Chapter 6

Dedekind Schemes

In this chapter we introduce the main protagonists of the following two chap-
ters, namely Dedekind schemes. These will be schemes characterised by
certain special properties that are common to smooth algebraic curves and
spectra of rings of integers in number fields. Analogies between algebraic
numbers and functions on algebraic curves have already been noticed in the
19th century; since then, several axiomatisations of the common features
have been proposed of which the notion of a Dedekind scheme seems to be
particularly satisfactory.

1. Integral Extensions

In this section we review the basic theory of integral extensions of rings. As
this topic is well treated in many texts (e.g. in the books of Lang [1], [2]),
we include proofs only for the easiest facts.

Recall that given an extension of rings A C B, an element b € B is said to
be integral over A if it is a root of a monic polynomial 2" 4a,_12" ' +. . .+ag €
Alz]. There is the following well-known characterisation of integral elements:

Lemma 1.1 Let A C B an extension of rings. Then the following are equiv-
alent for an element x € B:

1. The element x is integral over A.
2. The subring Alx] of B is finitely generated as an A-module.

3. There is a subring C' of B containing x which is finitely generated as
an A-module.
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Proof: For the implication 1) = 2) note that if = satisfies a monic polyno-
mial of degree n, then 1,z,...,2" ! is a basis of A[x] over A. The implication
2) = 3) being trivial, only 3) = 1) remains. For this consider the A-module
endomorphism of C' given by multiplication by x. Its characteristic polyno-

mial f is monic; by the Cayley-Hamilton theorem, f(x) = 0. O

Corollary 1.2 Those elements of B which are integral over A form a subring
in B.

Proof: Indeed, given two elements x,y € B integral over A, the elements
x —y and zy are both contained in the subring A[z, y| of B which is a finitely
generated A-module by assumption. 0

If all elements of B are integral over A, we say that the extension A C B
is integral.

Corollary 1.3 Given a tower extensions A C B C C with A C B and
B C C integral, the extension A C C' is also integral.

If A is a domain with fraction field K and L is an extension of K, the
integral closure of A in L is the subring of L formed by elements integral over
A. We say that A is integrally closed if its integral closure in the fraction
field K is just A. By the corollary above, the integral closure of a domain A
in some extension L of its fraction field is integrally closed.

Example 1.4 Any unique factorisation domain A is integrally closed. In-
deed, if an element a/b € K (with a,b coprime) satisfies a monic polynomial
equation of degree n, then by multiplying with " we see that a” should be
divisible by b which is only possible when b is a unit.

In particular, the ring Z is integrally closed.

Recall that a number field K is by definition a finite extension of Q. We
denote by Ok the integral closure of Z in K and call it the ring of integers
of K. Of course, Ok is integrally closed.

We next collect some easy results that will be needed in subsequent sec-
tions.

Lemma 1.5 Let A C B be an integral extension of domains.
1. If I is a nonzero ideal of B, then I N A is a nonzero ideal of A.

2. If A is a field, then B is a field as well.
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Proof: For the first statement note that if a nonzero u € I satisfies an
equation u" + ap_1u™ ' + ...+ aju + ay = 0 with a; € k, then ap € I N A.
Since B is a domain, we may assume ay # 0, whence the assertion. The
second statement follows from this for if [ is a nonzero ideal of B, we must
have I " A = A when A is a field, hence 1 € I and [ = B. O

Remark 1.6 In fact, the converse of the second statement is also true: if B
is a field, then A must be a field as well, but we shall not need this.

Lemma 1.7 A domain A is integrally closed if and only if for any prime
idal P of A the localisation Ap is integrally closed.

Proof: Denote by K the fraction field of A. One implication is easy: if an
element x € K satisfies a monic equation over Ap, then by multiplying with
a suitable common multiple s of the denominators of the coefficients one gets
that sx is integral over A, hence sz € A. For the converse, take an element
x = a/b € K integral over A. If b is not a unit in A, there is some maximal
ideal P containing it. But Ap is integrally closed and a/b is integral over it,
so a/b € Ap which is absurd. Thus b is a unit and a/b € A. i

Finally, a similar argument to that in the first part of the previous proof
shows:

Lemma 1.8 Let A be a domain with fraction field K ans let S C A be a
multiplicatively closed subset. Then for any field extension L|K, the integral
closure of the localisation Ag in L is Bg, where B is the integral closure of

Ain L.

The last topic to be treated in this section is the question whether the
integral closure of an integral domain A in a finite extension of its fraction
field is a finitely generated A-module. Unfortunately, this property does not
hold for arbitrary domains, even under the assumption that A is noetherian.
But there are two classical sufficient conditions which we now quote from the
literature.

Proposition 1.9 Let A be an integrally closed noetherian domain with frac-
tion field K and let L be a finite separable extension of K. Then the integral
closure B of A in any finite extension of L is a finitely generated A-module,
and hence a Noetherian ring.

For the proof, see Atiyah-Macdonald [1], Corollary 5.17 or Lang [2], Chap-
ter I, Proposition 6.
The other sufficient condition is the following.
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Proposition 1.10 Let k be a field and A an integral domain which is a
finitely generated k-algebra. If L is any finite extension of the fraction field
K of A, then the integral closure of A in L is a finitely generated A-module.

Note that the proposition is implied by the previous one when k is of
characteristic 0. In the case of positive characteristic, there is a simple proof
for polynomial rings in Shafarevich [1], Appendix, Section 8. The general
case reduces to this case by applying Noether’s Normalisation Lemma (Lang
[1], Chapter VIII, Theorem 2.1).

2. Dedekind Schemes

We begin the discussion of Dedekind schemes by studying their local rings
which enjoy very similar properties to rings of germs of meromorphic func-
tions in a neighbourhood of some point of a Riemann surface. The first of
the several equivalent definitions we are to give is perhaps the simplest one.

Definition 2.1 A ring A is a discrete valuation ring if A is a local principal
ideal domain which is not a field.

Before stating the first equivalent characterisations, observe that if A is a
local ring with maximal ideal P, then the A-module P/P? is in fact a vector
space over the field k(P) = A/P, simply because multiplication by P maps
P into P2.

Proposition 2.2 For a local domain A with mazimal ideal P the following
conditions are equivalent:

1. A is a discrete valuation ring.

2. A is noetherian of Krull dimension 1 and P/P? is of dimension 1 over
k(P).

3. A is noetherian and P is generated by a single nonzero element.

For the proof we need the following well-known lemma which will be
extremely useful in other situations as well:

Lemma 2.3 (Nakayama’s Lemma) Let A be a local ring with maximal
ideal P and M a finitely generated A-module. If PM = M, then M = 0.
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Proof: Assume M # 0 and let my, ..., m, be a minimal system of genera-
tors of M over A. By assumption my is contained in PM and hence we have
a relation mg = pomo + ..., pom, with all the p; elements of P. But here
1 — pp is a unit in A (as otherwise it would generate an ideal contained in
P) and hence by multiplying the equation by (1 —py)~! we may write my as
a linear combination of the other terms, which is in contradiction with the
minimality of the system. O

Here is an immediate corollary of the lemma.

Corollary 2.4 Let A be a Noetherian local ring with maximal ideal P. Then
N P =(0).
Moreover, if P* # (0), then P* # P+

Proof: Denote by @ the intersection of the P, Since A is Noetherian, Q is
finitely generated. Moreover, PQ) = () and the lemma applies. The second
statement is proved in a similar way. O

Another corollary of the lemma is the following strengthened form.

Corollary 2.5 Let A, P, M be as in the lemma and assume given elements
t1,. .., tm € M whose images in the A/P-vector space M/PM form a gen-
erating system. Then they generate M over A.

Proof: Let T be the A-submodule generated by the t;; we have M =
T + PM by assumption. Hence M/T = P(M/T) and the lemma gives
M/T = 0. i

Proof of Proposition 2.2: Assume A is a discrete valuation ring and P is
generated by ¢t. Then by Corollary 2.4 any nonzero prime ideal ) C P must
contain a power of £. But being a prime ideal, it must then contain t itself, so
that Q = P and A is of Krull dimension one. Also, the image of ¢ generates
the vector space P/P?, whence the second condition. The third condition
follows from the second by applying Corollary 2.5 with M = P. Finally, to
show that the third condition implies the first, assume the maximal ideal P
of A is generated by some element t. We first show that any element a € A
can be written uniquely as a product a = ut", with v a unit in A. Indeed,
by Corollary 2.4 there is a unique n > 0 for which a € P*\ P"*! and thus a
can be written in the required form. If a = ut™ = vt", then u = v since A is
a domain. Now take an ideal I of A. As A is Noetherian, I can be generated
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by a finite sequence of elements aq, ..., a,. Write a; = u;t"™ according to the
above representation and let j be an index for which n; > n; for all . Each
a; is a multiple of "7 and hence I = (#"7) is principal. |

In the course of the above proof we have also shown:

Corollary 2.6 Any element x # 0 of the fraction field of a discrete valuation
ring A can be written uniquely in the form x = ut™ with u a unit in A, t a
generator of the mazimal ideal and n a (possibly negative) integer.

The second condition of the lemma may seem a bit technical, but it is very
useful for it is a special case of a more general notion coming from algebraic
geometry.

Definition 2.7 A noetherian local ring A with maximal ideal P is regular
if its Krull dimension equals the (finite) dimension of P/P? over x(P).

Thus discrete valuation rings are regular local rings of dimension 1.
We now explain the origin of the name “discrete valuation ring”.

Definition 2.8 For any field K, a discrete valuation is a surjection v : K —
Z U {oo} with the properties

v(zy) = v(z) +v(y),

v(z +y) = min{o(z),v(y)},
v(x) = oo if and only if x = 0.

The elements x € K with v(x) > 0 form a subring A C K called the valuation
ring of v.

Proposition 2.9 A domain A is a discrete valuation ring if and only if it
is the valuation ring of some discrete valuation v : K — Z U {oo}, where K

is the fraction field of A.

Proof: Assume first A is a discrete valuation ring. Define a function v :
K — Z U {00} by mapping 0 to oo and any x # 0 to the integer n given by
the previous corollary. It is immediate to check that v is a discrete valuation
with valuation ring A. Conversely, given a discrete valuation v on K, the
maximal ideal of its valuation ring is generated by any ¢ with v(¢) = 1 and
we may apply the previous proposition. O

We can now discuss the example mentioned at the beginning of this sec-
tion.
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Example 2.10 Let M be the sheaf of meromorphic functions on some Rie-
mann surface X and z a point of X. Define v(f) = m if f is holomorphic
at x and has a zero of order m and define v(f) = —v(1/f) otherwise. Then
v is a discrete valuation on K = M(X) whose discrete valuation ring is the
stalk of M at x.

The last characterisation of discrete valuation rings we shall need is the
following.

Proposition 2.11 A domain A is a discrete valuation ring if and only if A
158 noetherian, integrally closed and has a unique nonzero prime ideal.

For the proof, which we have taken from Serre [1], we need a technical
lemma.

Lemma 2.12 Let A be a domain having a unique nonzero prime ideal P.

Then P~ # A.

Here P~! denotes the set of elements x of the fraction field K of A with
zA C P.

Proof: Observe first that for any f € P the localisation Ay is a field and
hence equals K itself. Indeed, for a maximal ideal M of Ay the prime ideal
M N A doesn’t contain f, hence it can be only (0). But for any nonzero
element y/f" € M we would have 0 # y € M N A, whence M = 0, as
desired. Take now another z € P; by the above we may write z7! = a/f™
with some m, so f™ = ax, and thus f™ € (x). Letting f vary in a finite set of
generators of P we conclude that a sufficiently high power of P is contained
in (z). Let PV be the least such power; we may thus find y € PN~! with
y ¢ (z). But yP C (x),so yz~' € P~'. However, yz~ ' ¢ Aasy ¢ (). O

Proof of Proposition 2.11: The necessity of the conditions is immediate
(the second condition follows from Example 1.4 and the last from the fact
that any nonzero ideal of A is of the form (¢") with ¢ a generator of the
maximal ideal; such an ideal can be prime only for n = 1).

For sufficiency denote by P the maximal ideal of A; we have to show that
it is principal. Evidently A C P71, so P C P~!P, the latter being the ideal
of A generated by elements of the form zy with + € P~ and y € P. Since
P is maximal, there are two cases: either P~'!P = A or P7'P = P. We
now show that if the first case holds, then P is principal. Indeed, in this
case there is a relation of the form zy; + ... + 2,y, = 1 with 2; € P~! and
y; € P. Here there is at least one ¢ for which z;y; ¢ P, so there is some unit
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u with uz;y; = 1. We contend that P = (y;). Indeed, if z € P, we have
z = uzx;y;, but uzx; € A since x; € P-L

To finish the proof we show that the case P~!P = P cannot occur. We do
this by showing that this assumption implies P~! = A, in contradiction with
lemma 2.12. So take z € P~!. By assumption zP C P; iterating this we get
2" P C P for all n, so 2™ € P~! for all n. In particular, for any f € P all
powers of z are contained in the A-submodule of K generated by f~!, which
is a finitely generated A-module. But A is noetherian and a submodule of a
finitely generated module over a noetherian ring is always finitely generated,
hence by Lemma 1.1 z is integral over A. As A is integrally closed, this
implies x € A, as desired. O

Remark 2.13 The affine scheme Spec A is particularly simple for a discrete
valuation ring. It consists only two points, a closed point x (corresponding
to the maximal ideal) and a non-closed generic point 1 (corresponding to the
ideal (0)). The stalk of the structure sheaf at n is the fraction field K of A
and the stalk at z is A itself.

Now we can pass from local rings to schemes and give our main definition.

Definition 2.14 A normal scheme is a scheme whose local rings are inte-
grally closed domains. A Dedekind scheme is an integral noetherian normal
scheme of dimension 1. A Dedekind ring is a domain A such that Spec A is
a Dedekind scheme.

Remarks 2.15 Here some remarks are in order.

