
COHOMOLOGY OF QUASI-COHERENT SHEAVES

TAMÁS SZAMUELY

1. Definition of cohomology

To define cohomology, we first review some general facts about de-
rived functors.

Facts 1.1. Let C be an abelian category. We say that C has enough
injectives if every object can be embedded in an injective object. In
this case every object A has an injective resolution A → I•, i.e. an
exact sequence

0 → A → I0 → I1 → I2 → · · ·
with each Ij injective. Given a left exact functor F from C to another
abelian cateory, one defines the i-th right derived functor RiF of F by
choosing an injective resolution I• for each object A and setting

RiF (A) := H i(F (I•)).

One shows that RiF (A) does not depend on I•. Given a short exact
sequence

0 → A → B → C → 0

of objects of C and a left exact functor F , one gets a long exact sequence

0 → F (A) → F (B) → F (C) → R1F (A) → · · ·
where R0F ∼= F as F is left exact. Note also that RiF (I) = 0 for i > 0
and I injective, because then 0 → I → I → 0 is an injective resolution
of I.

Now we apply the above to the category of sheaves of abelian groups
on a topological space.

Lemma 1.2. The category of sheaves of abelian groups on a topological
space X has enough injectives.

Proof. Given a sheaf F on X and a point P ∈ X, denote by FP the
skyscraper sheaf with given by FP over open sets containing P and 0
elsewhere. There is a natural morphism of sheaves F → FP . Taking

direct products we obtain a morphism F →
∏
P

FP which is injective

by the first sheaf axiom. Now for each P ∈ X choose an embedding
FP → IP with IP an injective abelian group (recall that the category
of abelian groups has enough injectives). Consider the corresponding
embedding FP → IP of skyscraper sheaves. Taking products we obtain
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an embedding F →
∏
P

IP , so since a product of injectives is always

injective, it is enough to show that each IP is an injecive sheaf. This
follows from the injectivity of IP as an abelian group because every
morphism G → IP from another sheaf G factors through GP .

By the lemma, we may define

H i(X,F) := RiΓ(X,F)

where Γ(X, ) is the left exact functor F 7→ F(X).
By the above general facts, we haveH0(X,F) ∼= F(X),H i(X, I) = 0

for I injective and i > 0, and for every short exact sequence

0 → F → G → H → 0

of sheaves a long exact sequence of abelian groups

0 → F(X) → G(X) → H(X) → H1(X,F) → · · ·

Similarly, for every morphism ϕ : X → Y of schemes we can consider
the right derived functors Riϕ∗ of the left exact functor ϕ∗ : F 7→ ϕ∗F
from the category of sheaves on X to the category of sheaves on Y .
The sheaves Riϕ∗F for i > 0 are called the higher direct images of F
by ϕ.

2. Flabby sheaves

Now to a concept particular to sheaves.

Definition 2.1. A sheaf F on a topological space X is flabby if the
restriction maps F(U) → F(V ) are surjective for all inclusions of open
sets V ⊂ U .

From now on we assume that the base space is locally connected.

Proposition 2.2. Every injective sheaf is flabby.

The proof requires some preparation. If U is an open subset of a
locally connected topological space, there is a unique sheaf ZU on X
such that for a connected open subset V ⊂ X we have ZU(V ) = Z
if V ⊂ U and ZU(V ) = 0 otherwise. (Indeed, it is straightforward to
extend the above definition to non-connected open sets.)

Lemma 2.3. For a sheaf F on X there are isomorphisms of abelian
groups

Hom(ZU ,F) ∼= F(U)

for every open U ⊂ X.
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Proof. Given a morphism ZU → F , we may consider the image of
1 ∈ ZU(U) in F(U). This defines a homomorphism Hom(ZU ,F) →
F(U). Conversely, given s ∈ F(U), there is a unique morphism of
sheaves ZU → F that maps 1 ∈ ZV (V ) for a connected V ⊂ U to s|V .
The two constructions are inverse to each other.

Proof of Proposition 2.2. Let V ⊂ U be an inclusion of open subsets
of X. We may naturally identify ZV with a subsheaf of ZU . By the
lemma above we may identify a section of an injective sheaf I over V
with a morphism of sheaves ZV → I. By injectivity of I this mor-
phism extends to a morphism ZU → I. This means precisely that the
restriction map I(U) → I(V ) is surjective.

Proposition 2.4. If F is a flabby sheaf on X, then H i(X,F) = 0 for
i > 0.

For the proof we need:

Lemma 2.5.

a) A short exact sequence

0 → F → G → H → 0

of sheaves on a topological space X with F flabby induces an exact
sequence

0 → F(X) → G(X) → H(X) → 0

on global sections.
b) If in an exact sequence

0 → F → G → H → 0

of sheaves F and G are flabby, then so is H.

