our case, we want to study properties
invariant under the much larger unimodular affine group. Clearly this
Riemannian normal field is not invariant under this group, but it turns
out that there is a transversal vector field which is invariant, the affine
normal.

3.1. The affine normal. The affine normal is a transversal vector
field on H which does remain invariant under the unimodular affine
group. Perhaps the easiest way to describe it is the following geometric
characterization due to Blaschke [3]. At a point € H, consider hyper-
planes P(t) € R**! displaced a distance ¢ from and parallel to T,(M).
Since we assume M is locally strictly convex, for ¢ > 0, P(¢) N H is the
boundary of a convex domain D(t) C P(t). Let y(t) € D(t) C R**! be
the center of gravity of D(t). Define

:<VO1UD(T)> , —z(v ) ,
n—+ 2
o<r<t

where V,, is the volume of the unit ball in R®. The exponent in the
definition of s makes s approximately linear as a funtion of ¢, and ¢, is
a volume normalizing factor. Then the affine normal is defined to be
=cp ds‘ . Notice that the affine normal points to the convex side
of H. See Flgure 1.
It is clear that this definition is invariant under the affine unimodular
group, because this group preserves volumes. In fact it is invariant

under the larger group given by all transformations x — Az + b with
A € SL*(n+ 1,R).
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3.2. Three connections. For the affine normal &, the structure equa-
tions for H (3.0.1) become

(3.2.1) { DxY = VxY + h(X,Y)E,

The connection V is called the Blaschke connection, or simply the affine
connection. The bilinear form h is the affine metric and the endomor-
phism S is called the affine shape operator. Since H is strictly convex,
h is a Riemannian metric on M. We can then also consider V the Levi-
Civita connection with respect to h. It is also useful to consider the
conjugate connection V, which is defined to be the connection 2V - V.
As we discuss below in Subsection 3.5, V is always projectively flat.

There is another characterization of the affine normal which will be
useful below (see Nomizu-Sasaki [30, p. 45]). If £ is a transverse vector
field for which the structure equations (3.2.1) are satisfied for some V,
h, and S (this just means that in (3.0.1), the one-form 7 vanishes),
then £ must be (up to a choice of sign) the affine normal if and only if
the following volume condition is satisfied:

(3.2.2) det(Xy,..., X, &) = £1,

with {X;} an orthonormal basis with respect to the metric h. We
choose the sign of £ so that it points to the convex side of H.

Another important invariant is the Pick form. Consider the tensor
V- V, which is a section of T'® T* ® T*, and use the metric h to
transform it to a section C of T* ® T* ® T* (i.e. lower the index).
Then C' is a totally symmetric form on three indices. Also, we have
the apolarity condition

(3.2.3) Y Ci=0 forall j

In addition, if C' vanishes identically on H, then H must be an open
subset of a hyperquadric in R**!. Hyperquadrics are in a sense the
trivial objects in affine differential geometry. There are three strictly
convex cases—an ellipsoid, an elliptic paraboloid and one sheet of an el-
liptic hyperboloid. The affine metrics on these examples have constant
curvature, which is respectively positive, zero, and negative.

We have the following curvature formula for the Blaschke connec-
tion V:

(3.2.4) R(X,Y)Z = (Y, Z)SX — h(X, Z)SY.
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Also, the affine mean curvature is defined to be the quantity %trS.
Another useful equation is the Codazzi equation for h:

(3.2.5) (Vxh)(Y, Z) = (Vyh)(X, Z).

3.3. Affine spheres. An affine sphere is a hypersurface in R**! all of
whose affine normals point toward a given point in RP"™ the center
of the affine sphere. If the center lies on the convex side of H, the affine
sphere is elliptic. If it lies on the line at infinity, it is called parabolic.
If the center lies on the concave side of H, then the affine sphere is
hyperbolic. We will be concerned exclusively with this case.

For an affine sphere, the shape operator satisfies S = LI, where
the affine mean curvature L is a constant function on H and I is the
identity map. L is positive, zero, or negative if H is elliptic, parabolic,
or hyperbolic respectively. The center is given by the formula z+ %6 (z),
where x is any point in H. If H is an elliptic or hyperbolic affine sphere,
upon scaling R**! away from the center by a constant factor )\, the
image of H after this transform remains an affine sphere, but with a
different value of affine mean curvature L.

Thus by scaling, we can normalize any hyperbolic affine sphere to
have L = —1. Also, we can translate so that the center is 0. Then
the affine normal ¢ = f, where f is the embedding of H into R"*!.
The structure equations (3.2.1) and the curvature equation (3.2.4) then
become

DxY = VxY +h(X,Y)f
(3.3.1) Dxf=X
R(X,Y)Z = —h(Y,Z)X + (X, Z)Y

This implies the Ricci curvature of V is given by
(3.3.2) Ric(X,Y) = (—n+1)h(X,Y)

The basic examples of affine spheres are the quadratic hypersurfaces
introduced above. In fact, for the elliptic and parabolic cases, these are
the only examples of affine spheres which are closed subsets of R*t!
8]

Hyperbolic affine spheres are more complicated, however. The basic
result for hyperbolic affine spheres was conjectured by Calabi [4] and
proved by Cheng-Yau [7, 8], and Calabi-Nirenberg (with clarifications
by Gigena [16] and A.-M. Li [26, 27]):

Theorem 2. Given a constant L < 0 and a convex, bounded domain
Q C R”, there is a unique properly embedded hyperbolic affine sphere
H C R**! of affine mean curvature L and center 0 asymptotic to the
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boundary of the cone {tQ : t > 0} C R**'. For any immersed hyper-
bolic affine sphere H — R, properness of the immersion is equiva-
lent to completeness of the affine metric, and any such H is a properly
embedded hypersurface asymptotic to boundary of the cone given by the
convex hull of H and its center.