1. There is another restriction that is convenient to impose on the schemes
we shall be looking at, namely that the local rings of X should be
distinct when viewed as subrings of the function field K; in this case
one says X is separated (over Z). This condition plainly holds in the
affine case where the local rings are all localisations at different prime
ideals; it also holds for closed subschemes of projective space. However,
there is a pathological example, the “affine line with the origin doubled”
which satisfies the definition of a Dedekind scheme given above but
which is not separated. This is constructed by taking two copies of the
affine line A}, over some field k& and patching them over the open subset
D(x) using the isomorphism given by the identity map. In this way we
get two closed points coming from the two origins whose local rings are
the same.

Henceforth we shall tacitly assume that all integral schemes under con-
sideration are separated.
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2. Call a noetherian scheme regular if all of its local rings are regular.
Then by Proposition 2.2 Dedekind schemes are precisely regular inte-
gral schemes of dimension 1.

Now let us draw some immediate consequences from the definition of
Dedekind schemes.

Proposition 2.16 Let X be a Dedekind scheme with function field K .
1. The closed subsets of X are just X and finite sets of closed points.

2. The local rings of X at closed points are discrete valuation rings with
fraction field K.

3. Any affine open subset of X is of the form Spec A, with A an integrally
closed domain.

Proof: Since X is noetherian, it is compact, so for the first statement we
may assume X = Spec A with a Noetherian ring A. In Spec A any closed
subset is a finite union of irreducible closed subsets. (To see this, decompose
any reducible closed subset Z as a union of nonempty closed subsets Z;UZy; if
these are not irreducible, decompose them again - the process must terminate
in finitely many steps as otherwise we would get an infinite strictly increasing
chain of ideals of A which is impossible in a noetherian ring.) But any
irreducible closed subset of X is a closed point by Chapter 5, Lemma 6.13
and the fact that all prime ideals of A are maximal. This proves the first
statement; the second follows from Proposition 2.11 in view of the easy fact
that any localisation of a noetherian ring A is noetherian (as the ideals of the
localisation are all generated by ideals of A according to Chapter 4, Lemma
2.4). The third is a consequence of Lemma 1.7. |

Examples 2.17 We now give the two main examples of Dedekind schemes.

1. Let Ok be the ring of integers of some number field K. Then Spec Ok
is a Dedekind scheme.

Indeed, A is a domain, so Spec A is integral. That it is noetherian
follows from Proposition 1.9. To prove that it is of dimension 1, we show
that any nonzero prime ideal P of Ok is maximal. Indeed, by the first
part of Lemma 1.5, the intersection P NZ is nonzero, hence generated
by some prime number p. Now the induced extension Z/pZ C O /P is
still integral, so we may apply the second statement of the same lemma
to conclude that Ok /P is a field. Finally the normality of Spec A
follows from Lemma 1.7.
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2. The second basic example of a Dedekind scheme is given a by one-
dimensional normal integral closed subscheme of affine (resp. projec-
tive) n-space over some field k. These we shall call smooth affine (resp.
projective) curves over k. For the moment, this definition is tautolo-
gous but one can still give some concrete examples. For instance, the
affine line A} is a smooth affine curve (being the spectrum of the one-
dimensional unique factorisation domain k[t]) and the projective line
P} is a smooth projective curve over k for it is integral and can be
covered by two copies of Aj.

However, for a general closed subscheme of affine or projective space
this ring-theoretic definition in the second example is rather hard to check.
What is much more preferable is the smoothness condition encountered in
our discussion of Riemann surfaces; for a plane curve this said that the partial
derivatives of its defining equation should not simultaneously vanish at some
point. In the next section we introduce an algebraic formalisation of the
notion of differentials and prove a broad generalisation of this criterion.

3. Modules and Sheaves of Differentials

In differential geometry, the tangent space at a point P on some variety
is defined to consist of so-called linear derivarions, i.e. linear maps that
associate a scalar to each function germ at P and satisfy the Leibniz rule.
We begin by an algebraic generalisation of this notion.

Definition 3.1 Let B be a ring and M a B-module. A derivation of B into
M is amap d: B — M subject to the two conditions:

1. (Additivity) d(z +y) = dx + dy;
2. (Leibniz rule) d(zy) = xzdy + ydz.

Here we have written dx for d(z) to emphasise the analogy with the classical
derivation rules. If moreover B is an A-algebra for some ring A (for example
A = 7Z), an A-linear derivation is called an A-derivation. The set of A-
derivations of B to M is equipped with a natural B-module structure via the
rules (dy + do)x = dyx + dyx and bdx = dbz. This B-module is denoted by
Der A(B s M )

Note that applying the Leibniz rule to the equality 1-1 = 1 gives d(1) =0
for all derivations; hence all A-derivations are trivial on the image of A in B.
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In the example one encounters in (say) real differential geometry we have
A= M =R, and B is the ring of germs of differentiable functions at some
point; R is a B-module via evaluation of functions. Now comes a purely
algebraic example.

Example 3.2 Assume given an A-algebra B which decomposes as an A-
module into a direct sum B = A @ I, where I is an ideal of B with I? = 0.
Then the natural projection d : B — [ is an A-derivation of B into I. Indeed,
A-linearity is immediate; for the Leibniz rule we take elements x;,2, € B
and write x; = a; + dx; with a; € k for « = 1,2. Now we have

d([Ell'Q) = d[(a1 —|—d:101)(a2 + dl’g)] = d(a1a2 + Cbgdl'l + alde) = I’le’l —f-l’ldl’g

where we used several times the facts that I? = 0 and d(A) = 0.

In fact, given any ring A and A-module /, we can define an A-algebra
B as above by defining a product structure on the A-module A @ I by the
rule (ay,41)(as,is) = (ajag, ajis + aziy). So the above method yields plenty of
examples of derivations.

Now notice that for fixed A and B the rule M — Dera(B, M) defines
a functor on the category of B-modules; indeed, given a homomorphism ¢ :
M; — M, of B-modules, we get a natural homomorphism Ders(B, M;) —
Der4(B, Ms) by composing derivations with ¢.

Proposition 3.3 The functor M — Dera(B, M) is representable by a B-
module g 4.

Proof: The construction is done in a similar way to that of the tensor
product of two modules. Define Q5,4 to be the quotient of the free B-
module generated by symbols dx for each x € B modulo the relations given
by the additivity and Leibniz rules as in Definition 3.1 as well as the relations
d(A(a)) = 0 for all @ € A, where A : A — B is the map defining the A-
module structure on B. The map x — dx is an A-derivation of B into
Qp/a. Moreover, given any B-module M and A-derivation § € Dera(B, M),
the map dz — d(x) induces a B-module homomorphism Qp /4 — M whose
composition with d is just 6. This implies that {2p,4 represents the functor
M — Ders(B, M); in particular, d is the universal derivation corresponding
to the identity map of Qp/4. O

We call €2p/4 the module of relative differentials of B with respect to A.
We shall often refer to the elements of Qg4 as differential forms.

Next we describe how to compute relative differentials of a finitely pre-
sented A-algebra.
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Proposition 3.4 Let B be the quotient of the polynomial ring Alxy,. .., x,]
by an ideal generated by finitely many polynomials fi,..., frn. Then Qp/a
s the quotient of the free B-module on generators dxq,...,dx, modulo the
B-submodule generated by the elements Y;(0;fi)dx; (i = 1,...,m), where
0;f; denotes the j-th (formal) partial derivative of f;.

Proof: First consider the case B = Alxy,...,x,]. As B is the free A-
algebra generated by the z;, one sees that for any B-module M there is a
bijection between Der4(B, M) and maps of the set {z1,...,z,} into B. This
implies that {2p/4 is the free A-module generated by the dux;.

The general case follows from this in view of the easy observation that

given any M, composition by the projection Alxy,...,z,] — B induces an
isomorphism of Der4(B, M) onto the submodule of Dera(A[zy,...,x,], M)
consisting of derivations mapping the f; to 0. O

Next some basic properties of modules of differentials.

Lemma 3.5 Let A be a ring and B an A-algebra.

1. (Direct sums) For any A-algebra B’

QBepy/a = Qpa ® Qprja.

2. (Ezact sequence) Given a map of A-algebras ¢ : B — C, there is an
exact sequence of C'-modules

QB/A ®p C — QC’/A — QC’/B — 0.
In particular, if ¢ is surjective, we have a surjection Q1p/a@pC — Qcy4.

3. (Base change) Given a ring homomorphism A — A’, denote by B’ the
A’-algebra B @4 A'. There is a natural isomorphism

QB/A ®B B/ &= QB’/A"

4. (Localisation) For any multiplicatively closed subset S C B there is a
natural isomorphism

Qpg/a = Qpja ®@p Bs.
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Proof: The first property is easy and left to the readers. For the second,
note that for any C-module M we have a natural exact sequence

0 — Derg(C, M) — Der,(C, M) — Ders(B, M)
of C-modules isomorphic to
0— HOIIlC(QC/B, M) — Homc(Qc/A, M) — HOHIB(QB/A, M)

The claim follows from this in view of the formal Lemma 3.8 of Chapter 0
and the isomorphism Homp(Q2p/4, M) = Home (24 ®@p C, M). This iso-
morphism is obtained by mapping a homomorphism Qg,4 — M to the com-
posite Qg4 ®p C — M ®p C — M where the second map is multiplication;
an inverse is given by composition with the natural map Qg4 — Qpa®@pC.
If the map B — (' is onto, then any B-derivation is a C-derivation as well,
so p/c = 0 and the first map in the exact sequence is onto.

For base change, note first that the universal derivation d : B — Qg4 is
an A-module homomorphism and so tensoring it by A’ we get a map

d': B — Qpa@a A =Qpa®pBos A =0p4 Q5B

which is easily seen to be an A’-derivation. Now any A’-derivation ¢’ : B’ —
M’ induces an A-derivation ¢ : B — M’ by composition with the natural
map B — B’. But ¢ factors as § = ¢ o d, with a B-module homomorphism
¢: Qpa — M’', whence a map ¢’ : Qp/a ®p B’ — M’ constructed as above.
Now one checks that ¢’ = ¢’ o d’ which means that Q5,4 ®p B’ represents
the functor M’ — Dera(B’, M').

For the localisation property, given an A-derivation 6 : B — M, we
may extend it uniquely to an A-derivation dg : Bs — M ®p Bg by setting
d5(b/s) = (6(b)s — bd(s)) ® (1/s%). (We leave it to the reader to check that
for b'/s" = b/s we get the same result — this is much simpler in the case
when there are no zero-divisors in S which is the only case we shall need.)
This applies in particular to the universal derivation d : B — (g4, and
one argues as in the previous case to show that any A-derivation Bg — Mg
factors uniquely through dg. O

As a first application of the theory of differentials we prove a characteri-

sation of finite étale algebras over a field, to be used in forthcoming chapters.

Proposition 3.6 Let k be a field and A a finite dimensional k-algebra. Then
A is étale if and only if Q4 = 0.
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Proof: For necessity we may assume by compatibility of €24/, with direct
sums that A is a finite separable field extension L of k. Then by the theorem
of the primitive element A = k[z]|/(f) with some polynomial f € k[x] and
so by Proposition 3.4 the L-module 7/, can be presented with a single
generator dxr and relation f'dr = 0. But since the extension is separable,
the polynomials f and f’ are relatively prime and hence the image of f’ in
L = E[z]/(f) is not 0. Whence dz = 0 in Q,/, and so Qp, = 0.

For sufficiency, it is enough to show by virtue of Chapter 1, Proposition
1.2 that A ®;, k is étale over k with k an algebraic closure of k. So using the
base change property of differentials we may assume k is algebraicaly closed.
Moreover, using the direct sum property as above we may even assume that
A is indecomposable. Denoting by [ its ideal of nilpotent elements, Chapter
5, Proposition 2.16 gives that A/ is a field. Since k is algebraically closed,
we cannot but have A/l = k and so we have a decomposition A = k& [
of A as a k-module. Now to finish the proof we show that assuming I # 0
implies €24/, # 0. For this it is enough to show by the surjectivity property
in Lemma 3.5 (2) that Q472 # 0, so we may as well assume /2 = 0. But
then we are (up to change of notation) in the situation of Example 3.2 which
shows that for I # 0 the projection d : A — [ is a nontrivial k-derivation,
which implies €24/, # 0. O

As a second application of differentials we give a criterion for a one-
dimensional closed subscheme of affine or projective space to be a smooth
curve. For this it is enough to check that all local rings at closed points are
discrete valuation rings. Since the proof works more generally for regular
local rings, we state the result in this context.

Proposition 3.7 Let k be a perfect field and let A be a localisation of a
finitely generated n-dimensional k-algebra at some closed point P. Then A
is a reqular local ring if and only if Q4 is a free A-module of rank n. In
particular, if n =1, A is a discrete valuation ring if and only if Q4. is free
of rank 1.

Remark 3.8 Explicitly, if A is a localisation of the k-algebra

B:k’[l’l,u-)xd]/(flv---afm)7

then Proposition 3.4 and the localisation property of differentials imply that
the proposition amounts to saying that among the relations >°;(0; f;)dz; = 0
there should be exactly d — n linearly independent ones, which in turn is
equivalent by linear algebra to the fact that the £ x m “Jacobian” matrix
J = [0; fi] should have rank d —n. In fact, for £ = C reducing the entries of
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J modulo the maximal ideal of A gives just the classical Jacobian matrix of
the closed subscheme of C? defined by the equations f; = 0 at the point P
corresponding to A and the condition says that some open neighbourhood of
P should be a complex manifold of dimension n.

For the proof of the proposition we need two lemmas from algebra. The
first of these is a form of Hilbert’s Nullstellensatz (which implies the one used
in the previous chapter).

Lemma 3.9 Let k be a field and let P be a mazimal ideal in a finitely gen-
erated k-algebra A. Then the field A/P is a finite extension of k.

For a proof, see Lang [1], Chapter IX, Corollary 1.2. See also Atiyah-
Macdonald [1] for four different proofs.
The other lemma is from field theory.

Lemma 3.10 Let k be a perfect field and let K|k be a finitely generated field
extension of transcendence degree n. Then there exist algebraically indepen-
dent elements x1,...,x, € K such that the finite extension K|k(xy,..., z,)
18 separable.

