Geometry of Severi-Brauer varieties (after Kollár)

Let k be a field. A Severi–Brauer variety is a k-variety P such that $P_{\overline{k}} \cong \mathbf{P}^{\underline{d}}_{\overline{k}}$ for some d.

Observation: Up to scaling by an element of k^{\times} there is a unique nonsplit extension

$$(1) 0 \to O_P \to F(P) \to T_P \to 0$$

of vector bundles on P, where T_P is the tangent bundle.

Proof: $\operatorname{Ext}^1(T_P, O_P) = \operatorname{Ext}^1(O_P, Hom(T_P, O_P)) = H^1(P, \Omega^1_{P/k})$. To compute the latter, we may pass to \overline{k} and compute $H^1(\mathbf{P}^d, \Omega^1_{\mathbf{P}^d/\overline{k}})$. Recall from Hartshorne the exact sequence:

$$0 \to \Omega^1_{\mathbf{P}^d/\overline{k}} \to O_{\mathbf{P}^d}(-1)^{\oplus (d+1)} \to O_{\mathbf{P}^d} \to 0$$

whose long exact sequence gives $H^1(\mathbf{P}^d, \Omega^1_{\mathbf{P}^d/\overline{k}}) \cong H^0(\mathbf{P}^d, O_{\mathbf{P}^d}) = \overline{k}$. \square

The dual of the above exact sequence is

$$0 \to O_{\mathbf{P}^d} \to O_{\mathbf{P}^d}(1)^{\oplus (d+1)} \to T_{\mathbf{P}^d} \to 0$$

so comparison with (1) shows

$$F(P)_{\overline{k}} \cong O_{\mathbf{P}^d}(1)^{\oplus (d+1)}$$
.

Corollary. $A(P) := \operatorname{End} F(P)^{\operatorname{opp}}$ is a central simple algebra of degree d+1. This is the central simple algebra associated with P.

Remark: Quillen has constructed before the bundle F(P) by applying descent to the PGL_{d+1} -equivariant sheaf $O_{\mathbf{P}^d}(1)^{\oplus (d+1)}$ on $\mathbf{P}^d_{\overline{k}}$ along the PGL_{d+1} -torsor P, and defined A(P) as above. The above method is more explicit.

Quite generally, given a proper geometrically connected k-variety X and a line bundle \bar{L} on \bar{X} , consider the category $T(\bar{L})$ of vector bundles F on X whose pullback to \bar{X} is isomorphic to a direct sum of copies of \bar{L} .

Observation: The category $T(\bar{L})$ is abelian semisimple and if $E(\bar{L})$ is an object of minimal rank, then every object is isomorphic to a direct sum of copies of $E(\bar{L})$. Moreover, End $E(\bar{L})$ is a division algebra over k ('geometric Schur Lemma'), and $E(\bar{L})$ is the only object with this property.

Corollary (Geometric version of Wedderburn's theorem) For X = P and $\bar{L} = O_{\mathbf{P}^d}(1)$ we have $F(P) \cong E^{\oplus r}$ for some r > 0 and a vector bundle E on P such that End E a division algebra.

Observation: In the general case, given a morphism $p: Y \to X$ of k-varieties, we have $p^*E(\bar{L}) \cong E(p^*\bar{L})$ for a line bundle \bar{L} on Y.

Proof: p induces an algebra morphism $\operatorname{End} E(\bar{L}) \to \operatorname{End} p^*E(\bar{L})$. The source is a division algebra over k and the target has the same dimension. Thus the map is an isomorphism, and $\operatorname{End} p^*E(\bar{L})$ is a division algebra, so that $p^*E(\bar{L}) \cong E(p^*\bar{L})$.

Corollary: If $X(k) \neq \emptyset$, the case $Y = \operatorname{Spec} k$ implies that $E(\bar{L})$ has rank 1, so that \bar{L} descends to a line bundle on X.

For X = P and $\overline{L} = O_{\mathbf{P}^d}(1)$ this is **Châtelet's theorem:** if $P(k) \neq \emptyset$, then $O_{\mathbf{P}^d}(1)$ descends to a line bundle on P and induces a morphism $P \to \mathbf{P}^d$ that is an isomorphism over \overline{k} , hence over k.