Proof. To prove a) the only issue is surjectivity of G(X) → H(X).
Given s ∈ H(X), consider the system of pairs (U, s′), where U ⊂ X
is open and s′ ∈ G(U) has image s|U in H(U). There is a natural
partial order on this system in which (U ′′, s′′) ≤ (U, s′) if U ′′ ⊂ U and
s′′ = s′|U ′′ . A standard application of Zorn’s lemma shows that this
partially ordered system has a maximal element. We show that for
such a maximal element we must have U = X. Assume not, and let
P be a point of X \ U . As the map G → H is surjective, we find an
open neighbourhood V of P and a section s′′ ∈ G(V ) which maps to
s|V in H(V ). The section s′|U∩V − s′′|U∩V maps to 0 in H(U ∩ V ),
so by shrinking V if necessary we find t ∈ F(U ∩ V ) that maps to
s′|U∩V − s′′|U∩V in G(U ∩ V ). As F is flabby, we may extend t to a
section in F(V ) which we also denote by t. Changing s′′ to s′′ + t
(here we identify F with its image in G) we obtain a section that still
maps to s|V in H(V ) but for which s′|U∩V = s′′|U∩V . Therefore these
sections patch together to a section in G(U ∪ V ) mapping to s|U∪V ,
contradicting the maximality of (U, s′).



4 TAMÁS SZAMUELY

To prove b), let V ⊂ U be an inclusion of open subsets. By part a)
the map G(V ) → H(V ) is surjective as F|V is flabby, and so is the map
G(U) → G(V ) as G is flabby. The composite map G(U) → H(V ) is
therefore surjective but it factors through the restrictionH(U) → H(V )
by definition of a morphism of sheaves. Hence the latter map is also
surjective.

Proof of Proposition 2.4. Embed F in an injective sheaf I and denote
by G the quotient. By Proposition 2.2 in the exact sequence

0 → F → I → G → 0

F and I are flabby, hence so is G by part b) of the above lemma. Part
a) of the lemma therefore shows that in the long exact sequence

0 → F(X) → I(X) → G(X) → H1(X,F) → H1(X, I)
the map I(X) → G(X) is surjective. ButH1(X, I) = 0, soH1(X,F) = 0
by the exact sequence. For i > 1 we use induction on i. In the part of
the long exact sequence

H i−1(X,G) → H i(X,F) → H i(X, I)
we have H i(X, I) = 0 by injectivity of I and H i−1(X,G) = 0 by the
inductive assumption since G is also flabby. Therefore H i(X,F) = 0.

The significance of Proposition 2.4 lies in the fact that it enables one
to compute the groups H i(X,F) for an arbitrary sheaf F by means
of flabby resolutions instead of injective ones. To see this, we need a
lemma from homological algebra:

Lemma 2.6. Let C be an abelian category with enoyugh injective, and
F : C → D a left exact functor. Assume that A is an object of C for
which there exists a resolution

A → B0 → B1 → B2 · · ·
with RiF (Bj) = 0 for all i > 0, j ≥ 0. Then RiF (A) ∼= H iF (B•).

Proof. Split the resolution in short exact sequences

0 → A → B0 → K0 → 0, . . . , 0 → Ki−1 → Bi → Ki → 0, . . .

The first one gives an exact sequence

0 → F (A) → F (B0) → F (K0) → R1F (A) → 0

as F is left exact and R1F (B0) = 0. We obtain

R1F (A) ∼= coker (F (B0) → F (K0)) =

= coker (F (B0) → ker(F (B1) → F (B2))) = H1F (B•).

Next, for j > 0 we have

RjF (Ki) ∼= Rj+1F (Ki−1), . . . , RjF (K0) ∼= Rj+1F (A).
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This gives

Rj+1F (A) ∼= RjF (K0) ∼= Rj−1F (K1) ∼= . . .

∼= R1F (Kj−1) ∼= coker (F (Bj) → F (Kj)) = Hj+1F (B•).

Corollary 2.7. Let F be a sheaf on a topological space X. Suppose
there exists a resolution

F → G•

where the Gi are flabby sheaves. Then

H i(X,F) ∼= H i(Γ(X,G•)).

Proof. Apply the lemma with F = Γ(X, ) and B• = G•. The condi-
tion RiF (Bj) = 0 for i > 0 is satisfied by Proposition 2.4.

As a first application, we prove:

Proposition 2.8. If ϕ : X → Y is an morphism of topological spaces
and F is any sheaf on X, the higher direct image sheaf Riϕ∗F is the
sheaf associated with the presheaf V 7→ H i(ϕ−1(V ),F|ϕ−1(V )).

Proof. Take an injective resolution F → I•. By definition Riϕ∗F is
the i-th cohomology sheaf of ϕ∗I•. This is the sheaf associated with
the presheaf

V 7→ H iΓ(V, ϕ∗I•|V ) = H iΓ(ϕ−1(V ), I•|ϕ−1(V )).

But since Ij is injective, hence flabby for all j, so is Ij|ϕ−1(V ), and
therefore Fϕ−1(V ) → I•|ϕ−1(V ) is a flabby resolution. Therefore by the

previous corollary we have H iΓ(V, ϕ∗I•|V ) ∼= H i(ϕ−1(V ),F|ϕ−1(V )).

3. Serre’s vanishing theorem

We now prove:

Theorem 3.1. (Serre) If X is an affine scheme and F a quasi-coherent
sheaf on X, then H i(X,F) = 0 for i > 0.