For a proof, see Lang [1], Chapter VIII, Corollary 4.4.

Corollary 3.11 In the situation of the lemma, the K-vector space Qi is
of dimension n, a basis being given by the dx;.

Proof: We may write the field K as the fraction field of the quotient A of
the polynomial ring k[z1,...,x,,z] by a single polynomial relation f. Here
f is the minimal polynomial of a generator of the extension K|k(z1,...,z,)
multiplied with a common denominator of its coefficients. Now according
to Proposition 3.4 the A-module €24/, has a presentation with generators
dxy,...,dx,,dr and a relation in which dx has a nontrivial coefficient because
f" # 0 by the lemma. The corollary now follows using Lemma 3.5 (4). |

Proof of Proposition 3.7: We give the proof under the additional assump-
tion that there exists a subfield & C k' C A that maps isomorphically onto
the residue field x(P) = A/P by the projection A — A/P. (Lemma 3.9
implies that this condition is trivially satisfied if k is algebraically closed.)
In the remark below we shall explain how one can reduce the general case to
this one.

Notice that since k is perfect and £’|k is a finite extension by Lemma 3.9,
we have ), = 0 by Proposition 3.6 (or the previous corollary). Hence by
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applying Lemma 3.5 (2) (with our k in place of A, k" in place of B and A in
place of C) we get Q4 = Qa/1r, s0 we may as well assume k = k' = 5(P).

In this case the k-module P/P? is canonically isomorphic to 4 16/ PQak.
Indeed, the latter k-vector space is immediately seen to represent the functor
M — Der(A, M) for any k-vector space M viewed as an A-module via the
quotient map A — A/P = k. On the other hand, the above functor is also
represented by P/P?. To see this, note first that the Leibniz rule implies
that any k-derivation § : A — M is trivial on P2, hence we may as well
assume P? = 0. But then we are in the situation of Example 3.2 and we may
observe that ¢ factors uniquely as 6 = ¢ od, with d as in the quoted example
and ¢ € Homy (P, N).

Now if Q4 is free of rank n, then Q4/,/PQ4 /), = P/P? has dimension n.
For the converse, observe first that the previous isomorphism and the corol-
lary to Nakayama’s lemma (Corollary 2.5) gives that 24/, can be generated
as an A-module by n elements dtq, ..., dt,. Were there a nontrivial relation
> fidt; = 0 in Q4, by the localisation property of differentials this relation
would survive in g/, contradicting Corollary 3.11. This implies that 24/,
is free. O

Remark 3.12 To reduce the general case of the proposition to the one dis-
cussed above it is convenient to use the completion A of A. This is the
inverse limit of of the natural inverse system formed by the quotients A/P"
of A. There is a natural map A — A which is injective for A noethe-
rian by Corollary 2.4. The image of P gives a maximal ideal P of A with
Pi/Pitl = pi/pitl for all i > 0. If A is of dimension 1, the case i = 1
of this isomorphism together with Corollary 2.5 implies that A is a discrete
valuation ring if and only if Ais. In general, we get that A is regular if and
only if A is regular, for one can prove (see Atiyah-Macdonald [1], Corollary
11.19) that the Krull dimension of A is the same as that of A. Also, the base
change property of differentials implies that €2 ; Ji; 18 free of rank n if and only
if Ak is.

Therefore it remains to see that A satisfies the condition at the beginning
of the above proof. For this, let f € k[z] be the minimal polynomial of a
(separable) generator « of the extension x(P)|k; it is enough to lift a to a
root of f in A. This can be done by means of Hensel’s lemma (see Chapter
7, Section 4).

In the remaining of this section we discuss quasi-coherent sheaves associ-
ated to modules of differentials. Namely, we shall define sheaves of relative
differentials (dy,x for certain classes of morphisms of schemes ¥ — X. In
fact, one may define these for any morphism ¥ — X but since we did not
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develop the necessary background we refer the interested readers to the ex-
cellent treatment in Mumford’s notes [1] or to Section I1.8 of Hartshorne [1].
What we propose instead is a more down-to-earth discussion of the special
cases we shall need.

Construction 3.13 First, if Y = Spec B and X = Spec A are both affine,
we define 2y, x as the quasi-coherent sheaf Op /4. Notice that according to
the localisation property of differentials, over a basic open set D(g) = Spec B,
of X the sheaf Qy,x is given by the Bj-module Qp_ /4.

Construction 3.14 Next assume we have a morphism X — Spec k with an
arbitrary scheme X; we shall use the abusive notation €1y, for the corre-
sponding sheaf of differentials which we now construct. For any affine open
covering of X by subsets U; = Spec A; the rings A; are all k-algebras and the
sheaf Qp, /1. = Q A,/k 1s defined on U;. Moreover, any basic open subset con-
tained in U; N Uj is canonically isomorphic to both (A;)y, and (4;)y,, whence
an isomorphism ) Ay, K = Q) 45, /k. These isomorphisms are compatible
for inclusions of basic open sets, so the third statement of Chapter 5, Lemma
2.7 applies to give an isomorphism (Qy,/x)|v,nv; = (Qu, k) |vinu;- These lat-
ter isomorphisms in turn are compatible over triple intersections U; NU; N Uj,
so we may patch the 1y, together by the method of Chapter 5, Construc-
tion 5.3 (which adapts to the construction of quasi-coherent sheaves) to get
Qx/x. Finally one checks that if we use a different open covering we get an
Ox-module isomorphic to Qx/y.

Remark 3.15 Let X be an affine or a projective variety of dimension n.
Then Proposition 3.7 may be rephrased by saying that X is a regular scheme
if and only if the stalk of the sheaf {2x/, at each point is free of rank n (for
the generic point this follows by localisation). From the next section on, we
shall call such sheaves locally free (see Lemma 4.3 below). Also, those X for
which Q. is locally free are usually called smooth (over k).

In particular, an affine or projective variety of dimension 1 is a Dedekind
scheme if and only if it is a smooth curve.

Construction 3.16 Finally, the other case where we shall use relative dif-
ferentials is that of an affine morphism ¢ : Y — X. In this case X is covered
by affine open subsets U; = Spec A; whose inverse images V; = Spec B; form
an open covering of Y and the B; are A;-modules via the maps \; : A; — B;
arising from ¢. Take f; € A; and put g; = \;(fi;). Then the inverse image of
the basic open set D(f;) = Spec (4;), is none but D(g;) which in turn is iso-
morphic to Spec (B; ®4, (A;),); indeed, one checks easily that (B; ®4, (4;)f,)
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represents the functor defining the localisation (B;),,. Hence by the base
change property of differentials we have canonical isomorphisms

Qv,yu,(D(9i)) = Qpija; ®p, (Bi)g = Qpy,, /A0y, = 2D(a1)/D(51)

so we may patch the sheaves 2y, 7, together over inverse images of basic affine
open subsets contained in U; N U; by the same method as in the previous
case.

4. Invertible Sheaves on Dedekind Schemes

In this section we shall study some special coherent sheaves of fundamental
importance for both the arithmetic and the geometry of Dedekind schemes.
Here is the basic definition.

Definition 4.1 A locally free sheaf on a scheme X is an Ox-module F for
which there exists an open covering U = {U; : i € I} of X such that the
restriction of F to each U; is isomorphic to O} for some positive integer n;.
A trivialisation of F is a covering U as above and a system of isomorphisms

If X is connected, then the n; are all equal to the same number n called
the rank of F. A locally free sheaf of rank 1 is called an invertible sheaf or a
line bundle.

Remark 4.2 For any locally free sheaf F and point P € X with residue
field k(P) the group Fp ® k(P) is a finite dimensional k(P)-vector space. So
we may think of a locally free sheaf as a family of x(P)-vector spaces which
is “locally trivial”. In fact, locally free sheaves correspond to vector bundles
in the algebro-geometric context, whence the name line bundle in rank 1.

Lemma 4.3 Any locally free sheaf is coherent. Moreover, if X is noetherian
and connected, a coherent sheaf F on X is locally free of rank n if and only
if it stalk Fp at each point P is a free Ox p-module of rank n.

Proof: For the first statement, take any affine open subset V' = Spec A
contained in one of the U; as in the definition. Then by the assumption the
restriction of F to V is isomorphic to the coherent sheaf defined by the free
A-module A @ ... ® A (with A repeated n; times).

In the second statement necessity follows from the definitions by taking
the direct limit. For sufficiency, assume Fp is freely generated over Ox p by
some generators ty,...,t,. We may view the t¢; as sections generating F(U)
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for some suficiently small open neighbourhood U of P. By shrinking U if
necessary we may assume U = Spec A and F = M for some A-module M
generated by the ¢;. Since X is noetherian, M is the quotient of the free
A-module of rank n by a submodule generated by finitely many relations
among the t;. By assumption, any of the finitely many coefficients occuring
in these relations vanishes when restricted to some open neighbourhood of
P contained in U. Denoting by V the intersection of these neighbourhoods,
the elements t;|y, generate F|y freely over Oy . O

Remark 4.4 A similar (but easier) argument as in the second part of the
above proof shows that if F is a coherent sheaf on any scheme X and P is a
point for which Fp = 0 then there is some open neighbourhood V' of P with
Fly =0.

The crucial importance of invertible sheaves for the study of Dedekid
schemes is shown by the following proposition.

Proposition 4.5 Any nonzero coherent sheaf of ideals T on a Dedekind
scheme X is invertible.

Proof: By the criterion of Lemma 4.3, it is enough to check that Zp is a
free Ox p-module of rank 1 for each P € X. If P is the generic point, this
is obviously true since any nonzero ideal in a ring generates the unit ideal in
its fraction field. If P is a closed point, we are done by the fact that Ox p is
a principal ideal ring. |

Up to now, the notion of an invertible sheaf may well have seemed to
be rather abstract, but now we explain a method for constructing invertible
sheaves on Dedekind schemes. First a definition.

Definition 4.6 A (Weil) divisor on a Dedekind scheme X is an element of
the free abelian group Div(X) generated by the closed points of X.

Thus a divisor is just a formal linear combination D = Y~ m;P; of finitely
many closed points of X. If P is a closed point, we define vp(D) to be
equal to m; if P = P; for some i and 0 otherwise. On the other hand, let
K be the function field of X; it is the common fraction field of all local
rings of X. Since the local ring Ox p is a discrete valuation ring, there is an
associated discrete valuation vp on K which takes finite values on nonzero
elements of K. By analogy with the case of meromorphic functions on a
Riemann surface, for a nonzero element f # 0 of K we say that f has a zero
of order m at P if m = vp(f) > 0 and that f has a pole of order m at P
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if m = vp(f) < 0. The following lemma shows that elements of K behave
in a similar way to meromorphic functions on a compact Riemann surface
(compare with the proof of Chapter 4, Lemma 3.2):

Lemma 4.7 If X is a Dedekind scheme with function field K, any nonzero
function f € K has only finitely many zeros and poles.

Proof: This follows from Chapter 5, Lemma 7?7 and the first statement of
Proposition 2.16. O

Thanks to the lemma, we may define the divisor of a nonzero function
f € K as the divisor D with vp(D) = vp(f) for all closed points P. In this
way, we obtain a homomorphism

div : K* — Div(X)

where K™ is the multiplicative group of K. Elements of the image of div are
traditionally called principal divisors.

Now denote by K the constant abelian sheaf on X defined by the addi-
tive group of K. It has an Ox-module structure coming from the natural
embedding of Ox into K but is not a quasi-coherent sheaf. However, given
any divisor D € Div(X) we may define a subsheaf of K which is not only
quasi-coherent but, as we shall see shortly, even invertible. Namely, define
for any open subset U C X

LD)U):={fekU): vp(f)+vp(D) >0 for all closed points P € U}.

One sees immediately that together with the restriction maps induced by
those of KL we get a subsheaf £(D) of K. One thinks of the sections of £(D)
over U as functions with local behaviour determined by the “restriction of
D to U”: they should be regular except perhaps at the points P € U with
vp(D) > 0 where a pole of order at most vp(D) is allowed; furthermore, at
points with vp(D) < 0 they should have a zero of order at least —vp(D).
Thus the sheaf £(0) is none but the image of Ox in K via the natural
embedding. Moreover, each £(D) becomes an Ox-submodule of I with its
natural Ox-module structure.

Proposition 4.8 Each L(D) is an invertible sheaf on the Dedekind scheme
X. Moreover the rule D +— L(D) induces a bijection between divisors and
invertible subsheaves of IC.

Here the term “invertible subsheaf” means that we consider invertible
sheaves which are O x-submodules of K with its canonical Ox-module struc-
ture.
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Proof: For the first statement, let P be a closed point of X and f € K*
a function with vp(f) = vp(D) (for example, a power of a generator of the
maximal ideal of Ox p). Denote by S the set of closed points @) of X with
vo(D) # 0 or vo(f) # 0. According to the previous lemma, S is a finite set.
Now let U be the open set (X \ S)U{P}. Over U, the sections of L(D) are
functions g which are regular outside P and vp(g) + vp(f) > 0. Hence the
map of Op-modules induced by 1 + f~! gives an isomorphism of Oy onto
L(D)|y. Since P was arbitrary, we get a covering of X by open subsets over
each of which £(D) is isomorphic to the structure sheaf.

Conversely, given an invertible subsheaf £ of I there is a trivialisation
of £ over some open covering & which we may choose finite by compactness
of X. For each U; € U denote by f; the image of 1 € Ox(U;) under the
isomorphism Ox (U;) = L(U;) arising from the trivialisation. Now define a
divisor D by setting vp(D) = —vp(f;) where i is an integer for which P € U;.
Since the finitely many f; have finitely many zeros and poles according to
the previous lemma, D is indeed a divisor. We still have to check that the
definition of D does not depend on the choices made. First, if P € U; N Uj,
viewing f; and f; as elements of Ox p we see that there should exist functions
u,v € Ox p with f; = uf; and f; = vf;, whence both v and v are units in
Ox,p and vp(f;) = vp(fj). Secondly, the definition of D does not depend
on the choice of the trivialisation for passing to another one induces an
automorphism of the stalk L£p viewed as a free Ox p-module of rank 1, and
such an automorphism is given by multiplication with a unit of Ox p. Finally,
one checks by going through the above construction that £ = L(D). |

The proof shows that in the case when vp(D) > 0 for all P the sheaf
L(—D) is a subsheaf not only of I but also of Ox and hence is an ideal sheaf.
Now assume X = Spec A is affine and take a nonzero ideal I of A. According
to Proposition 4.5, the coherent ideal sheaf I is an invertible subsheaf of &, so
the proposition applies and shows that I can be identified with an invertible
sheaf of the form £(—D), where D = Y m, P, is a divisor with all m; > 0. By
definition, a global section of the latter sheaf is an element of A contained in
the intersection NP;™", where the P; are viewed as prime ideals of A. But as
the ideals P are pairwise coprime, their intersection is the same as their

)

product, so by taking global sections of I = £(—D) we get:

Corollary 4.9 In a Dedekind ring any ideal decomposes uniquely as a prod-
uct of prime ideals.

