
Schemes: The Beginnings

We give the basic definitions and constructions concerning schemes. The
word ‘ring’ will mean commutative ring with unit. Also, when referring to
compact topological spaces, we do not assume that they are Hausdorff spaces.

1. Prime Spectra

Recall that a subset S of a ring A is called multiplicatively closed if 1 ∈ S,
0 /∈ S and for any f, g ∈ S we have fg ∈ S. A prime ideal P is an ideal
such that the set A \P is multiplicatively closed. An equivalent formulation
of this is that the quotient ring A/P should be a (nontrivial) domain, i.e.
it should have no zero-divisors. From this formulation it follows easily that
any maximal ideal of A (i.e. an ideal contained in no other proper ideal of
A than itself) is always a prime ideal since in this case the quotient ring is a
field.

We now turn the set of prime ideals of an arbitrary ring A into a topo-
logical space.

Definition 1.1 The prime spectrum SpecA of A is the topological space
whose points are prime ideals of A and a basis of open sets is given by the
sets

D(f) := {P : P is a prime ideal withf /∈ P}

for all f ∈ A.

For this definition to be correct, we must verify that the system of the
sets D(f) is closed under finite intersections. But we have for all f, g ∈ A

D(f) ∩D(g) = D(fg) (1)

for by definition a prime ideal avoids fg if and only if it avoids f and g.
It follows from the definition that a closed subset in the topology of

SpecA can be described as the set of prime ideals containing some fixed
ideal I (generated by a system of elements {fi : i ∈ J} of A). Thus one-point
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sets given by maximal ideals are closed; in fact, maximal ideals give the only
closed points of the prime spectrum since for any prime ideal P a closed
subset containing P contains the maximal ideals containing P as well. This
shows that in general the prime spectrum does not satisfy even the weakest
of the separation axioms in topology. However, it enjoys a nice topological
property:

Proposition 1.2 For any ring A the prime spectrum SpecA is compact.

First a lemma we shall also use later.

Lemma 1.3 A system of elements {fi : i ∈ I} generates A if and only if
the sets D(fi) give an open covering of SpecA.

Proof: Indeed, if the fi generate A, there can be no prime ideal of A
containing all of them, which is equivalent to the D(fi) covering SpecA. If,
however, they do not generate A, then they are all contained (by Zorn’s
Lemma) in some maximal ideal M which thus gives an element of SpecA
not contained in any of the D(fi).

Proof of Proposition 1.2: Let {Ui : i ∈ I} be an open covering of SpecA;
we may assume that each Ui is in fact some basic open set D(fi). By the
above lemma the fi generate A. In particular, there is a relation of the form

a1f1 + a2f2 + . . .+ anfn = 1 (2)

with ai ∈ A and f1, . . . , fn chosen among the fi above. This means, how-
ever, that already f1, . . . , fn generate A, i.e. the sets D(f1), . . . , D(fn) cover
SpecA.

Equations of type (2) are sometimes referred to as algebraic analogues of
partitions of unity.

Examples 1.4 We conclude this section by some easy examples.

1. The prime spectrum of a field consists of a single point, corresponding
to the ideal (0).

2. The prime spectrum of Z is the space consisting of a closed point for
each prime p, and a non-closed point corresponding to (0), called the
generic point, whose closure is the whole space. Other closed subsets
are only finite sets of primes; indeed, any ideal in I ⊂ Z is of the
form mZ for some positive integer m; the prime ideals containing I are
generated by the prime divisors of m.
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3. The prime spectrum of C[x] consists of a closed point for each a ∈ C,
plus a non-closed generic point corresponding to (0). The closed subsets
are again finite sets of closed points. Indeed, C[x] is a principal ideal
ring with prime elements the polynomials x− a (a ∈ C), and we may
argue as in the previous case.

4. If A is isomorphic to a finite direct sum
n⊕

i=1
Ai, then SpecA is a dis-

joint union of clopen sets each of which is homeomorphic to one of the
SpecAi. To see this, observe first that if one writes ei for the idempo-
tent given by putting 1 at the i-th component and 0 elsewhere, any pair-
wise product eiej is 0 and hence no prime ideal P of A can avoid both ei
and ej. However, P cannot contain all of the ej since the sum of these
is 1. Thus we conclude that P concludes all of the ej except one, say
ei, which implies that P is of the form A1⊕ . . . Ai−1⊕Pi⊕Ai+1 . . .⊕An

with a prime ideal Pi of Ai. The required decomposition of SpecA is
then induced by the map P 7→ Pi.

2. Schemes – Mostly Affine

The prime spectrum of a ring is a rather coarse invariant: for instance, it
cannot even distinguish between two fields. We shall remedy this by defining
some additional structure on the prime spectrum. To motivate the construc-
tion to come, let us reconsider the third example from the last section.

Example 2.1 The ringC[x] is nothing but the ring of holomorphic functions
on C having at worst a pole at infinity. The prime spectrum of this ring can
be identified to C with a generic point (0) added; closed sets are finite sets
not containing (0). Obviously one cannot recover C[x] from these data; we
cannot even distinguish between constant functions. Remember, however,
that we have seen in the previous chapter that a Riemann surface is uniquely
determined by the underlying topological space plus the sheaf of holomorphic
functions on it. If we restrict to the sheaf of holomorphic functions on C
having at worst a pole at infinity, we can easily describe its sections over a
set of the form D(f) with the generic point removed (this is an open set in
the complex topology). For instance, overD(x) (which with the generic point
thrown away identifies to C∗) the sections are the rational functions whose
denominator is a power of x, for thesections are meromorphic functions on
P1(C) and hence elements of C(T ); moreover, any denominator other than
the xm has a zero elsewhere. We find an analogous result for D(x − a) for
(a ∈ C); all other D(f) are finite intersections of these, so the sections of the

3



sheaf over D(f) are just the restrictions of the sections over the D(x − a)
with (x− a) dividing f .

If we wish to define something analogous to this for any ring A, we
first have to extend the notion of a rational function, i.e. give a meaning
to fractions of elements in an arbitrary ring A. So let S be a multiplica-
tively closed subset of A, i.e. a subset S ⊂ A \ {0} containing 1 such that
x, y ∈ S ⇒ xy ∈ S. We would like to define a ring AS which is to be the
“ring of fractions with numerator in A and denominator in S”.

Example 2.2 When A is a domain, this is fairly easy to do since in this
case A admits a fraction field K. Elements of K can be represented by
fractions f/g with f, g ∈ A, g ̸= 0, where f/g = f1/g1 whenever fg1 = f1g.
We may then take AS to be the subring of those elements which can be
written as fractions with denominators in S; this is indeed a subring as S is
multiplicatively closed.

Now to treat the general case, observe first that just as the fraction field
K can be defined as the object representing a certain functor, the ring AS

of the previous example is easily seen to represent the set-valued functor F
given by

F (R) = {ϕ ∈ Hom(A,R) : ϕ(s) is a unit in R for all s ∈ S}

on the category of rings. When A has zero-divisors, A has no fraction field,
but the above functor F still exists.

Proposition 2.3 The functor F is representable by a ring AS for any ring
A and multiplicatively closed subset S.

The ring AS is called the localisation of A with respect to S. By the
Yoneda lemma, it is determined up to unique isomorphism. Moreover, it is
equipped with a canonical homomorphism ϕS : A→ AS sending elements of
S to units which corresponds to the identity map AS → AS.

Proof: Define AS as a set to be the quotient of A × S by the equivalence
relation:

(f, s) ∼ (f ′, s′) iff there is a t ∈ S with (fs′ − f ′s)t = 0.

One sees that this is indeed an equivalence relation; for transitivity, note that
the equations (fs′−f ′s)t= 0 and (f ′s′′−f ′′s′)u= 0 imply (fs′′−f ′′s)s′tu= 0
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(multiply the first equation by s′′u and the second by st). Denote by f/s the
image of (f, s) in AS and define the addition and multiplication laws as for
fractions; one checks that this is independent of the representatives chosen.

Now given a homomorphism ϕ : A → R sending elements of S to units,
define a homomorphism AS → R by sending f/s to ϕ(f)ϕ(s)−1 (note that
units are never zero-divisors, so ϕ(s)−1 is a well-defined element of R). This
is a well-defined map, for if (f ′, s′) is another representative for f/s, we have

0 = ϕ((fs′ − f ′s)t) = (ϕ(f)ϕ(s′)− ϕ(f ′)ϕ(s))ϕ(t),

whence ϕ(f)ϕ(s′) = ϕ(f ′)ϕ(s) as ϕ(t) is a unit. Conversely, as any element
of S maps to a unit in AS by the map ϕS : A → AS sending s to s/1,
homomorphisms AS → R induce elements of F (R) by composition with ϕS.
Thus we have obtained a bijection between F (R) and Hom(AS, R) which is
immediately seen to be functorial.

We now wish to compare the prime spectra of A and AS.

Lemma 2.4 The map P 7→ ϕS(P )AS defines a canonical bijection between
prime ideals P of A avoiding S and prime ideals of AS.

Proof: Let P be a prime ideal of A avoiding S. By this last condition,
the ideal ϕS(P )AS generated by ϕS(P ) does not contain units and hence is
different from AS. Moreover, it is a prime ideal, for if (f/s)(g/t) ∈ ϕS(P )AS,
then ufg ∈ P for some u ∈ S, whence f or g is in P and thus (f/s) or (g/t)
is in ϕS(P )AS. For surjectivity, note the easy fact that for any prime ideal
Q of AS the ideal ϕ−1

S (Q) is a prime ideal of A avoiding S; the assertion then
follows from the equality ϕS(ϕ

−1
S (Q))AS = Q. Similarly, injectivity follows

from ϕ−1
S (ϕS(P )AS) = P ; the verification of these relations is left to the

reader.

Examples 2.5 The two key examples of localisation to be used in the sequel
are the following.

1. Let S be the set {1, f, f 2, f 3, . . .} of all powers of f for some f ∈ A. In
this case elements of AS are represented by fractions with numerator in
A and denominator a power of f ; we shall use the notation Af for this
particular AS. The previous lemma implies that SpecAf is naturally
homeomorphic to the open set D(f).

2. Let P be a prime ideal of A and take S to be the complement of P ;
it is multiplicatively closed by primeness of P . Adopting a common
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abuse of notation from the literature, we shall denote the localisation
of A with respect to S by AP instead of AA\P . The points of SpecAP

correspond to prime ideals of A contained in P ; in particular, AP has
a unique maximal ideal generated by the image of P . Rings having a
unique maximal ideal are usually called local rings.

This example contains the case of fraction fields: take P to be the ideal
(0) in a domain.

Now we may turn to defining a sheaf of rings OX on the prime spectrum
X of any commutative ring A. In obvious analogy with the example of C[x]
described above, we defineOX(D(f)) = Af for all f ∈ A. To proceed further,
we need an easy lemma.

Lemma 2.6 If f, g ∈ A are such that D(f) ⊂ D(g), then the image of g in
Af is a unit.

Proof: Indeed, if g did not give a unit in Af , it would be contained in a
maximal ideal Q. By Lemma 2.4 there is a unique prime ideal P of A whose
image in Af generates Q. This P contains g but not f , a contradiction.

