Galois Theory: Past and Present

Tamás Szamuely

Rényi Institute, Budapest

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

submitted 3 papers on algebraic equations to the French Academy:

submitted 3 papers on algebraic equations to the French Academy:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• one in 1828 - lost by the referee (Cauchy)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 lost by the referee (Cauchy)
- one in 1829 lost by the referee (Fourier)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 lost by the referee (Cauchy)
- one in 1829 lost by the referee (Fourier)
- one in 1830: *Mémoire sur les conditions de résolubilité des équations par radicaux* refused by the referee (Poisson)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 lost by the referee (Cauchy)
- one in 1829 lost by the referee (Fourier)
- one in 1830: *Mémoire sur les conditions de résolubilité des équations par radicaux* refused by the referee (Poisson)
- plus posthumous fragments, and the famous letter to Auguste Chevalier, of which the last words are:

"[...] il y aura, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis."

Solvability by radicals

The equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

is solvable by radicals if the α_i can be obtained from the a_j in finitely many steps by taking suitable rational functions and *m*-th roots.

Solvability by radicals

The equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

is solvable by radicals if the α_i can be obtained from the a_j in finitely many steps by taking suitable rational functions and *m*-th roots.

Some highlights of the theory before Galois:

• equations of degree \leq 4 are solvable by radicals (Cardano, Ferrari)

The equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

is solvable by radicals if the α_i can be obtained from the a_j in finitely many steps by taking suitable rational functions and *m*-th roots.

Some highlights of the theory before Galois:

- equations of degree \leq 4 are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations

$$x^{n-1} + x^{n-2} + \dots + x + 1 = 0$$

are solvable by radicals (Gauss)

The equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

is solvable by radicals if the α_i can be obtained from the a_j in finitely many steps by taking suitable rational functions and *m*-th roots.

Some highlights of the theory before Galois:

- equations of degree \leq 4 are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations

$$x^{n-1} + x^{n-2} + \dots + x + 1 = 0$$

are solvable by radicals (Gauss)

 more generally, equations 'with abelian Galois group' are solvable by radicals (Abel) The equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

is solvable by radicals if the α_i can be obtained from the a_j in finitely many steps by taking suitable rational functions and *m*-th roots.

Some highlights of the theory before Galois:

- equations of degree \leq 4 are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations

$$x^{n-1} + x^{n-2} + \dots + x + 1 = 0$$

are solvable by radicals (Gauss)

- more generally, equations 'with abelian Galois group' are solvable by radicals (Abel)
- the 'general equations' of degree \geq 5 are not solvable by radicals (Abel)

Consider the equation

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 =$$
$$= (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

where $a_i \in K$, a field of characteristic 0.

Consider the equation

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 =$$
$$= (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

where $a_i \in K$, a field of characteristic 0. Assume the α_i are distinct. Put

$$\mathcal{K}(\alpha_1,\ldots,\alpha_n):=\{\mathcal{F}(\alpha_1,\ldots,\alpha_n):\mathcal{F}\in\mathcal{K}(x_1,\ldots,x_n)\}$$

(This is the smallest subfield of \overline{K} containing the α_{i} .) The equation is not assumed to be irreducible.

Consider the equation

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 =$$

= $(x - \alpha_1) \cdots (x - \alpha_n) = 0$

where $a_i \in K$, a field of characteristic 0. Assume the α_i are distinct. Put

$$\mathcal{K}(\alpha_1,\ldots,\alpha_n):=\{\mathcal{F}(\alpha_1,\ldots,\alpha_n):\mathcal{F}\in\mathcal{K}(x_1,\ldots,x_n)\}$$

(This is the smallest subfield of \overline{K} containing the α_{i} .) The equation is not assumed to be irreducible.