This applies in particular to rings of integers in number fields. For the
ring Z it is none but the Fundamental Theorem of Arithmetic.
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Remark 4.10 Of course, we could have obtained this result without making
all this détour amidst schemes and invertible sheaves. But having done so,
we get as a bonus a geometric interpretation of the situation, namely that
ideals in a Dedekind ring can be regarded as compatible systems of local
solutions for a problem of finding functions with restricted behaviour at a
finite set of points. This problem can be regarded as an analogue of the
classical Mittag-Leffler and Weierstrass problems in complex analysis.

Remark 4.11 The preceding arguments also enable one to prove directly
that on X = Spec A all quasi-coherent ideal sheaves (in fect, all of them
are also coherent for A is noetherian) are isomorphic to some I. Indeed,
we already know that nonzero ideal sheaves are of the form L£(—D), with
vp(D) > 0 for all P; put I = L(—D)(X). By Chapter 4, Lemma 2.7 (3)
and the sheaf axioms it is enough to show the existence of compatible iso-
morphisms Z(U) = L(—D)(U) over basic open sets U = D(f). But we
have [(U) = I ®y4 A; and by the same argument as for U = X we get
L(D)(U) = IAy; the isomorphism is then given by the natural multiplica-
tion map I ®4 Ay — I Ay,

Returning to Proposition 4.8, one might be under the impression that the
invertible sheaves that are subsheaves of IC (and hence arise from divisors)
are rather special. This is a misbelief, for we have quite generally:

Proposition 4.12 Let X be an integral scheme whose underlying topological
space is compact. Then any invertible sheaf L on X is isomorphic to a
subsheaf of the constant sheaf IC associated to the function field of X.

Proof: By compactness we may choose a trivialisation of £ over a finite
covering of X by open subsets Uy, ..., U,; by irreducibility of X the intersec-
tion Uy = NU; is a nonempty open subset in X. For each integer 0 <i < n
let s; be the image of 1 by the isomorphism Ox (U;) = L(U;) coming from the
chosen trivialisation. For each ¢ > 0 there exists a section f; € Ox(Uy) with
fiso = Silu,- Now we define an injective morphism £ — K. According to
the third part of Chapter 4, Lemma 2.7 for this it is enough to define a com-
patible system of embeddings £(U) — KC(U) over those open subsets U with
U C U; for some i. These we define as the Ox(U)-module homomorphisms
induced by the maps s;|y — filv, viewing f; as a global section of . The
definition does not depend on the choice of 4, for if U C U;NU; and s € L(U)
arises both as s = a;s;|y and s = a;s;|y, we have s|y, = a;fiso = a; f;so,
whence the function a; f; — a;f; vanishes over the dense open subset U, so
a;fi = a;f; in K = K(X) by Chapter 5, Lemma ??. Injectivity of the
morphisms L£(U) — K(U) is obvious. i
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Remark 4.13 In fact, the compactness assumption in the proposition is
superfluous. See Hartshorne [1], Proposition 11.6.15.

Next, note that Proposition 4.8 implies that over a Dedekind scheme it is
possible to introduce an abelian group law on the set of invertible subsheaves
of IC, by the rule L(D;) x L(Ds) — L(D; + D,) for any two divisors Dy, Ds.
In this way the map D — L(D) becomes a group homomorphism.

But in view of the above proposition, it is interesting to know that one
may define a natural abelian group law on the set of isomorphism classes of
invertible sheaves on any scheme X. For this we first need the notion of the
tensor product F ® G of two Ox-modules F and G: this is none but the sheaf
associated to the presheaf U — F(U) ®o ) G(U).

Remark 4.14 One checks easily that F®G represents the set-valued functor
on the category of Ox-modules which maps an Ox-module M to the set of
Ox-bilinear maps F x G — M. (Use the representability for each U of the
functor associating Ox (U)-bilinear maps F(U) x G(U) — M(U) to M(U)
and conclude by Chapter 3, Remark 2.9.)

Proposition 4.15 For any scheme X, tensor product of Ox-modules in-
duces an abelian group structure on the set of isomorphism classes of invert-
wble sheaves on X. The unit element of this group is Ox and the inverse of

a class represented by an invertible sheaf L is the class of the sheaf LV given
by U — Home,, (L|y, Ou).

For the proof we need two general lemmata.

Lemma 4.16 If F and G are two Ox-modules on a scheme X and P is a
point of X, we have a natural isomorphism on the stalks

(F®G)p = Fp®oyp Gp.

Proof: This follows by nasty checking from the definitions. Note that since
the stalks of the sheaf associated to a presheaf are the same as that of
the presheaf it is enough to work with the presheaf tensor product U —

F(U) @oxwy G(U). 0

Lemma 4.17 A morphism ¢ : F — G of abelian sheaves on a topological
space is an isomorphism if and only if for each point P the induced group
homomorphisms on the stalks ¢p : Fp — Gp are.
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Proof: One implication is easy. For the other, assume that the ¢p are
all isomorphisms. We have to show that the maps ¢y : F(U) — G(U) are
all bijective. For injectivity, assume s € F(U) maps to 0 by ¢y. Then by
injectivity of the maps ¢p for P € U we get that the image of s in the stalks
Fpis 0 for all P, whence a covering of U by open subsets over each of which s
restricts to 0. Hence s = 0 by the first sheaf axiom. The proof of surjectivity
is similar, using the second sheaf axiom (and the injectivity just proven). O

Proof of Proposition 4.15: The group law is well defined since the tensor
product of modules respects isomorphisms. The abelian group axioms con-
cerning commutativity, associativity and the unit element follow from the
corresponding properties of the tensor product (of modules, which are clearly
inherited by Ox-modules). So only the axiom concerning the inverse remains.
For each open set U define a morphism £(U) x Home, 1(£(U), Ox(U)) —
Ox(U) by the natural evaluation map (s,¢) — ¢(s). This is clearly com-
patible with restriction maps for open inclusions V' C U and moreover it is
Ox (U)-bilinear, so it induces a morphism of Oy-modules £ ® LY — Ox.
To show that it is an isomorphism, it is enough to look at the induced maps
Lp Roxp L}, — Ox p on stalks by the previous two lemmata. But since Lp
is a free Ox p-module of rank 1, we have isomorphisms

Lp ®@ox p Homoy ,(Lp,Ox,p) = Ox,p @oy p, Homo, ,(Ox,p, Ox.p) = Ox p
and we are done.

Definition 4.18 The group of isomorphism classes of invertible sheaves on
a scheme X is called the Picard group of X and is denoted by Pic(X).

We finally establish the link between the group Div(X) of divisors on a
Dedekind scheme and the group Pic(X). For this denote by [£] the class of
an invertible sheaf £ in the Picard group. By what we have seen so far, we
dispose of a map Div(X) — Pic(X) given by D — [L(D)].

Lemma 4.19 The above map D — [L(D)] is a group homomorphism.

Proof: We have already seen that the map D +— £(D) is a homomorphism.
Recall that here the multiplication map £(D;) x L(D3) — L(Dy + Ds) for
two divisors Dy, Dy is given by multiplication of functions. This map is Ox-
bilinear and as such induces a morphism of Ox-modules £(D;) ® L£(Dy) —
L(D1+ D,). It is then enough to see that this latter map is an isomorphism,
which can be checked on the stalks. The stalk of £(D;) (i = 1,2) at a point
P is a free Ox p-module generated by some f;; that of £(Dy) ® L(D3) is
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generated by f1 ® fo and that of L(D;+ D) by fi1f2. Hence mapping f1 ® fo
to fifs indeed induces an isomorphism. O

Proposition 4.20 The sequence
0= Ox(X)* = K* 4% Din(x) "5 pic(x) = 0

is exact, where Ox(X)* is the multiplicative group of units of Ox(X).

Proof: Exactness at the first two terms on the left is immediate from the
definitions and surjectivity on the right follows from Propositions 4.8 and
4.12. For exactness at the third term note first that for any divisor of the
form D = div(f) the invertible sheaf £(D) maps to the unit element of the
Picard group as multiplying sections of £(D) over an open set U by fl|y
induces an isomorphism £(D) = Ox. Conversely, if such an isomorphism is
known, let f be the image of 1 € Ox(X) by this isomorphism. Then one
checks easily that D = div(f™1). i

Remarks 4.21

1. Traditionally when X = Spec A, the cokernel of the map div is called
the (ideal) class group of the Dedekind ring A. When A is the ring
of integers in a number field, a classical theorem of the arithmetic of
number fields asserts that this is a finite. See e.g. Lang [2], p. 100 or
Neukirch [1], Chapter I, Theorem 6.3 for a proof of this fundamental
fact.

2. The results of this section generalise to integral schemes that are locally
factorial, i.e. their local rings are unique factorisation domains. In the
general context closed points have to be replaced by closed subschemes
of codimension one. See Hartshorne [1], Section I1.6 for details.
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Chapter 7

Finite Covers of Dedekind Schemes

In this chapter we study finite (branched) covers of Dedekind schemes, which
will turn out to behave in a strongly analogous way to finite branched covers
of compact Riemann surfaces. On the way, we also prove classical number-
theoretic results in a geometric manner which emphasises their analogy with
the theory of branched covers.

1. Local Behaviour of Finite Morphisms

We begin with some examples.

Example 1.1 Consider the ring Z[i] of Gaussian integers; this is the ring of
integers of the algebraic number field Q(7). The natural inclusion corresponds
to a morphism of Dedekind schemes Spec Z[i] — Spec Z: we now describe its
fibres.

The fibre over the generic point (0) is

Spec (Z[i] ®z Q) = Spec ((Z[z]/(2” +1)) ©2 Q) = Spec Q[z] /(2" +1) = Q(3).

Similarly, the fibre over a closed point (p) of SpecZ is Spec (Z]i] ®z F,) =
Spec (Fp[z]/(2* +1)). Now there are three cases:

e If p = 1 mod 4, then the polynomial x? + 1 factors as the product of
two distinct linear terms over F,, hence (by the Chinese Remainder
Theorem) the fibre is isomorphic to Spec (F, & F,,).

e If p=—1 mod 4, then the polynomial 2> + 1 is irreducible over F, and
hence the fibre is isomorphic to Spec F .

e For p = 2 we have 22 + 1 = (z + 1)? over F, and hence the fibre is
Spec (Fp[z]/(z +1)?). The underlying topological space of this scheme
is a single point (the maximal ideal (x + 1)) and the local ring at this
point contains nilpotent elements (for example x + 1).

145
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One is thus tempted to regard the point in the fibre over (2) € SpecZ as
a kind of a branch point for this is the only point contained in a fibre which
is degenerate in the sense that there are nilpotent functions on it. (We shall
see shortly that though the fibres of the second type consist only of a single
point, it is not reasonable to consider them as degenerate.) The following
example confirms this intuition.

Example 1.2 For Riemann surfaces, the basic example of a branched cover
was the cover C — C, z — 2" (indeed, we saw that any branched cover is
analytically isomorphic to this one in the neighbourhood of a branch point).
Algebraically, this corresponds to the morphism Spec C[z] — Spec C|[z] com-
ing from the C-algebra homomorphism C|[z] — C|z] induced by z — 2". In-
troduce the variable y = 2™ in the second ring: we thus have an isomorphism
Clz] = Clz,y]/(y — 2") and the above homomorphism corresponds to map-
ping z to y. Now first look at the fibre over the generic point (0) € Spec C|z]:
it 1s

Spec (Clz,y]/(y — 2") ®cz) C(2)) = Spec (C(y)[2]/(y — 2"))

(don’t forget that the C[z]-module structure on Clz,y]/(y — 2") occuring in
the tensor product is given by z +— y). Hence the fibre is the spectrum of a
degree n Galois field extension of the rational function field C(y).

Now a closed point of the Dedekind scheme Spec C|[z] is given by a max-
imal ideal (2 — a) with some a € C; the residue field of the local ring at this
point is C[z]/(z — a) = C. Hence the fibre over this point is

Spec (Clz, yl/(y — ") ®cfz) C) = Spec (C[2]/(a = 2"))

since the C[z]-modules on the two terms of the tensor product are given
respectively by z +— y and z — a. Now there are two cases:

e For a # 0 the polynomial 2" — a splits into a product of n distinct
linear terms over C and thus the fibre is Spec (C & ... & C) (n copies).

e For a = 0 the fibre is Spec C[z]/(z"), a one-point scheme with nilpotent
elements in its unique local ring.

Our intuition is thus confirmed and it can be made more precise: in the
first two cases of the first example and in the first case of the second, the
fibre is a finite étale k-scheme, whereas in the remaining cases of the two
examples (the “branch points”) it is not. This also explains why there were
only two cases in the second example but three in the first: over C a finite
étale algebra can only be a finite direct sum of copies of C, whereas over
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a non-separably closed field we may have non-trivial finite separable field
extensions as well.

The essence of the phenomenon encountered above is distilled in the defi-
nitions we are to give. First a natural restriction on morphisms which ensures
in particular that they have finite fibres.

Definition 1.3 A morphism of schemes ¢ : Y — X is called finite if X has
a covering by open affine subsets U; = Spec B; such that for each ¢ the open
subscheme V; = ¢~1(U;) of Y is an affine scheme V; = Spec 4; and the ring
homomorphism \; : A; — B; corresponding to ¢|y;, turns B; into a finitely
generated A;-module.