Combining the lemma with Proposition 2.3, we get for any inclusion
D(f) ⊂ D(g) of basic open sets a canonical restriction homomorphism
Ag → Af . Clearly for a tower of inclusions D(f) ⊂ D(g) ⊂ D(h) the
map Ah → Af thus obtained is the composition of the intermediate maps
Ah → Ag and Ag → Af . So putting OX(D(f)) = Af , we have obtained
“something which behaves like a presheaf on basic open sets”. That this
indeed extends to a presheaf on X follows from the first statement of the
following formal lemma (of which we advise the readers to skip the proof in
a first reading).

Lemma 2.7 Let X be a topological space and V a basis of open sets on X.
Assume given for each V ∈ V a set (resp. abelian group, ring, etc.) F(V )
and for each inclusion V ′ ⊂ V of elements of V a map (resp. homomorphism)
ρV V ′ : F(V ) → F(V ′) satisfying ρV V = idF(V) and ρV V ′′ = ρV ′V ′′ ◦ ρV V ′ for
each tower V ′′ ⊂ V ′ ⊂ V of elements of V.

1. There exists a presheaf of sets (resp. abelian groups, rings, etc.) F
on X whose sections and restriction maps over elements of V can be
canonically identified to those given above.

2. Assume moreover that the F(V ) above satisfy the sheaf axioms for all
coverings of elements of V by elements of V. Then there is a unique
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sheaf F on X whose sections and restriction maps over elements of V
are those given above.

3. Finally assume given two sheaves F , G on X and for each V ∈ V a map
ϕV : F(V ) → G(V ) such that for each inclusion V ′ ⊂ V of elements of
V the diagram

F(V )
ϕV−−−→ G(V )

ρF
V V ′

y yρG
V V ′

F(V ′)
ϕV ′−−−→ G(V ′)

commutes. Then there is a unique morphism of sheaves ϕ : F → G
with the ϕV given as above.

Proof: For the first statement, consider for a given open set U ⊂ X the set
VU of elements of V contained in U ; this set is partially ordered by inclusion.
The restriction maps ϕV V ′ for V ′ ⊂ V ⊂ U turn the system of F(V ) with
V ∈ VU into an inverse system. Note that this is a non-filtered inverse system.
Define F(U) as the inverse limit of this system. By definition, F(U) consists
of sequences (fV ) indexed by all V ∈ VU with fV ∈ F(V ) having the property
that fV ′ = ϕV V ′(fV ) whenever V

′ ⊂ V . If U ′ ⊂ U , define a restriction map
ρUU ′ by mapping the sequence (fV ) above to the sequence of those fV for
which V ⊂ U ′. There is no difficulty in checking that we have thus defined a
presheaf. Moreover, for W ∈ V , the sections of F over W can be canonically
identified with the elements of the prescribed set F(W ) as in this case the
sequences (fV ) defining the inverse limit are given by restrictions of elements
of the prescribed F(W ) to all elements of V contained in W . Thus for
any U containing W , the restriction map ρUW can be identified to the map
projecting a sequence (fV ) to fW ; in particular, a section in F(U) is uniquely
determined by its restrictions to each W ∈ VU .

For the second statement, note first that unicity follows from the first
sheaf axiom since each open U ⊂ X can be covered by elements of V . So it
suffices to show that the presheaf F we have just defined satisfies the sheaf
axioms. By construction of F , for the first sheaf axiom it is enough to see
that for any open cover {Ui : i ∈ I} of U , two sections (fV ), (gV ) ∈ F(U)
restricting to the same section over each Ui restrict to the same section over
each W ∈ VU . Since V is a basis of open sets (hence in particular closed
under finite intersections), we may write each Ui as a union of some Vij ∈ VU

in such a way that W itself is a union of some of the Vij. Now as (fV ) and
(gV ) restrict to the same section over each Vjk, they must restrict to the
same section over W by the assumption. The verification of the second sheaf
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axiom is similar and is left to the readers.
Finally, the last statement follows from the fact that the maps ϕV induce

a morphism of the inverse systems defining F(U) and G(U) for a general U
as above. The map ϕU : F(U) → G(U) is then obtained by passing to the
limit: explicitly, it maps a sequence (fV ) to the sequence (ϕV (fV )).

Now we are ready to prove:

Theorem 2.8 For any ring A, there is a unique sheaf of rings OX on X =
SpecA for which OX(D(f)) = Af for all f ∈ A and the restriction maps
OX(D(g)) → OX(D(f)) for D(f) ⊂ D(g) are the natural maps Ag → Af

described above.

Proof: We have to check the hypothesis of the previous proposition, i.e.
the sheaf axioms over the basic open sets D(f). Notice that since SpecAf

is naturally homeomorphic to D(f) and OX(D(f)) = Af , we may replace
A by Af and assume f = 1. Then for the first sheaf axiom we are given a
covering of X by basic open sets D(fi); by compactness of X we may assume
the covering is finite, say X = D(f1) ∪ . . . ∪ D(fn). To give a section of
OX(X) = A restricting to 0 over each D(fi) is to give an element g ∈ A
satisfying

fki
i g = 0 (3)

for all 1 ≤ i ≤ n with appropriate positive integers ki. Now by the definition
of prime ideals we have D(fki

i ) = D(fi) for all i, so the D(fki
i ) cover X as

well and hence by Lemma 1.3 there exist gi ∈ A with

g1f
k1
1 + . . .+ gnf

kn
n = 1 (4)

Thus if we multiply each equation in (3) by gi and take the sum we get g = 0,
as desired.

For the second sheaf axiom, assume again given a covering of X by basic
open sets D(fi) (1 ≤ i ≤ n) and elements ai/f

ki
i ∈ Afi (viewed as sections

of a would-be sheaf over D(fi)) whose restrictions to the pairwise intersec-
tions D(fi) ∩D(fj) = D(fifj) coincide. This latter property can be written

explicitly as (aif
kj
j − ajf

ki
i )(fifj)

kij = 0 with some positive integer kij. By
changing the ai if necessary we may assume ki = k for all i and kij = m for
all i, j, where m is large enough. Thus

aif
k
j (fifj)

m = ajf
k
i (fifj)

m (5)

for all 1 ≤ i, j ≤ n. Now apply (4) with ki = k +m for all i to get some gi
with

∑
i
gif

k+m
i = 1 and define a =

∑
i
giaif

m
i . Using equation (5) we get for
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all j a chain of equations

fk+m
j a =

n∑
i=1

giaif
k
j (fifj)

m =
n∑

i=1

giajf
k
i (fifj)

m = ajf
m
j

∑
i

gif
k+m
i = ajf

m
j

which means that the image of a in Afj coincides with aj/f
k
j , as required.

Definition 2.9 An affine scheme is a pair (X,OX) consisting of a topolog-
ical space X and a sheaf of rings OX on X such that X = SpecA for some
ring A and OX is the sheaf occuring in the above theorem. We call OX the
structure sheaf of X.

By abuse of notation, we shall frequently write X or SpecA instead of
the pair (X,OX). Next an important fact:

Proposition 2.10 If X = SpecA is an affine scheme, then the stalk OX,P

of OX at any point P of X is canonically isomorphic to the localisation AP ;
in particular, it is a local ring.

Proof: Recall that the stalk at P is defined as the direct limit of the filtered
direct system of the rings OX(U), for U containing P . Since basic open sets
D(f) are cofinal in the index set of this direct system, we may restrict to the
rings Af . Then the proposition follows from the fact that the direct limit of
these rings is obtained by “dividing out by all f /∈ P”. More precisely, it
follows from the construction of lim

→
Af that any f /∈ P is a unit in lim

→
Af ,

hence there is a homomorphism AP → lim
→

Af . If an element g ∈ AP maps

to zero here, it means fng = 0 for some f /∈ P and n ≥ 0 and thus g = 0 in
AP ; surjectivity is equally obvious.

Now some definitions.

Definition 2.11 A ringed space is a pair (X,F) where X is a topological
space and F is a sheaf of rings on X. A morphism of ringed spaces (X,F) →
(Y,G) is a pair (ϕ, ϕ♯) consisting of a continuous map ϕ : X → Y and a
morphism ϕ♯ : G → ϕ∗F of sheaves of rings on Y .

Ringed spaces thus form a category with the morphisms just defined.
Affine schemes are naturally objects of this category enjoying the additional
property that the stalks of the structure sheaf are all local rings.

Next notice that given a morphism of ringed spaces (ϕ, ϕ♯) as above, for
any x ∈ X the morphism ϕ♯ induces a ring homomorphism Gϕ(x) → Fx on
the stalks, for by definition Gϕ(x) is the (filtered) direct limit of G(U) for the
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open sets U containing ϕ(x), whereas ϕ∗F(U) = F(ϕ−1(U)) and there is a
natural map from the direct limit of the latter sets to Fx, for Fx is defined
as the direct limit of all open neighbourhoods containing x.

Definition 2.12 A locally ringed space is a ringed space (X,F) such that
the stalk Fx is a local ring for all x ∈ X. A morphism of locally ringed spaces
is to be a morphism of ringed spaces for which the induced maps Gϕ(x) → Fx

on stalks described above are local homomorphisms, which means that the
preimage of the maximal ideal of Fx is the maximal ideal of Gϕ(x). Thus the
category of locally ringed spaces is a subcategory of that of ringed spaces.

A scheme is a locally ringed space (X,OX) such that X admits an open
covering {Ui : i ∈ I} such that for all i the locally ringed spaces (Ui,OX |Ui

)
are isomorphic (in the category of locally ringed spaces) to affine schemes.
The category of schemes is defined as the full subcategory of that of locally
ringed spaces whose objects are schemes.

Construction 2.13 As we have already remarked, for any commutative
ring A the affine scheme X = SpecA is naturally an object of the cate-
gory of schemes. We now show that the map A 7→ SpecA is in fact a
contravariant functor from the category of rings to that of schemes. For
this we have to assign to any ring homomorphism ϕ : A → B a mor-
phism (Spec (ϕ), Spec (ϕ)♯) : SpecB → SpecA of schemes. The definition
of Spec (ϕ) is obvious: it maps a prime ideal P ∈ SpecB to ϕ−1(P ) which
is immediately seen to be a prime ideal of A. The map is continuous since
the inverse image of a basic open set D(f) is just D(ϕ(f)). Now for defining
Spec (ϕ)♯ note that by the third statement of Lemma 2.7 it suffices to con-
sider sections over the basic open sets D(f). By construction of the structure
sheaves, over D(f) our task is to define a ring homomorphism Af → Bϕ(f).
But there is a canonical such homomorphism according to Lemma 2.3: it
corresponds to the composite A → B → Bϕ(f). Finally, by passing to stalks
we verify that Spec (ϕ)♯ is a morphism of locally ringed spaces.

Now consider the natural question: given an affine scheme X = SpecA,
how can we recover A from X? The answer is easy: we have A = OX(X).
Moreover, the rule X 7→ OX(X) is also a contravariant functor: given a
morphism ϕ : X → Y of affine schemes, we have in particular a morphism of
sheaves ϕ♯ : OY → ϕ∗OX , whence a homomorphism OY (Y ) → ϕ∗OX(Y ) =
OX(X).

Theorem 2.14 The functors A 7→ SpecA and X 7→ OX(X) are inverse to
each other. Thus the category of affine schemes is isomorphic to the opposite
category of the category of commutative rings with unit.
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Proof: If Y = SpecB and the scheme morphism X → Y comes from a
homomorphism λ : A → B, by construction the map OY (Y ) → OX(X) is
none but λ.

