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Abstract. We show that complete maximal surfaces in anti-de Sitter space and
hyperbolic a�ne spheres in R3 have �nite total curvature if and only if they are
conformally planar and their embedding data is determined by a holomorphic
polynomial di�erential on the complex plane. Moreover, we prove an analogous
result for maximal surfaces in H2,2 under the additional assumption that they
belong to the Hitchin section.
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Introduction

Recent works ([Tam19], [DW15]) study the geometry of polynomial maximal sur-
faces in anti-de Sitter space and hyperbolic a�ne spheres in R3 in terms of their
boundary at in�nity. Precisely, in [DW15] the authors prove that there is a one-
to-one correspondence between convex polygons in RP3 and polynomial hyperbolic
a�ne spheres. Similarly, [Tam19] shows that polynomial maximal surfaces in anti-de
Sitter space are in bijection with light-like polygons in the 2-dimensional Einstein
Universe. In this short note, we give a di�erent characterization of these surfaces:

Theorem A. A complete maximal surface in anti-de Sitter space or hyperbolic a�ne
sphere in R3 is polynomial if and only if it has �nite total curvature.

The proof is identical in both cases and is based on the analysis of the solutions to
the vortex equation on the plane ([Li19]), following [HTTW95] closely. Indeed, these
surfaces are determined by a Riemannian metric gk = euk |dz|2 on the complex plane
and a holomorphic k-di�erential qk. Here, k = 2 in the case of maximal surfaces in
anti-de Sitter space, whereas k = 3 for hyperbolic a�ne spheres. The metric gk and
the holomorphic di�erential qk are then related by the vortex equation

(1) ∥qk∥2gk − 1 = κgk
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which expresses the Gauss equation for maximal surfaces in anti-de Sitter space and
the structural equation of a�ne spheres in R3. Using the geometry of these surfaces,
we will deduce that uk − 1

k log(|qk|
2) is a subharmonic function which, together with

�niteness of the total curvature, will imply that |qk|
2
k is a complete singular metric

on C with �nitely many zeros and hence qk is a polynomial on the plane. The other
implication in Thereom A is instead based on precise estimates on uk − 1

k log(|qk|
2),

which will allow to compute explicitly the total curvature in the case where qk is a
polynomial and �nd that it is a rational multiple of π depending on the degree of
the polynomial.

In the last part of the paper, we focus on maximal surfaces with �nite total
curvature in the pseudo-hyperbolic space H2,2. Associated to such surfaces is a
holomorphic quartic di�erential q4 that partly determines their second fundamental
form ([TW20], [CTT19]). Our main result is the following:

Theorem B. A complete maximal surface in H2,2 with �nite total curvature has a
polynomial quartic di�erential q4. Conversely, if q4 is a polynomial and the surface
belongs to the Hitchin section then it has �nite total curvature.

Maximal surfaces in H2,2 with polynomial quartic di�erential belonging to Hitchin
section were extensively studied by the author, in collaboration with Mike Wolf, in
a previous work ([TW20]), where, among the other things, it is proved that these
surfaces bound negative light-like polygons in the 3-dimensional Einstein Universe.
However, the space of such polygons is not connected and our family of surfaces only
�lls up one connected component. One expects that the other components corre-
spond to di�erent families of polynomial maximal surfaces. The extra assumption
in Theorem B re�ects then the fact that the existence of such surfaces is still conjec-
tural and their structural equations have not been studied yet. We conjecture that
all maximal surfaces in H2,2 bounding a negative light-like polygon have �nite total
curvature. Theorem B is a step forward this result.

The proof of Theorem B follows the same line as the proof of Theorem A. When
a maximal surface in H2,2 belongs to the Hitchin section, the estimates for their
structural equations in our previous work ([TW20]) allow to explicitly compute the
total curvature and show that it is a rational multiple of π that only depends on the
degree of the polynomial. For the other implication, we rely on the fact that these
surfaces have bounded geometry ([LT20]), to deduce a bound on the number of zeros
of the quartic di�erential based on the total curvature. Then the proof follows the
same lines as Theorem A.

Acknowledgement. The author would like to thank Mike Wolf for suggesting this
problem and pointing out the results in [Hub57].

1. Background material

We review in this section the fundamentals of the theory of maximal surfaces in
anti-de Sitter space and hyperbolic a�ne sphere in R3.