1. For every $\alpha \in K(\alpha_1, \ldots, \alpha_n)$ there is a unique monic irreducible polynomial $p \in K[x]$ with $p(\alpha) = 0$, the *minimal polynomial* of α .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Consider the equation

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 =$$
$$= (x - \alpha_1) \cdots (x - \alpha_n) = 0$$

where $a_i \in K$, a field of characteristic 0. Assume the α_i are distinct. Put

$$\mathcal{K}(\alpha_1,\ldots,\alpha_n):=\{\mathcal{F}(\alpha_1,\ldots,\alpha_n):\mathcal{F}\in\mathcal{K}(x_1,\ldots,x_n)\}$$

(This is the smallest subfield of \overline{K} containing the α_{i} .) The equation is not assumed to be irreducible.

1. For every $\alpha \in K(\alpha_1, \ldots, \alpha_n)$ there is a unique monic irreducible polynomial $p \in K[x]$ with $p(\alpha) = 0$, the *minimal polynomial* of α .

2. There exists $\beta \in K(\alpha_1, \ldots, \alpha_n)$ with

$$K(\alpha_1,\ldots,\alpha_n)=K(\beta)$$

(theorem of the primitive element).

So $\alpha_i = f_i(\beta)$ with some $f_i \in K[x]$, for all *i*.

So
$$\alpha_i = f_i(\beta)$$
 with some $f_i \in K[x]$, for all *i*.

3. Let $\beta = \beta_1, \ldots, \beta_m$ be the roots of p.

Then for all j the sequence $f_1(\beta_j), \ldots, f_n(\beta_j)$ is a permutation of the α_i .

Denoting this permutation by σ_j , the elements $\sigma_1, \ldots, \sigma_m$ form the *Galois group*.

So
$$\alpha_i = f_i(\beta)$$
 with some $f_i \in K[x]$, for all *i*.

3. Let $\beta = \beta_1, \ldots, \beta_m$ be the roots of p.

Then for all j the sequence $f_1(\beta_j), \ldots, f_n(\beta_j)$ is a permutation of the α_i .

Denoting this permutation by σ_j , the elements $\sigma_1, \ldots, \sigma_m$ form the *Galois group*.

4. Let L|K be a field extension obtained by adjoining roots of some equation g(x) = 0 to K.

The Galois group of f over L is a subgroup of its Galois group over K; it is a *normal subgroup* if and only if L is obtained by adjoining *all roots* of g.

So
$$\alpha_i = f_i(\beta)$$
 with some $f_i \in K[x]$, for all *i*.

3. Let $\beta = \beta_1, \ldots, \beta_m$ be the roots of p.

Then for all j the sequence $f_1(\beta_j), \ldots, f_n(\beta_j)$ is a permutation of the α_i .

Denoting this permutation by σ_j , the elements $\sigma_1, \ldots, \sigma_m$ form the *Galois group*.

4. Let L|K be a field extension obtained by adjoining roots of some equation g(x) = 0 to K.

The Galois group of f over L is a subgroup of its Galois group over K; it is a *normal subgroup* if and only if L is obtained by adjoining *all roots* of g.

5. The equation f(x) = 0 is solvable by radicals if and only if its Galois group is solvable, i.e. there is a chain of normal subgroups

$$G = G_0 \supset G_1 \supset \cdots \supset G_r = \{1\}$$

where G_i is of prime index in G_{i-1} .

・ロト・(部・・(用・・(用・・(日・))

Applications

An irreducible equation

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0$$

of prime degree is solvable by radicals if and only if the roots α_i can be expressed as rational functions of any two of them.

Applications

An irreducible equation

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0$$

of prime degree is solvable by radicals if and only if the roots α_i can be expressed as rational functions of any two of them. [Uses the classification of solvable transitive subgroups of S_p : they are conjugates of subgroups of

$${x \mapsto ax + b : a, b \in \mathbf{F}_p}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Applications

An irreducible equation

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0$$

of prime degree is solvable by radicals if and only if the roots α_i can be expressed as rational functions of any two of them.