We are left to prove that given a morphism (ϕ, ϕ♯) : SpecB → SpecA of
schemes, if λ : A → B is the ring homomorphism induced by taking global
sections, then (ϕ, ϕ♯) = (Spec (λ), Spec (λ)♯). For this, we have to show first
that for P ∈ SpecB we have ϕ(P ) = λ−1(P ). Indeed, ϕ♯ induces a map on
the stalks ϕ♯

P : Aϕ(P ) → BP which by definition makes the diagram

A
λ−−−→ By y

Aϕ(P )

ϕ♯
P−−−→ BP

commute. But ϕ♯
P is a local homomorphism, i.e. ϕ(P )Aϕ(P ) = (ϕ♯

P )
−1(PBP );

on the other hand, the vertical maps are localisation maps, whence the as-
sertion. The equality ϕ♯ = Spec (λ)♯ follows from the analogous commutative
diagram

A
λ−−−→ By y

Af

ϕ♯
D(f)−−−→ Bλ(f)

for sections over basic open sets.

Corollary 2.15 Given a scheme X and a ring A, the functor Y 7→ OY (Y )
induces a bijection

Hom(X, SpecA) ∼= Hom(A,OX(X)).

Proof: We construct an inverse to the map Hom(X, SpecA) → Hom(A,OX(X)).
Assume given a homomorphism A → OX(X) and an affine open subset
U = SpecB in X. Composing with the restriction map OX(X) → OX(U)
we obtain a map A→ B which corresponds to a morphism ϕU : U → SpecA
by the theorem. Moreover, given a basic open set W = D(f) ⊂ U , the
composite map A → B → Bf corresponds to the composite of ϕU with the
inclusion map W ↪→ U . If W is contained in another affine open subset
V = SpecC in A, the diagram

OX(X) −−−→ OX(U)y y
OX(V ) −−−→ OX(W )
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commutes, which implies that the restrictions of the maps ϕU : U → SpecA
and ϕV : V → SpecA to W coincide. We may thus patch them together to
a map X → SpecA as required.

Remark 2.16 The corollary may be rephrased by saying that the affine
scheme SpecA represents the contravariant functor X 7→ Hom(A,OX(X))
on the category of schemes.

3. First Examples of Schemes

It is now time for some examples. Let us first take a new look of those of the
first section, but this time considering the structure sheaves as well.

Examples 3.1 1. For k a field, the underlying topological space of Spec k
is a single point. The stalk of the structure sheaf at this point is k.

2. The generic stalk of SpecZ, i.e. the stalk of OSpecZ at the generic point
(0) is Q. The inclusion Z → Q corresponds to a morphism SpecQ →
SpecZ, identifiable as the inclusion of the generic point into SpecZ. At
a closed point corresponding to the prime ideal (p) the stalkOSpecZ,(p) is
isomorphic to the subring of Q formed by fractions whose denominator
is not divisible by p. The maximal ideal of this ring is generated by p;
we have OSpecZ,(p)/pOSpecZ,(p)

∼= Fp. The natural projection Z → Fp

corresponds to a map SpecFp → SpecZ, the inclusion of the closed
point (p).

3. The generic stalk of SpecC[x] is the rational function fieldC(x). At the
closed point (x− a) the stalk consists of those elements of C[x] whose
denominator does not vanish at a; the maximal ideal of OSpecC[x],(x−a)

is generated by functions vanishing at a. The quotient by this maxi-
mal ideal is isomorphic to C; the image of a function by the projec-
tion OSpecC[x],(x−a) → C is its value at a. Here again a map C[x] →
C[x]/(x− a) ∼= C corresponds to the inclusion of the point a ∈ C.

Thus by comparing the two last examples, we may think of elements of Q
as functions on the space SpecZ. If the denominator of f ∈ Q is not divisible
by a prime p, then f is “defined” in a neighbourhood of (p); its image in Fp

is its “value” at p. This is the coarsest analogy one may observe; it will be
considerably refined later.

Example 3.2 Affine spaces. For a field k we define affine n-space over k as
the affine scheme An

k = Spec k[x1, . . . , xn] (with k[x1, . . . , xn] the polynomial
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ring in n variables over k). An explanation for this name is provided by a
form of a classical theorem of Hilbert’s called the Nullstellensatz (see e.g.
Lang [1], Chapter IX.1): this says that if k is algebraically closed, then any
maximal ideal of k[x1, . . . , xn] is of the form (x1− a1, . . . , xn− an) with some
ai ∈ k. Thus in this case we may identify the set of closed points of An

k with
elements of kn. Note that the above statement is false even for n = 1 if k
is not algebraically closed: for instance, the polynomial x2 + 1 generates a
maximal ideal of R[x] not of the above form.

We next give the basic example of a non-affine scheme. Before discussing
it, an easy definition.

Definition 3.3 An open subscheme of a scheme X is the ringed space con-
sisting of an open subset U and the restriction OX |U of the structure sheaf
of X to U .

Indeed, one checks that U admits an open covering by affine schemes (use
basic open sets, for instance).

Example 3.4 It is possible to define projective spaces Pn
A over any commu-

tative ring A (not to mention any scheme...) using a patching construction
(see Construction 4.3 for details). We may patch together the affine schemes

D+(xi) ∼= SpecA[(x0/xi), . . . , (xi−1/xi), (xi+1/xi), . . . , (xn/xi)]

over the isomorphic open subschemes

D(xj/xi) ∼= SpecA[(x0/xi), . . . , (xi−1/xi), (xi+1/xi), . . . , (xn/xi)]xj/xi

of D+(xi) and

D+(xi/xj) ∼= SpecA[(x0/xj), . . . , (xj−1/xj), (xj+1/xj), . . . , (xn/xj)]xi/xj

of D+(xj) by remarking that

A[
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]xj
xi

= A[
x0
xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

] xi
xj

as subrings of A[x0, . . . , xn, x
−1
0 , . . . , x−1

n ], so we may use the identity maps
as patching isomorphisms.

The next definition enables us to define the basic objects of study in
algebraic geometry, namely loci of zeros of systems of polynomials in affine
or projective space.

13



Definition 3.5 A morphism ϕ : Y → X of schemes is a closed immersion
if the underlying continuous map is the inclusion of a closed subset of X and
moreover there is a covering of X by affine open subschemes Ui = SpecAi

such that for all i the open subscheme of Y defined by ϕ−1(Ui) is isomorphic
to an affine scheme SpecBi with the induced maps Ai → Bi surjections. We
say that Y is a closed subscheme of X if there is a closed immersion of Y
into X.

Remark 3.6 It can be shown that any closed subscheme of an affine scheme
X = SpecA is of the form SpecA/I with some ideal I. However, the reader
should be warned that in general it is possible to give several different closed
subscheme structures on a given closed subset of the underlying topological
space of a scheme.

Example 3.7 An (irreducible) affine hypersurface of dimension n−1 over a
field k is the closed subscheme of An

k given by the quotient of the polynomial
ring k[x1, . . . , xn] by the principal ideal generated by an irreducible polyno-
mial f (here the covering of An

k is just the one-element covering by the whole
space). Affine hypersurfaces of dimension 1 are also called plane curves. For
instance, the quotient of k[x1, x2] modulo the principal ideal generated by
the polynomial x1x2 − 1 defines an affine plane curve: the conic of equation
x1x2 = 1.

A projective hypersurface is a closed subscheme Y of some Pn
k which

restricts to an affine hypersurface on each canonical open subset D+(xi) via
the isomorphisms D+(xi) ∼= An

k . As above, in dimension 1 we get projective
plane curves. For instance, the locus of zeros of the homogenous polynomial
X0X1 − X2

2 in P2
k defines a projective plane curve given on D+(X0) by the

affine plane curve of equation x1 = x22, on D+(X1) that of equation x0 = x22
and on D+(X2) that of equation x0x1 = 1 (notice that different types of
affine conics arise from the same projective conic).

4. Fibres of a Morphism

We next define the fibre of a morphism of schemes as a scheme and not just a
point set. Motivated by the situation in the topological setting, we introduce
more generally the notion of a fibre product of schemes and get the definition
of fibres as a special case.

Given topological spaces Y → X, Z → X over the same space X, their
fibre product can be defined as the space representing the functor.

S 7→ {(ϕ, ψ) ∈ Hom(S, Y )× Hom(S, Z) : p ◦ ϕ = q ◦ ψ}
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on the category of topological spaces over X. We can adopt the same defini-
tion in the context of schemes if we show that the similarly defined functor
on the category of schemes equipped with morphisms to a fixed base scheme
X is representable. We first prove representability in the category of affine
schemes.

Proposition 4.1 Assume given affine schemes Y = SpecA and Z = SpecB
equipped with morphisms p : Y → X, q : Z → X into an affine scheme
X = SpecR. Then the contravariant functor

S 7→ {(ϕ, ψ) ∈ Hom(S, Y )× Hom(S, Z) : p ◦ ϕ = q ◦ ψ}

on the category of affine schemes is representable by Y×XZ := Spec (A⊗RB).

Proof: Indeed, by Theorem 2.14 the statement of the proposition is equiv-
alent to saying that given ring homomorphisms µ : R → A and ν : R → B,
the ring A⊗R B represents the functor

C 7→ {(κ, λ) ∈ Hom(A,C)× Hom(B,C) : κ ◦ µ = λ ◦ ν}

on the category of commutative rings with unit. But this is precisely the
defining property of the tensor product of R-algebras. Indeed, for (a, b) ∈
A × B the map (a, b) 7→ κ(a)λ(b) is R-bilinear, hence induces an R-module
homomorphism A ⊗R B → C. When A ⊗R B is equipped with its ring
structure, it is moreover an R-algebra homomorphism.

Remark 4.2 It is not true that the underlying topological space of a fibre
product of affine schemes is the topological fibre product of the underlying
topological spaces of the schemes. As an easy example, take X = Spec k
with some field k, Y = SpecL, with L|k a finite separable extension of k,
Z = Spec k̄. Then the topological fibre product of Y and Z over X is a
one-element set, whereas L ⊗k k̄ is a direct sum of [L : k] copies of k̄ and
hence its prime spectrum consists of [L : k] points.

To extend this construction to arbitrary schemes, the idea is of course
to cover them with open affine subschemes and then to “patch” the fibre
products of these affine schemes together. How this can be done precisely is
explained next.

Construction 4.3 Assume given a family of schemes {Xi : i ∈ I} and for
each (i, j) ∈ I2 an open subscheme Uij ⊂ Xi such that Uii = Xi. Assume

15



moreover we are given isomorphisms ϕij : Uij → Uji satisfying the cocycle
condition

ϕjk ◦ ϕij = ϕik

on Uij ∩ Uik for all i, j.k (here we tacitly assume that ϕij(Uij ∩ Uik) ⊂ Ujk).
Note that the cocycle condition for i = j = k implies that ϕii is the identity
and then for i = k that ϕji = ϕ−1

ij .
We now construct a scheme X having an open covering {Ui : i ∈ I} such

that each Ui is isomorphic to Xi as a scheme and via these isomorphisms the
Uij correspond to the intersections Ui∩Uj. The above compatibility relations
for the ϕij are thus necessary conditions for such a scheme X to exist.

