Corso di laurea in Ingegneria Gestionale
Esame di ALGEBRA LINEARE - anno accademico 2025/2026

Prova scritta del 9/1/2026
TEMPO A DISPOSIZIONE: 120 minuti
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PRIMA PARTE
PUNTEGGIO : risposta mancante = 0 ; risposta esatta = +1 risposta sbagliata = -1
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calcoli e spiegazioni non sono richiesti
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o 1] vettore & autovettore dell’applicazione lineare associata alla matrice (barrare la matrice giusta)
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SECONDA PARTE

’ I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-6] Si determinino le soluzioni complesse del seguente sistema:

23 =-927

|z +2i| <2

Esercizio 2. [punteggio: 0-6] Al variare del parametro reale ¢ sia L4, : R3 — R3 l’applicazione lineare associata
alla matricel

t 0 -3
A= 4 t -1
0 2 2

(i) Determinare, al variare di ¢t € R, dim(Ker(La4,)) e dim(Im(La4,)).

Ty —2
(ii) Determinare i valori di ¢ € R per cui esiste almeno una soluzione del sistema L4,(| z5 |) =] 2
I3 0

(iii) Posto t = 3, determinare I’equazione intrinseca di Im(Ly4).

Esercizio 3. [punteggio: 0-3] Sia f : R3 — R? un’applicazione lineare tale che :

1
Ker(f)y={(| 1 |) , f suriettiva

3

Si determini una matrice A € Mat(2 x 3;R) tale che f = L4.

Esercizio 4. [punteggio: 0-6] Si consideri la matrice A

1 0o -2 -1

(i) Si determinino gli autovalori di A specificandone la molteplicita algebrica e geometrica.
(ii) Si determinino gli autovettori di A.
(iii) Si dica se A ¢ triangolarizzabile e/o diagonalizzabile.



