
Geometry of Severi–Brauer varieties (after Kollár)

Let k be a field. A Severi–Brauer variety is a k-variety P such that

Pk
∼= Pd

k
for some d.

Observation: Up to scaling by an element of k× there is a unique

nonsplit extension

(1) 0 → OP → F (P ) → TP → 0

of vector bundles on P , where TP is the tangent bundle.

Proof: Ext1(TP , OP ) = Ext1(OP , Hom(TP , OP )) = H1(P,Ω1
P/k). To

compute the latter, we may pass to k and compute H1(Pd,Ω1
Pd/k

).

Recall from Hartshorne the exact sequence:

0 → Ω1
Pd/k

→ OPd(−1)⊕(d+1) → OPd → 0

whose long exact sequence gives H1(Pd,Ω1
Pd/k

) ∼= H0(Pd, OPd) = k.

The dual of the above exact sequence is

0 → OPd → OPd(1)⊕(d+1) → TPd → 0

so comparison with (1) shows

F (P )k
∼= OPd(1)⊕(d+1).

Corollary. A(P ) := EndF (P )opp is a central simple algebra of degree

d+ 1. This is the central simple algebra associated with P .

Remark: Quillen has constructed before the bundle F (P ) by applying

descent to the PGLd+1-equivariant sheaf OPd(1)⊕(d+1) on Pd
k
along the

PGLd+1-torsor P , and defined A(P ) as above. The above method is

more explicit.

Quite generally, given a proper geometrically connected k-variety X

and a line bundle L̄ on X̄, consider the category T (L̄) of vector bundles

F on X whose pullback to X̄ is isomorphic to a direct sum of copies

of L̄.

Observation: The category T (L̄) is abelian semisimple and if E(L̄) is

an object of minimal rank, then every object is isomorphic to a direct

sum of copies of E(L̄). Moreover, EndE(L̄) is a division algebra over

k (‘geometric Schur Lemma’), and E(L̄) is the only object with this

property.
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Corollary (Geometric version of Wedderburn’s theorem) For X = P

and L̄ = OPd(1) we have F (P ) ∼= E⊕r for some r > 0 and a vector

bundle E on P such that EndE a division algebra.

Observation: In the general case, given a morphism p : Y → X of

k-varieties, we have p∗E(L̄) ∼= E(p∗L̄) for a line bundle L̄ on Y .

Proof: p induces an algebra morphism EndE(L̄) → End p∗E(L̄). The

source is a division algebra over k and the target has the same dimen-

sion. Thus the map is an isomorphism, and End p∗E(L̄) is a division

algebra, so that p∗E(L̄) ∼= E(p∗L̄).

Corollary: If X(k) ̸= ∅, the case Y = Spec k implies that E(L̄) has

rank 1, so that L̄ descends to a line bundle on X.

For X = P and L̄ = OPd(1) this is Châtelet’s theorem: if

P (k) ̸= ∅, then OPd(1) descends to a line bundle on P and induces

a morphism P → Pd that is an isomorphism over k, hence over k.

Remark: Châtelet’s theorem implies that every Severi–Brauer variety

is split by a finite separable field extension. Henceforth we denote by

k a separable closure of k.

A subvariety Q ⊂ P in a Severi–Brauer variety is twisted linear if

over k it becomes the inclusion of a linear subspace in Pd.

Châtelet correspondence: There is a 1-1 correspondence between

• twisted-linear subvarieties Q ⊂ P of dimension r

• direct summands in F (P ) of rank r + 1

• left ideals in A(P ) of dimension (r + 1)(d+ 1).

(Can be checked after passing to k.)

This can be used to recover P from A(P ) by Châtelet’s method: P

is the closed subvariety in Grass(d + 1, (d + 1)2) corresponding to left

ideals of dimension d+ 1 in A(P ).

Geometric Brauer equivalence: P and P ′ are said to be Brauer

equivalent if they contain isomorphic twisted-linear subvarieties.

Equivalently, they are Brauer equivalent if there is a twisted-linear

rational map ϕ : P  P ′. [Indeed, the locus of indeterminacy Z of ϕ is

a twisted-linear subvariety in P , and if Q is a complement to Z given

by the Châtelet correspondence, then ϕ induces an inclusion Q ↪→ P ′.]

Dual Severi–Brauer variety: Quite generally, assume given a ge-

ometrically connected k-variety and a line bundle L̄ on Xk. For σ ∈
Gal(k|k) denote also by σ : Xk → Xk the induced automorphism.
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Assume L̄ is such that σ∗L̄ ∼= L̄ for all σ. This does not define a

descent datum on L̄; however, the isomorphism σ∗L̄ ∼= L̄ is unique

up to multiplication by a scalar. It follows that the projective space

P(H0(Xk, L̄)
∨) descends to a Severi–Brauer variety |L̄| over k.