The proof is based on a general topological lemma.

Lemma 3.2. Let X be a compact topological space, and B a basis
of open sets of X. Given a sheaf F and an integer i ≥ 0, we say
that F has property (Pi) if for all α ∈ H i(X,F) there exists a finite
open covering U1, . . . , Ur of X by elements of B such that α maps to
zero in H1(X,Fj), where Fj := (uj)∗(F |Uj

) for the open inclusion
uj : Uj → X. Then:

a) Property (P1) holds for every sheaf F .
b) If i > 1, assume that for all U ∈ B we have Hp(U,F) = 0 for
0 < p < i. Then (Pi) holds for F .

[Recall that Fj(V ) = F(V ∩ Uj) for all open sets V ⊂ X.]
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Proof. To prove a), we embed F in an injective sheaf I, whence an
exact sequence of sheaves

0 → F → I → C → 0.

The beginning of the associated long exact sequence reads

0 → F(X) → I(X) → C(X) → H1(X,F) → 0

as I is injective. Given α ∈ H1(X,F), we may therefore lift it to
s ∈ C(X). As the morphism of sheaves I → C is surjective and X is
compact, we find an open covering U1, . . . , Ur of X by elements of B
such that each s|Uj

lifts to sj ∈ I(Uj).

Set Ij = (uj)∗(I|Uj
) and denote by Cj the cokernel of the induced

morphism Fj → Ij. In particular, Cj can be viewed as a subsheaf of
Cj := (uj)∗(C|Uj

)). We have a commutative diagram with exact rows

(1)

0 −−−→ F −−−→ I −−−→ C −−−→ 0y y y
0 −−−→ Fj −−−→ Ij −−−→ Cj −−−→ 0

and we know that the image sj of s ∈ C(X) in Cj(X) ⊂ Cj(X) =
C(Uj) comes from sj ∈ Ij(X) = I(Uj). Therefore sj maps to zero in
H1(X,Fj) and we obtain by functoriality of the long exact cohomology
sequence that the image α of s in H1(X,F) maps to zero in H1(X,Fj),
which is what we wanted to prove.

To prove b) we assume i > 1 and use induction on i. Take an
arbitrary finite open covering U1, . . . , Ur of X by elements of B. If U
is another open set in B, then the sets U ∩ Uj are again in B. By
assumption H1((U ∩ Uj),F) = 0, and therefore the sequence

0 → Fj(U) → Ij(U) → Cj(U) → 0

is exact since Fj(U) = F(U∩Uj) (and similarly for I and C). Similarly,
the sequence

0 → Fj(U) → Ij(U) → Cj(U) → 0

is exact. As this holds for all U ∈ B, we obtain Cj
∼= Cj.

We may therefore replace Cj by Cj in diagram (1), and from the
associated long exact cohomology sequence we obtain a commutative
diagram

H i−1(X, C)
∼=−−−→ H i(X,F)y y

H i−1(X, Cj)
∼=−−−→ H i(X,Fj).

Here the horizontal maps are isomorphisms by Proposition 2.4 because
I is injective, hence flabby, and hence so is Ij. As the sheaf C satisfies
(P1) by part a), the diagram shows that F satisfies (P2), whence the
case i = 2. Assume now that the result holds for p < i. To show it
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for i, it is enough to see by the diagram that C satisfies (Pi−1). By the
inductive assumption this will follow if we show Hp(U, C) = 0 for all
U ∈ B and 0 < p < i− 1. But this holds by the exact sequence

0 → F → I → C → 0

and the vanishing of Hp(U, I) and Hp+1(U,F) (the latter holding be-
cause p+ 1 < i).

Proof of Theorem 5.1. Assume X = SpecA and F is a quasi-coherent
sheaf on X. We prove the theorem by induction on i using the lemma
above, where we take B to be the system of affine open subsets.

First assume i = 1 and pick α ∈ H1(X,F). By part a) of the lemma
we find a finite open covering U1, . . . , Ur of X such that α maps to
zero in all H1(X,Fj). We know that Fj is quasi-coherent, hence so is

the cokernel G of the morphism F →
r∏

j=1

Fj induced by the restriction

maps F(U) → F(U ∩ Uj)). As X is affine and

(2) 0 → F →
r∏

j=1

Fj → G → 0

is an exact sequence of quasi-coherent sheaves, the sequence

0 → F(X) →
r∏

j=1

Fj(X) → G(X) → 0

is again exact. Hence in the long exact cohomology sequence associated

with (2) the map H1(X,F) →
r∏

j=1

H1(X,Fj) is injective. But α maps

to zero in each H1(X,Fj), hence α = 0.
For i > 1 we use induction on i. By the inductive assumption for all

affine open U ⊂ X and 0 < p < i we have Hp(U,F|U) = 0, so by part
b) of the lemma given α ∈ H i(X,F), we find a finite open covering
U1, . . . , Ur of X such that α maps to zero in all H i(X,Fj). By the
inductive hypothesis applied to G we have H i−1(X,G) = 0, hence the
long exact cohomology sequence associated with (2) shows that the

map H i(X,F) →
r∏

j=1

H i(X,Fj) is injective. So again α = 0, which

completes the proof of the case i = 1.