Define the underlying set of X to be the disjoint union of those of the Xi

modulo the equivalence relation which identifies points of Uij with those of
Uji via ϕij. The compatibility conditions for the ϕij ensure that this is indeed
an equivalence relation; we endow X with the quotient topology. The com-
posite maps pi : Xi →

⨿
Xi → X map each Xi homeomorphically onto an

open subset Ui ⊂ X. Now to define the structure sheaf OX of X it suffices by
Lemma 2.7 to define its sections over a basis of open sets inX in a compatible
fashion. The open sets U which are contained in one of the Ui clearly form a
basis. For such a U one is tempted to define OX(U) as OXi

(p−1
i (U)), but the

problem is that U may be contained in the intersection of several Ui. How-
ever, the rings obtained for each choice of Ui are all isomorphic via the ϕij,
so to remedy this one defines OX(U) to be the subring of

∏
U⊂Ui

OXi
(p−1

i (U))

consisting of sequences of sections mapped to each other by the ϕij. More

precisely, we take those sequences (si) with ϕ♯
ij(sj) = si for all (i, j) (here

si is viewed as a section in ϕij∗(OXi
|Uij

)(p−1
j (U))). One defines restriction

maps for subsets V ⊂ U as induced by the product of the restriction maps
of the OXi

; in fact, any element of OX(V ) is determined by its components
indexed by the sets Ui containing U . It is now straightforward to check the
sheaf axioms over U as well as the fact that the ringed space thus obtained
is a scheme.

Armed with this patching construction, we may now construct fibre prod-
ucts of arbitrary schemes. Just as in topology, let us refer to a morphism
p : Y → X of schemes as a scheme over X.

Proposition 4.4 Given two schemes p : Y → X, q : Z → X over the same
scheme X, the contravariant functor

S 7→ FY Z(S) := {(ϕ, ψ) ∈ Hom(S, Y )× Hom(S, Z) : p ◦ ϕ = q ◦ ψ}

the category of schemes is representable by a scheme Y ×X Z.
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The scheme Y ×X Z is called the fibre product of Y and Z over X. It is
equipped with two canonical morphisms into Y and Z making the diagram

Y ×X Z
π2−−−→ Z

π1

y yq

Y
p−−−→ X

commute (they correspond to the identity morphism of Y ×X Z).

Proof: We show first that if Y , Z and X are all affine, then the scheme
Y ×X Z defined in Proposition 4.1 is indeed a fibre product in the category
of schemes. For this we have to see that for an arbitrary scheme S any
element of FY Z(S) factors as a composite (π1, π2) ◦ ϕ with some morphism
ϕ : S → Y ×S Z. Choosing an affine open cover {Si : i ∈ I} of S, for
each i we dispose of a morphism ϕi : Si → Y ×X Z with the above property
according to Proposition 4.1. Since by definition for any affine open subset
U ⊂ Si ∩ Sj the elements of FY Z(U) are in bijection with Hom(U, Y ×X Z),
we see that the restrictions of ϕi and ϕj to the open subschemes Si ∩ Sj are
the same for all (i, j). Hence there is a unique morphism ϕ agreeing with ϕi

over Si (the existence of the underlying continuous map is straightforward;
for the existence of ϕ♯ use Lemma 2.7 (3)).

Still assuming X affine, choose affine open coverings {Yi : i ∈ I} and
{Zj : j ∈ J} of Y and Z, respectively. First fix some l ∈ J . We then dispose
of affine shemes Yi ×X Yl for each i ∈ I. Now note that quite generally
if Y ×X Z represents the functor FY Z and U ⊂ Y is an open subscheme,
then the open subscheme π−1

1 (U) ⊂ Y ×X Z represents the functor FUZ

and as such is unique up to unique isomorphism by the Yoneda lemma.
Applying this remark with Zl in place of Z, Yi (resp. Yj) in place of Y and
Yi∩Yj in place of U we see that there exist unique isomorphisms ϕij : Uij →
Uji, where Uij (resp. Uji) is the inverse image of Yi ∩ Yj by the projection
Yi ×X Zl → Yi (resp. Yj ×X Zl → Yj). The uniqueness of the ϕij implies
that the compatibility conditions in Construction 4.3 are satisfied, so we may
patch the Yi ×X Zl together along the Uij to obtain a scheme Y ×X Yl. The
projections Y ×X Zl → Y and Y ×X Zl → Zl are defined by patching the
projections from the elements of the open covering {Yi ×X Zl : i ∈ I} of
Y ×X Zl as in the previous paragraph. To show that Y ×X Zl represents FY Zl

one considers for a pair (ϕ, ψ) ∈ FY Zl
(S) the restrictions (ϕ|ϕ−1(Yi), ψ) ∈ FYiZl

and patches the corresponding morphisms S → Yi ×X Zl together, again
arguing as in the previous paragraph.

Now by exactly the same method one shows that the schemes Y ×X Zl

patch together to give a scheme Y×XZ representing FY Z . Finally one extends
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the construction to arbitary X by choosing a covering of X by affine open
subschemes Xk and noting that the open subschemes Yk = p−1(Xk) form an
open covering of Y such that the fibre products Yk ×Xk

q−1(Xk) represent
the functors FYkZ where the Yk are viewed as schemes over X (indeed, given
(ϕ, ψ) ∈ FYkZ(S) we must have ψ(S) ⊂ q−1(Xk)), so one may repeat the
previous procedure to patch the schemes Yk×XZ = Yk×Xk

q−1(Xk) together.

Now if we imitate the situation in topology, to define the fibre of a mor-
phism Y → X at some point P of X we first need to define the inclusion
morphism {P} → X. This is achieved as follows. Take an affine open
neighbourhood U = SpecA. Then P is identified with a prime ideal of
A and we dispose of a morphism A → AP which we may compose with
the natural projection AP → AP/PAP =: κ(P ). We get a morphism
Specκ(P ) → U , whence by composition with the inclusion map U → X
a morphism iP : Specκ(P ) → X.

Lemma 4.5 The morphism iP : Specκ(P ) → X just defined does not de-
pend on the choice of U .

Proof: If V = SpecB is another affine open neighbourhood of P , then
there is some affine open subscheme W ⊂ V ∩ U . We may assume that W
as a subscheme of U is of the form D(f) with some f ∈ A \ P . But the
localisation map A→ AP factors through Af (since f is a unit in AP ), which
means that the map SpecAP → U factors through W . By symmetry, we get
the same conclusion for V .

Definition 4.6 Given a morphism ϕ : Y → X and a point P of X, the fibre
of ϕ at P is the scheme YP := Y ×X Specκ(P ), the fibre product being taken
with respect to the maps ϕ and iP .

We saw in Remark 4.2 that the underlying topological space of a fibre
product is not a topological fibre product in general. However, the good news
is:

Proposition 4.7 Given a morphism ϕ : Y → X and a point P of X, the
underlying topological space of the fibre YP is homeomorphic to the subspace
ϕ−1(P ) of the underlying space of Y .
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Proof: We may assume we are dealing with affine schemes Y = SpecB
and X = SpecA. We first show there is a bijection between ϕ−1(P ) and
SpecB⊗Aκ(P ) as sets, the homomorphism λ : A→ B defining the A-module
structure of B being the one corresponding to ϕ by Theorem 2.14. Now the
above λ induces a map λ : A/P → B/λ(P )B and a point Q ∈ SpecB is
in ϕ−1(P ) if and only if Q ⊃ λ(P ) and its image Q in B/λ(P )B satisfies

λ
−1
(Q) = (0). This is the same as saying that λ(A/P ) ∩ Q = {0}, or else,

putting S = λ(A/P ) \ {0}, that Q defines a prime ideal of the localisation
(B/λ(P )B)S. But the latter ring is none but B⊗Aκ(P ). To see this, note first
the isomorphism B/λ(P )B ∼= B ⊗A (A/P ) coming from the exact sequence

B ⊗A P → B ⊗A A→ B ⊗A (A/P ) → 0

coming from tensoring with B the short exact sequence

0 → P → A→ A/P → 0

of A-modules. Here we have B ⊗A A ∼= B coming from the multiplication
map b⊗a 7→ ba and so the image of B⊗AP in B is exactly λ(P )B (since B is
an A-module via λ). Now the natural map A/P → B⊗A (A/P ) = B/λ(P )B
is given by a 7→ 1 ⊗ a and the localisation of B ⊗A (A/P ) by the subset
{1⊗ a : a ∈ (A/P ) \ {0}} is exactly B ⊗A κ(P ).

In the above procedure we identified YP = SpecB⊗Aκ(P ) with a subset of
SpecB; by looking at basic open sets D(f) one sees easily that the topology
of YP corresponds to the subspace topology.

The fibre product enables us to introduce an important class of mor-
phisms.

Definition 4.8 Let X → S be a scheme over S. The diagonal of X is the
morphism

∆ = ∆X/S : X → X ×S X

induced by the pair of S-morphisms (idX : X → X, idX : X → X).
The scheme X is separated over S if ∆X/S is a closed immersion. In the

special case S = SpecZ we say that X is a separated scheme.

Remark 4.9 Separatedness is the analogue of the Hausdorff property in
topology: a topological space T is Hausdorff if and only if the diagonal
morphism T → T × T is a closed embedding.

Examples 4.10
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1. A morphism SpecB → SpecA of affine schemes is always separated. In-
deed, the diagonal morphism is the morphism SpecB → Spec (B ⊗A B)
induced by the multiplication map B ⊗A B → B. The latter is a sur-
jective ring homomorphism, hence it defines a closed immersion.

2. Let k be a field. Take two copies of the affine line A1
k = Spec k[x] and

patch them together over the open set Spec k[x, x−1] using the identity
map. The resulting scheme is the affine line with the origin doubled;
one checks that it is not separated over k.

Proposition 4.11 The following are equivalent for a scheme X.

1. X is separated.

2. The intersection U ∩V of two affine open subsets U, V is always affine,
and the natural morphism

OX(U)⊗Z OX(V ) → OX(U ∩ V )

is surjective.

3. There exists an open covering of X be affine open subsets Ui such that
the intersections Ui ∩ Uj have the property in (2).

Proof: The implication (1) ⇒ (2) holds because U ∩V is naturally isomor-
phic to the closed subscheme ∆(X) ∩ (U × V ) of the affine scheme U × V .
(Here the intersection is the closed subscheme defined by restricting the sheaf
of ideals I∆X

⊂ OX×X to the open subscheme U × V ; see the next section).
As (3) is a special case of (2), it remains to show that (3) implies (1). By
assumption (3), the morphism Ui ∩ Uj → Ui × Uj given by (idUi∩Uj

, idUi∩Uj
)

is a closed immersion, from which (1) follows as the Ui × Uj form an affine
open covering of X ×X.

Corollary 4.12 For any ring A the projective space Pn
A is separated over

SpecA.

Proof: In the case A = Z property (3) of the proposition follows from
the patching construction defining Pn

Z. In the general case, note that Pn
A
∼=

Pn
Z ×SpecZ SpecA, and it is straightforward to check that a base change of a

separated morphism is again separated (more generally, the base change of
a closed immersion is again a closed immersion).
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5. Quasi-coherent Sheaves

In Section 2 we saw that any ring A defines an affine scheme X = SpecA.
Here we study how to associate sheaves on X to modules over the ring A, a
construction that will be very useful in the next chapter.

As the construction of affine schemes makes one expect, sheaves associ-
ated to A-modules should be, in some sense, modules over the structure sheaf
OX . The following definition makes this precise.