QOutline of proof. By scaling, we may consider just the case L = —1.

We first introduce a few facts about the conormal map. See Sub-
section 3.5 below for more details. Consider a hypersurface H in R**!
whose position vector f is transverse to H. The conormal map v maps
such a hypersurface H in R**! to a dual hypersurface H in in the dual
vector space R, ;1. Define v(z) by

(3.3.3) v(X)=0 for X eT,(H), v(f)=L1

Choose coordinates in R*™. If H is the (rectilinear) graph of a
strictly convex function q, i.e. if

H={(z,a(z)) : 2 € D CR"},

and if, with respect to the dual coordinates in R,,;, we write H as a
radial graph )
H={(y{(y),C(y)): y € E C R},

then w = —% is the Legendre transform of a.

It is an observation of Calabi [4] that H as above is a hyperbolic
affine sphere with center 0 and affine mean curvature —1 if and only if
the Legendre transform w satisfies the Monge-Ampere equation

det(wy;) = (—l>n+2-

w

In addition, if H is asymptotic to the boundary of a cone over a region
Q, then w is defined in the projective dual region Q and approaches 0
at the boundary 09).

In [7] Cheng-Yau prove that for each bounded, convex Q C R,, the
Dirichlet problem

1 n—+2
(334) det(w,-j) = <_E> y ’w|ag =0

has a unique C'* convex solution which is continuous to the boundary.
(See also Loewner-Nirenberg [28] for earlier work.) The affine metric
of the graph of the Legendre transform of w is then —iw,-j in these
coordinates.

We must then assure that, after we take the Legendre transform,
H is properly embedded in R**'. A proof of this fact, using Proposi-
tion 3.5.1 below, is found in Gigena’s paper [16]. (This proposition is
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found in the earlier work of Schirokov-Schirokov [31] and was known
to experts in the 1970s, when Cheng and Yau completed their work.)
In fact, if we solve (3.3.4) on € instead of on Q, then the radial graph
of ( = —% is the affine sphere H.

Cheng-Yau in [8] prove (with a small gap) that an affine sphere is
properly embedded if and only if its affine metric is complete. More-
over, any such hyperbolic affine sphere H must be asymptotic to the
boundary of the cone given by the convex hull of H and its center.
(Calabi-Nirenberg, in unpublished work, establish the same results.)
In [26, 27], A.-M. Li clarified the proof of Cheng-Yau by using essen-
tially the same estimates developed in [§]. O

Also, we have the following proposition that will be useful later.

Proposition 3.3.1. The Blaschke connection of a hyperbolic affine
sphere is projectively flat. Moreover, if the affine mean curvature is —1,
the normal connection associated to V can be realized as the canonical
flat connection D induced from R*T1.

Proof. The curvature equations (3.3.1) and (3.3.2), together with the
Codazzi equation (3.2.5), when applied to the characterization of the
normal connection in Subsection 2.3, provide the proof.

We also provide a more geometric proof of the first part (see Nomizu-
Sasaki [30, pp. 15-18]). Assume for simplicity that the affine mean
curvature is —1 and the center is 0. Consider a positive smooth function
X on H and the new hypersurface H = A\H C R*™. Then f is still a
transversal vector field on H. Form the connection V by

(3.3.5) DxY = VxY +h(X,Y)f.
A simple computation shows
VxY =VxY +p(X)Y +p(Y)X, p=d(log)).

Now we can take H to be the intersection of a hyperplane with the cone
to which H is asymptotic. Then (3.3.5) implies V is flat. Furthermore,
the V-geodesics on H map to straight lines on H under the map along
rays from M to 0. See Figure 2. O

3.4. Quotients of hyperbolic affine spheres. Let M be an RP"
manifold with oriented tautological bundle 7. Then the total space of
the positive part of 7 is locally a cone in R*™!, and, as in Proposition
2.2.1, the gluing maps from M lift to gluing maps in SL*(n + 1, R) to
glue these cones together to form the positive part of the total space
of 7. We say M admits an affine sphere structure if there is a positive
section s of 7 so that for each coordinate chart U of M, s(U) is a
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FIGURE 2

hyperbolic affine sphere with center 0 and affine mean curvature —1 in
this cone.