In particular, any finite morphism is affine. This implies that for any
P € X the fibre Yp is affine as well; the additional property of finite mor-
phisms assures that Yp is the spectrum of a finite dimensional x(P)-algebra.

Remark 1.4 When we shall be dealing with a finite morphism ¢ : Y —
X, with X a Dedekind scheme, we shall always assume that the induced
map Ox, — (¢.Oy), at the generic point 1 of X is nonzero (and hence is
an injection, for Ox, is the function field of X). This seemingly innocent
assumption has an important consequence (valid for any noetherian integral
scheme in place of X): that the continuous map underlying ¢ is surjective.
Indeed, if it were not, there would be a point P € X over which the fibre
is vacuous, i.e. is the spectrum of the zero ring. But then by Nakayama’s
lemma (Chapter 6, Lemma 2.3), the stalk of ¢.Oy at P would be zero as
well, so since ¢,y is a coherent sheaf, it would be 0 in an neighbourhood
of P (by Chapter 6, Remark 4.4). But each such neighbourhood contains 7,
a contradiction.

Examples 1.5

1. If K C L is an inclusion of number fields, then the induced morphism
Spec O, — Spec Ok is finite as Oy, is a finitely generated Og-module
according to Chapter 6, Proposition 1.9.

2. We shall prove in the next chapter that any nonconstant morphism of
smooth projective curves is finite. For affine plane curves, this is not
always true: consider, for instance, the curve Spec Clz,y]/(zy — 1) =
Spec Clx, z7'; this is the complex affine line with the point 0 removed.
The natural inclusion map Spec C[x, z!] — Spec C[z] is not finite; it
is not even surjective.
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3. One may nevertheless construct many examples of finite maps of affine
curves: for instance, Spec Clz,y|/(y" — f) — Spec C[z] is such for any
f € Clz].

Remark 1.6 It can be shown that if ¢ : Y — X is a finite morphism then
any affine open cover of X satisfies the property of the definition. For basic
open sets this is easy to check: if D(f;) = Spec (A;)s, C A; is such, then the
fact that B; is a finitely generated A;-module via \; immediately implies that
(Bi)xi(s,) 1s a finitely generated (A;)y,-module.

We can now begin the analysis of fibres of finite morphisms. Given a
finite morphism ¢ : Y — X, the fibre Yp over any point P of X is the
spectrum of a finite dimensional k(P)-algebra, so by Chapter 5, Proposition
2.16 decomposes as a finite disjoint union of schemes each of which has a
single point @) of X as its underlying space (a point in the topological fibre)
such that all elements of the maximal ideal of the local ring at @ (i.e. the
germs of functions vanishing at ) are nilpotent.

Definition 1.7 Let X be a Dedekind scheme and ¢ : Y — X a finite
morphism. We say that ¢ is étale at a point ) € Y if the component of the
fibre Yp corresponding to @ is étale over Spec x(P), i.e. if it is the spectrum
of a finite separable field extension of k(P). The morphism ¢ is a finite étale
morphism if it is étale at all points of Y.

In particular, all fibres of a finite étale morphism are finite étale schemes
over residue fields of points of X.

Remark 1.8 Though not used explicitly in the above definition of finite
étale morphisms, the assumption that X is a Dedekind scheme is important
here. When defining finite étale morphisms of general schemes, one needs an
additional assumption which is automatically satisfied here (see Chapter 9).

We can now state the main result of this section.

Theorem 1.9 Let ¢ : Y — X be a finite morphism of Dedekind schemes.
Then ¢ is étale at a point QQ of Y if and only if the stalk of the sheaf of
relative differentials Qy x at Q s 0.
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Proof: Take an affine open neighbourhood U = Spec A of P whose inverse
image in Y is of the form V = Spec B and identify P and ) with the
corresponding prime ideals of B and A as usual. Then by the localisation
property of differentials the stalk of Qy,x at @ is Qp,/4, With Bg regarded
as an A-algebra via the composite map A — B — By.

Next observe that the local component of the fibre Yp corresponding to
() is precisely Spec (Bg ®4k(P)). (Indeed, by definition the local component
is the spectrum of the localisation (B ®4 £(P))g, where @ is the image of Q)
in B ®4 k(P). This localisation is obtained by localising first B/PB by the
image of (A/P)\ {0} and then by the complement of ) which is the same as
localising B by @ first, then passing to the quotient by the image of P and
finally localising by the image of (A/P)\ {0}.) By the base change property
of differentials we have an isomorphism

QBooar(P)/r(P) = Uoja @B, (Bg ®a K(P)).

Now assume {2 Bo/a = 0. Then the left hand side vanishes and so by Chapter
6, Proposition 3.6 By ®4 k(P) is étale over k(P), i.e. it is equal to x(Q)
which is finite and separable over x(P). Conversely, if this is the case, then
by applying the argument backwards we get that Qp,/4 ®p, £(Q) = 0. But
this latter ring is isomorphic to Qg4 / Q€Qp,/4 and the assertion follows
from Nakayama’s lemma (Chapter 6, Lemma 2.3). m|

Taking Chapter 6, Remark 4.4 into account, we get as a first corollary:

Corollary 1.10 Let ¢ : Y — X be a finite morphism of Dedekind schemes.
Then the points of Y at which ¢ s étale form an open subset of Y. In
particular, if the fibre of ¢ at the generic point is étale, then ¢ is étale at all
but finitely many closed points of Y.

Example 1.11 It may very well happen that the generic fibre is not étale
and hence ¢ is nowhere étale. An example is given by the map SpecF,[t] —
Spec F,[t] induced by the F,-algebra homomorphism ¢ +— #* (an analogue of
Example 1.2 in characteristic p > 0). As already noted in Chapter 1, on the
generic stalks this induces an inseparable field extension.

Remark 1.12 The theorem shows that when X and Y are smooth complex
curves, then ¢ is étale precisely over those closed points P € X for which the
associated holomorphic map gives a cover in some complex open neighbour-
hood of P. We illustrate this by the example when Y is an affine plane curve
of equation f(x,y) = 0 and ¢ is the map which projects Y onto the z-axis;
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the general case is based on the same principle. In our case {2y, x is the coher-
ent Ox-module associated to the C|x,y|/(f)-module with single generator
dy and relation 0, f. Hence its stalk is 0 precisely at those points (x,y) of
X where 0, f(z,y) # 0. But by the implicit function theorem, these are the
points where the holomorphic map associated to ¢ is a local isomorphism;
the points with 9, f(x,y) = 0 are the branch points.

We now introduce a useful concept originating in work of Dedekind.

Definition 1.13 Let ¢ : Y — X be a finite morphism of Dedekind schemes
which is étale at the generic point. Then the we define the different Dy, x as
the nonzero ideal sheaf on Y which is the annihilator of Qyx.

Putting Theorem 1.9 together with the theory of the previous section we
get:

Corollary 1.14 For ¢ : Y — X as in the above definition, the different
Dy,x is an invertible sheaf of the form L(D), where D = Y, m;Q; is a
divisor supported exactly at those points QQ; at which ¢ is not étale.

Definition 1.15 The points @); arising in the above corollary are called the
branch points of ¢ or those points at which ¢ is ramified.

Remark 1.16 In the case when Y = Spec Oy and X = Spec Ok are spectra
of rings of integers in number fields we get using Chapter 6, Remark 4.11
that the different is of the form I, with I an ideal of Oy. Thus I is a product
of powers of those prime ideals of Oy at which the map is not étale. This
gives the link to the classical concept of the different in algebraic number
theory.

In the remaining of this section we investigate fibres of finite morphisms
more closely, especially those containing branch points. For this the following
observation is crucial.

Proposition 1.17 Let ¢ : Y — X be a finite morphism of Dedekind schemes,
inducing a field extension L|K on the generic stalks. Then ¢.Oy is a locally
free Ox-module of rank |L : K]|.
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Proof: Let P be a point of X. As usual, we consider an affine open neigh-
bourhood U = Spec A of P over which ¢ comes from a ring homomorphism
A: A — B. Here B is the integral closure of A in L, being integrally closed
and finite over A. Now the stalk of ¢,Oy at P is the spectrum of the Ap-
algebra Bp = B ®4 Ap. This algebra can also be seen as the localisation of
B by the multiplicatively closed subset A(A \ P). Indeed, given f € A\ P,
we have already seen in Chapter 6 during the construction of the sheaf of
relative differentials that By is canonically isomorphic to B ®4 Ay; the
statement follows from this by passing to the direct limit (a union in this
case). Taking Chapter 6, Lemma 1.8 into account, this shows that Bp is
the integral closure of Ap in L. In particular, since any element of L can
be multiplied with an appropriate element of K to become integral over Ap,
any generating system of the finitely generated Ap-module Bp generates the
K-vector space L. According to (the corollary to) Nakayama’s lemma we get
such a generating system by choosing elements ¢4, ..., t, € Bp whose images
modulo PBp form a basis of the x(P)-vector space Bp/PBp (the spectrum
of this x(P)-algebra is none but the fibre over P). It remains to be seen
that the ¢; are linearly independent over K, for this implies n = |L : K| as
well. So assume there is a nontrivial relation ) a;t; = 0 with a; € K. By
multiplying with a suitable power of a generator of P (viewed as the maximal
ideal of Ap) we may assume that all a; lie in Ap and not all of them are in
P. But then reducing modulo P we obtain a nontrivial relation among the
t; in Bp/PBp, a contradiction. O

To derive the next result we need to introduce some notation and ter-
minology. Recall that the fibre Yp of ¢ over a point P € Y decomposes as
a finite disjoint union of spectra of local k(P)-algebras each of which corre-
sponds to a point () in the topological fibre. We have already seen during
the proof of Theorem 1.9 that if V' = Spec B is an affine open set contain-
ing Yp, then the local component corresponding to ) is the spectrum of
Bg ®4 k(P) = Bg/PBg. Here By is a discrete valuation ring whose max-
imal ideal B¢ induces the maximal ideal Q of Bg/PBg. By Chapter 5,
Proposition 2.16 ) consists of nilpotent elements, so being finitely generated,
it is actually a nilpotent ideal (i.e. some power of it is 0).

Definition 1.18 With the above notations, the smallest nonnegative integer
n for which Q™ = 0 is denoted by e(Q|P) and is called the ramification index
of ¢ at Q. The degree f(Q|P) of the residue field extension k(Q)|x(P) is
called its residue class degree.

In particular, ¢ is étale at @ if and only if e(Q|P) = 1 and k(Q) is
separable over x(P). In the case where X = Spec B and Y = Spec A are
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affine there is a more classical definition of the ramification index: it is the
multiplicity of @ in the product decomposition of the ideal PB in B (cf.
Chapter 6, Corollary 4.9).

Remark 1.19 Applying the above definition to Example 1.2 corroborates
that the above definition of the ramification index is compatible with the one
used for Riemann surfaces. The extension of non-trivial residue class degrees
is, however, a phenomenon which does not arise over the complex numbers.

Now we can state a fundamental equality of the arithmetic of Dedekind
schemes which is the analogue of Chapter 4, Proposition 2.5 (4).

Proposition 1.20 In the situation of the previous proposition, let P be a
point of Y. Then we have the equality

EQ:@(Q!P)f(Q!P) —|L: K|

where () runs over the points of the topological fibre over P.

Proof: During the previous proof we have seen that the dimension of the
k(P)-space Bp/PBp is |L : K|. Since Bp/PBp decomposes as a direct sum
of its components Bg/P By it will be enough to show that the dimension of
such a component over k(P) is precisely e(Q|P) f(Q|P). For this, notice that
since B is a discrete valuation ring, multiplication by the A-th power of a
generator of QBg induces an isomorphism Bg/QBg = (QBg)*/(QBg)"
for any positive integer k. Hence (with notation as in the definition above)
in the filtration

Bo/PBe > Q2Q*D...0Q WM =90

each successive quotient is isomorphic to Bg/QBg = k(()) and so is an
f(Q|P)-dimensional k(P)-vector space. This proves our claim. i

2. Fundamental Groups of Dedekind Schemes

In this section we shall construct a profinite group which classifies finite étale
covers of a fixed Dedekind scheme just as the absolute Galois group classi-
fies finite étale algebras over a field or as the profinite completion of the
topological fundamental group classifies finite covers of a compact Riemann
surface. The method we shall follow will be the exact analogue of the proce-
dure for Riemann surfaces in Chapter 4, Section 3; the technical details will
be different, though.
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So to start the procedure, we have to study function fields of Dedekind
schemes. Consider the functor which associates to a Dedekind scheme X its
function field K. This is indeed a functor, for given another Dedekind scheme
Y with function field L and a morphism ¢ : Y — X, we have an induced
morphism K — L on generic stalks of structure sheaves. If the morphism ¢
is finite, we get in this way a finite field extension L|K. Call the morphism
¢ separable if the extension L|K is separable.

Proposition 2.1 Let X be a Dedekind scheme with function field K. Then
for any finite separable extension L|K there is a Dedekind scheme Y with
function field L and equipped with a finite separable morphism Y — X.
Furthermore, the scheme Y is unique up to isomorphism (over X ).

The Dedekind scheme Y is called the normalisation of X in L.

Proof: First we prove uniqueness. Assume ¢ : ¥ — X and ¢ : Y/ — X
are two normalisations of X in L. Choose some affine open subset Spec A C
X. By Remark 1.6, over any basic open set D(f) = Spec Ay C Spec A both
¢ and ¢’ satisfy the condition for a finite map. Let D(g) (resp. D(g’)) be
the basic open set in Y (resp. Y’) which is the preimage of D(f). Then both
Oy (D(g)) and Oy/(D(g')) are finitely generated As-modules. Moreover, they
are integrally closed with fraction field L (since their localisations at closed
points are), so they are both isomorphic to the integral closure of Ay in L
via their embeddings in L. This yields an isomorphism D(g) = D(¢'). Using
Chapter 6, Lemma 1.8 we see that these isomorphisms are compatible over
intersections of basic open sets, therefore they define an isomorphism of Y
with Y/ over X.

