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Introduction

Theorem (Mordell–Weil) If k is a number field, A/k an abelian
variety, then A(k) is finitely generated.

Generalization to infinite number fields?

Question (Mazur): Is A(k(µp∞)) finitely generated?

Open in general, but:

Theorem (Serre, Imai) If k is a number field, A/k an abelian
variety, A(k(µp∞))tors is finite.

Even better:

Theorem (Ribet) Let k be a number field, and K = k(µ∞), the
field obtained by adjoining all roots of unity. If A/k is an abelian
variety, the torsion subgroup A(K )tors is finite.
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Remarks

1. Ribet’s theorem is specific to the maximal cyclotomic extension
of k. Finiteness of the torsion subgroup may fail if one works over
the maximal abelian extension.

Indeed, for an abelian variety of
CM type all algebraic torsion points are defined over the maximal
abelian extension of the number field. Conversely, for non-CM
simple abelian varieties finiteness of the torsion subgroup holds
over the maximal abelian extension as well (Zarhin).

2. Ribet’s theorem is specific to the torsion subgroup. The
Mordell–Weil rank of an abelian variety can be infinite over the
maximal cyclotomic extension of a number field obtained by
adjoining all complex roots of unity (Rosen–Wong).
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Cohomological generalization

We offer two kinds of generalizations of Ribet’s theorem. The first
one is cohomological.

Theorem. Let k and K be as above, and set G := Gal(k̄ |K ). Let
X be a smooth proper geometrically connected variety X defined
over k .

For all odd i and all j the groups H i
ét(X ,Q/Z(j))G are finite.

Remarks.

1. The twist j does not really play a role in the statement since G
fixes all roots of unity.

2. Ribet’s theorem is the special case i = j = 1 of the above
statement.
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Indeed, for X = A∗, the Kummer sequence induces a
Galois-equivariant isomorphism

H1
ét(A

∗
,Q/Z(1)) ∼= H1

ét(A
∗
,Gm)tors

But since the Néron–Severi group of an abelian variety is torsion
free,

H1
ét(A

∗
,Gm)tors

∼= Pic0(A∗)(K )tors = A(K )tors.

3. The theorem is not true for even degree cohomology.
Counterexamples: projective space Pn, smooth complete
intersections of dim. n in Pr (their cohomology is the same as that
of Pn except in degree n where that of Pr is a direct summand).
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Motivic generalization

One may also view Ribet’s theorem as a finiteness result about the
codimension 1 Chow group of smooth projective varieties. In this
spirit we propose the following conjectural generalization.

Conjecture. Let k and K and X be as above. Denote by XK the
base change of X to K .
For all i > 0 the codimension i Chow groups CH i (XK ) have finite
torsion subgroup.

Remark. For X itself the Chow groups CH i (X ) are conjecturally
finitely generated (a consequence of the generalized Bass
conjecture on the finite generation of motivic cohomology groups
of regular schemes of finite type over Z).
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Evidence for the conjecture in codimension 2

Theorem. Assume moreover H2
Zar(X ,OX ) = 0. Then the torsion

subgroup of CH2(X ) has finite exponent.
It is finite if furthermore the `-adic cohomology groups H3

ét(X ,Z`)
are torsion free for all `.

Remarks.

1. All geometric assumptions of the theorem are satisfied, for
instance, by smooth complete intersections of dimension > 2 in
projective space.

2. For X/k satisfying H2
Zar(X ,OX ) = 0 the torsion part of CH2(X )

is known to be finite over k (Colliot-Thélène, Raskind, Salberger).
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Method of proof

Over k̄ we have Bloch’s Abel–Jacobi map

CH i (X )tors → H2i−1(X ,Q/Z(i))

which is injective for i = 2.

It is moreover functorial in X , hence
Galois-equivariant.
So for G = Gal(k̄|K ) we have an injection

CH2(X )Gtors ↪→ H3(X ,Q/Z(2))G

where the group on the right hand side is finite by our
cohomological theorem. It therefore suffices to study the group
ker(CH2(XK )→ CH2(X )).This we do by adapting methods by
Bloch, Suslin, Colliot-Thélène, Raskind...
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Positive characteristic analogues

k is the function field of a curve C defined over a finite field F,
K = kF = F (C ).

The analogue of Ribet’s theorem is plainly false for an abelian
variety that is already defined over F. We have to impose a
non-isotriviality condition.

Theorem (Lang–Néron) Let k and K be as above, A/k an abelian
variety whose base change AK has trivial K |F-trace. Then the
torsion subgroup of A(K ) is finite.