ON SURFACES WITH FINITE TOTAL CURVATURE 3

1.1. Maximal surfaces in anti-de Sitter space. Consider the vector space R4

endowed with the bilinear form of signature (2, 2)

⟨x, y⟩ = x0y0 + x1y1 − x2y2 − x3y3 .

Anti-de Sitter is the quadric

AdS3 = {x ∈ R4 | ⟨x, x⟩ = −1} .

It can be easily veri�ed that AdS3 is di�eomorphic to a solid torus and the restric-
tion of the bilinear form to the tangent space at each point endows AdS3 with a
Lorentzian metric of constant sectional curvature −1.

Let U ⊂ C be a simply connected domain. We say that f : U → AdS3 is a
space-like embedding if f is an embedding and the induced metric g2 = f∗gAdS

is Riemannian. The Fundamental Theorem of surfaces embedded in anti-de Sitter
space ensures that such a space-like embedding is uniquely determined, up to post-
composition by a global isometry of AdS3, by its induced metric g2 and its shape
operator B : TU → TU , which satisfy{

d∇B = 0 (Codazzi equation)

κg2 = −1− det(B) (Gauss equation)

where ∇ is the Levi-Civita connection and κg2 is the curvature of the induced metric
on S = f(U). We will always assume in this paper that the induced metric g2 is
complete.

We say that f : U → AdS is maximal if B is traceless. In this case, the Co-
dazzi equation implies that the second fundamental form II = g2(B·, ·) is the real
part of a quadratic di�erential q2, which is holomorphic for the complex structure
compatible with the induced metric g2 on S. If we choose a conformal coordinate
z on U , there is a function u2 : U → R such that g2 = eu2 |dz|2 and a holomorphic
function p(z) so that q2 = p(z)dz2. The Gauss equation can then be re-written as

(2) κg2 = −1 + ∥q2∥2g2
or, equivalently,

(3) ∆u2 = 2eu2 − 2e−u2 |p(z)|2 .

Vice versa, given a holomorphic quadratic di�erential q2 = p(z)dz2 on U and a
solution u2 to Equation (3) there is a unique maximal embedding f : U → AdS3
with induced metric g2 = eu2 |dz|2 and second fundamental form given by the real
part of q2, up to post-composition by a global isometry.

1.2. Hyperbolic a�ne spheres. Hyperbolic a�ne spheres arise when studying
immersions of surfaces in R3 up to volume-preserving a�ne transformations.

Let U ⊂ C be a simply connected domain. Consider a strictly convex immersion
f : U → R3 and choose ξ a vector �eld transverse to H = f(U). We can split the
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standard �at connection D into a tangential part ∇ and a transversal part

Df∗Xf∗Y = f∗(∇XY ) + g3(X,Y )ξ

Df∗Xξ = −f∗(B(X)) + τ(X)ξ .

One can check that ∇ is a torsion-free connection, g3 is a symmetric bilinear form,
B is an endomorphism of TH and τ is a one-form on H, for any choice of the
transverse vector �eld ξ. We say that ξ is an a�ne normal to f if it satis�es the
following requirements:

• g3 is positive de�nite;
• τ = 0;
• for any linearly independent vectors X and Y , det(X,Y, ξ)2 = g3(X,Y ) .

In this case, ∇ is called Blaschke connection and g3 is the Blaschke metric. Moreover,
we say that H is a hyperbolic a�ne sphere if B(X) = −X for every vector �eld X. It
turns out that, up to post-composition by a volume-preserving a�ne transformation
of R3, a hyperbolic a�ne sphere is uniquely determined by the Blaschke metric and
the Pick di�erential, which is de�ned as follows. We choose coordinates so that the
Blaschke metric g3 is given by g3 = eu3 |dz|2. This means that the complex tangent
vectors fz = f∗(

∂
∂z ) and fz̄ = f∗(

∂
∂z̄ ) satisfy

g3(fz, fz) = g3(fz̄, fz̄) = 0 and g3(fz, fz̄) =
1

2
eu3 .

Let θ̂ and θ be the matrices of one-forms expressing the Levi-Civita connection of g3
and the Blaschke connection, respectively. We de�ne the Pick form C by

θ̂ji − θji = Cjikρ
k

where ρ1 = dz and ρ1̄ = dz̄ are the dual one-forms. The property of the a�ne
normal, together with the symmetries of the Pick form, implies that

θ =

(
θ11 θ1

1̄

θ1
1̄

θ1̄
1̄

)
=

1√
2

( √
2∂u3 q3e

−u3dz̄

q3e
−u3dz

√
2∂̄u3

)
where q3 =

√
2C 1̄

11e
u3 . The Blaschke metric g3 and the Pick di�erential q3 satisfy

the following system of PDEs{
∂̄q3 = 0

κg3 = −1 + ∥q3∥2g3 ,

where we recognize that the �rst equation simply says that q3 is a holomorphic cubic
di�erential and the second equation can be re-written as

(4) ∆u3 = 2eu3 − 2e−2u3 |q3|2 .