We now derive a consequence of Serre’s theorem for the right de-
rived functors Riϕ∗ of an affine morphism ϕ : X → Y . Recall that a
morphism ϕ : X → Y is affine if for all V ⊂ Y affine ϕ−1(V ) is affine
as well. (In fact it is enough to require this for elements of a single
affine open covering of X.) Examples of affine morphisms are given by
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closed immersions or, more generally, finite morphism, and also by the
inclusion of an affine open subset in a separated scheme.

Theorem 3.3. If ϕ : X → Y is an affine morphism and F is a quasi-
coherent sheaf on X, the sheaves Riϕ∗F are 0 for all i > 0.

In fact one may also view this statement as a generalization of Serre’s
theorem: the latter is equivalent to the special case where Y is a point.

Proof. Serre’s vanishing theorem and Proposition 2.8 imply that the
stalks (Riϕ∗F)P must be 0 for all P ∈ Y .

Corollary 3.4. Under the assumptions of the theorem there are canon-
ical isomorphisms H i(Y, ϕ∗F) ∼= H i(X,F) for all i ≥ 0.

Proof. Given an injective resolution F → I• we obtain a flabby reso-
lution ϕ∗F → ϕ∗I• after applying ϕ∗. Indeed, ϕ∗Ij is flabby for all j
because so is Ij, and ϕ∗F → ϕ∗I• is a resolution because Riϕ∗F = 0
by the theorem. So we may compute the cohomology of ϕ∗F using
this resolution by Corollary 2.7. But Γ(Y, ϕ∗Ij) = Γ(X, Ij) for all j by
definition, so the corollary follows by taking cohomology.

Remark 3.5. There is a much simpler proof of Theorem 3.3 in the case
when ϕ is a closed immersion, and in this case the theorem holds for
an arbitrary sheaf F . Namely, for a closed immersion ϕ : X ↪→ Y the
stalk of ϕ∗F at P ∈ Y is 0 if P /∈ X and equals FP otherwise. Hence
the functor ϕ∗ is exact (checking exactness on stalks is immediate),
and therefore Riϕ∗ = 0 for i > 0. It follows that the isomorphisms
H i(Y, ϕ∗F) ∼= H i(X,F) hold for arbitrary sheaves in the case of a
closed immersion.

4. A vanishing theorem for Pn

By a theorem of Grothendieck (proven e.g. in Hartshorne’s book)
if X is a topological space in which every descending chain of proper
irreducible closed subsets has length at most n, then H i(X,F) = 0 for
i > n and any sheaf F on X. We shall prove another result here which
is a very special case of this theorem when A is a field:

Proposition 4.1. If A is a ring and F is a quasi-coherent sheaf on
Pn

A, then H i(Pn
A,F) = 0 for i > n.

Instead of the proposition we shall prove the following more general
result.

Theorem 4.2. If X is a separated scheme that can be covered by
n + 1 affine open subsets and F is a quasi-coherent sheaf on X, then
H i(X,F) = 0 for i > n.

Following an idea of Serre, we prove the theorem by a simplicial
method for which we need some preliminaries. Let X be a topological
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space and U = {Ui : i ∈ I} an open covering of X. We assume that
the index set I is well ordered; we shall only need the case where I is
finite anyway. For a finite subset {i0, ..., ip} ⊂ I we denote by Ui0,...,ip

the intersection Ui0 ∩ ... ∩ Uip .
For a sheaf F on X we define a complex C•(U ,F) of abelian groups

as follows. For p ≥ 0 we set

Cp(U ,F) =
∏

i0<...<ip

F(Ui0,...,ip).

An element α ∈ Cp(U ,F) is thus given by a system of αi0,...,ip ∈ F(Ui0,...,ip)
for all (p + 1)-tuples i0 < ... < ip. We define a coboundary map
dp : Cp(U ,F) → Cp+1(U ,F) by

(dpα)i0,...,ip+1 =

p+1∑
k=0

(−1)k(αi0,...,̂ik,...,ip+1
) |Ui0,...,ip+1

(By convention Cp(U ,F) = 0 if |I| ≤ p.)
A straightforward computation shows that dp+1 ◦ dp = 0 for all p, so

we indeed obtain a complex of abelian groups, called the Čech complex
associated with U and F .

Lemma 4.3. Let U be an open covering of X such that Ui = X for
some i. Then the complex

0 → F(X)
ε→ C0(U ,F) → C1(U ,F) → ...

is exact, where ε is defined by restrictions F(X) → F(Ui).

Proof. We may assume i = 1. Exactness at C0(U ,F) follows from the
sheaf axioms. We show exactness at the higher degree terms by proving
that the identity map is homotopic to 0. This means that for p > 0 we
define kp : Cp(U ,F) → Cp−1(U ,F) so that

dp−1 ◦ kp + kp+1 ◦ dp = idCp(U ,F),

which indeed implies Hp(C•(U ,F)) = 0 for p > 0. Given αi0,...,ip in
F(Ui0,...,ip), to construct k

p(αi0,...,ip) it is enough to set for kp(αi0,...,ip) = 0
if i0 ̸= 1 and kp(αi0,...,ip) = αi0,...,ip viewed as a section in F(Ui1,...,ip) if
i0 = 1.