In fact, the Lang–Néron theorem says that the group A(K ) is even
finitely generated, but we only need the torsion part here.
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Large variation

For higher degree cohomology, we have to find a replacement for
the non-isotriviality assumption.

Definition. Let k = F(C ) and K = F(C ) be as above, X/k a
smooth proper geometrically connected variety, ` a prime different
from p = char(F).
The cohomology group H i

ét(X ,Q`(j)) has large variation if after
finite extension of the base field F there exists a proper flat
morphism X → C of finite type with generic fibre X and two
F-rational points c1, c2 ∈ C such that the fibres Xc1 , Xc2 are
smooth and the associated Frobenius elements Frobc1 ,Frobc2 act
on H i

ét(X ,Q`(j)) with coprime characteristic polynomials.
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Remarks

1. As usual, the action of the Frobcr (r = 1, 2) is to be understood
as follows. We pick a decomposition group Dr ⊂ Gal(k̄ |k)
attached to cr ; it is defined only up to conjugacy but this does not
affect the definition. The smoothness condition on Xcr implies that
the inertia subgroup Ir ⊂ Dr acts trivially on cohomology, hence we
have an action of Dr/Ir = 〈Frobcr 〉 on H i

ét(X ,Q`(j)).

2. It is a consequence of the Weil conjectures that the above
definition is independent of the prime `.
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3. In the case where X is an abelian variety and X its Néron
model over C , the large variation assumption with respect to the
model X has the following geometric reformulation: there exist
two closed points c1, c2 ∈ C whose associated geometric fibres are
abelian varieties over F having no common simple isogeny factor.

If the k |F-trace of X is nontrivial, it is not hard to check that all
geometric fibres must have a common simple isogeny factor. It
would be nice to know whether the converse holds.
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Cohomological theorem

Based on the above definition, we have

Theorem. Let k , K and X be as in the previous definition.
Assume moreover that i > 0 and j ∈ Z are such that the
cohomology group H i

ét(X ,Q`(j)) has large variation.

Then the group H i
ét(X , (Q/Z)′(j))G is finite, where

G = Gal(k̄ |K )

and
(Q/Z)′(j) =

⊕
6̀=p

Q`/Z`(j).



Motivic conjecture

We propose the following analogue of the conjecture on Chow
groups.

Conjecture. Let k, K and X be as in the above definition. Given
i > 0, assume that the the cohomology group H2i−1

ét (X ,Q`(i)) has
large variation for ` 6= p, where p = char(k).

Then the prime-to-p torsion subgroup of CH i (XK ) is finite.
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Evidence in codimension 2

Theorem. Assume moreover that X is a projective surface which
is liftable to characteristic 0 and for which the coherent
cohomology group H2

Zar(X ,OX ) vanishes. Under the large
variation assumption for i = 2, the prime-to-p torsion subgroup of
CH2(XK ) is finite.

The liftability assumption holds for smooth complete intersections
or for surfaces satisfying the condition H2

Zar(X , TX/k) = 0 in
addition to H2

Zar(X ,OX ), where TX/k denotes the tangent sheaf.
We have to restrict to dimension 2 in order to ensure the vanishing
of H2

Zar(X ,OX ) for the lifting as well.
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Proof of cohomological finiteness (char. 0)

We now sketch the proof of the finiteness of H i
ét(X ,Q/Z(j))G for

odd i .

Recall: k is a number field,

K = k(µ∞), G = Gal(K |k).

One reduces to proving two statements:

Statement 1. If i is odd, we have

H i
ét(X ,Qp(j))G = 0

for all primes p.

Statement 2. If i is odd, we have

H i
ét(X ,Z/pZ(j))G = 0

for all but finitely many primes p.
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Proof of Statement 1

The proof of Statement 1 goes back to the argument of Imai and
Serre in the 1970’s. It uses the following fact from algebraic
number theory:

Lemma. For every p the largest subextension of K |k unramified
outside the primes dividing p and infinity is obtained as the
composite of k(µp∞) with the largest subextension of K |k
unramified at all finite primes (which is a finite extension).
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Proof of Statement 1

Assume p is such that H i
ét(X ,Qp(j))G 6= 0. The Galois group

Γ := Gal(k |k) acts on H i
ét(X ,Qp(j))G via its quotient Γ/G .

– Choose a simple nonzero Γ-submodule W of H i
ét(X ,Qp(j))G . As

Γ/G is abelian and W is simple, the elements of Γ act semisimply
on W .