[Uses the classification of solvable transitive subgroups of S_p : they are conjugates of subgroups of

$${x \mapsto ax + b : a, b \in \mathbf{F}_p}.$$
]

Another application from fragments: Let p be an odd prime. Consider the Galois cover

$$\Gamma_0(p) \setminus \mathbf{H} \to \Gamma_0 \setminus \mathbf{H} \cong \mathbf{C}.$$

Adding cusps we get a branched cover of modular curves

$$X_0(p)
ightarrow \mathbf{P}^1_{\mathbf{C}}.$$

The Galois group is PSL(2, p) which is simple for $p \neq 3$. So the *modular equation* is not solvable by radicals.

• The work of Galois was clarified by Liouville, Jordan...

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Dedekind (1894) defined the Galois group as the automorphism group of a field extension

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability
- Artin (1920's) formulated the *Galois correspondence*, i.e. the bijection

{subextensions of $L|K\} \leftrightarrow {subgroups of G}$

(日本本語を本書を本書を、「四本」

for a finite Galois extension L|K with group G

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability
- Artin (1920's) formulated the *Galois correspondence*, i.e. the bijection

{subextensions of $L|K\} \leftrightarrow {subgroups of G}$

for a finite Galois extension L|K with group G

• Artin (1942) defined a finite Galois extension as a field extension L|K where K is the fixed field of a finite group G acting on L.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension K|k to be *Galois* if the subfield of K fixed by the action of Aut(K|k) is k. In this case Gal(K|k) := Aut(K|k) is the Galois group.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension K|k to be *Galois* if the subfield of K fixed by the action of $\operatorname{Aut}(K|k)$ is k. In this case $\operatorname{Gal}(K|k) := \operatorname{Aut}(K|k)$ is the Galois group. Given a tower of finite Galois subextensions M|L|k contained in K|k, there is a canonical surjection ϕ_{ML} : $\operatorname{Gal}(M|k) \twoheadrightarrow \operatorname{Gal}(L|k)$. If $K \supset N \supset M$ is yet another finite Galois extension of k, we have

 $\phi_{\mathsf{NL}} = \phi_{\mathsf{ML}} \circ \phi_{\mathsf{NM}}.$

Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension K|k to be *Galois* if the subfield of K fixed by the action of $\operatorname{Aut}(K|k)$ is k. In this case $\operatorname{Gal}(K|k) := \operatorname{Aut}(K|k)$ is the Galois group. Given a tower of finite Galois subextensions M|L|k contained in K|k, there is a canonical surjection ϕ_{ML} : $\operatorname{Gal}(M|k) \twoheadrightarrow \operatorname{Gal}(L|k)$. If $K \supset N \supset M$ is yet another finite Galois extension of k, we have

$$\phi_{\mathsf{NL}} = \phi_{\mathsf{ML}} \circ \phi_{\mathsf{NM}}.$$

So if we "pass to the limit in M", then Gal(L|k) will become a quotient of Gal(K|k).

(日本本語を本書を本書を、「四本」

This is achieved by proving

$$\operatorname{Gal}(K|k) \cong \lim_{\stackrel{\leftarrow}{L}} \operatorname{Gal}(L|k)$$

The RHS is a subgroup of the direct product, so inherits a topology if the Gal(L|k) are taken to be discrete. It is called the *Krull topology*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

This is achieved by proving

$$\operatorname{Gal}(K|k) \cong \lim_{\stackrel{\leftarrow}{L}} \operatorname{Gal}(L|k)$$

The RHS is a subgroup of the direct product, so inherits a topology if the Gal(L|k) are taken to be discrete. It is called the *Krull topology*.

 $\operatorname{Gal}(K|k)$ is compact and totally disconnected. It is either finite or uncountable. Its finite quotients are the $\operatorname{Gal}(L|k)$.