We now define a sheafified version of the Čech complex. We set

Cp(U ,F) =
∏

i0<...<ip

j∗(F |Ui0,...,ip
)

where j is the inclusion map Ui0,...,ip → X. The coboundary maps

dp : CpU ,F) → Cp+1U ,F) are defined as above, and we obtain a com-
plex C•(U ,F) of sheaves on X satisfying Γ(X, Cp(U ,F)) = Cp(U ,F).

Proposition 4.4. The sequence of sheaves

0 → F ε→ C0(U ,F) → C1(U ,F) → ...
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is exact.

Proof. We show exactness on stalks. Given P ∈ X, it suffices to show
that there exists an open neighbourhood V of P such that the sections
of the sequence of the proposition over V give an exact sequence of
abelian groups. But this results from the previous lemma if we take
V ⊂ Ui for some Ui containing P .

Lemma 4.5. If U = {U1, . . . , Ur} is a finite affine open covering of
a separated scheme X and F is a quasi-coherent sheaf on X, then
H i(X, Cp(U ,F)) = 0 for all p and i > 0.

Proof. It is enough to show that H i(X,Fi0,...,ip) = 0 for all i0 < · · · < ip
and i > 0, where Fi0,...,ip = j∗(F|Ui0,...,ip

) and j is the inclusion map
Ui0,...,ip → X as before. By separatedness of X the subset Ui0,...,ip is
affine, hence so is the morphism j. Thus by Corollary 3.4 we reduce
to showing H i(Ui0,...,ip ,F|Ui0,...,ip

) = 0. Since F|Ui0,...,ip
is still quasi-

coherent, we may conclude by Serre’s vanishing theorem.

Proof of Theorem 4.2. By the preceding proposition and lemma F
has a resolution F → C•(U ,F) with Cp(U ,F) = 0 for p > n and
H i(X, Cp(U ,F)) = 0 for all p and i > 0. Therefore the statement
follows from Lemma 2.6.

Remark 4.6. For a sheaf F on a topological space X Serre defined
the Čech cohomology groups of X with coefficients in F by

Ȟp(X,F) := lim
→

Hp(C•(U ,F))

where the direct limit is taken over all open coverings U with respect
to a natural partial order. Grothendieck proved using Serre’s vanish-
ing theorem and a spectral sequence lemma of Cartan that for X a
scheme and X quasi-coherent the Čech cohomology groups agree with
the cohomology groups defined using derived functors. The arguments
in this section show that in the situation of Lemma 4.5 we already have
Hp(C•(U ,F)) ∼= Hp(X,F).

5. Serre’s finiteness theorems

Let A be a ring, and ϕ : X → Spec (A) a projective morphism.
Recall that this means that ϕ is the composite of a closed immersion
i : X → Pn

A for some n with the natural projection Pn
A → Spec (A).

If F is a quasi-coherent sheaf on X, for all i ≥ 0 the groups H i(X,F)
are in fact modules over A. This is obvious from the definition of OX-
modules if i = 0. For i > 0 one may see this as follows: as F is
an OX-module, one shows by the same argument as in Lemma 1.2
that F has a resolution by injective OX-modules. Again by a similar
argument as before, such OX-modules are flabby sheaves, so they may
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be used to compute the groups H i(X,F). But then it follows from the
construction that each H i(X,F) is a module over OX(X) = A.

Let O(m) be the m-th twisting sheaf on Pn
A, and set

OX(m) := i∗O(m), F(m) := F ⊗OX
OX(m).

Note that forX = Pn
A one may define F(m) by setting F(m)|D+(xi) =

F|D+(xi) for all i and then patching over the intersections using the
isomorphisms f 7→ (xj/xi)

mf .

Theorem 5.1. (Serre) Assume moreover that A is a Noetherian ring
and F is a coherent sheaf. Then

(1) H i(X,F) is a finitely generated A-module over A for all i ≥ 0.
(2) H i(X,F(m))=0 for i > 0 and m sufficiently large.

Corollary 5.2. If ϕ : X → Y is a projective morphism with Y Noe-
therian, then for every coherent sheaf F on X the sheaves Riϕ∗F are
also coherent for i ≥ 0.

Proof. For P ∈ Y consider the natural morphism Spec (OY,P ) → Y .
(For an affine open neighbourhood V = Spec (B) of P it is given by
the composite of the natural maps Spec (BP ) → Spec (B) → Y .) Then
ϕ induces a natural mapX×Y Spec (OY,P ) → Spec (OY,P ). Denoting by
PF the pullback of F to X×Y Spec (OY,P ) the theorem tells us that the
OX,P -modules H i(X ×Y Spec (OY,P ),

PF) are finitely generated. But
Proposition 2.8 implies that these are exactly the stalks (Riϕ∗F)P , so
the corollary follows because Y is Noetherian.

Remark 5.3. Grothendieck has extended Serre’s theorem to the case
of an arbitrary proper morphism. His proof is by reduction to the
projective case.