Now we show that any properly convex RP" manifold M admits
an affine sphere structure. Write M = Q/I'. Proposition 2.2.1 shows
that M admits an oriented tautological bundle, and the action of I'
lifts to an action I'' C SL*(n + 1,RR) on the cone C(Q). Theorem 2
shows there is a unique affine sphere asymptotic to the boundary of
C(€) with center 0 and affine mean curvature —1. By uniqueness and
the invariance of the affine normal under SL*(n + 1, R), this structure
descends to the quotient, and M must admit an affine sphere structure.
We record this result and related facts in the following theorem.

Theorem 3. Let M be an RP" manifold with oriented tautological
bundle 7. Let ™ denote the dual line bundle. The following are equiv-
alent:

1. M 1is properly convez.
2. M admits a negative strictly conver section w of T satisfying
det(wi;) = (—=+)"*? so that the metric —%< is complete.
3. M admits an affine sphere structure whose metric is complete.
If any of these conditions are satisfied, then the RP" structure on M
18 given by the Blaschke connection V. Also, the normal connection of

V is ezactly the flat connection D on T'M & T which is induced by the
canonical flat connection on R*H1.

Proof. 2 < 3 follows from the outline of the proof of Theorem 2, and
1 = 3 is proved in the preceeding paragraphs.
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We now prove 3 = 1. An affine sphere structure on M induces one
on the universal cover M. This is pushed down by the developing map
to an affine sphere structure on a spread domain over RP", which is
equivalent, by looking at the total space of 7, to an immersed affine
sphere in R**! with complete affine metric. Theorem 2 shows that this
is asymptotic to a cone and we have 3 = 1. O

3.5. The conormal map. Recall the definition of the conormal map.
Let H C R*! be a hypersurface transverse to its position vector f.
Define v(z) € R,41 by v(z)(X) =01if X € T,(H) and v(z)(f) = 1.
(This construction can be done with any transverse vector field ¢ in
place of f.)

For any hypersurface H C R**! with f transverse to H, the image
of the conormal map v, is the dual hypersurface H C R, ;. We have
the following proposition due to Schirokov-Schirokov [31]. (There are
also unpublished work of Calabi and the papers of Gigena [15, 16]).

Proposition 3.5.1. The image of the conormal map of a hyperbolic
affine sphere H with center 0 and affine mean curvature —1 is another
such hyperbolic affine sphere H in the dual space R, .

We call H the dual sphere of H.
Notice that in this case we have f = £ the affine normal. For conor-
mal maps with respect to the affine normal, we have [30, p. 57|

Dx(v.Y) =v.(VxY) — h(SX,Y)v.

This shows, as in Proposition 3.3.1 above, that V is always projectively
flat. In our case, this equation becomes

Dx (1Y) = v (VxY) + h(X,Y)v.
Therefore, we have the following corollary:

Corollary 3.5.2. The conormal map v on H as above is an isometry
with respect to the affine metrics. It takes the conjugate connection of
H to the Blaschke connection of H and vice versa.

Now consider the cone C' formed by the convex hull of H and 0.
Consider the dual cone C C R,4; consisting of all linear functionals y
which are positive on C. Then H is asymptotic to the boundary of C.
Let C be the space of all rays in some 2 C RP". Similarly, projectivize
C so it is the space of all rays in Q C RP,. (RP,, the space of all
lines in R, ., is the dual projective space. Q is called the projective
dual region to .) Projecting along rays identifies H to 2, and H to
Q). Therefore, the conormal map v induces a map from € to Q, which
we also refer to as v.
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_ Nowif ' C PGL(n+1,R) acts on 2, then we have a dual action on
Q: First lift the action of T' to I C SL*(n + 1, R) acting on the cone
C(9) as in Proposition 2.2.1 above. Then for y € R,;; and z € R*™|
define

(A-y)(z) =y(Az)
for A € T'. This induces a projective action of I' on 2, which we
denote by T'. The uniqueness of the affine sphere, the invariance of the
affine normal under SL*(n + 1, R), and the definition of v then clearly
show that v is equivariant with respect to the action of I'. Therefore,
v descends the the quotient and we have

Proposition 3.5.3. Given a properly convex RP™ manifold M = Q/T,
the conormal map v with respect to the affine sphere structure induces
a map to the dual manifold M = Q/T. This map is an isometry of the
affine metrics and interchanges the two projectively flat connections V

and V.

3.6. Hyperbolic affine spheres in R3. C.P. Wang formulates the
condition for a two-dimensional surface to be an affine sphere in terms
of the conformal geometry given by the affine metric [33]. Since we
rely heavily on this work, we give a version of the arguments here for
the reader’s convenience.

Choose a local conformal coordinate z = x + ¢y on the hypersur-
face. Then the affine metric is given by h = e¥|dz|? for some function
1. Parametrize the surface by f : A — R3, with A ¢ C. Since
{e_%¢f$,e_%¢fy} is an orthonormal basis for the tangent space, we
have by (3.2.2)

det(e ¥ fp e 20 f,,€) = 1,

which implies

(3.6.1) det(fs, fz,€) = 2ie?,

where £ is the affine normal.