Definition 5.1 Let X be any scheme. A sheaf of OX-modules or an OX-
module for short is a sheaf of abelian groups F on X such that for each
open U ⊂ X the group F(U) is equipped with an OX(U)-module structure
OX(U)×F(U) → F(U) making the diagram

OX(U)×F(U) −−−→ F(U)y y
OX(V )×F(V ) −−−→ F(V )

commute for each inclusion of open sets V ⊂ U . In the special case when
F(U) is an ideal in OX(U) for all U we speak of a sheaf of ideals on X.

Examples 5.2 Here are two natural situations where OX-modules arise.

1. Let ϕ : X → Y be a morphism of schemes. We know that on the
level of structure sheaves ϕ is given by a morphism ϕ♯ : OY → ϕ∗OX ,
whence an OY -module structure on ϕ∗OX .

2. In the previous situation the kernel I of the morphism ϕ♯ : OY → ϕ∗OX

(defined by I(U) = ker(OY (U) → ϕ∗OX(U))) is a sheaf of ideals on
Y . This is particularly interesting when X is a closed subscheme of Y
and ϕ is the natural inclusion. In this case we call I the sheaf of ideals
defining X.

3. More generally, given any OX-module F one can define its annihilator
as the ideal sheaf whose sections over an open set U consist of those
f ∈ OX(U) for which fs = 0 for all s ∈ F(U). For instance, the
annihilator of the OX-module 0 is OX .

We may now proceed to construct OX-modules over affine schemes from
modules over rings. For this we first need an algebraic concept.

Definition 5.3 Let A be a ring, S ⊂ A a multiplicatively closed subset and
M an A-module. The localisation of M by S is the AS-module MS given by
M ⊗A AS.
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As in the case of rings, given an element f ∈ A or a prime ideal P , we
shall use the notations Mf for M ⊗A Af and MP for M ⊗A AP .

Construction 5.4 Let A be a ring and M an A-module. For any mul-
tiplicatively closed S ⊂ A there is a natural map M → MS obtained by
tensoring the natural map A → AS by M and similarly there is a natural
map Mg → Mf for any inclusion D(f) ⊂ D(g). The sheaf axioms for OX

imply that the Mf satisfy the sheaf axioms over basic open sets, so that
Lemma 2.7 may be applied to get a sheaf M̃ over X which is an OX-module
by construction.

The rule M → M̃ is naturally a functor from the category of A-modules
to the category of OX-modules and it is easy to check that it is fully faithful.

One cannot expect, however, that in this way an equivalence of categories
arises, as the following simple counterexample shows.

Example 5.5 Let A be the local ring of the affine line A1
k in 0, i.e. the

localisation of the polynomial ring k[x] by the ideal (x). Then X = SpecA
consists only of two points: a closed point coming from (x) and a so-called
generic point η coming from the ideal (0). The stalks of OX are A in the
closed point and k(x) in the generic point. Now define an OX-module F on
X = SpecA by putting F(X) = A and F(η) = 0, the restriction F(X) →
F(η) being the zero map. As the only nonempty open subsets of X are η and
X itself, these data indeed define an OX-module whose A-module of global
sections is A. But this OX-module is not isomorphic to Ã as the stalks at η
are different.

Definition 5.6 Let X be a scheme. A quasi-coherent sheaf on X is an OX-
module F for which there is an open affine cover {Ui : i ∈ I} of X such that
the restriction of F to each Ui = SpecAi is isomorphic to an OUi

-module
of the form M̃i with some Ai-module Mi. If moreover each Mi is finitely
generated over Ai, then F is called a coherent sheaf.

Remark 5.7 The functor M → M̃ is an exact functor, i.e. takes exact
sequences of A-modules to exact sequences of sheaves. This follows from the
construction of M̃ together with the general fact that given a multiplicatively
closed subset S in a ring A, the A-module AS is flat (see e.g. Matsumura [1],
Theorem 4.5).

Proposition 5.8 The following are equivalent for an OX-module F .

1. The sheaf F is quasi-coherent.
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2. For all affine open sets U = SpecA contained in X we have F|U ∼= M̃
for some A-module M .

3. There is an open covering {Ui : i ∈ Λ} of X such that over each Ui

F|Ui
∼= coker(O⊕I

Ui

ϕ→ O⊕J
Ui

)

for some index sets I, J and morphism ϕ.

Proof: To show (1) ⇒ (2), let first Ui = SpecAi be as in the definition of
quasi-coherence such that F|Ui

∼= M̃i. For f ∈ Ai we then have

F|D(f)
∼= (Mi ⊗Ai

(Ai)f )
∼.

Indeed, we see using Lemma 2.6 that these sheaves have the same sections
over a basic open set D(g) ⊂ D(f). Thus (2) holds over basic open sets.
Given an affine open U = SpecA ⊂ X, choose an open covering of U by
basic open sets D(gi). Define sheaves Fi, Fij on U by setting

Fi(V ) := F(V ∩D(gi)), Fij(V ) := F(V ∩D(gigj))

for all open V ⊂ U . As F|D(gi)
∼= Ñi for some Agi-module Ni, we have Fi

∼=
Ñi with Ni viewed as an A-module via the map A → Agi . Similarly, Fij

∼=
Ñij for some A-module Nij. The restriction maps F(D(gi)) → F(D(gij))
correspond to A-module maps Ni → Nij, hence we may set

N := ker(
∏
i

Ni →
∏
i̸=j

Nij).

By exactness of the functor M 7→ M̃ we have

Ñ = ker(
∏
i

Fi →
∏
i ̸=j

Fij).

But it follows from the sheaf axioms that the right hand side is none but the
sheaf F|U , whence (2).

To show (2) ⇒ (3), consider M such that F|U ∼= M̃ over U = SpecA,
and choose a presentation M = coker(A⊕I → A⊕J) for some index sets I, J .
It follows that F|U ∼= coker(O⊕I

U → O⊕J
U ) over U . Finally, for (3) ⇒ (1) we

may assume the Ui = SpecAi are affine by refining the covering if necessary,
and write Mi := coker(A⊕I

i → A⊕J
i ) for the module map corresponding to ϕ.

By exactness of the functor M 7→ M̃ we conclude F|Ui
∼= M̃i.

Corollary 5.9 On an affine scheme X = SpecA the functor M → M̃ in-
duces an equivalence of categories between A-modules M and quasi-coherent
sheaves on X.
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Proof: Fully faithfulness ofM → M̃ follows from the fact that a morphism
M̃ → Ñ of sheaves induces a module homomorphism M → N by taking
global sections. Essential surjectivity follows from applying (1) ⇒ (2) of the
proposition with U = X.

Using this fact we can prove:

Proposition 5.10 If X = SpecA is an affine scheme, then an exact se-
quence

0 → F → G → H → 0

of quasi-coherent sheaves on X induces an exact sequence

0 → F(X) → G(X) → H(X) → 0

of abelian groups.

Proof: The only nontrivial statement is surjectivity of the map G(X) →
H(X). Write M := G(X), N := H(X). Then by the previous corollary we
have G = M̃ , H = Ñ . By taking global sections we have a morphism of
A-modules M → N ; let P be its cokernel. Since M → M̃ is an exact functor
(Remark 5.7), we have an exact sequence

M̃ → Ñ → P̃ → 0.

Here the first morphisms identifies with G → H which is surjective by as-
sumption, hence P̃ = 0. Thus P = P̃ (X) = 0.

Coherent sheaves are usually well behaved on locally noetherian schemes.
Here is the definition.

Definition 5.11 A scheme X is locally noetherian if it has a covering by
affine open subschemes of the form Spec A with A a noetherian ring. If it
has a finite such covering, it is called noetherian.

Remark 5.12 It can be shown that any affine open subset of a locally
noetherian scheme is of the form form Spec A with A a noetherian ring.
See Hartshorne [1], Proposition II.3.2.

We then have the following version of Proposition 5.8:

Corollary 5.13 If X is locally noetherian, the following are equivalent for
an OX-module F .
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1. The sheaf F is coherent.

2. There is an open covering {Ui : i ∈ Λ} of X such that over each Ui

F|Ui
∼= coker(O⊕s

Ui

ϕ→ O⊕r
Ui
)

for some integers r, s and morphism ϕ.

Proof: Over a noetherian ring finitely generated modules are finitely pre-
sented, so in Proposition 5.8 we may take both index sets to be finite.

6. Examples of Quasi-coherent Sheaves

We first return to the first example in 5.2 and investigate the question of
determining whether a morphism ϕ : X → Y yields a quasi-coherent sheaf
ϕ∗OX in Y . Unfortunately, this is not true in general but Section II.5 of
Hartshorne [1] contains several sufficient conditions. For our purposes the
following easy condition on ϕ will suffice.

Definition 6.1 A morphism ϕ : X → Y of schemes is affine if Y has an
covering by affine open subsets Ui = SpecAi such that for each i the open
subscheme ϕ−1(Ui) of X is affine as well.

Example 6.2 Any morphism of affine schemes is obviously affine. Another
important class of affine morphisms is that of finite morphisms where we
require in addition that ϕ−1(Ui) is a finite Ai-module for each i. This contains
as a special case the class of closed immersions (closedness of the image
follows from the going-up theorem in commutative algebra).

Lemma 6.3 If ϕ : X → Y is an affine morphism, then ϕ∗OX and the ideal
sheaf defined by the kernel of ϕ♯ are quasi-coherent sheaves on Y .

Proof: Assume first X = SpecB and Y = SpecA are affine schemes. Then
ϕ∗OX is just B̃ with B regarded as an A-module via the map λ : A → B
inducing ϕ. Indeed, it is enough to check this over basic open sets D(f) for
which we may argue in the same way as in the second half of the proof of
Theorem 2.14. Moreover, a similar reasong shows that the ideal sheaf on Y
defined by the kernel of ϕ♯ is just Ĩ with I = ker(λ). Once we have these
results at hand, the general case of the lemma follows from the definition of
affine morphisms and quasi-coherent sheaves.
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The lemma applies in particular to a closed immersion i : X → Y of
schemes which is affine by definition. Thus to any closed subscheme of Y we
may associate a quasi-coherent sheaf of ideals. We now prove the converse.

Proposition 6.4 The above construction gives a bijection between closed
subschemes X ⊂ Y and quasi-coherent sheaves of ideals on Y .

Proof: Given a quasi-coherent sheaf of ideals I on Y , we may take a cov-
ering of Y by affine open subschemes Uj = SpecAj as in the definition of
quasi-coherence. Define for each j a closed immersion ij : Xj → Uj as the
map induced by the projection Aj → Aj/Ij, where Ij is the ideal for which
I|Uj

∼= Ĩj. To see that X =
∪
Xj is closed in X, note first that X ∩ Uj = Xj

for all j (look at the restriction of I to basic open sets contained in the
intersections Ui ∩ Uj). But then any point of Uj ∩ (Y \ X) has an open
neighbourhood contained in Uj \ (X ∩ Uj), whence the claim. Finally, the ij
endow X with the structure of a closed subscheme. It is manifest that the
two constructions are inverse to each other.

The previous proposition may be generalized as follows. A quasi-coherent
sheaf of OX-algebras is a quasi-coherent sheaf F on X such that F(U) carries
an OX(U)-algebra structure for each open U ⊂ X and the restriction maps
F(U) → F(V ) are algebra homomorphisms. Equivalently, for each affine
open U = SpecA in X we have F|U ∼= M̃ for an A-algebra M .