We prove the theorem in three steps.

Step 1: Reduction to the case X = Pn
A.

We need a projection formula:

Lemma 5.4. If i : X → Y is an affine morphism, F a quasi-coherent
sheaf on X, G a quasi-coherent sheaf on Y , there is a natural isomor-
phism

i∗(F ⊗OX
i∗G) ∼= (i∗F)⊗OY

G.

Proof. Assume first X = Spec (B) and Y = Spec (A) are affine, and

F = M̃ , G = Ñ for a B=module M and an A-module N . Then

i∗F = M̃ with M viewed as an A-module via the morphism A → B

induced by i, and i∗G = Ñ ⊗A B by definition. So

i∗(F ⊗OX
i∗G) ∼= ˜M ⊗B (N ⊗A B) ∼= M̃ ⊗A N ∼= (i∗F)⊗OY

G.
The general case follows by patching as i is affine.
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Apply the lemma with Y = Pn
A, G = O(m). It gives an isomorphism

i∗(F(m)) ∼= (i∗F)(m). Hence by Corollary 3.4 we have isomorphisms

H i(X,F(m)) ∼= H i(Pn
A, i∗(F(m))) ∼= H i(Pn

A, i∗(F)(m))

and we conclude by observing that i∗F is a coherent sheaf on Pn
A.

Step 2: Reduction to the case F = O(m).

The proof of this step is based on the following proposition, also due
to Serre.

Proposition 5.5. Given a coherent sheaf F on Pn
A, there is a surjec-

tive morphism of sheaves

O(m)⊕r � F
with suitable m ∈ Z, r ≥ 0.

The proposition should be compared with the following fact: every
coherent sheaf on an affine scheme X = Spec (A) is the quotient of Or

X

for suitable r. This follows from the fact that every finitely generated
module over A is a quotient of Ar for some r.

To prove the proposition, it is enough to find a surjectionO⊕r
Pn

A
→ F(m)

for some r > 0 and m ∈ Z, for then we may conclude by tensoring with
O(−m) = Hom(O(m),OPn

A
). Therefore we must find global sections

s1, . . . , sr ∈ F(m)(X) such that for all P ∈ Pn
A some of the (si)P gen-

erate the stalk F(m)P as an OPn
A,P -module. Indeed, if we have such

global sections, then

(f1, . . . , fr) ∈ O⊕r
Pn

A
(U) 7→ f1s1|U + · · ·+ frsr|U ∈ F(m)(U)

defines a surjection of sheaves as required.
Now since D+(xi) is affine, the OD+(xi)-module F|D+(xi) is generated

by some global sections t1, . . . , tN by the remark just made. Therefore
to prove the proposition it is enough to verify the following lemma.

Lemma 5.6. Given ti ∈ F(D+(xi)) for some i, there is a section
t̃ ∈ F(m)(Pn

A) with t̃|D+(xi) = ti for m suitably large.

Proof. We may assume i = 0. Pick some j and consider the restriction
of t0 to D+(x0) ∩ D+(xj). As D+(x0) ∩ D+(xj) is the affine open set
defined by the non-vanishing of x0x

−1
j inside the affine scheme D+(xj),

there exists m ∈ Z and a global section t′j of OD+(xj) such that t′j =

(x0x
−1
j )

m
t0 on D+(x0) ∩ D+(xj). We may choose the same m for all

j if we make m sufficiently large (even for j = 0 where we set t′0 =
t0). It may still happen that the restrictions of t′j and (xkx

−1
j )

m
t′k to

D+(xj) ∩ D+(xk) do not coincide for j, k ̸= 0. But we know that on
D+(xj)∩D+(xj)∩D+(xk) we have t

′
j − (xkx

−1
j )

m
t′k = 0 by comparison

with t0. As this is the affine open subscheme of D+(xj)∩D+(xk) given
by the non-vanishing of x0x

−1
j , we get (x0x

−1
j )

p
(t′j − (xkx

−1
j )

m
t′k) = 0

for some p > 0 on D+(xj)∩D+(xk). We may choose the same p for all
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j, k, and then t̃j := (x0x
−1
j )

p
t′j satisfies t̃j = (xkx

−1
j )

m+p
t̃k for all j, k.

These therefore patch to a global section of F(m+ p).

Given Proposition 5.5, we can handle Step 2 as follows. By Theorem
4.2 we know H i(Pn

A,F) = 0 for i > n. We now employ descending
induction on i. The proposition gives an exact sequence

0 → K → O(m)⊕r → F → 0

with some coherent sheaf K. Part of the long exact cohomology se-
quence reads

H i(Pn
A,O(m)⊕r) → H i(Pn

A,F) → H i+1(Pn
A,K).

The A-module on the left is finitely generated by assumption and that
on the right by the inductive hypothesis. Since A is Noetherian, state-
ment 1 of the theorem follows. Statement 2 is proven similarly.

Step 3: The case X = Pn
A, F = O(m).

We prove the following more precise statement.