Now only consider hyperbolic affine spheres. By scaling in R3?, we
need only consider spheres with affine mean curvature —1. In this case,
we have the following structure equations:

DxY = VxY +h(X,Y
(3.6.2) { * XQJX( e

If the center of the affine sphere is 0, then we also have £ = f.
It is convenient to work with complexified tangent vectors, and we
extend V, h, D, etc. by complex linearity. Consider the frame for the



tangent bundle to the surface {e; = f, = f*(%),ei =f; = f*(%)}.
Then we have
(3.6.3) h(f., f2) = h(fz, fz) =0, h(fs, fz) = 3¢
Consider 8 the matrix of connection one-forms
Vei = 0‘36]', Zaj € {1’ i}a

and 6 the matrix of connection one-forms for the Levi-Civita connec-
tion. We know by (3.6.3) that

(3.6.4) gl =0l =0, 6'=0y, 6 =30y.
The difference 8 — 6 is given by the Pick form. We have

6] — 6] = Clp",
where {p' = dz,p' = dz} is the dual frame of one-forms. Now we
differentiate (3.6.1) and use the structure equations (3.6.2) to conclude

6! + 61 = dy.
This implies, together with (3.6.4), the apolarity condition
Cl,+Ci, =0, ke{1,1},

as in (3.2.3) above. Then, when we lower the indices, the expression
for the metric (3.6.3) implies that

Crik + Ciip = 0.

Now by Subsection 3.2 above, Cjj, is totally symmetric on three indices.
Therefore, the previous equation implies that all the components of C'
must vanish except Cy1; and Criz = Ci1.

This discussion completely determines 6:

01 6 Oy  Cidz oY  Ue¥dz
(3.6.5) i a1 )= i 5 —\ Ue¥d o ’

01 0; Chdz 0OY e Taz (0
where we define U = Cl,e¥.

Recall that D is the canonical flat connection induced from R3.
(Thus, for example, Dy, f, = D 2 f. = f...) Using this statement,
together with (3.6.3) and (3.6.5), the structure equations (3.6.2) be-
come

fre = qéjzfz + Ue_wfz
(3.6.6) 7z — Ue_wfz + Yz fz
sz = %ed)f

Then, together with the equations f, = f, and f; = f;, these form a
linear first-order system of PDEs in f, f, and f;. In order to have a
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solution of this system, the only condition is that the mixed partials
must commute (by the Frobenius theorem). Thus we require

(3.6.7) Yor + [UPe ™ = 1e¥ =0

and UZ =0.

The system (3.6.6) is an initial-value problem, in that given (1) a base

point zp, (2) initial values f(z9), f.(20) and fz(z0) = f.(20), and (3) U
holomorphic and v which satisfy (3.6.7), we have a unique solution f
of (3.6.6) as long as the domain of definition A is simply connected.
We then have that the immersion f satisfies the structure equations
(3.6.2). In order for f to be the affine normal of f(A), by (3.2.2) and
(3.6.1), we must also have the volume condition det(f,, f;, f) = 3ie?.
We require this at the base point 2, of course:

(3.6.8) det(f.(20), fz(20), f(20)) = %ie’l’("‘)).

Then use (3.6.6) to show that the derivatives with respect to z and
z of det(f,, f5, f)e~¥ must vanish. Therefore the volume condition is
satisfied everywhere, and f(A) is a hyperbolic affine sphere with affine
mean curvature —1 and center 0.

Using (3.6.6), we compute det(f,, f.., f) = 3:U, which implies that
U transforms as a section of K3, and U; = 0 means it is holomorphic.

Also, consider two embeddings f and f from a simply connected
A to R® which satisfy (3.6.6) and the initial value condition (3.6.8)
for some zy and Z;. Then consider the map A € GL(3,R) which
takes {f(20), f2(20), fz(20)} to {f(20), f2(20), fz(20)}. By the volume
condition (3.6.1), A € SL(3,R). The uniqueness of solutions to (3.6.6)
then shows that Af = f everywhere.

We record all this discussion in the following

Proposition 3.6.1 (Wang [33]). Let A C C be a simply connected
domain. Given U a holomorphic section of K* over A, 9 a real-valued
function on A so that U and 1 satisfy (3.6.7), and initial values for
f, f., fz which satisfy (3.6.8), we can solve (3.6.6) so that f(A) is a
hyperbolic affine sphere of affine mean curvature —1 and center 0. Any
two such f which satisfy (3.6.6) are related by a motion of SL(3,R).

4. THE MAIN THEOREM

Now we prove a result essentially due to C.-P. Wang [33] that will
allow us to determine the affine sphere structure on a given Riemann
surface. Our proof is simpler than Wang’s original one.
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Proposition 4.0.2. Let M be a compact manifold, g be a nonnegative
C* function on M, and A be the Laplacian with respect to a C*
Riemannian metric on M. Then the equation

Au + g(z)e ™ —2e¥ +2=0
has a unique C'* solution.