Vice versa, given a holomorphic cubic di�erential q3 on U and a solution u3 to
Equation (4) there is a unique hyperbolic a�ne sphere f : U → R3 with Blaschke
metric g3 = eu3 |dz|2 and Pick di�erential q3, up to post-composition by a volume-
preserving a�ne transformation.
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1.3. Maximal surfaces in H2,2. Consider the vector space R5 endowed with the
bilinear form of signature (2, 3)

⟨x, y⟩ = x0y0 + x1y1 − x2y2 − x3y3 − x4y4 .

The pseudo-hyperbolic space H2,2 is the quadric

H2,2 = {x ∈ R5 | ⟨x, x⟩ = −1} .

It can be easily veri�ed that H2,2 is di�eomorphic to D2 × S2 and the restriction
of the bilinear form to the tangent space at each point endows H2,2 with a pseudo-
Riemannian metric of signature (2, 2) and constant sectional curvature −1.

Let U ⊂ C be a simply connected domain. We say that f : U → H2,2 is a
space-like embedding if f is an embedding and the induced metric g4 = f∗gH2,2 is
Riemannian. Note that, if f is space-like, the normal bundle NS to S = f(U)
inherits a negative de�nite Riemannnian metric gN from gH2,2 . A space-like surface
is uniquely determined, up to post-composition by a global isometry of H2,2, by its
induced metric g4 and its second fundamental form II : TS × TS → NS, which
satisfy {

d∇II = 0 (Codazzi equation)

κg4 = −1 + 1
2∥II∥

2 (Gauss equation)

where

∥II∥2 = −max
|v|=1

2∑
i=1

gH2,2(II(v, ei), II(v, ei))

with (e1, e2) being a local orthonormal frame of TS. We will assume that the induced
metric g4 is complete.

We say that f : U → H2,2 is maximal if II is traceless, where

trg4(II) = II(e1, e1) + II(e2, e2) .

In this case, the second fundamental form II is the real part of a holomorphic section
σ : T 1,0S × T 1,0S → NCS. The tensor q4 = gN (σ, σ) is then a holomorphic quartic
di�erential on S.

In particular, we can de�ne a map Ψ from the space M (H2,2) of complete maxi-
mal surfaces in H2,2 to the space of holomorphic quartic di�erentials. We say that a
maximal surface S ∈ M (H2,2) is polynomial if S is conformally planar and the cor-
responding quartic di�erential Ψ(S) is a polynomial over C. In [TW20], we de�ned
a section of the map Ψ, using wild Higgs bundles over CP1, by explicitly construct-
ing a family of maximal surfaces in H2,2 with given polynomial quartic di�erential.
Because the de�nition of this family resembles those equivariant with respect to
Sp(4,R)-Hitchin representations, we refer to the surfaces studied in [TW20] as be-
longing to the Hitchin section.
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Remark 1.1. Maximal surfaces inH2,2 have bounded geometry (see [LT20]), hence the
norm of the quartic di�erential q4 with respect to the induced metric g4 is uniformly
bounded, In other words, there is a constant C > 0 such that

∥q4∥g4 =
qq̄

g44
≤ C .

As a consequence, if we denote by ϕ the logarithm of the density of g4 with respect to

the metric |q4|
1
2 , i.e. g4 = eϕ|q4|

1
2 , we deduce a uniform lower bound on ϕ, precisely

ϕ = u4 −
1

4
log(|q4|2) ≥ −1

4
log(C)

.
2. Proof of the main results

We �rst start by computing the total curvature of a polynomial maximal surface
in AdS3 and of a polynomial hyperbolic a�ne sphere in R3. The main ingredient is
the following estimate for the solution of the vortex equation on the plane:

Theorem 2.1 ([DW15], [Li19]). Let qk = p(z)dzk be a holomorphic k-di�erential
on C with k ≥ 2. Then there is a unique solution uk : C → R to the equation

(5) ∆uk = 2euk − 2e−(k−1)uk |p(z)|2

such that gk = euk |dz|2 is complete. Moreover, the following estimates hold:

a) 1
k log(|p(z)|

2) ≤ uk(z) ;
b) if p(z) is a polynomial, then outside of a ball of su�ciently large radius, we have

∥uk(z) − 1
k log(|p(z)|

2)∥C1 = O(e−
√
2kr/

√
r), as |z| → +∞, where r is the |qk|

1
k -

distance from the zeros of p(z).

