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The Mémoire

Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:

one in 1828 – lost by the referee (Cauchy)

one in 1829 – lost by the referee (Fourier)

one in 1830: Mémoire sur les conditions de résolubilité des
équations par radicaux – refused by the referee (Poisson)

plus posthumous fragments, and the famous letter to Auguste
Chevalier, of which the last words are:

“[...] il y aura, j’espère, des gens qui trouveront leur profit à
déchiffrer tout ce gâchis.”
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The Mémoire
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Solvability by radicals

The equation

xn + an−1xn−1 + · · ·+ a0 = (x − α1) · · · (x − αn) = 0

is solvable by radicals if the αi can be obtained from the aj in
finitely many steps by taking suitable rational functions and m-th
roots.

Some highlights of the theory before Galois:

equations of degree ≤ 4 are solvable by radicals (Cardano,
Ferrari)

cyclotomic equations

xn−1 + xn−2 + · · ·+ x + 1 = 0

are solvable by radicals (Gauss)

more generally, equations ‘with abelian Galois group’ are
solvable by radicals (Abel)

the ‘general equations’ of degree ≥ 5 are not solvable by
radicals (Abel)
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Main results of the Mémoire in modern language

Consider the equation

f (x) =xn + an−1xn−1 + · · ·+ a0 =

=(x − α1) · · · (x − αn) = 0

where ai ∈ K , a field of characteristic 0.

Assume the αi are distinct. Put

K (α1, . . . , αn) := {F (α1, . . . , αn) : F ∈ K (x1, . . . , xn)}

(This is the smallest subfield of K containing the αi .)
The equation is not assumed to be irreducible.

1. For every α ∈ K (α1, . . . , αn) there is a unique monic irreducible
polynomial p ∈ K [x ] with p(α) = 0, the minimal polynomial of α.

2. There exists β ∈ K (α1, . . . , αn) with

K (α1, . . . , αn) = K (β)

(theorem of the primitive element).
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Main results of the Mémoire in modern language

So αi = fi (β) with some fi ∈ K [x ], for all i .

3. Let β = β1, . . . , βm be the roots of p.
Then for all j the sequence f1(βj), . . . , fn(βj) is a permutation of
the αi .
Denoting this permutation by σj , the elements σ1, . . . , σm form the
Galois group.

4. Let L|K be a field extension obtained by adjoining roots of
some equation g(x) = 0 to K .
The Galois group of f over L is a subgroup of its Galois group over
K ; it is a normal subgroup if and only if L is obtained by adjoining
all roots of g .

5. The equation f (x) = 0 is solvable by radicals if and only if its
Galois group is solvable, i.e. there is a chain of normal subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = {1}

where Gi is of prime index in Gi−1.
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Applications

An irreducible equation

f (x) = (x − α1) · · · (x − αp) = 0

of prime degree is solvable by radicals if and only if the roots αi

can be expressed as rational functions of any two of them.

[Uses the classification of solvable transitive subgroups of Sp: they
are conjugates of subgroups of

{x 7→ ax + b : a, b ∈ Fp}.]

Another application from fragments: Let p be an odd prime.
Consider the Galois cover

Γ0(p) \H→ Γ0 \H ∼= C.

Adding cusps we get a branched cover of modular curves

X0(p)→ P1
C.

The Galois group is PSL(2, p) which is simple for p 6= 3. So the
modular equation is not solvable by radicals.
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Later developments

The work of Galois was clarified by Liouville, Jordan...

Weber (1888) recast the theory in the language of field
extensions

Dedekind (1894) defined the Galois group as the
automorphism group of a field extension

Steinitz (1909) constructed the algebraic closure and clarified
questions of separability

Artin (1920’s) formulated the Galois correspondence, i.e. the
bijection

{subextensions of L|K} ↔ {subgroups of G}

for a finite Galois extension L|K with group G

Artin (1942) defined a finite Galois extension as a field
extension L|K where K is the fixed field of a finite group G
acting on L.
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Infinite Galois extensions

Dedekind’s insight: for infinite Galois extensions “die Galoissche
Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde”.

Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension K |k to be Galois if the
subfield of K fixed by the action of Aut(K |k) is k .
In this case Gal(K |k) := Aut(K |k) is the Galois group.
Given a tower of finite Galois subextensions M|L|k contained in
K |k, there is a canonical surjection φML : Gal(M|k) � Gal(L|k).
If K ⊃ N ⊃ M is yet another finite Galois extension of k , we have

φNL = φML ◦ φNM .