Proof. To show existence, by a standard result (see Schoen-Yau [32,
Prop. V.1.1]), we only need to find a subsolution and a supersolu-
tion for the equation. It is straightforward to check that s = 0 is a
subsolution. Also, if G = max g, set m to be the positive root of the
equation
2¢° — 22> — G =0.
Then s = logm satisfies
As+g(z)e ™ —2e*+2=g(z)m™> —2m +2 <0,

and s is a supersolution. Smoothness follows by standard elliptic the-
ory. Uniqueness follows from a standard maximum-principle argument,
since g(z)e % — 2e* + 2 is strictly decreasing as a function of u. [

Now we apply this proposition to Wang’s formulation of affine spheres.
If ¥ is a compact Riemann surface of genus g > 1, let hy = e?|dz|* be
the metric of constant curvature —1. Now write the affine metric as
e?*%|dz|%. Therefore, u is a globally defined function on ¥ and we have
1) = ¢+u. The Laplacian Ay = 4e~%9,0;, and the curvature condition
is —%A0¢ = —1. Therefore, 9 solves (3.6.7) exactly if the following
equation in u holds:

AOU = 46_¢(¢z2 - ¢22)
= 2e (=2 *|UP +e¥) -2
(4.0.1) = —de||U|[3 + 2¢* — 2

Here || - ||2 = | - |?¢7%? denotes the metric on K induced by hy.

This formulation, together with Proposition 4.0.2, provides us with
the following characterization of hyperbolic affine spheres which cover
surfaces of genus g > 2.

Proposition 4.0.3 (Wang [33]). A hyperbolic affine sphere in R® with
affine mean curvature —1 and center 0 which admats the action of a dis-
crete, properly discontinuous subgroup of SL(3,R) so that the quotient
S has genus g > 2 is determined by a conformal structure on S and a
holomorphic section U of K3. All such affine spheres are obtained in
this way.

We can now prove Theorem 1.
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Proof of Theorem 1. First of all, the previous proposition shows that
for any conformal structure and holomorphic section U of K3, we have
an affine sphere structure on S. Since S is compact, Theorem 3 then
provides a convex RP? structure on S.

Conversely, any convex RP? structure on such an S must be properly
convex by Proposition 2.4.1. Therefore, Theorem 3 provides an affine
sphere structure, which by Wang’s Proposition 4.0.3 is equivalent to a
conformal structure on S and a holomorphic section U of K?. 0

Proposition 3.5.3 then gives us the following

Corollary 4.0.4. If we replace the section U of K* by —U, we recover
the projective dual surface (which is made by looking at the dual pro-
jective space of lines in RP? and taking the dual gluing maps in the
construction of the surface). The affine metric h is unchanged and the
two projectively flat connections V and V are interchanged.

When the Pick form U = 0, the affine sphere structure on the uni-
versal cover is the hyperboloid, and the Blaschke connection V is the
Levi-Civita connection coming from the metric of constant negative sec-
tional curvature. Therefore, we have the RP? structure is given by the
hyperbolic structure on the disk, we recover the fact that Teichmiiller
space is exactly the fixed locus of the action of projective duality on
Goldman space.

Remark. We discuss Wang’s results for surfaces of genus 1. In this
case the curvature of the base metric must be 0 and Wang’s equation
becomes

(4.0.2) Agu + 4||U]|ge™" — 2¢* = 0.

Then K? is a trivial bundle on ¥ and ||U||2 must be constant. Then if
U =0, it is easy to see there are no solutions. If U # 0, then we can
find a constant solution u. These determine all solutions to (4.0.2) over
3., and consequently all hyperbolic affine spheres which cover a surface
of genus one.

The affine metric given by e“hg is flat since u is a constant. Affine
spheres in R® with flat affine metric have been classified up to affine
transformations by Magid-Ryan ([29]; see also Nomizu-Sasaki [30, p.
113]). The only one which is hyperbolic is the surface

xyz=c, x,y,z>0 for some constant ¢ > 0.

This surface is asymptotic to the coordinate planes, which form a cone
over a triangle. Thus we have another proof of the fact [25] that any
properly convex compact RP? surface of genus one must be covered by
a triangle.
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4.1. Moduli problems. In addition to the deformation space con-
sidered above, it is also useful to consider the moduli space of convex
RP? structures. While the deformation space of RP? structures is given
by projective equivalence classes of torsion-free, projectively flat con-
nections modulo Diffy, the identity component of the diffeomorphism
group, for the moduli space of oriented RP? structures, we replace Diff,
by Diff", the group of all orientation-preserving diffeomorphisms.
Our main theorem immediately implies this corollary

Corollary 4.1.1. The moduli space of convex RP? structures on an
oriented compact surface of genus g > 2 is equivalent to the moduli

space of pairs (X,U), where ¥ is a Riemann surface of genus g and
U e H(Z, K3).

Determining some basic facts about this space is an exercise in alge-
braic curve theory. We have the following proposition

Proposition 4.1.2. Qur moduli space, as a locally finite quotient of
Goldman space, s a complex orbifold which is smooth on exactly those
convex RP? surfaces with no nontrivial automorphisms. The generic
convez RP? surface for each genus g > 2 has no nontrivial automor-
phisms. In fact, for a fized complex structure on ¥ of genus g > 2, the
RP? structure corresponding to a generic section in H°(Z, K*) has no
automorphisms.