Theorem (Krull's Galois correspondence)

 $\{\text{subextensions of } {\cal K}|k\} \leftrightarrow \{\text{closed subgroups of } {\rm Gal}({\cal K}|k)\}$

(日本本語を本書を本書を、「四本」

This is achieved by proving

$$\operatorname{Gal}(K|k) \cong \lim_{\stackrel{\leftarrow}{L}} \operatorname{Gal}(L|k)$$

The RHS is a subgroup of the direct product, so inherits a topology if the Gal(L|k) are taken to be discrete. It is called the *Krull topology*.

 $\operatorname{Gal}(K|k)$ is compact and totally disconnected. It is either finite or uncountable. Its finite quotients are the $\operatorname{Gal}(L|k)$.

Theorem (Krull's Galois correspondence)

{subextensions of K|k} \leftrightarrow {closed subgroups of Gal(K|k)}

This applies in particular to $K = k_s$ = separable closure of k. Gal $(k_s|k)$ is the *absolute Galois group* of k.

Inverse questions

Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.
Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i ; then take G-invariants.]

・ロト・日本・モート モー うへぐ

Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i ; then take G-invariants.]

・ロト・日本・モート モー うへぐ

Leptin (1955): The above is true for any profinite group G.

Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i ; then take G-invariants.]

Leptin (1955): The above is true for any profinite group G.

Question: Which profinite groups are absolute Galois groups?

Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i ; then take G-invariants.]

Leptin (1955): The above is true for any profinite group G.

Question: Which profinite groups are absolute Galois groups? Artin, Schreier (1927): A finite group G is an absolute Galois group if and only if $|G| \le 2$.

Fact: If G is a finite group, there is a Galois extension K|k with $Gal(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i ; then take G-invariants.]

Leptin (1955): The above is true for any profinite group G.

Question: Which profinite groups are absolute Galois groups?

Artin, Schreier (1927): A finite group G is an absolute Galois group if and only if $|G| \le 2$.

For arbitrary G the question is open. A famous necessary condition is given by:

Voevodsky (2003): If G is the absolute Galois group of a field, then the cohomology ring

$$\bigoplus_{i=1}^{\infty} H^i(G, \mathbf{Z}/2\mathbf{Z})$$

is generated by $H^1(G, \mathbb{Z}/2\mathbb{Z})$.

Take two primes $p \neq q$, and consider

$$\mathcal{K}_1 = \mathbf{Q}(\sqrt{p})$$
 and $\mathcal{K}_2 = \mathbf{Q}(\sqrt{q}).$

Question: can $Gal(\bar{\mathbf{Q}}|K_1)$ and $Gal(\bar{\mathbf{Q}}|K_2)$ be isomorphic?

Take two primes $p \neq q$, and consider

$$\mathcal{K}_1 = \mathbf{Q}(\sqrt{p})$$
 and $\mathcal{K}_2 = \mathbf{Q}(\sqrt{q}).$

Question: can $\operatorname{Gal}(\overline{\mathbf{Q}}|K_1)$ and $\operatorname{Gal}(\overline{\mathbf{Q}}|K_2)$ be isomorphic? Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2 ; this is 'seen' by the local Euler characteristic.]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Take two primes $p \neq q$, and consider

$$\mathcal{K}_1 = \mathbf{Q}(\sqrt{p})$$
 and $\mathcal{K}_2 = \mathbf{Q}(\sqrt{q}).$

Question: can $Gal(\bar{\mathbf{Q}}|K_1)$ and $Gal(\bar{\mathbf{Q}}|K_2)$ be isomorphic? Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2 ; this is 'seen' by the local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let K_1 and K_2 be Galois extensions of **Q**. Then every isomorphism

 $\operatorname{Gal}(\overline{K}_1|K_1) \stackrel{\sim}{\to} \operatorname{Gal}(\overline{K}_2|K_2)$

is induced by a unique isomorphism of fields

 $K_2 \xrightarrow{\sim} K_1.$

(日本本語を本書を本書を、「四本」

Take two primes $p \neq q$, and consider

$$\mathcal{K}_1 = \mathbf{Q}(\sqrt{p})$$
 and $\mathcal{K}_2 = \mathbf{Q}(\sqrt{q}).$