Proposition 6.5 Assume given a quasi-coherent sheaf F of OX-algebras.
The functor on the category of schemes over X sending ϕ : Y → X to
HomOX

(F , ϕ∗OY ) is representable by a scheme ρF : SpecF → X. Moreover,
the morphism ρF is affine.

Sketch of proof: Assume first both X = SpecA and Y = SpecB are affine,
and F = M̃ for an A-module M . Then we have isomorphisms

HomOX
(F , ϕ∗OY ) ∼= HomA(M,B) ∼= HomX(Y, SpecM)

where the first two Hom-sets consist of algebra homomorphisms and the last
one of scheme morphisms. The first isomorphism follows from the quasi-
coherence of F and the second from Theorem 2.14. The general case is done
by a patching construction as in the proof of Theorem 4.4.

Next we turn to another important example.

Definition 6.6 A locally free sheaf on a scheme X is an OX-module F for
which there exists an open covering U = {Ui : i ∈ I} of X such that the
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restriction of F to each Ui is isomorphic to Oni
Ui

for some positive integer ni.
A trivialisation of F is a covering U as above and a system of isomorphisms
Oni

Ui
∼= F|Ui

.
If X is connected, then the ni are all equal to the same number n called

the rank of F . A locally free sheaf of rank 1 is called an invertible sheaf.

Lemma 6.7 Any locally free sheaf is coherent. Moreover, if X is noetherian
and connected, a coherent sheaf F on X is locally free of rank n if and only
if it stalk FP at each point P is a free OX,P -module of rank n.

Proof: For the first statement, take any affine open subset V = SpecA
contained in one of the Ui as in the definition. Then by the assumption the
restriction of F to V is isomorphic to the coherent sheaf defined by the free
A-module A⊕ . . .⊕ A (with A repeated ni times).

In the second statement necessity follows from the definitions by taking
the direct limit. For sufficiency, assume FP is freely generated over OX,P by
some generators t1, . . . , tn. We may view the ti as sections generating F(U)
for some sufficiently small open neighbourhood U of P . By shrinking U if
necessary we may assume U = SpecA and F = M̃ for some A-module M
generated by the ti. Since X is noetherian, M is the quotient of the free
A-module of rank n by a submodule generated by finitely many relations
among the ti. By assumption, any of the finitely many coefficients occuring
in these relations vanishes when restricted to some open neighbourhood of
P contained in U . Denoting by V the intersection of these neighbourhoods,
the elements ti|V generate F|V freely over OV .

Remark 6.8 A similar (but easier) argument as in the second part of the
above proof shows that if F is a coherent sheaf on any scheme X and P is a
point for which FP = 0 then there is some open neighbourhood V of P with
F|V = 0.

For a locally free sheaf F and point P ∈ X with residue field κ(P ) the
group FP ⊗κ(P ) is a finite dimensional κ(P )-vector space. So we may think
of a locally free sheaf as a family of κ(P )-vector spaces which is locally trivial.
We now make this notion precise.

Definition 6.9 A vector bundle of rank n on X is a morphism of schemes
p : V → X such that there exists an open covering {Ui : i ∈ I} of X by
affine open subsets Ui = SpecAi together with isomorphisms

ϕi : V ×X Ui
∼→ An

Ui
:= SpecAi[T1, . . . , Tn]
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of schemes over Ui for all i, and moreover for all U = SpecA contained in
Ui ∩ Uj the automorphism of An

U given by c−1
i |U ◦ cj|U corresponds to an

A-linear automorphism of A[T1, . . . , Tn].
Given an arbitrary open U ⊂ X, a section of V is a morphism s : U → V

such that p ◦ s = idU .

Proposition 6.10 Given a rank n vector bundle p : V → X, the sheaf of
sets on X given by

U 7→ SV (U) := {sections of p over U}

is a locally free sheaf of rank n on X.
Conversely, given a locally free sheaf F of rank n on X, there exists a

vector bundle p : V → X such that SV
∼= F .

Proof: If U = SpecA is such that U ×X V ∼= An
U , then

SV (U) ∼= HomA(A[T1, . . . , Tn], A) ∼= A⊕n.

It follows that SV |U ∼= On
U . This also implies that SV is an OX-module by

an argument similar to that in Lemma 2.7, whence the first statement.
For the second statement, assume first X = SpecA is affine and F = On

X .
Then V = SpecA[T1, . . . , Tn] is a good choice. The general case is done by
a patching construction, noting that if Ui and Uj are small enough to have
isomorphisms ϕi : F|Ui

∼→ On
Ui

and ϕj : F|Ui

∼→ On
Uj
, then for all U = SpecA

contained in Ui ∩ Uj the automorphism ϕ−1
i |U ◦ ϕj|U induces an A-linear

automorphism of A[T1, . . . , Tn].

Remark 6.11 There is a more conceptual approach to the above proposi-
tion. Note first that given a ring A and an A-module M , the functor on
the category of A-algebras given by B 7→ HomA(M,B) (module homomor-
phisms!) is representable by an A-algebra Sym(M). To construct Sym(M),
one divides the tensor algebra

T (M) :=
∞⊕
i=0

M⊗i

by the two-sided ideal generated by elements of the form m ⊗ n − n ⊗ m
(m,n ∈ B).

The defining property implies that for every A-algebra C we have a canon-
ical isomorphism Sym(M)⊗AC ∼= Sym(M⊗AC). This allows us to associate
a quasi-coherent sheaf of OX-algebras on X = SpecA to every quasi-coherent
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sheaf F = M̃ on A by setting Sym(F) = Sym(M)∼. It also shows that we
may globalize the construction to associate a quasi-coherent sheaf Sym(F)
of OX-algebras to a quasi-coherent sheaf F on an arbitrary scheme X. It
represents the functor G 7→ HomOX

(F ,G) on the category of quasi-coherent
OX-algebras.

Finally, given a rank n locally free sheaf F on X, consider the dual
sheaf F∨ given by U 7→ Hom(F|U ,OU). It is also locally free of rank n.
The affine morphism Spec (Sym(F∨)) → X given by Proposition 6.5 then
defines a vector bundle with sheaf of sections F . Indeed, over an affine
open U = SpecA over which F is trivial, Sym(F∨) ∼= A[T1, . . . , Tn] and all
patching isomorphisms are linear.

The case of invertible sheaves is particularly important. First a general
definition.

Definition 6.12 A scheme X is called integral if for all open subsets U ⊂ X
the ring OX(U) is an integral domain.

This algebraic notion has a strong consequence for the underlying topo-
logical space of the scheme. Namely, call a topological space X irreducible if
it cannot be written as a union of two closed subsets properly contained in
X, or, equivalently, if any two open subsets have a nonempty intersection.
Now the basic fact is:

Lemma 6.13 The underlying topological space of an integral scheme is ir-
reducible.

Proof: Indeed, if U1 and U2 are nonempty disjoint open subsets of a scheme
X, then the sheaf axioms imply that OX(U1∪U2) is isomorphic to the direct
sum OX(U1)⊕OX(U2),which is not an integral domain.

Remark 6.14 In fact, a scheme is integral if and only if its underlying space
is irreducible and if the rings OX(U) contain no nilpotent elements. See
Hartshorne [1], Proposition II.3.1.

Proposition 6.15 Let X be an integral scheme.

1. There is a unique point η ∈ X whose closure is the underlying space of
X.

2. The stalk OX,η is a field K which is naturally isomorphic to the fraction
field of any local ring of X.
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Proof: We begin with the first statement. For uniqueness, assume η1, η2
both have the required property. Then any affine open subset U = SpecA
contains both η1 and η2: they correspond to prime ideals P and Q of A with
the property V (P ) = V (Q) = U . Since A is an integral domain, this is only
possible for P = Q = (0). This argument also shows the existence of η:
indeed, define it as the point corresponding to the ideal (0) of A. Its closure
in X contains U , hence it must be the whole of X by the previous lemma.
The second statement is obvious from this construction: OX,η is none but
the fraction field of A which is the common fraction field of all local rings of
U ; for the points of X \ U we work with other affine open subsets which all
have a non-empty intersection with U by irreducibility of X and hence have
a local ring in common.

Definition 6.16 The point η of the proposition is called the generic point
of X and the field K the function field of X.

Now let X be an integral scheme, and denote by K the constant abelian
sheaf onX defined by the additive group ofK. It has anOX-module structure
coming from the natural embedding of OX into K but is not a quasi-coherent
sheaf.

Proposition 6.17 Every invertible sheaf L on an integral scheme X is iso-
morphic to a sub-OX-module of the constant OX-module K defined above.

Proof: Choose a nonempty (hence dense) open set U ⊂ X such that L|U ∼=
OU . Denoting by j : U → X the inclusion map, we have a natural map
OX → j∗OU sending s ∈ OX(V ) to s|U∩V . This map is injective because
if V = SpecA is affine and D(f) is a basic open set contained in U ∩ V ,
the composite map s 7→ s|U∩V 7→ s|D(f) corresponds to the localization map
A → Af which is injective as X is integral. It follows that the natural map
L → j∗L|U is injective. Indeed, this may be checked by restricting to an
open covering trivializing L, where it follows from the case L = OX treated
above. Finally, we have a sequence of injective maps

L ↪→ j∗L|U
∼→ j∗OU ↪→ j∗K|U = K

where the last equality holds because K is a constant sheaf and U is dense
in X.

Definition 6.18 Let X be an integral scheme. A Cartier divisor on X is
given by an open covering {Ui : i ∈ I} of X together with rational func-
tions fi ∈ K(Ui) \ {0} such that fif

−1
j |Ui∩Uj

and fjf
−1
i |Ui∩Uj

both lie in
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OX(Ui ∩ Uj) for all pairs i ̸= j in I. Two such systems {(Ui, fi) : i ∈ I} and
{(Vj, gj) : j ∈ J} define the same Cartier divisor if fig

−1
j |Ui∩Vj

and gjf
−1
i |Ui∩Vj

both lie in OX(Ui ∩ Uj) for all pairs i ̸= j.

Construction 6.19 Given a Cartier divisorD onX, we construct an invert-
ible sheaf L(D) as follows. If D is represented by a system {(Ui, fi) : i ∈ I},
we define L(D) as the sub-OX-module of K such that L(D)|Ui

is the free OUi
-

module generated by f−1
i . The definition of Cartier divisors shows that L(D)

is well defined and does not depend on the representative {(Ui, fi) : i ∈ I}.
Conversely, given an invertible sub-OX-module L of K, choosing an open

covering {Ui : i ∈ I} such that L|Ui
is a free OUi

-module of rank 1 defines
a Cartier divisor D on X by fixing generators. By construction, we have
L = L(D), so the two maps are inverse to each other.

Assume finally that L ⊂ K is an invertible sheaf such that L ∼= OX .
The image of 1 ∈ O(X) under this isomorphism gives a rational function
f ∈ L(X) ⊂ K(X). By construction, f generates L as a free OX-module,
hence L = L(D) for the Cartier divisor D represented by the pair (X, f).
Such a divisor is called a principal divisor. Plainly, if D is principal, then
L(D) ∼= OX .

The set of Cartier divisors on X inherits an abelian group structure from
the multiplicative structure of K. Principal divisors form a subgroup. The
quotient group is called the Picard group of X and is denoted by Pic(X).