Theorem 5.7. We have H i(Pn
A,O(m)) = 0 unless i = 0 or n. More-

over,
H0(Pn

A,O(m)) = degree m part of A[x0, . . . , xn]

and

Hn(Pn
A,O(m)) = submodule of degree m part of A[x−1

0 , . . . , x−1
n ]

generated by monomials xα0
0 · · · xαn

n with all αi < 0.

We begin with a lemma.

Lemma 5.8. Consider the morphism π : An+1
A \ {0} → Pn

A given
by patching the natural morphisms D(xi) → D+(xi) corresponding to
A[x0/xi, . . . , xn/xi] → A[x0, . . . , xn]xi

together. There is a natural iso-
morphism

π∗OAn+1
A \{0}

∼=
⊕
m∈Z

O(m).

Proof. The restriction of π∗OAn+1
A \{0} to the affine open set D+(xi) is

given by the A[x0/xi, . . . , xn/xi]-module A[x0, . . . , xn]xi
. This module

decomposes as the direct sum of submodules

Ai
m := A[x0/xi, . . . , xn/xi]x

m
i

for all m ∈ Z. Over D+(xi) ∩D+(xj) we have isomorphisms

Ãj
m
∼= (xj/xi)

mÃi
m,

so the Ãi
m patch together to an invertible sheaf isomorphic to O(m).

Corollary 5.9. There are natural isomorphisms

H i(An+1
A \ {0},OAn+1\{0}) ∼=

⊕
m∈Z

H i(Pn
A,O(m)).
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Proof. As π is an affine morphism, the lemma together with Corollary
3.4 yield isomorphisms

H i(An+1
A \ {0},OAn+1\{0}) ∼= H i(Pn

A,
⊕
m∈Z

O(m)).

It remains to observe that cohomology commutes with direct sums.
This can be seen by choosing a flabby resolution for each O(m), and
then taking the direct sum of these resolutions as a flabby resolution
of the direct sum.

In view of the corollary above the theorem follows from:

Proposition 5.10. We have H i(An+1
A \ {0},OAn+1

A \{0}) = 0 unless

i = 0 or n. Moreover,

H0(An+1
A \ {0},OAn+1

A \{0}) = A[x0, . . . , xn]

except for n = 0 where it is A[x0, x
−1
0 ], and for n > 0

Hn(An+1
A \ {0},OAn+1

A \{0}) = submodule of A[x−1
0 , . . . , x−1

n ]

generated by monomials xα0
0 · · · xαn

n with all αi < 0.

Proof. The case i = 0 is well known from elementary algebraic geome-
try. Also, for n = 0 the scheme A1

A \ {0} is affine and therefore

H i(A1
A \ {0},OA1

A\{0}) = 0

for i > 0 by Serre’s vanishing theorem. So n = 0 is also known and we
may use induction on i and n. We have an exact sequence

(3) 0 → OAn+1
A \{0} → j∗OD(xn) →

∞⊕
l=1

OAn
A\{0}x

−l
n → 0

of sheaves onAn+1
A \ {0}. For i ≥ 1 we haveH i(An+1

A \ {0}, j∗OD(xn)) = 0
by Corollary 3.4 and Serre’s vanishing theorem because j is affine, so
the long exact cohomology sequence yields

H1(An+1
A \{0},OAn+1

A \{0})
∼= coker (H0(D(xn),OD(xn)) →

∞⊕
l=1

H0(An
A\{0},OAn

A\{0})x
−l
n ).

For n > 1 the right hand side is

coker (A[x0, . . . , xn, x
−1
n ] →

∞⊕
l=1

A[x0, . . . , xn−1]x
−l
n ) = 0.

For n = 1 it is

coker (A[x0, x1, x
−1
1 ] →

∞⊕
l=1

A[x0, x
−1
0 ]x−l

1 ) ∼=
∞⊕

l,m=1

Ax−m
0 x−l

1 .
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This completes the proof of the case i = 1 via induction on n. For i > 1
we derive from exact sequence (3) and the vanishing ofH i(An+1

A \ {0}, j∗OD(xn))
isomorphisms

H i(An+1
A \ {0},OAn+1

A \{0})
∼=

∞⊕
l=1

H i−1(An
A \ {0},OAn

A\{0})x
−l
n

where we use again that cohomology commutes with direct sums. Thus
we may conclude using induction (on i and n).

6. Serre’s GAGA theorems

Serre’s famous theorems give a comparison between coherent sheaves
on complex projective schemes and coherent sheaves on the associated
analytic space. To state them, we first have to review some construc-
tions in the analytic theory.

The affine space AN
C comes equipped with a natural sheaf Oan given

by holomorphic functions in n variables over complex open subsets of
CN . The pair (AN(C),Oan) is a locally ringed space. Given holomor-
phic functions f1, . . . , fm ∈ Oan(AN(C)), their restrictions define an
ideal sheaf I ⊂ Oan. Let Z ⊂ AN(C) be the support of Oan/I (i.e.
the closed subset of points where the stalk is nonzero). The restriction
of Oan/I to Z defines a locally ringed space we denote by (Z,Oan

Z ). We
call such ringed spaces closed analytic subspaces of AN(C). An ana-
lytic subspace ofAN(C) is an open subset in a closed analytic subspace,
equipped with the restriction of the structure sheaf.