Question: can $Gal(\bar{\mathbf{Q}}|K_1)$ and $Gal(\bar{\mathbf{Q}}|K_2)$ be isomorphic? Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2 ; this is 'seen' by the local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let K_1 and K_2 be Galois extensions of **Q**. Then every isomorphism

 $\operatorname{Gal}(\overline{K}_1|K_1) \stackrel{\sim}{\to} \operatorname{Gal}(\overline{K}_2|K_2)$

is induced by a unique isomorphism of fields

$$K_2 \xrightarrow{\sim} K_1.$$

Vast generalization (Pop, 1996): The above is true more generally for fields finitely generated over the prime field (up to a purely inseparable extension in characteristic > 0)).

The absolute Galois group of **Q**

Conjecture (folklore)

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The absolute Galois group of **Q**

Conjecture (folklore)

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

Open in general, known in many cases, among which:

solvable groups (Shafarevich; Neukirch for groups of odd order)

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨ - の々ぐ

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

But even if we knew a positive answer to the conjecture, this would not describe the structure of $\mathrm{Gal}(\bar{\boldsymbol{Q}}|\boldsymbol{Q}).$ The following would yield more:

Every finite group is a quotient of $Gal(\bar{\mathbf{Q}}|\mathbf{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

But even if we knew a positive answer to the conjecture, this would not describe the structure of $\mathrm{Gal}(\bar{\boldsymbol{Q}}|\boldsymbol{Q}).$ The following would yield more:

Conjecture (Shafarevich)

The group $\operatorname{Gal}(\overline{\mathbf{Q}}|\mathbf{Q}(\mu))$ is a free profinite group, where $\mathbf{Q}(\mu)$ is obtained by adjoining all roots of unity.

Let k be a field, k_s a separable closure, $G := \operatorname{Gal}(k_s|k).$

Let k be a field, k_s a separable closure, $G := \operatorname{Gal}(k_s|k)$. It acts on k_s , hence on $\operatorname{Hom}_k(L, k_s)$ for all L|k (k-algebra homomorphisms).

Let k be a field, k_s a separable closure,

 $G := \operatorname{Gal}(k_s|k).$

It acts on k_s , hence on $\operatorname{Hom}_k(L, k_s)$ for all L|k (k-algebra homomorphisms).

If $L = k(\alpha)$ is finite separable, $\operatorname{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The *G*-action is continuous and transitive.

(日本本語を本書を本書を、「四本」

Let k be a field, k_s a separable closure,

 $G := \operatorname{Gal}(k_s|k).$

It acts on k_s , hence on $\operatorname{Hom}_k(L, k_s)$ for all L|k (k-algebra homomorphisms).

If $L = k(\alpha)$ is finite separable, $\operatorname{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The *G*-action is continuous and transitive.

Theorem

The contravariant functor

```
L \to \operatorname{Hom}_k(L, k_s)
```

gives an anti-equivalence of categories:

```
\{\text{finite separable extensions } L|k\} \leftrightarrow
```

 ${finite sets + continuous transitive G-action}$

Let k be a field, k_s a separable closure,

 $G := \operatorname{Gal}(k_s|k).$

It acts on k_s , hence on $\operatorname{Hom}_k(L, k_s)$ for all L|k (k-algebra homomorphisms).

If $L = k(\alpha)$ is finite separable, $\operatorname{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The *G*-action is continuous and transitive.

Theorem

The contravariant functor

```
L \to \operatorname{Hom}_k(L, k_s)
```

gives an anti-equivalence of categories:

```
\{\text{finite separable extensions } L|k\} \leftrightarrow
```

 ${finite sets + continuous transitive G-action}$

[Inverse functor: finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

[Inverse functor:

finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]

・ロト・日本・モート モー うへぐ

Definition. A finite étale k-algebra is a finite direct product of separable extensions of k.