Now assume X = Spec A is affine with fraction field K and let B be the
integral closure of A in L. To prove that Spec B is a Dedekind scheme one
employs exactly the same argument as in the special case A = Z treated be-
fore in Chapter 6, Example 2.17 (note that it is here that we use separability
of L|K). By Chapter 6, Proposition 1.9, B is a finitely generated A-module,
so the morphism ¢4 : Spec B — Spec A is finite. Before going over to the
general case, notice that if U = Spec Ay is a basic open subscheme of X,
then Chapter 6, Lemma 1.8 implies that ¢,*(U) is the normalisation of U,
for it is the spectrum of the localisation of B by g = ¢?4( f).

Now cover X with affine open subsets U;. By the affine case, each U; has
a normalisation V; equipped with a finite morphism V; — U;. It will suffice
to show that there exist isomorphisms ¢;; = ¢; (U; N U;) — &5 (U; N Uj)
compatible over triple intersections, for then the V; may be patched together
using the construction of Chapter 5, Construction 5.3. To do this, cover
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U;NU; by basic affine open sets Wy; their inverse images by ¢; and ¢; (which
cover ¢; ' (U;NU;) and ¢, (U;NU;), respectively) both give a normalisation of
Wy in L by the remark in the previous paragraph and hence are canonically
isomorphic by the uniqueness statement. Since moreover these isomorphisms
are readily seen to be compatible over the intersections of the W}, (which
are themselves basic open sets), we can conclude that they can be patched
together to define the required ¢;;: for the underlying continuous maps this
is immediate and for the maps on the structure sheaves one uses the third
part of Chapter 5, Lemma 2.7. O

For a fixed Dedekind scheme X define the category Ded’ of finite sepa-
rable Dedekind schemes over X as the category whose objects are Dedekind
schemes Y equipped with a finite separable morphism Y — X and whose
morphisms are finite morphisms compatible with the projections onto X.

Corollary 2.2 The functor mapping an object Y — X to the induced ex-
tension of function fields induces an anti-equivalence between the category
Ded’ and the category of finite separable extensions of the function field K
of X (with morphisms the inclusion maps).

Proof: The proposition shows that the functor is essentially surjective; it
remains to check that it is fully faithful. For this, note first that given a
finite morphism Y — X inducing a finite separable extension L|K, there is
an isomorphism of Y with the normalisation of X in L constructed in the
above proof. Fixing such an isomorphism for each object of Ded% we get
a canonical bijection between morphisms ¥ — Z in Ded’ and morphisms
between normalisations of X in finite separable extensions of K. But these in
turn correspond bijectively to towers of extensions K C L C M for the nor-
malisation in M of the normalisation of X in L is none but the normalisation
of X in M. O

Now let X be a Dedekind scheme. A finite étale X -scheme is a scheme Y’
equipped with a finite étale morphism Y — X. The following result shows
that such a Y can only be of a very special type.

Proposition 2.3 Any finite étale X-scheme Y 1is a finite disjoint union of
Dedekind schemes.

Proof: Let @) be a closed point of Y and let By be the local ring of Y
at () whose maximal ideal we also denote by ). Denote by P the image
of @ in X and by Ap its local ring, which is a discrete valuation ring with
maximal ideal P generated by a single nonzero element t. The spectrum
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of Bo/PBg = Bg/tBg is the local component of () in the fibre over P,
so it is a finite field extension of A/P by assumption. Hence t generates a
maximal ideal in B¢ which is only possible for ) = (t). Furthermore, By is a
noetherian local ring, being a localisation of a finitely generated Ap-module.
We now show that By is a discrete valuation ring. Combining what we know
so far with Chapter 6, Lemma 2.2, it is enough to see that B is an integral
domain. For this, let M € Spec Bg be an inverse image of the generic point
(0) of Spec Ap. Since M as an ideal of By is properly contained in (), we
have t ¢ M and m = bt for any m € M with some b € By. As M is a prime
ideal, this forces b € M, so that QM = M and finally M = 0 by Nakayama’s
lemma.

Now since X is noetherian and Y is finite over X, we conclude from the
definitions that Y is noetherian as well. Furthermore, now that we know
that the local rings of Y at closed points are discrete valuation rings, we may
conclude that Y is normal and of dimension 1 (since all other local rings
are localisations of those at closed points). So it remains to be seen that
Y is a finite disjoint union of integral schemes. For this, let ny,...,n, be
the finitely many points in the generic fibre Y, and let Y; be the closure of
n; in Y. We have Y; # Y, for i # j as the generic point of an irreducible
closed subset is unique. But then the Y; are pairwise disjoint, for if say Y}
and Y5 had a a closed point ) in common, then, since we may assume Y;
not contained in Y5, for an affine open subset Spec A C Y; containing @) the
irreducible closed subset Y5 N Spec A C Spec A would define a nonzero prime
ideal of A properly contained in (), which is impossible as the local ring at
(@ is a domain of dimension 1. Hence the Y; are the finitely many connected
components of Y; endowing them with their open subscheme structure we
get a decomposition as required. O

Now if we wish to continue our program parallel to Chapter 4, Section 3,
we need the following lemma.

Lemma 2.4 Letp: Y — X be a finite morphism of Dedekind schemes.

1. q: Z =Y be a second finite morphism of Dedekind schemes. Then
poq is étale if and only if p and q are étale.

2. Let now q : Z — X be a Dedekind scheme finite and étale over X.
Then the morphism Y xXx Z — Y s finite and étale and hence so 1is
the composite Y xXx Z — X.

Note that by our convention (Remark 1.4) all finite morphisms under
consideration are surjective.
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Proof: For the first statement, we may assume (using Remark 1.6 if neces-
sary) that X = Spec A, Y = Spec B, Z = SpecC' are all affine. For a point
P € Spec A we have

C®A/€(P)gC®BB®AKJ(P). (7.1)

Now if B ®4 k(P) is a direct sum of finite separable extensions k(Q)|x(P)
and so is C ®p k(Q) for each @, we get that C' ®4 £(P) is a direct sum of
separable extensions. For the converse we argue as in the beginning of the
proof of Chapter 4, Theorem 3.17: if K C L C M are the respective function
fields of X, Y and Z, it follows from Proposition 1.20 (in fact, already from
Proposition ?77?) that C' ®4 k(P) is étale if and only if all of its residue fields
are separable over £(P) and the sum of residue class degrees is [M : K|. Now
if one of the residue fields of B ®4 x(P) is inseparable over x(P) or if the
sum of its residue class degrees is less than [L : K], then a counting shows
that C' ®4 k(P) cannot be étale. This not being the case by assumption, Y
is étale over X, and since in this case by formula (7.1) C' ®4 (P) is just the
direct sum of the C ®p k(Q) for @ running over the points in the fibre Yp,
we see that Z — Y must be étale as well.

For the second statement, finiteness of the morphism Y x x Z — Y follows
from the definitions. For étaleness again we may assume X = Spec A, Y =
Spec B, Z = Spec C are all affine. Then for () € Spec B, we have

(B®4C)2pkEQ)=Co4KQ).

But the homomorphism A — x(Q) factors as A — k(P) — k(Q), where P
is the image of @ in X. Now since by assumption C' ®4 x(P) is étale over
r(P), the algebra C' @4 £(Q) = C ®4 £(P) @y py £(Q) is étale over £(Q) (one
may use Chapter 6, Proposition 3.6 and Lemma 3.5 (3)). m

Remark 2.5 It can be shown that if p: Y — X is a finite étale morphism
of Dedekind schemes and ¢ : Z — Y any morphism of Dedekind schemes
such that the composite p o ¢ is finite and étale, then ¢ is also finite and
étale. This follows immediately from the first statement of the lemma and
the definition of finite morphisms once we know that ¢ is surjective. The
proof of this innocent-looking fact, however, requires more technique than
we have seen so far. We shall return to this point in Chapter 9.

Now let X be a Dedekind scheme with function field K and ¢ : ¥ — X
a Dedekind scheme finite and étale over X. By Proposition 2.3, the fibre
of ¢ over the generic point of X is the spectrum of a finite étale K-algebra
which defines via the functor of Chapter 1, Theorem 3.4 a finite continuous
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Gal (K)-set Sy. Moreover, the rule Y +— Sy defines a functor from the
category of schemes finite and étale over X to the category of finite continuous
Gal (K)-sets. (The perceptive reader will have noticed that in order to make
everything fit here we should consider only those morphisms between schemes
over X which are finite and separable but if we admit the above remark this
condition is satisfied by all morphisms of finite étale X-schemes.)

Theorem 2.6 Let X be a Dedekind scheme with function field K. Fix a
separable closure K* of K and let K¢ be the composite in K* of all finite
subextensions L|K which correspond by Corollary 2.2 to Dedekind schemes
étale over X. Then for each finite étale X -scheme ¢ : Y — X the action of
Gal (K) on the set Sy defined above factors through the quotient Gal (K| K')
and in this way we obtain an equivalence between the category of schemes
finite and étale over X and the category of finite continuous left Gal (K| K)-
sets.

To be consistent with the notations in previous chapters, we call the op-
posite group of Gal (K| K) the algebraic fundamental group of the Dedekind
scheme X.

Proof: The first statement of the theorem is immediate from the construc-
tion and implies via Chapter 1, Theorem 3.4 that the functor we are inves-
tigating is fully faithful. To see that any finite continuous Gal (K®|K)-set S
is isomorphic to some Sy, one first produces from Chapter 1, Theorem 3.4
a finite direct sum of finite subextensions of K*|K giving rise to S. Then
it remains to see that any finite subextension of K|K is the function field
of some Dedekind scheme finite and étale over X. But this can be proven
by exactly the same argument as in the proof of Chapter 4, Theorem 3.17,
using Lemma 2.4. O

Remark 2.7 We shall study of fundamental groups of smooth curves in the
next section; here we briefly discuss spectra of rings of integers in number
fields.

We know several classical facts concerning these from algebraic number
theory. Firstly, a theorem of Minkowski states that m(SpecZ) is trivial.
Secondly, a theorem of Hermite and Minkowski states that for any number
field K the group 7 (Spec Ok ) has only finitely many finite quotients of given
order. Thirdly, one of the main results of class field theory (usually attributed
to Hilbert) states that the maximal abelian quotient of m (Spec Of) is finite
for all K and isomorphic (up to a finite group of exponent 2 coming from so-
called real places of K) to Pic(Spec Ok) (see the next chapter for a geometric
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analogue). Proofs of these classical theorems can be found in the books of
Lang [2] and Neukirch [1], for example.

But as for the groups m (Spec Ok ) themselves and not just their finite
quotients, our current knowledge is far from being ample. For several struc-
tural results, including the fact that they are topologically finitely generated
(in contrast to the groups Gal (K)), see chapter X of the monograph of
Neukirch-Schmidt-Wingberg [1], where the results are stated more generally
for open subschemes of Spec O.

3. Galois Branched Covers and Henselisation

The perceptive reader has noted that though the main theorem of the last
section was completely analogous to the topological situation, there was one
point missing from the presentation, namely the analogue of Galois branched
covers. In this section we first repair this sin of omission.

We define (rather tautologically) a finite morphism ¢ : Y — X of
Dedekind schemes to be Galois if the induced inclusion K C L of function
fields is a finite Galois extension. Now there is a natural action of the (finite)
Galois group GG on X defined as follows. Take an affine open covering of X by
U; = Spec A; whose inverse image consists of affine open sets V; = Spec B;.
Then B is the integral closure of A; in L, so that o(B;) = B; for all i and
o € G and if @ is a prime ideal in B;, then o(Q) is also a prime ideal of
B;. From this we deduce an action of G on X as a topological space but
we have actually more: from the automorphism ol|p, : B; — B; we deduce
an automorphism of V; by Chapter 5, Theorem 2.14. These automorphisms
are easily seen to be compatible over the intersections V; NV}, so we get an
action of G on X as a scheme.

The next proposition shows that topologically this action by G has the
property of a Galois cover.

Proposition 3.1 The group G acts transitively on the fibres of ¢.

Proof: We may assume X = Spec A and Y = Spec B are affine. Let P
be a prime ideal of A and let @); be a prime ideal of B with @Q; N A = P.
Let Qs, ..., Q, be the other prime ideals of B in the G-orbit of ();. Assume
there is some prime ideal ) lying over P which is not among the ();. Since
@ and the @; are all maximal ideals, we may apply the Chinese Remainder
Theorem (Lang [1], Chapter II, Theorem 2.1) which gives an isomorphism
B/(QQ:...Q,) = B/Q®B/Q1®...® B/Q,, hence we may find z € @) not
contained in any of the @; (we may even find an x mapping to 1 modulo
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cach @); and to 0 modulo @)). Now for any o € G the element o(x) is still
outside each @);, hence the same holds for their product N(z) = [[,cq o(x).
But N(z) € A, which means that N(z) ¢ P. But since z € @), we have
N(z) € QN A = P, a contradiction. o

Remark 3.2 The proposition implies that X as a scheme is the quotient of
Y by the action of G defined above. To make this precise, note that we may
take the quotient of Y by the G-action in the category of locally ringed spaces
just as in the construction of projective spaces: we take the quotient of the
underlying space by the action of GG, whence a canonical topological projec-
tionp : Y — Y/G; then for each open set U C Y/G we define Oy, (U) as the
ring of G-invariant elements of Oy (p~'(U)). One checks that (Y/G, Oy/q)
is indeed a locally ringed space and there is a canonical map ¢ : Y/G — X
with ¢ = 1 o p. By the proposition v is an isomorphism on the underlying
topological spaces. Now observe that if we choose an affine open covering of
X by subsets Spec A; whose inverse images in Y are of the form Spec B;, then
by construction the G-orbit of any point of Y is entirely contained in one of
the Spec B;. This implies that we may define the structure of a scheme on
Y/G by choosing as an affine open covering the schemes Spec BY, where BY

is the ring of G-invariant elements of B;. By construction we have BS = A;
and hence Y/G = X as schemes.