On the other hand the set of invertible sheaves on X is also equipped
with a group operation induced by tensor product. We first need the notion
of the tensor product F ⊗ G of two quasi-coherent OX-modules F and G.
We define it as follows. By Lemma 2.7 it is enough to define (F ⊗ G)(U)
for U ⊂ X affine open. If U = SpecA and F|U = M̃ , G|U = Ñ , we set
(F ⊗ G)(U) := (M ⊗A N)∼(U). If D(f) ⊂ U is a basic affine open set, we
have (F ⊗ G)(D(f)) = Mf ⊗Af

Nf . This implies that the tensor product is
well defined. Moreover, by passing to the direct limit over basic affine open
neighbourhoods of a point P , we obtain natural isomorphisms

(F ⊗ G)P ∼= FP ⊗OX,P
GP .

Proposition 6.20 For any scheme X, tensor product of OX-modules in-
duces an abelian group structure on the set of isomorphism classes of invert-
ible sheaves on X. The unit element of this group is OX and the inverse of
a class represented by an invertible sheaf L is the class of the sheaf L∨ given
by U → HomOU

(L|U ,OU).
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Proof: First, notice that if L, L′ are invertible sheaves, then so is their
tensor product. Indeed, given an affine open subset U = SpecA where
both invertible sheaves are trivial, we have isomorphisms L|U ∼= L′|U ∼= OU .
Therefore over U the tensor product is isomorphic to

(A⊗A A)
∼ ∼→ Ã = OU . (6)

The group law is well defined since the tensor product of modules respects
isomorphisms. The abelian group axioms concerning commutativity, associa-
tivity and the unit element follow from the corresponding properties of the
tensor product. So only the axiom concerning the inverse remains. For each
open set U define a morphism L(U) × HomOX(U)(L(U),OX(U)) → OX(U)
by the natural evaluation map (s, ϕ) 7→ ϕ(s). For U = SpecA affine it comes
from the evaluation map on modules ev : M × HomA(M,A) → A which
is A-bilinear, hence induces a map M ⊗ HomA(M,A) → A. It follows that
there is a morphism of invertible sheaves L ⊗ L∨ → OX . To check that this
map is an isomorphism, we may pass to an affine open covering trivializing
L. There it follows from the fact that ev is an isomorphism for M = A.

Proposition 6.21 The rule D 7→ L(D) induces an isomorphism between
the Picard group of X and the group of isomorphism classes of invertible
sheaves on X.

Proof: First we check that D 7→ L(D) induces a group homomorphism.
For this notice first that in formula (6) the first isomorphism is induced by
the multiplication map A⊗A→ A. It follows that if U = SpecA is an affine
open set over which L(Di) is generated over OU by a section si for i = 1, 2,
then the tensor product is generated by s1s2.

The kernel of the map D 7→ L(D) consists of the principal divisors by the
last remark in Construction 6.19. To conclude the proof it remains to apply
Proposition 6.17.

7. Modules and Sheaves of Differentials

In differential geometry, the tangent space at a point P on some variety
is defined to consist of so-called linear derivations, i.e. linear maps that
associate a scalar to each function germ at P and satisfy the Leibniz rule.
We begin by an algebraic generalisation of this notion.

Definition 7.1 Let B be a ring and M a B-module. A derivation of B into
M is a map d : B →M subject to the two conditions:
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1. (Additivity) d(x+ y) = dx+ dy;

2. (Leibniz rule) d(xy) = xdy + ydx.

Here we have written dx for d(x) to emphasise the analogy with the classical
derivation rules. If moreover B is an A-algebra for some ring A (for example
A = Z), an A-linear derivation is called an A-derivation. The set of A-
derivations of B toM is equipped with a natural B-module structure via the
rules (d1 + d2)x = d1x + d2x and bdx = dbx. This B-module is denoted by
DerA(B,M).

Note that applying the Leibniz rule to the equality 1 ·1 = 1 gives d(1) = 0
for all derivations; hence all A-derivations are trivial on the image of A in B.

In the example one encounters in (say) real differential geometry we have
A = M = R, and B is the ring of germs of differentiable functions at some
point; R is a B-module via evaluation of functions. Now comes a purely
algebraic example.

Example 7.2 Assume given an A-algebra B which decomposes as an A-
module into a direct sum B ∼= A ⊕ I, where I is an ideal of B with I2 = 0.
Then the natural projection d : B → I is an A-derivation of B into I. Indeed,
A-linearity is immediate; for the Leibniz rule we take elements x1, x2 ∈ B
and write xi = ai + dxi with ai ∈ k for i = 1, 2. Now we have

d(x1x2) = d[(a1+ dx1)(a2+ dx2)] = d(a1a2+ a2dx1+ a1dx2) = x2dx1+x1dx2

where we used several times the facts that I2 = 0 and d(A) = 0.
In fact, given any ring A and A-module I, we can define an A-algebra

B as above by defining a product structure on the A-module A ⊕ I by the
rule (a1, i1)(a2, i2) = (a1a2, a1i2+a2i1). So the above method yields plenty of
examples of derivations.

Now notice that for fixed A and B the rule M → DerA(B,M) defines
a functor on the category of B-modules; indeed, given a homomorphism ϕ :
M1 → M2 of B-modules, we get a natural homomorphism DerA(B,M1) →
DerA(B,M2) by composing derivations with ϕ.

Proposition 7.3 The functor M → DerA(B,M) is representable by a B-
module Ω1

B/A.
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Proof: The construction is done in a similar way to that of the tensor
product of two modules. Define Ω1

B/A to be the quotient of the free B-
module generated by symbols dx for each x ∈ B modulo the relations given
by the additivity and Leibniz rules as in Definition 7.1 as well as the relations
d(λ(a)) = 0 for all a ∈ A, where λ : A → B is the map defining the A-
module structure on B. The map x → dx is an A-derivation of B into
Ω1

B/A. Moreover, given any B-module M and A-derivation δ ∈ DerA(B,M),

the map dx → δ(x) induces a B-module homomorphism Ω1
B/A → M whose

composition with d is just δ. This implies that Ω1
B/A represents the functor

M → DerA(B,M); in particular, d is the universal derivation corresponding
to the identity map of Ω1

B/A.

We call Ω1
B/A the module of relative differentials of B with respect to A.

We shall often refer to the elements of Ω1
B/A as differential forms.

Next we describe how to compute relative differentials of a finitely pre-
sented A-algebra.

Proposition 7.4 Let B be the quotient of the polynomial ring A[x1, . . . , xn]
by an ideal generated by finitely many polynomials f1, . . . , fm. Then Ω1

B/A

is the quotient of the free B-module on generators dx1, . . . , dxn modulo the
B-submodule generated by the elements

∑
j(∂jfi)dxj (i = 1, . . . ,m), where

∂jfi denotes the j-th (formal) partial derivative of fi.

Proof: First consider the case B = A[x1, . . . , xn]. As B is the free A-
algebra generated by the xi, one sees that for any B-module M there is a
bijection between DerA(B,M) and maps of the set {x1, . . . , xn} into B. This
implies that Ω1

B/A is the free A-module generated by the dxi.
The general case follows from this in view of the easy observation that

given any M , composition by the projection A[x1, . . . , xn] → B induces an
isomorphism of DerA(B,M) onto the submodule of DerA(A[x1, . . . , xn],M)
consisting of derivations mapping the fi to 0.

Next some basic properties of modules of differentials.

Lemma 7.5 Let A be a ring and B an A-algebra.

1. (Direct sums) For any A-algebra B′

Ω1
(B⊕B′)/A

∼= Ω1
B/A ⊕ Ω1

B′/A.

2. (Exact sequence) Given a map of A-algebras ϕ : B → C, there is an
exact sequence of C-modules

Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0.
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In particular, if ϕ is surjective, we have a surjection Ω1
B/A⊗BC → Ω1

C/A.

3. (Base change) Given a ring homomorphism A→ A′, denote by B′ the
A′-algebra B ⊗A A

′. There is a natural isomorphism

Ω1
B/A ⊗B B

′ ∼= Ω1
B′/A′ .

4. (Localisation) For any multiplicatively closed subset S ⊂ B there is a
natural isomorphism

Ω1
BS/A

∼= Ω1
B/A ⊗B BS.

Proof: The first property is easy and left to the readers. For the second,
note that for any C-module M we have a natural exact sequence

0 → DerB(C,M) → DerA(C,M) → DerA(B,M)

of C-modules isomorphic to

0 → HomC(Ω
1
C/B,M) → HomC(Ω

1
C/A,M) → HomB(Ω

1
B/A,M).

The claim follows from this in view of the formal Lemma ?? of Chapter 0
and the isomorphism HomB(Ω

1
B/A,M) ∼= HomC(Ω

1
B/A ⊗B C,M). This iso-

morphism is obtained by mapping a homomorphism Ω1
B/A →M to the com-

posite Ω1
B/A ⊗B C →M ⊗B C →M where the second map is multiplication;

an inverse is given by composition with the natural map Ω1
B/A → Ω1

B/A⊗BC.
If the map B → C is onto, then any B-derivation is a C-derivation as well,
so Ω1

B/C = 0 and the first map in the exact sequence is onto.

For base change, note first that the universal derivation d : B → Ω1
B/A is

an A-module homomorphism and so tensoring it by A′ we get a map

d′ : B′ → Ω1
B/A ⊗A A

′ ∼= Ω1
B/A ⊗B B ⊗A A

′ ∼= Ω1
B/A ⊗B B

′

which is easily seen to be an A′-derivation. Now any A′-derivation δ′ : B′ →
M ′ induces an A-derivation δ : B → M ′ by composition with the natural
map B → B′. But δ factors as δ = ϕ ◦ d, with a B-module homomorphism
ϕ : Ω1

B/A →M ′, whence a map ϕ′ : Ω1
B/A ⊗B B

′ →M ′ constructed as above.

Now one checks that δ′ = ϕ′ ◦ d′ which means that Ω1
B/A ⊗B B

′ represents
the functor M ′ 7→ DerA′(B′,M ′).

For the localisation property, given an A-derivation δ : B → M , we
may extend it uniquely to an A-derivation δS : BS → M ⊗B BS by setting
δS(b/s) = (δ(b)s − bδ(s)) ⊗ (1/s2). (We leave it to the reader to check that
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for b′/s′ = b/s we get the same result – this is much simpler in the case
when there are no zero-divisors in S which is the only case we shall need.)
This applies in particular to the universal derivation d : B → Ω1

B/A, and
one argues as in the previous case to show that any A-derivation BS → MS

factors uniquely through dS.

As an application of differentials we give a criterion for a one-dimensional
closed subscheme of affine or projective space to be a smooth curve. For this
it is enough to check that all local rings at closed points are discrete valuation
rings. Since the proof works more generally for regular local rings, we state
the result in this context.

Proposition 7.6 Let k be a perfect field and let A be a localisation of a
finitely generated n-dimensional k-algebra at some closed point P . Then A
is a regular local ring if and only if Ω1

A/k is a free A-module of rank n. In

particular, if n = 1, A is a discrete valuation ring if and only if Ω1
A/k is free

of rank 1.