We deduce that the metric gk is always non-positively curved because

κgk = −1 + ∥qk∥2gk = −1 +
|p(z)|2

ekuk
≤ 0 .

Proposition 2.2. Let qk = p(z)dzk be a polynomial k-di�erential and let uk be the
solution to Equation (5). Then the total curvature of the metric gk = euk |dz|2 is
Kgk = −2π

k deg(p(z)).

Proof. Let BR denote the ball of radius R centered at the origin. We compute

Kgk =

�
C
κgk dAgk = lim

R→+∞

�
BR

−∆uk
2euk

dAgk

= −1

2
lim

R→+∞

�
BR

∆

(
uk(z)−

1

k
log(|p(z)|2)

)
dzdz̄

− 1

2k
lim

R→+∞

�
BR

∆ log(|p(z)|2) dzdz̄

= −1

2
lim

R→+∞

�
∂BR

∂

∂r

(
uk(z)−

1

k
log(|p(z)|2)

)
Rdθ

− 1

k
lim

R→+∞

�
BR

∆ log(|p(z)|) dzdz̄.
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Now, by Theorem 2.1 b), the �rst integral tends to 0 as R goes to +∞. The sec-

ond term computes the total curvature of the �at metric |qk|
2
k on C. Indeed, if

z1, . . . , zdeg(p) denote the, possibly coincident, zeros of p(z), we have

1

k
∆ log(|p(z)|) =

deg(p)∑
i=1

2π

k
δzi

in the sense of distribution and

K
|qk|

2
k
= −1

k

�
C
∆ log(|p(z)|) dzdz̄ = −2π

k
deg(p(z)) .

Hence,

Kgk = −2π

k
deg(p(z)) .

□

The computation for the total curvature of a polynomial maximal surface in H2,2

belonging to the Hitchin section relies instead on the following result.

Theorem 2.3 ([TW20], [LM19]). Let q4 = p(z)dz4 be a polynomial quartic di�er-
ential on C. Then there is a unique solution (ψ1, ψ2) to the system

(6)

{
1
4∆ψ1 = eψ1−ψ2 − e−2ψ1 |p(z)|2
1
4∆ψ2 = e2ψ2 − eψ1−ψ2 .

Moreover, the functions ψi : C → R satisfy:

a) ψ1(z) ≥ 3
8 log(|p(z)|

2) and ψ2(z) ≥ 1
8 log(|p(z)|

2);
b) outside a ball of su�ciently large radius∥∥∥∥ψ1(z)− ψ2(z)−

1

4
log(|p(z)|2)

∥∥∥∥
C1

≤ O(e−4r/
√
r) as |z| → +∞,

where r is the |q4|
1
4 -distance from the zeros of p(z).

Proposition 2.4. Let g4 = eu4 |dz|2 be the induced metric on a polynomial maximal
surface in H2,2 with holomorphic quartic di�erential q4 = p(z)dz4 belonging to the
Hitchin section. Then the total curvature of g4 is Kg4 = −π

2 deg(p(z)).

Proof. The induced metric g4 can be written in terms of the solution to the system
(6) as g4 = 4eψ1−ψ2 |dz|2. Therefore, if BR denotes the ball of radius R centered at
the origin, we can compute
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Kg4 =

�
C
κg4 dAg4 = lim

R→+∞

�
BR

−∆(ψ1 − ψ2)

8eψ1−ψ2
dAg4

= −1

2
lim

R→+∞

�
BR

∆

(
ψ1 − ψ2 −

1

4
log(|p(z)|2

)
dzdz̄

− 1

8
lim

R→+∞

�
BR

∆ log(|p(z)|2) dzdz̄

= −1

2
lim

R→+∞

�
∂BR

∂

∂r

(
ψ1 − ψ2 −

1

4
log(|p(z)|2

)
Rdθ

− 1

8
lim

R→+∞

�
BR

∆ log(|p(z)|2) dzdz̄

Now, by Theorem 2.3, the �rst integral tends to 0 as R goes to +∞. The second
term, as we saw in the proof of Proposition 2.2, computes the total curvature of