Remark: Châtelet's theorem implies that every Severi–Brauer variety is split by a finite separable field extension. Henceforth we denote by \overline{k} a separable closure of k.

A subvariety $Q \subset P$ in a Severi–Brauer variety is **twisted linear** if over \overline{k} it becomes the inclusion of a linear subspace in \mathbf{P}^d .

Châtelet correspondence: There is a 1-1 correspondence between

- twisted-linear subvarieties $Q \subset P$ of dimension r
- direct summands in F(P) of rank r+1
- left ideals in A(P) of dimension (r+1)(d+1).

(Can be checked after passing to \overline{k} .)

This can be used to recover P from A(P) by Châtelet's method: P is the closed subvariety in $Grass(d+1,(d+1)^2)$ corresponding to left ideals of dimension d+1 in A(P).

Geometric Brauer equivalence: P and P' are said to be Brauer equivalent if they contain isomorphic twisted-linear subvarieties.

Equivalently, they are Brauer equivalent if there is a twisted-linear rational map $\phi: P \leadsto P'$. [Indeed, the locus of indeterminacy Z of ϕ is a twisted-linear subvariety in P, and if Q is a complement to Z given by the Châtelet correspondence, then ϕ induces an inclusion $Q \hookrightarrow P'$.]

Dual Severi–Brauer variety: Quite generally, assume given a geometrically connected k-variety and a line bundle \bar{L} on $X_{\bar{k}}$. For $\sigma \in \operatorname{Gal}(\bar{k}|k)$ denote also by $\sigma: X_{\bar{k}} \to X_{\bar{k}}$ the induced automorphism.

Assume \bar{L} is such that $\sigma^*\bar{L}\cong\bar{L}$ for all σ . This does not define a descent datum on \bar{L} ; however, the isomorphism $\sigma^*\bar{L}\cong\bar{L}$ is unique up to multiplication by a scalar. It follows that the projective space $\mathbf{P}(H^0(X_{\bar{k}},\bar{L})^{\vee})$ descends to a Severi–Brauer variety $|\bar{L}|$ over k.

We may apply the above to X = P and $L = O_{\mathbf{P}^d}(1)$: indeed,

$$O_{\mathbf{P}^d}(1)^{\oplus (d+1)} \cong F(P)_{\overline{k}} \cong \sigma^* F(P)_{\overline{k}} \cong (\sigma^* O_{\mathbf{P}^d}(1))^{\oplus (d+1)}$$

implies $\sigma^* O_{\mathbf{P}^d}(1) \cong O_{\mathbf{P}^d}(1)$ for all $\sigma \in \operatorname{Gal}(\overline{k}|k)$. We get a Severi–Brauer variety $P^{\vee} := |O_{\mathbf{P}^d}(1)|$.

Product structure: For Severi–Brauer varieties P, Q we define

$$P \cdot Q := |\pi_{P_{\overline{k}}}^* O_{P_{\overline{k}}}(1) \otimes_{O_{P_{\overline{k}} \times Q_{\overline{k}}}} \pi_{Q_{\overline{k}}}^* O_{Q_{\overline{k}}}(1)|^{\vee}.$$

One quickly checks that this respects Brauer equivalence and induces an abelian group structure on equivalence classes with unit [$\{pt\}$] and inverse P^{\vee} . We get the Brauer group Br(k).

Lemma. Assume \bar{L}_1 , \bar{L}_2 are line bundles on $P_{\bar{k}} \cong \mathbf{P}_{\bar{k}}^d$ is such that $\sigma^* \bar{L}_i \cong \bar{L}_i$ for all σ . There is a Brauer equivalence of Severi–Brauer varieties

$$|\bar{L}_1 \otimes \bar{L}_2| \sim |\bar{L}_1| \cdot |\bar{L}_2|$$

Proof: Consider the diagonal map $\Delta: P \to P \times P$. Then

$$\bar{L}_1 \otimes \bar{L}_2 \cong \Delta_{\overline{k}}^*(\pi_{P_{\overline{k}}}^* \bar{L}_1 \otimes \pi_{P_{\overline{k}}}^* \bar{L}_2).$$