– By the local monodromy theorem the action of inertia on W is
quasi-unipotent at all primes not dividing p. Hence up to replacing
k by a finite extension (which we may do) we may assume that the
action of inertia at these primes is trivial.

– Then the above Lemma implies that, again up to replacing k by
a finite extension, the action of Γ on W factors through
Γp := Gal(k(µp∞)|k).
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quasi-unipotent at all primes not dividing p. Hence up to replacing
k by a finite extension (which we may do) we may assume that the
action of inertia at these primes is trivial.

– Then the above Lemma implies that, again up to replacing k by
a finite extension, the action of Γ on W factors through
Γp := Gal(k(µp∞)|k).
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Proof of Statement 1

Let now v be a prime of k dividing p, and Dv ⊂ Γ a decomposition
group of v .

– The abelian semisimple representation W of Γ restricts to a
Hodge–Tate representation of Dv , by Hodge–Tate decomposition
of the étale cohomology group H i

ét(X ,Qp(j)).

– Therefore, by a theorem of Tate, some open subgroup of Dv , and
hence of Γ, acts on W via the direct sum of integral powers of the
p-adic cyclotomic character χp. Replacing k by a finite extension
for the last time, we may assume that the whole of Γ acts in this
way.

– A Frobenius element Fw at a prime w of good reduction thus
acts with eigenvalues that are integral powers of χp(Fw ) = Nw
(the cardinality of the residue field of w). But by the Weil
conjectures as proven by Deligne, these eigenvalues should have
absolute value (Nw)i/2−j , a contradiction for odd i .
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Proof of Statement 2

Again we are allowed to replace k by a finite extension throughout
the proof. But we have to take care of all sufficiently large p
together.

– Up to replacing k by a finite extension, we may assume that for
all primes p, every inertia subgroup in Gal(k |k ′) associated with a
prime not lying above p acts unipotently on H i

ét(X̄ ,Qp(j)). This
uses the strong form of the local monodromy theorem (de
Jong–Deligne)

– Next, we replace k by its maximal extension contained in K in
which no finite prime ramifies.
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Proof of Statement 2

For all but finitely many p the following conditions are all satisfied:

1 p is unramified in k .

2 µp 6⊂ k.

3 X has good reduction at the primes dividing p.

Assume now that there exist infinitely may primes p satisfying the
conditions above for which H i

ét(X ,Z/pZ(j))G 6= 0. We shall derive
a contradiction.
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– By arguments similar to the above, for each such p the
restriction of the action of Γ/G to a simple Γ-submodule
Wp ⊂ H i

ét(X ,Z/pZ(j))G factors through Gal(k(µp)|k) ∼= F×p .
Since Wp is simple for the action of Γ, it must be 1-dimensional

over Fp, with Γ acting by a power χ̄
n(p)
p of the mod p cyclotomic

character χ̄p.

– By Serre’s tame inertia conjecture (proven in our case by
Fontaine–Laffaille, and by Caruso in general), there exists a bound
N independent of p such that the integer n(p) appearing in the
above action satisfies n(p) ≤ N.
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– Choose a place w of k not dividing p where X has good
reduction, and let Nw be the cardinality of its residue field. The
Frobenius at w acts on Wp as multiplication by (Nw)n(p). If Q is
its characteristic polynomial on H i

ét(X̄ ,Qp(j)) (which has
Z-coefficients), we thus have Q((Nw)n(p)) ≡ 0 modulo p.

– By the previous paragraph, this congruence holds for infinitely
many p but with n(p) varying between 0 and a fixed bound N.
Hence for some integer 0 ≤ n(p) ≤ N we must have
Q((Nw)n(p)) = 0. But by the Weil conjectures proven by Deligne,
we must then have (Nw)n(p) = (Nw)i/2−j , which is impossible for
odd i .
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Concluding remarks

1. In his proof, Ribet used the Oort–Tate classification of finite
group schemes at the point where we invoked Serre’s tame inertia
conjecture. On the other hand, instead of our final weight
argument (which nicely parallels the proof of Statement 1) he
exploited the finiteness of global torsion on abelian varieties over k .
In the general case we do not have such deep global information at
our disposal.

2. Although the two statements are different in nature, there are
remarkable similarities between the above proof and that of
Faltings for his theorem that the height of abelian varieties over
number fields is bounded in an isogeny class. Compare especially
with the rendition by Deligne in his Bourbaki seminar.
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