Now let us draw some immediate consequences from the proposition con-
cerning the local behaviour of a morphism ¢ : Y — X near branch points.
Consider a point P of X and a point ) in the fibre over P. According
to Proposition 3.1, any other point of the fibre Yp over P is of the form
o(Q) with some ¢ € G and by construction e(c(Q)|P) = e(Q|P) and
fle(@Q)|P) = f(Q|P). Hence we may denote simply be e end f the com-
mon ramification index and residue class degree of the points in Yp. Now let
Dg be the stabiliser of () with respect to the action of G on Y. Again by
Proposition 3.1, the cosets of G mod D¢ are in bijection with the points in
Yp. Hence Proposition 1.20 implies that the order of Dy is exatly ef.

Now let L¢ be the fixed field of Dy and X' the normalisation of X in L.
Denote by @' the image of @) by the map ¢’ : Y — X',

Lemma 3.3 The topological fibre of ¢’ over Q' consists only of Q. We have
the equalities

(QIQ) =, FQIQ)=F and e(Q|P)= F(QIP) = 1.

In particular, the finite morphism X' — X is étale at Q'.
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Proof: According to Proposition 3.1, the group D, acts transitively on the
fibre of ¢’ over )'. On the other hand, it fixes ), whence the first statement.
The second statement follows from the already proven fact that the order of
Dg is ef in view of the equalities

e(QQVe(QP) =e and [f(QIQ)f(QP)=f

which hold quite generally and follow from the definitions. 0

Remark 3.4 In arithmetic terminology, the group Dy is called the decom-
position group of () and Ly is called its decomposition field.

Thus the local ring Ox/ o of X" at () has the property that its integral
closure in L is a discrete valuation ring (the local ring of @) and hence
the ramification index and the residue class degree are easy to compute; in
particular, the formula of Proposition 1.20 reduces to ef = [L : Lg|. This
property is not shared by the local ring Ox p of X at P: its integral closure
in L has several maximal ideals corresponding to the points in the fibre Y.
We may of course localise at one of these to get an extension of discrete
valuation rings but then we lose the finiteness property of the corresponding
morphism of affine schemes.

So we see that in order to study the local behaviour of ¢ at @) it is much
better to work with Oxs ¢ than with Ox p; moreover, by the corollary we
get the same ramification index and residue class degree. This procedure is
a priori only available in the Galois case but if ¢ : Y — X is only seperable
with function field extension L|K, we may embed L into a Galois extension
M of K and study the corresponding morphism of Dedekind schemes. This
prompts the idea that if we choose M to be the biggest Galois extension
available, namely the separable closure, then by the generalising the above
procedure we may reduce the study of the local behaviour of finite morphisms
near branch points to a problem about finite extensions of discrete valuation
rings.

We now make this idea precise. First an easy lemma which could have
figured earlier.

Lemma 3.5 Let A be a discrete valuation ring with maximal ideal P and
B an integral extension of A. Then there is a prime ideal Q of B with
QNA=P.

Note that here the morphism Spec B — Spec A is not assumed to be
finite.
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Proof: It is enough to show that PB # B, for then PB is contained in
some maximal ideal of B whose intersection with B is nonzero according to
Chapter 6, Lemma 1.5 (1) and hence cannot be but P. So assume PB = B.
Then there are by,...,b. € B and py,...,p, € P with >, p;b; = 1. Hence the
subring B’ = Alby,...,b,] also satisfies PB’ = B’. But B’ is integral over
A and hence a finitely generated A-module, so Nakayama’s lemma implies
B’ = 0 which is absurd. |

Now we can generalise the situation of Corollary 3.3 above.

Construction 3.6 Let A be a discrete valuation ring with maximal ideal P
and fraction field K. Fix a separable closure K*® of K. Denoting by B the
integral closure of A in K*, apply the lemma to find some @ € Spec B lying
above P. Let Dg be the stabiliser of () with respect to the natural action of
Gal (K) on Spec B (defined in the same way as for finite Galois extensions).
Let K’ be the fixed field of Dg and put B’ = BN K', Q' = Q N B’. The
localisation of B’ at Q' is called the henselisation of A and is denoted by A”.

Proposition 3.7 Let A, P, A", Q be as above.

1. The ring A" is a discrete valuation ring with the same residue field as
A. Its maximal ideal is generated by any generator of P.

2. The isomorphism class of A" does not depend on the choice of the prime

1deal ().

For the proof we need the following generalisation to Proposition 3.1 to
infinite Galois extensions.

Lemma 3.8 With notations as in the above construction, the group Gal (K)
acts transitively on the maximal ideals of B lying over P.

Proof: Take two such maximal ideals )1 # )5 and for each finite Galois
subextension L|K denote by X the set of those elements of G = Gal (K)
which when restricted to L map @1 N L onto () N L. Since the latter are
prime ideals of the integral closure of A in L, Proposition 3.1 implies that
X, # () for any L. Moreover, each X7, is a closed subset of G, for if some
o ¢ X, then the whole left coset oGal (L) of the open subgroup Gal (L) is
contained in G \ X. But G is compact, so we have X = QXL # (. Any

element of X maps ()1 onto ()». O
Proof of Proposition 3.7: For the first statement, note that by Corollary

3.3 for any finite separable extension L|K the ring A" N L is a discrete val-
uation ring whose spectrum is étale over Spec A. Hence A" is the union of
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an increasing chain of such discrete valuation rings, which shows that it is
local (its maximal ideal being the union of that of the L N A" and the same
holding for its units) and its maximal ideal is generated by any generator of
P. The same type of argument shows that the residue field of A" is the same
of that of A. The second statement follows from the lemma which implies
that performing the above construction with a maximal ideal above P other
than Q yields the ring o(A") for some o € Gal (K). O

We conclude this section by the following proposition which shows that
henselisations do serve for the purpose they were constructed for.

Proposition 3.9 Let Y — X be a finite separable morphism of Dedekind
schemes. Let L (resp. K ) be the function field of Y (resp. of X ), and embed
L|K into a separable closure K*|K. Fiz a closed point Q of Y mapping to a
point P of X. Let Ap = Ox p be the local ring of X at P and By = Oy,
that of Y at Q. Finally, fix a henselisation A% of Ap, with fraction field
K" c K>.

1. The integral closure of Al in the composite field LK" is isomorphic to
the henselisation Bg of Bg.

2. The finite map Spec Bg — Spec A% thus obtained has ramification
index e(Q|P) and residue class degree f(Q|P).

3. The stalk of the different DspecBg/spec Ab, of the above map at the closed

point of Spec Bg is the ideal of Bg generated by the stalk of the different
Dy,x at Q. (Here By is viewed as a subring of Bf.)

Proof: For the first statement, note that by construction Bg is a dis-
crete valuation ring with fraction field LK" integral over A%. The sec-
ond statement follows from Corollary 3.3 by taking the intersection of LK"
with each finite Galois extension of K containing L. For the proof of the
third statement, take an affine open neighbourhood Spec A of P with in-
verse image Spec B in Y. Then the stalk of Dy,x at () is the annihilator of
Q Bo/A = Qp/a ®p Bg by the localisation property of differentials, whereas
Dgpee Bl /Spec Al is the annihilator of B /AL >~ Qg4 @4 Al by the first state-
ment and the localisation property of differentials. O

4. Henselian Discrete Valuation Rings

By the results of the previous section, the study of the local behaviour of finite
morphisms of Dedekind schemes can be reduced to the study of the induced
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morphisms on the henselisations. In this section we study the henselisations
in general and determine their fundamental groups. First a general definition.

Definition 4.1 A discrete valuation ring is called henselian if its integral
closure in any finite extension of its fraction field is a discrete valuation ring.

Remarks 4.2

1. This definition is in accordance with the classical definition of henselian
valuations as in Neukirch [1]. For its relation to the more general
concept of henselian local rings, see Remark 4.8 below.

2. An immediate consequence of the definition is that the integral clo-
sure of a henselian discrete valuation ring in any finite extension of its
fraction field is again henselian.

The following proposition shows that the above definition is not out of
place here.

Proposition 4.3 The henselisation A" of any discrete valuation ring A is
henselian.

Before the proof we recall a well-known algebraic lemma.

Lemma 4.4 Let L|K be a finite extension of fields of characteristic p > 0
and let K C L' C L be the mazximal separable subextension (i.e. the com-
positum of all separable extensions of K contained in L). Then there exists
a positive integer m such that xP" € L' for all z € L.

For a proof, see Lang [1], Chapter V, Section 6. The extension L|L’ is
called purely inseparable. We now have the following general lemma.

Lemma 4.5 Let A be a discrete valuation ring with fraction field K of char-
acteristic p > 0 and let L be a purely inseparable finite extension of K. Then
the integral closure B of A in L is a discrete valuation ring.

Proof: Let m be a positive integer for which 2" € K for all # € L. Then
if v denotes the discrete valuation associated to A, the map z + v(2P") is a
homomorphism from the multiplicative group of L to Z. Moreover, denoting
by b a positive generator of its image in Z and setting w(0) = oo, the formula
w(z) = (1/b)v(zP") defines a discrete valuation w : L — Z U {oo}. The
valuation ring of w is precisely B, for an element x € L is integral over A if
and only if 27" € A. (Indeed, zP" is always an element of K and is integral
over A if and only if z is; now use the fact that A is integrally closed.) O
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Remark 4.6 Quite generally, the integral closure B of any integrally closed
local domain A in a finite purely inseparable extension L|K of its fraction
field is always local. To see this, one shows that the elements x € L such
that 27" lies in the maximal ideal of A form a unique maximal ideal in B.

Proof of Proposition 4.3: Let L|K" be a finite extension. The construc-
tion of A" (and the arguments preceding it) imply that the integral closure A’
of A" in the maximal separable subextension L’ C L is a discrete valuation
ring. The proposition then follows by applying the above lemma with L’ in
place of K and A" in place of A. |

Now we have the following important characterisation of henselian dis-
crete valuation rings.

Proposition 4.7 Let A be a discrete valuation ring with maximal ideal P.
Then the following are equivalent:

1. A is henselian.

2. Any integral domain B D A finitely generated as an A-module is a local
ring.

3. Given a monic polynomial f € Alx] whose reduction f modulo P fac-
tors as f = fifs with fi and fo relatively prime monic polynomials
in k(P)[z], there exists a factorisation f = fifs of f into the product
of two relatively prime monic polynomials in Alz] such that f; = fi
modulo P fori=1,2.

4. If f € Alx] is a monic polynomial such that its reduction f modulo P
has a simple root & in k(P), then there is a € A with f(a) = 0 and
a = o modulo P.

Proof: To show that (1) implies (2), assume there is an integral domain
B D A with fraction field L that is finitely generated over A and has at least
two maximal ideals P, # P,. But then the common integral closure C' of A
and B in L has two different prime ideals lying above the P; in contradiction
with (1). This follows by applying Lemma 3.5 to the localisations of B (resp.
(') at the P; in place of the A (resp. B) that figures in the lemma.

Now suppose that A satisfies (2) but some monic polynomial f € A[z] pro-
vides a counterexample to the property (3). We may assume f is irreducible
in Alz] for otherwise an irreducible factor would still give a counterexample.
This implies that (f) is a prime ideal of A, for A is a unique factorisation
domain (in fact, to see this it would suffice to use that A is interally closed),
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and so B = Alz]/(f) is an integral domain integral over A. But then by
assumption

B/PB = B®ar(P) = r(P)xl/(f1) + r(P)[z]/(f2),

so B is not local.

Since (4) is just a special case of (3), it remains to prove that (4) implies
(1) for which we employ an argument from Nagata [1]. Assume that the
integral closure B of A in some finite extension L|K has at least two distinct
maximal ideals )1 and (2. We then concoct a polynomial f € A[z] which is
a counterexample to (4). Thanks to Lemma 4.5 there is no harm in supposing
L|K separable and even Galois. Denote by H;j the stabiliser of Q; in G =
Gal (L|K), by Ly its fixed field and by B’ the integral closure of A in L.
Let 1 =0y,...,0, be a system of two-sided representatives of G modulo H;.
We know from Proposition 3.1 that there are exactly n maximal ideals of
B, namely Q; = 0;(Q1). Denote by @’ the image of each @); in Spec B’; by
Lemma 3.3 we have Q! # Q) for any i # 1. Using the Chinese Remainder
Theorem as in the proof of Proposition 3.1 we may thus find an element «
lying in the intersection of the @ for ¢ > 1 but not in @} (and hence not in
K). Since a € Ly, the 0;(«) for 1 < i < n are exactly the distinct conjugates
of a in L. Again using Proposition 3.1 and the fact that the o; form a two-
sided system of representatives we may find for each 7 # 1 some Q; # Q1
with 0;(Q;) = Q1. Thus o;(«) € @ if and only if i # 1. Now look at the
minimal polynomial f = 2" + a, 12" ' + ...a9 € A[z] of a over K. Here
a,—1 is up to sign the sum of the o;(«), so it does not lie in @; N A = P. But
for s < n — 1 the coefficient a; is (still up to sign) a higher order symmetric
polynomial of the o;(«) and hence already lies in P. Thus by reducing —a,,_1
modulo P we get a simple root of f = 2™ + a,_;2"'. This contradicts (4)
as f is irreducible over K. O

Remark 4.8 An analysis of the above proof shows that in proving the equiv-
alence of statements (2)—(4) we did not use the assumption that A was
noetherian of dimension 1, hence these are equivalent conditions for any inte-
grally closed local domain. The construction of the henselisation also works
in this generality. It gives an integrally closed local domain A" with the
same residue field as A and equipped with a local homomorphism A4 — A",
Moreover, A" is seen to satisfy condition (2) above (and a fortiori (3), (4)).

In general one calls any local ring satisfying condition (3) a henselian local
ring. It can then be shown (see Nagata [1], Theorem 4.11.7) that the henseli-
sation A" of an integrally closed local domain A represents the contravariant
functor on the category of henselian local rings which associates to an ob-
ject B the set of local homomorphisms A — B. Thus A" is the “smallest”
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henselian local ring equipped with a local homomorphism A — A", In fact,
if we take the above representability as the definition of the henselisation,
then A" can be shown to exist for any local ring A but then one has to use a
different construction. See Milne [1], Section 1.4 for more details concerning
this point.