[Inverse functor:

finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]

Definition. A finite étale k-algebra is a finite direct product of separable extensions of k.

Theorem

The contravariant functor

```
A \to \operatorname{Hom}_k(A, k_s)
```

gives an anti-equivalence of categories

 $\{\text{finite \acute{e}tale k-algebras}\} \leftrightarrow \{\text{finite sets } + \text{ continuous G-action}\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

X = 'nice' topological space, e.g. a topological manifold

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

X= 'nice' topological space, e.g. a topological manifold $Y \rightarrow X$: cover of X

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

X= 'nice' topological space, e.g. a topological manifold $Y \rightarrow X$: cover of XFib_x(Y) := fibre of Y over $x \in X$.

X= 'nice' topological space, e.g. a topological manifold $Y \to X$: cover of XFib_x(Y) := fibre of Y over $x \in X$. It carries an action by the fundamental group $\pi_1(X, x)$ ('lifting paths and homotopies').

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

X= 'nice' topological space, e.g. a topological manifold $Y \rightarrow X$: cover of XFib_x(Y) := fibre of Y over $x \in X$. It carries an action by the fundamental group $\pi_1(X, x)$ ('lifting paths and homotopies').

Theorem

The functor

 $Y \to \operatorname{Fib}_{X}(Y)$

gives an equivalence of categories

 $\{\text{covers of } X\} \leftrightarrow \{\pi_1(X, x)\text{-sets}\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

X= 'nice' topological space, e.g. a topological manifold $Y \rightarrow X$: cover of XFib_x(Y) := fibre of Y over $x \in X$. It carries an action by the fundamental group $\pi_1(X, x)$ ('lifting paths and homotopies').

Theorem

The functor

 $Y \to \operatorname{Fib}_{X}(Y)$

gives an equivalence of categories

 $\{\text{covers of } X\} \leftrightarrow \{\pi_1(X, x)\text{-sets}\}\$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Let Π := profinite completion of $\pi_1(X, x)$.

X= 'nice' topological space, e.g. a topological manifold $Y \rightarrow X$: cover of XFib_x(Y) := fibre of Y over $x \in X$. It carries an action by the fundamental group $\pi_1(X, x)$ ('lifting paths and homotopies').

Theorem

The functor

 $Y \to \operatorname{Fib}_{X}(Y)$

gives an equivalence of categories

 $\{\text{covers of } X\} \leftrightarrow \{\pi_1(X, x)\text{-sets}\}$

Let Π := profinite completion of $\pi_1(X, x)$. We get an equivalence

 $\{\text{finite covers of }X\}\leftrightarrow\{\text{finite continuous }\Pi\text{-sets}\}$

(日本本語を本書を本書を、「四本」

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \rightarrow X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

 $\{ \text{finite \'etale } Y \to X \} \leftrightarrow \\ \leftrightarrow \{ \text{finite continuous } \pi_1(X, \bar{x}) \text{-sets} \}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

 $\{ \text{finite \'etale } Y \to X \} \leftrightarrow \\ \leftrightarrow \{ \text{finite continuous } \pi_1(X, \bar{x}) \text{-sets} \}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

It is induced by a fibre functor $Y \to \operatorname{Fib}_{\bar{x}}(Y)$.

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

 $\{ \text{finite \'etale } Y \to X \} \leftrightarrow \\ \leftrightarrow \{ \text{finite continuous } \pi_1(X, \bar{x}) \text{-sets} \}$

It is induced by a fibre functor $Y \to \operatorname{Fib}_{\overline{x}}(Y)$.

• For X = point over k, $\pi_1(X, \bar{x}) = \operatorname{Gal}(k_s|k)$.

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

 $\{ \text{finite \'etale } Y \to X \} \leftrightarrow \\ \leftrightarrow \{ \text{finite continuous } \pi_1(X, \bar{x}) \text{-sets} \}$

It is induced by a fibre functor $Y \to \operatorname{Fib}_{\overline{x}}(Y)$.