Remark 7.7 Explicitly, if A is a localisation of the k-algebra

B = k[x1, . . . , xd]/(f1, . . . , fm),

then Proposition 7.4 and the localisation property of differentials imply that
the proposition amounts to saying that among the relations

∑
j(∂jfi)dxj = 0

there should be exactly d − n linearly independent ones, which in turn is
equivalent by linear algebra to the fact that the k × m “Jacobian” matrix
J = [∂jfi] should have rank d− n. In fact, for k = C reducing the entries of
J modulo the maximal ideal of A gives just the classical Jacobian matrix of
the closed subscheme of Cd defined by the equations fi = 0 at the point P
corresponding to A and the condition says that some open neighbourhood of
P should be a complex manifold of dimension n.

For the proof of the proposition we need two lemmas from algebra. The
first of these is a form of Hilbert’s Nullstellensatz (which implies the one used
in the previous chapter).

Lemma 7.8 Let k be a field and let P be a maximal ideal in a finitely gen-
erated k-algebra A. Then the field A/P is a finite extension of k.

For a proof, see Lang [1], Chapter IX, Corollary 1.2. See also Atiyah-
Macdonald [1] for four different proofs.

The other lemma is from field theory.
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Lemma 7.9 Let k be a perfect field and let K|k be a finitely generated field
extension of transcendence degree n. Then there exist algebraically indepen-
dent elements x1, . . . , xn ∈ K such that the finite extension K|k(x1, . . . , xn)
is separable.

For a proof, see Lang [1], Chapter VIII, Corollary 4.4.

Corollary 7.10 In the situation of the lemma, the K-vector space Ω1
K/k is

of dimension n, a basis being given by the dxi.

Proof: We may write the field K as the fraction field of the quotient A of
the polynomial ring k[x1, . . . , xn, x] by a single polynomial relation f . Here
f is the minimal polynomial of a generator of the extension K|k(x1, . . . , xn)
multiplied with a common denominator of its coefficients. Now according
to Proposition 7.4 the A-module Ω1

A/k has a presentation with generators
dx1, . . . , dxn, dx and a relation in which dx has a nontrivial coefficient because
f ′ ̸= 0 by the lemma. The corollary now follows using Lemma 7.5 (4).

Proof of Proposition 7.6: We give the proof under the additional assump-
tion that there exists a subfield k ⊂ k′ ⊂ A that maps isomorphically onto
the residue field κ(P ) = A/P by the projection A → A/P . (Lemma 7.8
implies that this condition is trivially satisfied if k is algebraically closed.)
In the remark below we shall explain how one can reduce the general case to
this one.

Notice that since k is perfect and k′|k is a finite extension by Lemma 7.8,
we have Ω1

k′|k = 0 by the previous corollary. Hence by applying Lemma 7.5
(2) (with our k in place of A, k′ in place of B and A in place of C) we get
Ω1

A/k
∼= Ω1

A/k′ , so we may as well assume k = k′ ∼= κ(P ).

In this case the k-module P/P 2 is canonically isomorphic to Ω1
A/k/PΩ

1
A/k.

Indeed, the latter k-vector space is immediately seen to represent the functor
M → Derk(A,M) for any k-vector space M viewed as an A-module via the
quotient map A → A/P ∼= k. On the other hand, the above functor is also
represented by P/P 2. To see this, note first that the Leibniz rule implies
that any k-derivation δ : A → M is trivial on P 2, hence we may as well
assume P 2 = 0. But then we are in the situation of Example 7.2 and we may
observe that δ factors uniquely as δ = ϕ ◦ d, with d as in the quoted example
and ϕ ∈ Homk(P,N).

Now if Ω1
A/k is free of rank n, then Ω1

A/k/PΩ
1
A/k

∼= P/P 2 has dimension n.
For the converse, observe first that the previous isomorphism and the corol-
lary to Nakayama’s lemma (Corollary ??) gives that Ω1

A/k can be generated
as an A-module by n elements dt1, . . . , dtn. Were there a nontrivial relation
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∑
fidti = 0 in Ω1

A/k, by the localisation property of differentials this relation

would survive in Ω1
K/k, contradicting Corollary 7.10. This implies that Ω1

A/k

is free.

Remark 7.11 To reduce the general case of the proposition to the one dis-
cussed above it is convenient to use the completion Â of A. This is the
inverse limit of of the natural inverse system formed by the quotients A/P n

of A. There is a natural map A → Â which is injective for A noethe-
rian by Corollary ??. The image of P gives a maximal ideal P̂ of Â with
P̂ i/P̂ i+1 ∼= P i/P i+1 for all i > 0. If A is of dimension 1, the case i = 1
of this isomorphism together with Corollary ?? implies that A is a discrete
valuation ring if and only if Â is. In general, we get that Â is regular if and
only if A is regular, for one can prove (see Atiyah-Macdonald [1], Corollary
11.19) that the Krull dimension of A is the same as that of Â. Also, the base
change property of differentials implies that Ω1

Â/k
is free of rank n if and only

if Ω1
A/k is.

Therefore it remains to see that Â satisfies the condition at the beginning
of the above proof. For this, let f ∈ k[x] be the minimal polynomial of a
(separable) generator α of the extension κ(P )|k; it is enough to lift α to a
root of f in Â. This can be done by means of Hensel’s lemma (see Chapter
7, Section 4).

In the remaining of this section we discuss quasi-coherent sheaves associ-
ated to modules of differentials. Namely, we shall define sheaves of relative
differentials Ω1

Y/X for certain classes of morphisms of schemes Y → X. In
fact, one may define these for any morphism Y → X but since we did not
develop the necessary background we refer the interested readers to the ex-
cellent treatment in Mumford’s notes [1] or to Section II.8 of Hartshorne [1].
What we propose instead is a more down-to-earth discussion in two special
cases.

Construction 7.12 First, if Y = SpecB and X = SpecA are both affine,
we define Ω1

Y/X as the quasi-coherent sheaf Ω̃1
B/A. Notice that according to

the localisation property of differentials, over a basic open setD(g) = SpecBg

of X the sheaf Ω1
Y/X is given by the Bg-module Ω1

Bg/A
.

Construction 7.13 Next assume we have a morphism X → Spec k with an
arbitrary scheme X; we shall use the abusive notation Ω1

X/k for the corre-
sponding sheaf of differentials which we now construct. For any affine open
covering of X by subsets Ui = SpecAi the rings Ai are all k-algebras and the
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sheaf Ω1
Ui/k

= Ω̃1
Ai/k

is defined on Ui. Moreover, any basic open subset con-
tained in Ui∩Uj is canonically isomorphic to both (Ai)fi and (Aj)fj , whence
an isomorphism Ω1

(Ai)fi
/k

∼= Ω1
(Aj)fj

/k. These isomorphisms are compatible for

inclusions of basic open sets, so the third statement of Chapter 5, Lemma 2.7
applies to give an isomorphism (Ω1

Ui/k
)|Ui∩Uj

∼= (Ω1
Uj/k

)|Ui∩Uj
. These latter

isomorphisms in turn are compatible over triple intersections Ui ∩ Uj ∩ Uk

so we may patch the Ω1
Ui/k

together by the method of Chapter 5, Construc-
tion 4.3 (which adapts to the construction of quasi-coherent sheaves) to get
Ω1

X/k. Finally one checks that if we use a different open covering we get an

OX-module isomorphic to Ω1
X/k.

Remark 7.14 Let X be an affine or a projective variety of dimension n.
Then Proposition 7.6 may be rephrased by saying that X is a regular scheme
if and only if the the sheaf Ω1

X/k is locally free of rank n. In this case, we say
that X is smooth over k.

Construction 7.15 Finally, the other case where we can easily define rela-
tive differentials is that of an affine morphism ϕ : Y → X. In this case
X is covered by affine open subsets Ui = SpecAi whose inverse images
Vi = SpecBi form an open covering of Y and the Bi are Ai-modules via
the maps λi : Ai → Bi arising from ϕ. Take fi ∈ Ai and put gi = λi(fi).
Then the inverse image of the basic open set D(fi) = Spec (Ai)fi is none but
D(gi) which in turn is isomorphic to Spec (Bi ⊗Ai

(Ai)fi); indeed, one checks
easily that (Bi ⊗Ai

(Ai)fi) represents the functor defining the localisation
(Bi)gi . Hence by the base change property of differentials we have canonical
isomorphisms

Ω1
Vi/Ui

(D(gi)) = Ω1
Bi/Ai

⊗Bi
(Bi)gi

∼= Ω1
(Bi)gi/(Ai)fi

= Ω1
D(gi)/D(fi)

,

so we may patch the sheaves Ω1
Vi/Ui

together over inverse images of basic affine
open subsets contained in Ui ∩ Uj by the same method as in the previous
case.

8. Dimension

We now introduce the notion of dimension for schemes. Of course, we would
like affine and projective n-space to be n-dimensional, a point to be 0-
dimensional, a plane curve 1-dimensional, a surface 2-dimensional, etc. One
heuristic approach is the following inductive “argument”: a curve should be
of dimension 1 because its irreducible proper closed subsets are only points,
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a surface should have dimension 2 as it contains only curves and points as
proper closed subsets etc. This approach is summarised in the following
definition.

Definition 8.1 The dimension of a scheme X is the supremum of the inte-
gers n for which there exists a strictly increasing chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn

of irreducible closed subsets properly contained in X.

Remark 8.2 The dimension is either a positive integer or infinite. It is
mainly interesting for noetherian schemes because noetherian rings have
no infinite ascending chains of prime ideals. However, there exist noethe-
rian rings whose associated affine scheme has infinite dimension; see Atiyah-
Macdonald [1], Exercise 11.4 for an example due to Nagata.

In order to be able to give examples in the affine case, we first prove an
easy lemma.

Lemma 8.3 Let X = SpecA be an affine scheme. Then any irreducible
closed subset of X is of the form V (P ), with P a prime ideal of A.

Proof: Let Z = V (I) be a closed subset of X. We may and do assume
that I is the intersection of the prime ideals corresponding to the points of
Z. Assume fg ∈ I for some f, g ∈ A. Then any prime ideal containing I
must contain f or g, hence the union of the closed subsets V (I + (f)) and
V (I + (g)) is Z. Therefore Z is irreducible if and only if one of them, say
V (I + (f)) equals Z. By our assumption on I this is equivalent to f ∈ I,
whence the claim.

By the lemma, the dimension of SpecA is the supremum of the lengths of
chains of prime ideals in A. In ring theory this is called the Krull dimension
of A and is usually denoted by dimA.

Thus for instance, the Krull dimension of a field is 0, that of Z is 1. But
in general with the above definition the dimension is hard to determine in
practice. It is not even clear that affine or projective spaces have the dimen-
sion we expect. Fortunately, this can be remedied by means of a criterion for
wich we need to recall a definition first.

Definition 8.4 The transcendence degree of a field extension K|k is the
maximal number of elements of K algebraically independent over k; the
transcendence degree of an integral domain A containing k is defined as the
transcendence degree of its fraction field over k and is denoted by tr.degk A.
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Now comes the criterion which we only quote from the literature.

Proposition 8.5 Let k be a field and A an integral domain which is a finitely
generated k-algebra. Then the Krull dimension of A is equal to its transcen-
dence degree over k.

For a proof, see e.g. Matsumura [1], Theorem 5.6.

Example 8.6 As immediate applications of the proposition, we get that An
k

and Pn
k both have dimension n as expected, and that affine and projective

plane curves have dimension 1. In general, affine or projective varieties of
dimension 1 are called curves, those of dimension 1 surfaces.
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