So if we “pass to the limit in M”, then Gal(L|k) will become a
quotient of Gal(K |k).
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This is achieved by proving

Gal(K |k) ∼= lim
←
L

Gal(L|k)

The RHS is a subgroup of the direct product, so inherits a
topology if the Gal(L|k) are taken to be discrete. It is called the
Krull topology.

Gal(K |k) is compact and totally disconnected. It is either finite or
uncountable. Its finite quotients are the Gal(L|k).

Theorem (Krull’s Galois correspondence)

{subextensions of K |k} ↔ {closed subgroups of Gal(K |k)}

This applies in particular to K = ks = separable closure of k .
Gal(ks |k) is the absolute Galois group of k .
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Inverse questions

Fact: If G is a finite group, there is a Galois extension K |k with
Gal(K |k) ∼= G .

[Embed G in Sn for some n and make it act on k(x1, . . . , xn) by
permuting the xi ; then take G -invariants.]

Leptin (1955): The above is true for any profinite group G .

Question: Which profinite groups are absolute Galois groups?

Artin, Schreier (1927): A finite group G is an absolute Galois
group if and only if |G | ≤ 2.

For arbitrary G the question is open. A famous necessary condition
is given by:

Voevodsky (2003): If G is the absolute Galois group of a field,
then the cohomology ring

∞⊕
i=1

H i (G ,Z/2Z)

is generated by H1(G ,Z/2Z).
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then the cohomology ring
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is generated by H1(G ,Z/2Z).
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Galois characterization of fields

Take two primes p 6= q, and consider

K1 = Q(
√

p) and K2 = Q(
√

q).

Question: can Gal(Q̄|K1) and Gal(Q̄|K2) be isomorphic?

Answer: NO, for arithmetic reasons.
[The prime p ramifies in K1 but not in K2; this is ‘seen’ by the
local Euler characteristic.]
In fact, we have:

Neukirch (1969): Let K1 and K2 be Galois extensions of Q. Then
every isomorphism

Gal(K 1|K1)
∼→ Gal(K 2|K2)

is induced by a unique isomorphism of fields

K2
∼→K1.

Vast generalization (Pop, 1996): The above is true more generally
for fields finitely generated over the prime field (up to a purely
inseparable extension in characteristic > 0)).



Galois characterization of fields

Take two primes p 6= q, and consider

K1 = Q(
√

p) and K2 = Q(
√

q).

Question: can Gal(Q̄|K1) and Gal(Q̄|K2) be isomorphic?
Answer: NO, for arithmetic reasons.
[The prime p ramifies in K1 but not in K2; this is ‘seen’ by the
local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let K1 and K2 be Galois extensions of Q. Then
every isomorphism

Gal(K 1|K1)
∼→ Gal(K 2|K2)

is induced by a unique isomorphism of fields

K2
∼→K1.

Vast generalization (Pop, 1996): The above is true more generally
for fields finitely generated over the prime field (up to a purely
inseparable extension in characteristic > 0)).



Galois characterization of fields

Take two primes p 6= q, and consider

K1 = Q(
√

p) and K2 = Q(
√

q).

Question: can Gal(Q̄|K1) and Gal(Q̄|K2) be isomorphic?
Answer: NO, for arithmetic reasons.
[The prime p ramifies in K1 but not in K2; this is ‘seen’ by the
local Euler characteristic.]
In fact, we have:

Neukirch (1969): Let K1 and K2 be Galois extensions of Q. Then
every isomorphism

Gal(K 1|K1)
∼→ Gal(K 2|K2)

is induced by a unique isomorphism of fields

K2
∼→K1.

Vast generalization (Pop, 1996): The above is true more generally
for fields finitely generated over the prime field (up to a purely
inseparable extension in characteristic > 0)).



Galois characterization of fields

Take two primes p 6= q, and consider

K1 = Q(
√

p) and K2 = Q(
√

q).

Question: can Gal(Q̄|K1) and Gal(Q̄|K2) be isomorphic?
Answer: NO, for arithmetic reasons.
[The prime p ramifies in K1 but not in K2; this is ‘seen’ by the
local Euler characteristic.]
In fact, we have:

Neukirch (1969): Let K1 and K2 be Galois extensions of Q. Then
every isomorphism

Gal(K 1|K1)
∼→ Gal(K 2|K2)

is induced by a unique isomorphism of fields

K2
∼→K1.