Proof. The first statement follows from standard facts in algebraic
curve theory, except for one point. The generic algebraic curve of
genus 2 has a nontrivial automorphism, the hyperelliptic involution.
We claim that a generic section of K3 is not fixed by this involution.

In order to prove this claim, we use the Riemann-Hurwitz and Riemann-
Roch formulas to calculate the dimension of the subspace of H(X, K?)
fixed by a given automorphism of ¥. Let ¢ be an automorphism of
of order d. Then we consider the quotient =, which is another smooth
Riemann surface. The quotient map @ : ¥ — = has degree d, and it is
branched exactly at the fixed points of powers of o.

Consider a point p where () is branched to order n. Then a simple
local calculation shows that sections in H°(Z, K?) fixed by Q near p
are exactly sections in H°(Z, K?3) with a certain pole order allowed at
q = Q(p). If n = 2, then we allow poles of order 1, and if n > 2, we
allow poles of order at most 2.

If @ has degree d and is branched over points p; with branching order
n;, then we can use Riemann-Hurwitz to determine the genus ¢' of =:

29— 2=4d(2¢' - 2)+ ) (ni —1).
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Also, if g; are the images of the p; under 0, m; the allowed pole order at
¢;, and D is line bundle determined by the divisor [] i [¢;]™, Riemann-
Roch gives us

dime H°(E, K*D) — dim¢ H(E,K™°D™") =5¢' =5+ ) m;.
J

These and other similar numerical statements (see e.g. [1, p. 45))
can be used to prove that if g > 2 then

dimc H°(E, K*D) < max{3(g — 1), 2(g — 1) + 2}.

Notice that this bound is always less than 5g — 5; therefore, a generic
section U of K? is not fixed by any automorphism o of 3.

In the particular case where o is the hyperelliptic involution of a
curve of genus 2, the map Q is a double cover of CP' branched over 6
points. Then K3 = O(—6), D = O(6), and

dim¢ H°(Z, K*D) = dim¢ H°(CP',0) = 1.

Thus there is only a 1-dimensional subspace of the 5-dimensional space
HY(X, K3) which is fixed by o. O

4.2. Results on noncompact surfaces. The moduli space of Rie-
mann surfaces of genus g can be compactified by including surfaces
with nodal singularities. The natural hyperbolic metric is complete in
the noncompact surface obtained by removing the nodes. Such surfaces
are of finite type; i.e. they are of the foom ¥ = ¥\ E, where ¥ is a
(possibly disconnected) compact Riemann surface and E = {p;} is a
finite set.

Therefore, if we want to study the boundary of the moduli space
of oriented, convex RP? structures on a surface of genus g, we must
understand Wang’s equation on such a noncompact surface ¥. By
Theorem 3 above, the affine sphere metric must be complete in order
to give the universal cover the structure of a hyperbolic affine sphere.
Also, a natural condition we impose is that ¥ have finite area with
respect to the affine sphere metric. With that in mind, we formulate
the following conjecture and provide some propositions toward a proof
of it.

Conjecture 1. Let ¥ = X\ {p;} be a hyperbolic Riemann surface.
Let U be a meromorphic section of K3 over ¥ with poles of order at
most 2 allowed only at the points p;. Then there is a unique finite-area,
complete affine sphere metric on ¥ associated to U. Conversely, given
any affine sphere structure on a noncompact oriented surface ¥ which
1s complete and has finite area, we must have ¥ is hyperbolic and of
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finite type, and the Pick form U can have poles of order at most 2 at
the punctures p;.

Remark. Compare this to the following fact from Riemann surface the-
ory. Any noncompact hyperbolic Riemann surface for which the canon-
ical complete hyperbolic metric has finite area must be of finite type.

Proposition 4.2.1. Let ¥ = £\ {p;} have complete hyperbolic metric
ho, and let U be a meromorphic section of K3 with poles of order at
most 2 at the punctures. Then there is a unique bounded function u
satisfying Wang’s equation

Agu+4||U|lpe " — 2¢* +2 = 0.
Therefore, h = e“hg is complete and has finite area.

Proof. Choose a local coordinate z of & centered at a puncture p;, and
let ho = e?|dz|?. We have

(4.2.1) e? = O(|z|2(log |2|*) 7).
Therefore, since U has pole order at most 2,
IUllg = e7**|UJ* < Clz|*(log |2[*)°.

In particular, |U||2 is bounded.

We proceed by approximating the metric hg on ¥ by smooth metrics
on 3. Choose local coordinates z; centered at each p;. We can easily
choose a sequence of metrics h, which are smooth and equal hg outside
the balls {|z;| < €}. Let A, denote the Laplacian with respect to h..

Now by Proposition 4.0.2, the equation

(4.2.2) A+ 4||U|je " — 2e* +2 =0

has a unique solution u. on 3. (||U]|2 is not smooth at p;, but it can be
approximated by smooth functions as we did for hy.) The subsolution
and supersolution of (4.2.2) show, since ||U||2 is bounded, that the u,
are uniformly bounded C > u, > 0.