For any line bundle \bar{L} on $P_{\bar{k}} \times P_{\bar{k}}$ we have an induced map $H^0(P_{\bar{k}} \times P_{\bar{k}}, \bar{L}) \to H^0(P_{\bar{k}}, \Delta_{\bar{k}}^* \bar{L})$. if moreover \bar{L} satisfies $\sigma^* \bar{L} \cong \bar{L}$ for all σ , it descends to a rational map $|\bar{L}| \leadsto |\Delta_{\bar{k}}^* \bar{L}|$ which is twisted-linear. In particular,

$$|\bar{L}_1 \otimes \bar{L}_2| \sim |\pi_{P_{\overline{k}}}^* \bar{L}_1 \otimes \pi_{P_{\overline{k}}}^* \bar{L}_2|.$$

The RHS is $|\bar{L}_1| \cdot |\bar{L}_2|$ by construction (we'll need this for $\bar{L}_i = O_{\mathbf{P}^d}(1)$ where it is easy.)

Given a Severi–Brauer variety P, define its **period** per(P) to be its order in Br(k). The lemma implies:

Corollary. The period of P is the smallest r for which $O_{\mathbf{P}^d}(r)$ descends to a line bundle on P.

Since $O_{\mathbf{P}^d}(d+1)$ descends to the anticanonical bundle of P, we have: Corollary. $per(P) \mid \dim P + 1$, and hence Br(k) is torsion.

Now define the **index** ind(P) to be the greatest common divisor of degrees of zero-cycles on P.

This is an invariant of the Brauer class (Brauer equivalence implies stable birationality which implies invariance by Lang-Nishimura).

Proposition. $\operatorname{ind}(P) = \dim(P^{\min}) + 1$, where P^{\min} is a twisted-linear subvariety in P of minimal dimension.

Remark: Note that by the Châtelet correspondence P^{\min} corresponds to a minimal direct summand in F(P) and hence to the division algebra in the Brauer class of A(P).

Proof of proposition: Write $m := \dim P^{\min}$. First, a general section of the tangent bundle of \mathbf{P}^m has m+1 zeros, and therefore a general section of the tangent bundle of P^{\min} gives a zero-cycle of degree m+1 on $P^{\min} \subset P$. It thus remains to prove that the degree of every zero-cycle on P is divisible by m+1.

By the Châtelet correspondence every twisted-linear subvariety of dimension r corresponds to a direct summand in F(P) of rank r+1 which must be divisible by m+1, the dimension of the minimal direct summand. Thus it suffices to associate with every effective zero-cycle Z of degree r+1 on P a twisted-linear subvariety of dimension r on some Severi–Brauer variety Brauer equivalent to P. To do so, choose n>0 so that n(m+1)>r. Then on $P_{\overline{k}}\cong \mathbf{P}^d$ there exists a hypersurface of degree nm+n+1 passing through the support of $Z_{\overline{k}}$, i.e. there is a surjection

$$H^0(P_{\overline{k}}, O(nm+n+1)) \rightarrow H^0(Z_{\overline{k}}, O(nm+n+1)|_{Z_{\overline{k}}}) \cong H^0(Z_{\overline{k}}, O_{Z_{\overline{k}}}) \cong \overline{k}^{r+1}.$$

Its kernel defines a twisted-linear subvariety $P_Z \subset |O(nm+n+1)|$ of codimension r. By the previous corollary $\operatorname{per}(P) = \operatorname{per}(P^{\min})$ divides m+1 and hence O(n(m+1)) descends to a line bundle on P. But then $|O(nm+n+1)| = |O(nm+m)| \cdot |O(1)| \sim |O(1)| = P^{\vee}$. Now dualize.

Corollary (Brauer's theorem) We have

$$per(P) \mid ind(P) \mid per(P)^d$$

where $d = \dim P$. Consequently, per(P) and ind(P) have the same prime divisors.

Proof: By the previous corollary and proposition,

$$\operatorname{per}(P) = \operatorname{per}(P^{\min}) \mid (\dim(P^{\min}) + 1) = \operatorname{ind}(P).$$

On the other hand, the line bundle $O_{\mathbf{P}^d}(\operatorname{per}(P))$ descends to a line bundle on P. Intersecting d general sections gives a zero-cycle of degree $\operatorname{per}(P)^d$ on P.