We may apply the above to X = P and L = OPd(1): indeed,

OPd(1)⊕(d+1) ∼= F (P )k
∼= σ∗F (P )k

∼= (σ∗OPd(1))⊕(d+1)

implies σ∗OPd(1) ∼= OPd(1) for all σ ∈ Gal(k|k). We get a Severi–

Brauer variety P∨ := |OPd(1)|.

Product structure: For Severi–Brauer varieties P , Q we define

P ·Q := |π∗
Pk
OPk

(1)⊗OP
k
×Q

k
π∗
Qk
OQk

(1)|∨.

One quickly checks that this respects Brauer equivalence and induces

an abelian group structure on equivalence classes with unit [{pt}] and
inverse P∨. We get the Brauer group Br(k).

Lemma. Assume L̄1, L̄2 are line bundles on Pk
∼= Pd

k
is such that

σ∗L̄i
∼= L̄i for all σ. There is a Brauer equivalence of Severi–Brauer

varieties

|L̄1 ⊗ L̄2| ∼ |L̄1| · |L̄2|

Proof: Consider the diagonal map ∆ : P → P × P . Then

L̄1 ⊗ L̄2
∼= ∆∗

k
(π∗

Pk
L̄1 ⊗ π∗

Pk
L̄2).

For any line bundle L̄ on Pk×Pk we have an induced mapH0(Pk × Pk, L̄) →
H0(Pk,∆

∗
k
L̄). if moreover L̄ satisfies σ∗L̄ ∼= L̄ for all σ, it descends to

a rational map |L̄| |∆∗
k
L̄| which is twisted-linear. In particular,

|L̄1 ⊗ L̄2| ∼ |π∗
Pk
L̄1 ⊗ π∗

Pk
L̄2|.

The RHS is |L̄1| · |L̄2| by construction (we’ll need this for L̄i = OPd(1)

where it is easy.)

Given a Severi–Brauer variety P , define its period per(P ) to be its

order in Br(k). The lemma implies:

Corollary. The period of P is the smallest r for which OPd(r) descends

to a line bundle on P .

Since OPd(d+ 1) descends to the anticanonical bundle of P , we have:

Corollary. per(P ) | dimP + 1, and hence Br(k) is torsion.
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Now define the index ind(P ) to be the greatest common divisor of

degrees of zero-cycles on P .

This is an invariant of the Brauer class (Brauer equivalence implies

stable birationality which implies invariance by Lang–Nishimura).

Proposition. ind(P ) = dim (Pmin)+ 1, where Pmin is a twisted-linear

subvariety in P of minimal dimension.

Remark: Note that by the Châtelet correspondence Pmin corresponds

to a minimal direct summand in F (P ) and hence to the division algebra

in the Brauer class of A(P ).

Proof of proposition: Write m := dimPmin. First, a general section

of the tangent bundle of Pm has m + 1 zeros, and therefore a general

section of the tangent bundle of Pmin gives a zero-cycle of degree m+1

on Pmin ⊂ P . It thus remains to prove that the degree of every zero-

cycle on P is divisible by m+ 1.

By the Châtelet correspondence every twisted-linear subvariety of

dimension r corresponds to a direct summand in F (P ) of rank r + 1

which must be divisible by m+1, the dimension of the minimal direct

summand. Thus it suffices to associate with every effective zero-cycle Z

of degree r+1 on P a twisted-linear subvariety of dimension r on some

Severi–Brauer variety Brauer equivalent to P . To do so, choose n > 0

so that n(m+ 1) > r. Then on Pk
∼= Pd there exists a hypersurface of

degree nm + n + 1 passing through the support of Zk, i.e. there is a

surjection

H0(Pk, O(nm+n+1))� H0(Zk, O(nm+n+1)|Zk
) ∼= H0(Zk, OZk

) ∼= k
r+1

.

Its kernel defines a twisted-linear subvariety PZ ⊂ |O(nm + n + 1)| of
codimension r. By the previous corollary per(P ) = per(Pmin) divides

m+1 and hence O(n(m+1)) descends to a line bundle on P . But then

|O(nm+ n+ 1)| = |O(nm+m)| · |O(1)| ∼ |O(1)| = P∨. Now dualize.

Corollary (Brauer’s theorem) We have

per(P ) | ind(P ) | per(P )d

where d = dimP . Consequently, per(P ) and ind(P ) have the same

prime divisors.

Proof: By the previous corollary and proposition,

per(P ) = per(Pmin) | (dim (Pmin) + 1) = ind(P ).
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On the other hand, the line bundle OPd(per(P )) descends to a line

bundle on P . Intersecting d general sections gives a zero-cycle of degree

per(P )d on P .