Now we let € — 0, and we claim there is a subsequence of u, converg-
ing to a smooth w in C.. This u will be a bounded solution of Wang’s
equation (4.0.1) on ¥. By the C° bounds on u,, the equation (4.2.2)
can be written as A.u. = f. with f. € Lﬁ)c. Then, using the fact that
on any compact subset of ¥, A, = A, for small €, standard estimates
[17] show that the u. are locally uniformly bounded with respect to
the W2P norm. Higher regularity is standard and Ascoli-Arzela gives
convergence of a subsequence. Therefore, the claim is proved.

In order to prove uniqueness, we use the following maximum principle

of Cheng-Yau [6]:
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Lemma 4.2.2. Let M be a complete Riemannian manifold whose Ricci
curvature is bounded below. Let A be the Laplacian on M and w be a
bounded C? function. Then there is a sequence of points q; such that
limw(g;) = supy, w and lim sup(Aw)(g;) < 0.

If u and v are bounded functions which both satisfy (4.0.1) on X,
then we claim w = u — v must be identically 0. Now w satisfies the
equation

(4.2.3) Agw + fw =0,

1
f :/ (=8||T|Pe 2% — 26%0)d6 < —2¢™,
0

where m is a lower bound for u and v, and ug = Ou + (1 — 6)v for
6 € [0, 1].

Then (4.2.3), together with Cheng-Yau’s maximum principle, gives
a contradiction if w has a positive supremum. Therefore, w < 0. A
similar argument shows w > 0. Thus Proposition 4.2.1 is proved. [

Also we have the following partial converse toward proving the con-
jecture.

Proposition 4.2.3. Let X, hy be as above, U have a pole of order > 3
at some puncture. Then Wang’s equation has no solution u so that
h = e%hg is complete and has finite area.

Proof. C will denote any constant that does not depend on u. For any
complete hyperbolic affine sphere, Cheng-Yau show that the norm of
the Pick form with respect to the affine metric is bounded [8]. In our
case, this means e 3¥||U||2 < C. Since U has pole order at least 3 at
a local coordinate z = 0, we see as above that ||U]|2 > C(log|z|?)®.
Therefore, we must have e* > C(log|z|?)%2. Then the area of ¥ with
respect to the affine metric is

/e“d% > / e"dVy
b> {lz/<e}

27 pe 1
S 2\2
> C/O /0(10gr ) 7r2(10gr2)2rdrd9
0.

Here we use (4.2.1) to provide the bound for dVj, the volume form for
the metric hy. O
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4.3. A Kahler structure on Goldman space. Our main theorem
gives us a complex structure on Goldman space. Also, there is the
natural symplectic form w given by equation (2.5.1). It is natural to
ask, therefore, whether these two structures fit together to make a
Kéhler structure.

Remark. Darvishzadeh-Goldman in [14] have used different invariant
structures on sharp cones to construct an almost complex structure on
Goldman space which fits with the symplectic form to make an almost
Kahler structure. It seems unlikely that this almost complex structure
is integrable, however, and it is unclear how it is related to the complex
structure induced by Theorem 1.

Conjecture 2. The tensor g(V,W) = w(V,iW) is a Riemannian met-
ric on Goldman space.

We present some partial results toward this conjecture.
First of all, we remark that Goldman has shown

Proposition 4.3.1 (Goldman [20]). w|7 is 8 times the Weil-Petersson
Kahler form on Teichmiiller space T .

Also, we have the following proposition:

Proposition 4.3.2. Consider the fiber subspace F of Goldman space
defined by F = H°(Z, K3) for a fived conformal structure on ¥ a sur-
face of genus g > 1. Then with respect to the natural complex structure
on F, w is a Kdhler form and the induced metric is complete.

Remark. We know that the Weil-Petersson metric on the moduli space
is incomplete, as the nodal curves at the boundary of the moduli space
are at a finite distance from the interior. These two propositions to-
gether show that if the tensor g is a metric on all of Goldman space, it
is incomplete in the directions of the nodal curves at the boundary of
Teichmiiller space but it should be complete on some complementary
directions.

Proof. Recall the formula for w
w(oy,09) = / %tral Atrog — tr(o; A o).
s

The o; are tangent vectors to the space of connections. In our case
we have that they are deformations of the canonical projectively flat
connection (the Blaschke connection) that the affine sphere formulation
gives us.



31

With respect to the basis {2, 2} of the (complexified) tangent space

of ¥, the connection form fgl}f t{flze Blaschke connection associated to
UeFis B
=% o)
g oy )’

where 1) = ¢ + u is as above and 8 = Ue ¥dz.
Now consider V in the tangent space T'(F) = F and the deformation
of the connection form

_d _{ 9(6yu) Ovp
y8 = 6T + V)] g = ( br) st ) .

Here we have 6y 8 = (V — U dyu)e ¥dz and by (4.0.1), dyu satisfies
Agdyu — (8e72¥||U||12 + 2e*)dyu + 8 Re(UV)e 372 = 0.