Example 4.9 Besides the henselisation, there is a classical example for a
henselian discrete valuation ring, namely that of a complete discrete valuation
ring which we now explain.

Quite generally, one calls a local ring A complete if the natural map
A — A into its completion (see Chapter 6, Remark ?7) is an isomorphism.
Obviously A is complete for any local ring A, so as concrete examples we
may mention the ring Z, of p-adic integers encountered in Chapter 1 (which
is the completion of the localisation of Z at (p)) and the ring of formal power
series k[[t]] over a field k (which is the completion of any discrete valuation
ring with residue field k that contains a subring isomorphic to k).

Now we show that any complete local ring A satisfies condition (4) of
Proposition 4.7; this assertion is classically known as Hensel’s lemma, whence
the term “henselian”. So let P be the maximal ideal of A and assume the
reduction f of f € A[z] modulo P has a root a; € A/P which is simple, i.e.
f'(a1) # 0. We construct a lifting a € A of a; with f(a) = 0 by Newton’s
method of successive approximation. Represent a by a coherent sequence
(a;), with a; € A/P" and assume q; is already determined (this being the
case for i = 1). Lift a; arbitrarily to an element b; € A/P™!; the a;,, we
are looking for must then be of the form a; 1y = b; + p, with p € P*/P"L.
Keeping the notation f for the image of f in (A/P™1)[z], the element f(b;)
is a unit in the local ring A/P"! for its image f’(a;) modulo P is nonzero.
By the Taylor Formula of order 2 (which is quite formal for polynomials), we
have

f(bi+p) = fb) + f'(bi)p + cp”
with some ¢ € A/P™™, but anyway we have p> = 0, so since we are aiming
at f(b; + p) = 0, we only have to choose p = —f(b;)/f'(b;).

The next proposition shows that finite étale covers of spectra of henselian
discrete valuation rings have a simple description.

Proposition 4.10 Let X = Spec A, where A is a henselian discrete valua-
tion ring with maximal ideal P.

1. Let f be a polynomial whose reduction f modulo P is irreducible and de-
fines a finite separable extension of k(P). Then the ring B = Alz]/(f)
1s a discrete valuation ring and the canonical morphism Spec B — X
s finite and étale.
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2. Any finite étale X -scheme is a finite disjoint union of affine schemes
Spec B, with B of the above type.

3. The functor Spec B — Spec (B®4k(P)) defines an equivalence between
the category of finite étale X -schemes and that of finite étale k(P)-
schemes.

Proof: For the first statement, note that B is finitely generated as an A-
module, and hence is noetherian. Since f is irreducible it is also an integral
domain (see the proof of Proposition 4.7), and hence it is a local ring by
Proposition 4.7 (2). By Chapter 6, Proposition 3.4, 23,4 = 0 and so by base
change Qpg ,«(P)/x(P) = 0, hence Spec B is étale over X and P generates the
maximal ideal of B which is thus principal, so B is a discrete valuation ring.

For the second statement, note first that since the only affine covering of
X is by X itself, any finite X-scheme is necessarily affine. If it is moreover
étale, decomposing it into a finite disjoint union of components, we may
assume it is integral and hence the spectrum of some integral domain B. By
exactly the same argument as above, we see that B is a discrete valuation
ring. Now to prove that B is of the required form, let f be the minimal
polynomial of a generator & of the separable field extension B ® 4 k(P)|r(P)
and lift f to a polynomial f € A[z]. By proposition 4.7 (4), & lifts to a root
of f in A, whence an injective morphism Alx]/(f) — B. Here both rings
are discrete valuation rings with the same residue field and their spectra are
finite and étale over X, so by Proposition 1.20 their fraction field KX must be
the same. Thus both rings are equal to the integral closure of A in K.

In the last statement essential surjectivity follows if we show that any fi-
nite separable extension L|x(P) is the residue field of some extension Alz|/(f)
as in (1). For this we only have to take as f some lifting in A[z] of the min-
imal polynomial of a generator of L|x(P). For fully faithfulness, assume
B = Alz]/(f), C = Alz]/(g) are such that Spec B, SpecC are étale over
X and assume given a morphism B ®4 k(P) — C ®4 x(P). It is given by
mapping a generator of the field extension B ®4 k(P)|x(P) to a root @ of f
in C®4 k(P). Lifting & to a root a of f in C' gives a homomorphism B — C'
inducing the above one by tensoring with x(P). To see that this morphism is
unique, it is enough to see that « is the unique root of f in C' lifting a. For
this, by enlarging C' if necessary we may assume that C' ®4 £(P) is Galois
over k(P) (embed C' ®4 k(P)|x(P) in a finite Galois extension and lift its
defining polynomial to A[z]). Then f decomposes as a product of distinct
linear factors in C' ®4 k(P) and each of its roots lifts to a different root of f
in C. O
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Corollary 4.11 For X as in the proposition there is a canonical isomor-

phism m(X)? = Gal (k(P)).

Proof: The group m(X)% is the Galois group of the Galois extension
K*®|K defined in Theorem 2.6. Let A° be the integral closure of A in K¢;
as A is henselian, it is a local ring with maximal ideal P¢*. Any element of
Gal (K°|K) maps A® and P¢ onto themselves and hence defines a x(P)-
automorphism of the field A® /P which is none but a separable closure of
k(P) by the third statement of the proposition. Whence a homomorphism
m(X)? — Gal (k(P)) of which the proposition implies the bijectivity. O

Remark 4.12 Let X = Spec A be as above, and denote by K the fraction
field of A. In this case the closed normal subgroup of Gal (K') which is the
kernel of the canonical map Gal (K) — Gal (K“|K) (and hence of the map
Gal (K) — Gal (k(P)) defined by composing with the above isomorphism) is
usually called the inertia subgroup.

5. Dedekind’s Different Formula

In this section we harvest the fruits of our efforts in the two previous ones and
complete our study of finite morphisms of Dedekind schemes; in particular
we prove a classical formula of Dedekind computing the different.

First an easy application of the ideas we have just seen.

Proposition 5.1 Let A be a henselian discrete valuation ring with fraction
field K and maximal ideal P, let B be its integral closure in a finite separable
extension L|K and let Q) be the maximal ideal of B. Assume further that the
residual extension k(Q)|k(P) is separable.

Then there is a unique discrete valuation ring A C C C B with residue
field k(Q) and such that the map Spec C' — Spec A is étale.

Proof: Embed L in a separable closure K* and put M = L N K, with
K* as in Theorem 2.6. Let C be the integral closure of A in M. The affine
scheme Spec C' is integral, finite and étale over Spec A by construction and
hence C'is a discrete valuation ring by Proposition 4.10 (2). The residue field
of C is k(Q), for otherwise, B being henselian by Remark 4.2 (2), arguing
as in the proof of Proposition 4.10 (2) we would get a subring C' C B
properly containing C' with residue field k(@) and Spec C" — Spec A étale,
contradicting the construction of C. O
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Using Proposition 1.20 we get that in the situation of the proposition
the finite morphism Spec B — Spec C' has ramification index e(Q|P) at @
and residue class degree 1. It is convenient to separate this property in a
definition.

Definition 5.2 A finite morphism ¢ : Y — X is called totally ramified over
a closed point P of X if the underlying space of the fibre Yp consists of a
single point @ with f(Q|P) = 1. In the case when Y is the spectrum of a
discrete valuation ring, we simply say that ¢ is totally ramified if it is totally
ramified over the closed point of X.

Totally ramified extensions of discrete valuation rings have the following
characterisation, somewhat analogous to Proposition 4.10 (1), (2) but valid
for not necessarily henselian rings as well.

Proposition 5.3 Let A C B be an extension of discrete valuation rings with
maximal ideals P C Q, and fraction fields K C L, respectively. If the induced
map ¢ : Spec B — Spec A is finite and totally ramified, then B = Al[t] with
a generator t of @ and the minimal polynomial of t over K is of the form
f=a°+ac 12 +.. . +ag, where e = e(Q|P), a; € P for all i but ay ¢ P?.

Conversely, if A is a discrete valuation ring and B = Alt] an extension
of the above type, then B is a discrete valuation ring and the map Spec B —
Spec A is totally ramified.

A polynomial f as in the statement of the proposition is called an Fisen-
stein polynomial.

Proof: Let v be the discrete valuation associated to B. For the first part,
note that the elements 1,¢, ...t ! are linearly independent over K. Indeed,
assume given a linear combination a._ 1t ' +...+at+ay with a; € A. Since
the ramification index is e, for all @ € A the valuation v(a) is divisible by
e, and hence the integers v(a;t’) are all distinct modulo e. From this we see
that v(} a;t;) = minv(a,t;) and hence the sum cannot be 0. As [L: K| =e
by Proposition 1.20 and t is integral over A, we indeed have L = K(t) and
B = Alt] = Alx]/(f) with some monic polynomial f. To see that f is of the
above type, remark that by the above argument, f(t) = t°+a._1t°1+...4+aq
can only be 0 if two of the terms with the smallest valuation have equal
valuation. But for 0 < i < e the v(a;t’) are distinct and nonzero modulo e;
on the other hand v(t¢) = e. Since v(ap) is divisible by e the only possibility
that remains is v(ag) = e, v(a;) > e for 0 <i <e.

Conversely, if B = A[t] = A[x]/(f) is of the above type, f is irreducible
in Afz] (same proof as over Z), so B is a domain that is finitely generated as
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an A-module and hence noetherian. The fibre over P is Spec k(P)[z]/(x¢),
from which we see that the last statement holds, but also that B is a local
ring whose maximal ideal is generated by t. O

We can now prove the promised formula of Dedekind. To state it we need
one more piece of terminology.

Definition 5.4 Let ¢ : Y — X be a finite morphism of Dedekind schemes,
and let ) be a branch point of ¢ mapping to a closed point P of X. We
say that ¢ is tamely ramified at @ if the ramification index e(Q|P) is not
divisible by the characteristic of k(P). Otherwise ¢ is wildly ramified at Q.

Proposition 5.5 (Dedekind’s Different Formula) Let ¢ : Y — X be a
finite morphism of Dedekind schemes such that the corresponding extension
L|K of function fields is separable. Let Q1,...,Q, be the branch points of
¢ with (not necessarily distinct) images Py,..., P, in'Y and let Dy;x =
LY, m;Q;) be the different of ¢. Then we have

m; = e(Qi|P;) — 1 if ¢ is tamely ramified at Q;, and

m; > e(Qi|Py) if ¢ is wildly ramified at Q;.

Proof: Using Proposition 3.9 we may localise and henselise at ); and P;,
reducing thereby to the case X = Spec A and Y = Spec B with A C B
henselian discrete valuation rings with maximal ideals P C (). Consider the
maximal étale subextension A C C' C B. Since Spec C' — Spec A is étale, we
get from the exact sequence in Chapter 6, Lemma 3.5 (2) an isomorphism
Qp/a = Qpjc. Thus we may assume A = C' and so by Proposition 5.3 we
have B = A[t] = Alz]/(f) with f € A[z] an Eisenstein polynomial. In this
case 2p/a is generated by dt and has ' = 0 as its single relation, so the
different is the ideal generated by f' = et*™' + (e — 1)a_ 1t 2+ ... +ay. If
v is the valuation associated to B, here we have v(a;) > e for all i, hence
all terms have valuation at least e except for the first in the case e ¢ P (i.e.
that of tame ramification), when v(et!) = e — 1. O

It is time for a concrete example.

Example 5.6 Let ¢ be a prime number, ( a primitive ¢-th root of unity,
K = Q(({) and O its ring of integers. We analyse the local behaviour of the
map ¢ : Spec O — SpecZ. For a prime number p (viewed as a closed point
of Spec Z), denote by Z;L the henselisation of Z at p and QZ its fraction field.
Let B, be the integral closure of Z! in Q}/(().
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e For ( # p, let C be the maximal étale subextension of ZZ C B, given
by Proposition 5.1. Being henselian, it must contain all roots of the
equation xf—1 as its residue field does. In particular, it must contain (,
so it must have the same fraction field as B,. Since C' is also a discrete
valuation ring finitely generated as a Z%-module, it must equal B,, so
Spec B), is étale over Spec Z’]} and a fortiori ¢ is étale at all points of
Ok not lying above /.

e For / = p, the maximal étale subextension is just ZZ so the map
Spec B, — Spec ZZ is totally ramified. We now show that the de-
gree of the field extension QZ(C)|Q is exactly p — 1, which, together
with Proposition 1.20, will imply that the map Spec O — SpecZ is
totally ramified over (/).

Indeed, the extension QP(¢)|Q is of degree at most p—1. But it contains
the element 1 — ¢ which is a root of the polynomial F' obtained by
substituting 1 + y in place of x in zP~' + 2P72 + ... + 1. One sees
immediately that F'is an Eisenstein polynomial, so it is irreducible in

Qplyl.

e By Proposition 5.5 we get that the different Dgyec 0y /spec z 18 the ideal
sheaf associated to the divisor (¢ — 2)S, where S is the unique point
lying above (¢). We could have obtained this result immediately if we
knew that O = Z[¢] but this fact is not obvious; to prove it one
commonly uses nearly all the information obtained above.

Remark 5.7 As an amusing application of the previous example we show
that any finite abelian group occurs as the Galois group of a finite Galois
extension K|Q. Indeed, let A be a finite abelian group of order m and
decomposing as a direct sum A = A; & ... & A, with each A; cyclic. By
Dirichlet’s theorem of prime numbers in an arithmetic progression we may
find n different prime numbers /q,...,¢, each congruent to 1 modulo m.
Choose a primitive ¢;-th root of unity (; for each i. The Galois group G; of
the Galois extension Q((;)|Q is cyclic of order ¢; — 1, hence divisible by m
and as such has a quotient isomorphic to A;. Denote by K; the corresponding
Galois extension of Q. For each 7 the map Spec Ok, — Spec Z is étale at the
points not mapping to ¢; but totally ramified at the unique point lying over
;; a degree count shows that this implies that we must have K; N K; = Q
for i # j. Hence the composite K of the K; is Galois over Q with group A.