- For X = point over k, $\pi_1(X, \bar{x}) = \operatorname{Gal}(k_s|k)$.
- For X = variety over **C**,

 $\pi_1(X, \bar{x}) = \text{profinite completion of } \pi_1^{\text{top}}(X, \bar{x})$ (actually its *opposite group*).

(日本本語を本書を本書を、「四本」

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

 $\{ \text{finite \'etale } Y \to X \} \leftrightarrow \\ \leftrightarrow \{ \text{finite continuous } \pi_1(X, \bar{x}) \text{-sets} \}$

It is induced by a fibre functor $Y \to \operatorname{Fib}_{\overline{x}}(Y)$.

- For $X = \text{point over } k, \pi_1(X, \bar{x}) = \text{Gal}(k_s|k).$
- For X = variety over **C**,

 $\pi_1(X, \bar{x}) =$ profinite completion of $\pi_1^{\text{top}}(X, \bar{x})$

(actually its opposite group).

When X is defined over a subfield $k \subset \mathbf{C}$, $\pi_1(X, \bar{x})$ carries an *outer* action by $\operatorname{Gal}(k_s|k)$.

This gives interesting representations of $Gal(k_{\underline{s}}|k)$.
Up to now we have only considered *permutation representations*. But *linear* representations are much more common 'in nature'.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Up to now we have only considered *permutation representations*. But *linear* representations are much more common 'in nature'.

Example

If $X \subset \mathbf{C}$ is a complex domain, $x \in X$, n-th order linear holomorphic differential equations

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

イロト 不得 トイヨト イヨト ヨー ろくで

give rise to representations ρ : $\pi_1(X, x) \to \operatorname{GL}_n(\mathbf{C})$:

Up to now we have only considered *permutation representations*. But *linear* representations are much more common 'in nature'.

Example

If $X \subset \mathbf{C}$ is a complex domain, $x \in X$, n-th order linear holomorphic differential equations

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

give rise to representations ρ : $\pi_1(X, x) \to \operatorname{GL}_n(\mathbf{C})$: By Cauchy's existence theorem, local solutions around x form an *n*-dimensional **C**-vector space on which $\pi_1(X, x)$ acts by the monodromy action.

Tannakian duality

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Tannakian duality

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbf{C})$.

This is a *linear algebraic group*.

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbf{C})$.

This is a *linear algebraic group*.

If we consider *all* monodromy representations, we get an *affine* group scheme.

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbf{C})$.

This is a *linear algebraic group*.

If we consider *all* monodromy representations, we get an *affine* group scheme.

Tannakian duality

A rigid k-linear abelian tensor category C equipped with a faithful exact tensor functor ('fibre functor') $C \rightarrow$ finite-dimensional k-vector spaces is equivalent to the finite-dimensional representations of an affine k-group scheme.

・ロト・日本・モート モー うへぐ

 \bullet holomorphic differential equations \rightarrow algebraic monodromy groups

・ロト・日本・モート モー うへぐ

 \bullet holomorphic differential equations \rightarrow algebraic monodromy groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 \bullet differential modules \rightarrow differential Galois groups

 \bullet holomorphic differential equations \rightarrow algebraic monodromy groups

- \bullet differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups

 \bullet holomorphic differential equations \rightarrow algebraic monodromy groups

- \bullet differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- $\bullet \ \ \mathsf{motives} \to \mathsf{motivic} \ \mathsf{Galois} \ \mathsf{groups}$

- \bullet holomorphic differential equations \rightarrow algebraic monodromy groups
- \bullet differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- $\bullet\,$ motives $\rightarrow\,$ motivic Galois groups

Thus all these objects are classified by algebraic group actions.

- \bullet holomorphic differential equations \rightarrow algebraic monodromy groups
- \bullet differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- $\bullet\,$ motives $\rightarrow\,$ motivic Galois groups

Thus all these objects are classified by algebraic group actions. This was Galois' main idea!