Vast generalization (Pop, 1996): The above is true more generally
for fields finitely generated over the prime field (up to a purely
inseparable extension in characteristic > 0)).



The absolute Galois group of Q

Conjecture (folklore)

Every finite group is a quotient of Gal(Q̄|Q).

Open in general, known in many cases, among which:

solvable groups (Shafarevich; Neukirch for groups of odd
order)

most finite simple groups, including all sporadic groups but
one (Belyi, Fried, Malle, Matzat, Thompson...)

But even if we knew a positive answer to the conjecture, this
would not describe the structure of Gal(Q̄|Q). The following
would yield more:

Conjecture (Shafarevich)

The group Gal(Q̄|Q(µ)) is a free profinite group, where Q(µ) is
obtained by adjoining all roots of unity.
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Grothendieck’s reformulation

Let k be a field, ks a separable closure,
G := Gal(ks |k).

It acts on ks , hence on Homk(L, ks) for all L|k (k-algebra
homomorphisms).
If L = k(α) is finite separable, Homk(L, ks) is finite. Give it the
discrete topology. The G -action is continuous and transitive.

Theorem

The contravariant functor

L→ Homk(L, ks)

gives an anti-equivalence of categories:

{finite separable extensions L|k} ↔
{finite sets + continuous transitive G -action}
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Grothendieck’s reformulation

[Inverse functor:
finite continuous G -set 7→ subfield of ks fixed by the stabilizer of a
point]

Definition. A finite étale k-algebra is a finite direct product of
separable extensions of k.

Theorem

The contravariant functor

A→ Homk(A, ks)

gives an anti-equivalence of categories

{finite étale k-algebras} ↔ {finite sets + continuous G -action}
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Topological analogue

X = ‘nice’ topological space, e.g. a topological manifold

Y → X : cover of X
Fibx(Y ) := fibre of Y over x ∈ X .
It carries an action by the fundamental group π1(X , x) (‘lifting
paths and homotopies’).

Theorem

The functor
Y → Fibx(Y )

gives an equivalence of categories

{covers of X} ↔ {π1(X , x)-sets}

Let Π := profinite completion of π1(X , x).
We get an equivalence

{finite covers of X} ↔ {finite continuous Π-sets}
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Grothendieck’s π1

Analogue of finite cover in algebraic geometry: surjective finite
étale maps Y → X .

For X equipped with a geometric point Grothendieck defined a
profinite group π1(X , x̄) together with an equivalence of categories

{finite étale Y → X} ↔
↔{finite continuous π1(X , x̄)-sets}

It is induced by a fibre functor Y → Fibx̄(Y ).

For X = point over k , π1(X , x̄) = Gal(ks |k).

For X = variety over C,

π1(X , x̄) = profinite completion of πtop1 (X , x̄)

(actually its opposite group).

When X is defined over a subfield k ⊂ C, π1(X , x̄) carries an outer
action by Gal(ks |k).
This gives interesting representations of Gal(ks |k).
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Linearization

Up to now we have only considered permutation representations.
But linear representations are much more common ‘in nature’.

Example

If X ⊂ C is a complex domain, x ∈ X , n-th order linear
holomorphic differential equations

y (n) + a1y (n−1) + · · ·+ an−1y ′ + any = 0

give rise to representations ρ : π1(X , x)→ GLn(C):
By Cauchy’s existence theorem, local solutions around x form an
n-dimensional C-vector space on which π1(X , x) acts by the
monodromy action.
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Tannakian duality

Algebraically, finite-dimensional complex representations form a
category stable by subrepresentations, quotients, tensor products,
duals.

Consider the subcategory generated by ρ after doing all these
constructions. How much of π1(X , x) does it determine?

Answer: The Zariski closure of Im (ρ) in GLn(C).
This is a linear algebraic group.

If we consider all monodromy representations, we get an affine
group scheme.

Tannakian duality

A rigid k-linear abelian tensor category C equipped with a faithful
exact tensor functor (‘fibre functor’)
C → finite-dimensional k-vector spaces
is equivalent to the finite-dimensional representations of an affine
k-group scheme.
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Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.

This was Galois’ main idea!



Examples

In examples, the tensor subcategories generated by a single object
often correspond to representations of a linear algebraic group.

holomorphic differential equations → algebraic monodromy
groups

differential modules → differential Galois groups

Hodge structures → Mumford–Tate groups

motives → motivic Galois groups

Thus all these objects are classified by algebraic group actions.
This was Galois’ main idea!