the �at metric with cone singularities |q4|
1
4 , which is equal to −π

2 deg(p(z)). Hence,
Kg4 = −π

2 deg(p(z)), as claimed. □

We now move to the proof of the other implication in Theorem A and Theorem B.
We let Sk be a complete maximal surface in anti-de Sitter space (k = 2), a complete
hyperbolic a�ne sphere in R3 (k = 3), or a complete maximal surface in H2,2 (k = 4)
with �nite total curvature. Completeness ensures that Sk is homeomorphic to a disk
([Lof01, Theorem 3], [Tam19, Proposition 3.1], [TW20, Proposition 6.3]). We denote
by gk and qk the embedding data introduced in the previous section. A general result
of Huber ([Hub57, Theorem 15]) shows that an open, complete, non-positively curved
Riemannian surface with �nite total curvature is parabolic, thus Sk is conformally
planar. Choosing conformal coordinates on C and writing qk = p(z)dzk, we need to
prove that p(z) is a polynomial. We �rst shows that p(z) has �nitely many zeros:

Lemma 2.5. Assume that the total curvature of Sk is Kgk = −2π
k m for some m ≥ 0.

Then p(z) has at most ⌈m⌉ zeros.

Proof. Assume by contradiction that p(z) has more than ⌈m⌉ zeros. Then

0 ≤ −2π

k
m+

2π

k
⌈m⌉ < lim

R→+∞

�
BR

κgk dAgk +
1

k
lim

R→+∞

�
BR

∆ log(|p(z)|) dzdz̄

= −1

2
lim

R→+∞

�
BR

∆uk dzdz̄ +
1

2k
lim

R→+∞

�
BR

∆ log(|p(z)|2) dzdz̄

= −1

2
lim

R→+∞

�
∂BR

∂

∂r

(
uk(z)−

1

k
log(|p(z)|2)

)
Rdθ

= lim
R→+∞

(
−πR d

dR

 
∂BR

(
uk(z)−

1

k
log(|p(z)|2)

))
Rdθ .

Hence, since the zeros of the holomorphic function p(z) are discrete, there exists
ϵ > 0 such that the inequality

d

dR

 
∂BR

(
uk(z)−

1

k
log(|p(z)|2)

)
Rdθ < − ϵ

R
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holds for all large R except possibly countably many values. Integrating in R, we
get  

∂BR

(
uk(z)−

1

k
log(|p(z)|2)

)
Rdθ < −ϵ log(R) + C

for some R su�ciently large, which contradicts Theorem 2.1 part a) when k = 2, 3
and Remark 1.1 if k = 4. □

We can now conclude the proof of Theorem A and Theorem B. Repeating the
same estimates as in Lemma 2.5, there is a constant C > 0 such that 

∂BR

(
uk(z)−

1

k
log(|p(z)|2)

)
Rdθ <

2m

k
log(R) + C

for all R su�ciently large, except for at most countably many values. Because the
metric gk is negatively curved, the function uk(z)− 1

k log(|p(z)|
2) which represents the

logarithmic density of the metric gk with respect to |qk|
2
k is subharmonic. Therefore,

for any z su�ciently far from the origin, we have

uk(z)−
1

k
log(|p(z)|2) ≤

 
B |z|

2

(z)

(
uk(w)−

1

k
log(|p(w)|2)

)
dzdz̄

=
4

π|z|2

�
B |z|

2

(z)

(
uk(w)−

1

k
log(|p(w)|2)

)
dzdz̄

≤ 4

π|z|2

�
B 3|z|

2

(z)\B |z|
2

(z)

(
uk(w)−

1

k
log(|p(w)|2)

)
dzdz̄

=
4

π|z|2

� 3|z|
2

|z|
2

� 2π

0

(
uk(Re

iθ)− 1

k
log(|p(Reiθ)|2)

)
RdθdR

≤ 4

π|z|2

� 3|z|
2

|z|
2

(
2πR

(
2m

k
log(R) + C

))
dR

≤ a1 + b1 log(|z|)
for some a1, b1 > 0. Exponentiating both sides, we deduce that, for |z| su�ciently
large,

euk ≤ ea1 |z|b1 |p(z)|
2
k ,

hence the metric |z|b1 |p(z)|
2
k is complete, because gk is complete, and has �nitely

many zeros. It is well-known that this implies that p(z) is a polynomial. See for
instance [Oss86, Lemma 9.6].
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