Therefore, if we multiply by e™™ and consider A = e A, the Laplacian
with respect to the affine metric h = e*hg, (U, V) = e *¥UV the
induced Hermitian inner product on sections of K3, and ||U||?> = (U, U),
we have

(4.3.1) Abyu — (8||U|* +2)dyu + 8Re(U, V) = 0.

In order to check that w|z is a Kahler form with respect to the
complex structure, we must check

w(V,W)=w(V,iW) forall V,WeF

and w(V,iV)>0 for V #0.
Compute

w(V,W) = /E 5 tr 8y f A trdyf — tr(6y 6 A dwb)
_ /E L (6ya) A d(bwu) — bt ( ovB N owb

= —2Re/5vﬁ/\5wﬁ_
3]

SvB A dwp )

= —2 Re/(V — Ubyu)(W — Ubwu)e *dz Adz
>

= =2 Re/((V, W> - <Ua W>5V'Uf - <V, U>5Wu
b
+ | U|[*6yu dwu)e?dz A dz

= —4Im / (VW) — (U, W)byu + (U, V)bwu)dV,
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where dV = %ie¢dz A dZ is the volume form for h. Also, we have
WV, iW) = —4 / (Im(V, W) + Re(U, W)biyu — Re(U, V)diw)dV
)
and

W(V, W) - w(iV,iW) = —4 / (—Im(U, Wby — Re(U, W)diyu
>
+ (U, V)b + Re(U, V)osru)dV.

This difference being 0 is equivalent to

(4.3.2)
Im / (U, V) {(6wu + i 6iwu)dV = Im / (U, W)(6yu+ i Syu)dV.
3 3

First add (4.3.1) and 7 times the corresponding equation for iV to get

(4.3.3) (U, V)= Li[-A@vu+idivu)+ B|U|* + 2)(0vu + i divu)).

Therefore,

3 b

b

Integrating by parts twice in the first integral on the right hand side
gives us that the expression is symmetric in V' and W. Therefore, by
(4.3.2), we have w(V, W) = w(iV, iW).

Now we consider

wV,iV) = —4/(Im(V, iV) +Im(U, V)éyu — Im(U, iV )b6;yu)dV
s

(434) = 4 / VI2dV — 4 / Re[(U, V) (Syu — i 6y u)|dV.
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As above, we use (4.3.3) to substitute in for (U, V') and then integrate
by parts. The second term on the right is then

P = 4 / Re[(U, V)(Syu — i Syu)|dV

= Re4d —%A(évu +1 5,Vu)(c5vu — 25,Vu)dV
=

+Re4/2§(s||U||2+2)(5Vu+¢5wu)(5vu-iawu)dv
_ 1 = 2 = 2
- /5(|V5Vu\ V6 ul2)dV

b

(4.3.5) + /E A||lU))? + D)[(6vu)® + (Sivu)?]|dV.

Here |V - |2 is the squared norm of the gradient with respect to the
metric. This equation clearly shows P > 0.
In order to proceed, we need the following estimate:

Lemma 4.3.3. |U||? < 3.

Proof. At a maximum point of ||U]|?, we have
0> Ag(log [UI*) = Ao(log U5 — 3u) = Ao(—3¢ — 3u).
Then using the fact Ay = 2 and Wang’s equation (4.0.1), we have
—3(2) — 3(—4||U||5e™" + 2¢* — 2) < 0,
which implies ||U]]> < 1. O

Now apply the Schwarz inequality to the defining equation of P:
@39 P<@ [ VIFV)a [ 0P + (Gruflav)h
) )

Therefore, if we let G = 4||U||*[(6vu)? + (divu)?], Lemma 4.3.3 gives us
that

3G < (UI* + 1)[(vu)® + (ivu)’].
(4.3.5) and (4.3.6) then imply

/de< /||V|| dvé/GdV

We then have ([, GdV) 2 < 2 2[5 4)|V]|2dV)2, which implies by (4.3.6)
that 0 < P < 2 f24||V||2dV Therefore we have by (4.3.4)

[N

L [avipav swiv) < [ avipa
by by
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This clearly shows w is a Kahler form. In other words the tensor g,
when restricted to F, is a Riemannian metric.

Now we must estimate [ ||V||*dV to determine that g is complete.
By the proof of Proposition 4.0.2, we have e* < m where m is the
positive root of

22 — 222 — 4max ||U||3 = 0.

Therefore, if U lies on the unit sphere S of F (with respect to some
norm), and u is the solution to (4.0.1) for the Pick form AU, then

et < C’)\g, where C will denote any uniform constant. Therefore,
[VI[2dV = e=||V|[3dVy > CA=3||V|[3dVs.

(Here dVj is the volume form for the hyperbolic metric hy.) This esti-
mate shows that g is complete: Consider any path p(t) going to co in
F. Parametrize it so that ‘2—1; = p always lies in §. The length of the
path is given by

/ o(b,p)bdt > C / ( / A—énpnadvo) dt
p p )3
> C/A(t)—idt
p

This last integral is infinite since A must go to oo along p(t). Therefore,
g is complete. O
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