
Corso di laurea in Ingegneria Gestionale
Esame di ALGEBRA LINEARE - anno accademico 2025/2026

Prova scritta del 9/1/2026

TEMPO A DISPOSIZIONE: 120 minuti

(Cognome) (Nome) (Numero di matricola)

PRIMA PARTE

PUNTEGGIO : risposta mancante = 0 ; risposta esatta = +1 risposta sbagliata = -1

calcoli e spiegazioni non sono richiesti
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A è autovettore dell’applicazione lineare associata alla matrice (barrare la matrice giusta)
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lineare. Sapendo che f
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SECONDA PARTE

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-6] Si determinino le soluzioni complesse del seguente sistema:
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Esercizio 2. [punteggio: 0-6] Al variare del parametro reale t sia LAt : R3 �! R3
l’applicazione lineare associata

alla matrice1
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(i) Determinare, al variare di t 2 R, dim(Ker(LAt)) e dim(Im(LAt)).

(ii) Determinare i valori di t 2 R per cui esiste almeno una soluzione del sistema LAt(
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(iii) Posto t = 3, determinare l’equazione intrinseca di Im(LA).

Esercizio 3. [punteggio: 0-3] Sia f : R3 ! R2
un’applicazione lineare tale che :
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Si determini una matrice A 2 Mat(2⇥ 3;R) tale che f = LA.

Esercizio 4. [punteggio: 0-6] Si consideri la matrice A
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(i) Si determinino gli autovalori di A specificandone la molteplicità algebrica e geometrica.

(ii) Si determinino gli autovettori di A.

(iii) Si dica se A è triangolarizzabile e/o diagonalizzabile.