Definition 6.1. A complex analytic space is a locally ringed space
(X,Oan

X ) such that there exists an open covering U of X such that for
U ∈ U the locally ringed space (U,Oan

X |U) is isomorphic to an analytic
subspace of AN(C).

A coherent sheaf on a complex analytic space is an Oan
X -module F

such that there exists an open covering U of V such that for U ∈ U the
restriction F|U is isomorphic to the cokernel of a morphism (Oan

U )⊕r →
(Oan

U )⊕s of finitely generated free Oan
U -modules.

Now we can associate a complex analytic space to a scheme of finite
type over C as follows.

Proposition 6.2. Let X be a scheme of finite type over C. There exists
a complex analytic space Xan equipped with a morphism ε : Xan → X of
ringed spaces such that every morphism of locally ringed spaces Y → X
with Y a complex analytic space factors uniquely through ε.

In the above proposition the structure sheaves of the ringed spaces
are all C-algebras; we require morphisms to preserve this C-algebra
structure.
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Proof. For X = AN
C we define Xan to be CN = AN(C) with its usual

holomorphic structure sheaf Oan recalled above. The morphism ε is
given by identifying CN with complex points of AN

C and considering
algebraic functions as holomorphic functions. Let us check that it sat-
isfies the above universal property. First consider the case N = 1. In
this case to give a morphism of locally ringed spaces ϕ : Y → A1

C for an
analytic space (Y,Oan

Y ) is equivalent to specifying a global section Oan
Y ,

i.e. a global holomorphic function on Y . Indeed, ϕ induces a C-algebra
map C[t] = Γ(A1

C ,OA1
C
) → Γ(Y,Oan

Y ) which is uniquely determined by
the image f of t. Conversely, such a holomorphic function f induces a
morphism ϕ : Y → A1

C which manifestly factors through ε as defined
above. The case of general N then follows inductively from a formal
observation: given two separated schemes X1, X2 of finite type over C
such that Xan

i exists for i = 1, 2, the product Xan
1 ×C Xan

2 satisfies the
universal property required of (X1 ×C X2)

an.
Next, consider the case where X is a closed subscheme of AN

C corre-
sponding to an ideal I = (f1, . . . , fr) ⊂ C[t1, . . . , tN ]. Viewing the fi as
holomorphic functions, they give rise to a sheaf of ideal I ⊂ Oan, and
we define Xan to be the associated closed analytic subset of AN(C).
To show that Xan satisfies the required universal property, one first
observes that Xan is none but the fibre product X ×AN

C
AN(C) in the

category of locally ringed spaces. Afterwards the argument is formal:
for a morphism Y → X of locally ringed spaces with Y analytic the
composite Y → X → AN

C factors through a morphism Y → AN(C)
by the case X = AN

C , whence also a map into the above fibre product.
Now let X be a closed subscheme of AN

C and U ⊂ X an open sub-
scheme. By the previous paragraph ε : Xan → X exists for X. We
define Uan to be ε−1(U) equipped with the restriction of OXan ; it is an
analytic subspace of AN(C) by construction. Moreover, it is none but
the fibre product U ×X Xan in the category of locally ringed spaces,
hence it satisfies the universal property by a similar argument as above.

Finally, in the general case X has an open covering by closed sub-
schemes in affine space. By the previous two steps we know that the
associated analytic space exists for elements of the cover as well as for
their intersections, hence we may patch them together as locally ringed
spaces by means of the isomorphisms resulting from the universal prop-
erty.

Remark 6.3. We have worked with Grothendieck’s definition of ana-
lytic spaces. Serre’s original definition in GAGA was more restrictive:
he required the topology of the analytic space to be Hausdorff and
elements of the open covering to be closed analytic subspaces of AN

C .
However, by following through the steps of the above construction one
sees that for separated schemes of finite type over C the space Xan will
be an analytic space in Serre’s sense as well. The GAGA theorems
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concern projective (or more generally proper) schemes over C, so the
separatedness assumption always holds.

Definition 6.4. Given an algebraic coherent sheaf F on X, we define

Fan := ε∗F .

Here the pullback is in the sense of ringed spaces, so it is given
by the tensor product ε−1F ⊗ε−1OX

OXan . Note that by definition
(OX)

an = OXan , so by exactness of ε−1 and right exactness of the
tensor product we obtain that Fan is a coherent analytic sheaf.

Proposition 6.5. The functor F 7→ Fan is exact.

Proof. Exactness can be checked on stalks. By construction the stalk of
Fan at P ∈ X(C) is isomorphic to FP⊗OX,P

OXan,P . Here the local rings
OX,P and OXan,P have the same formal completions along the maximal
ideal. This is obvious for the case X = AN

C where the completion
in both cases is the ring of formal power series in N variables; the
general case results by following the steps in the construction of Xan.
The proposition then follows from the purely algebraic lemma below,
applied to the homomorphism OX,P → OXan,P (in fact, only flatness is
used).

Recall that an A-module B is flat if the functor M 7→ M ⊗A B is
exact on the category of A-modules; it is faithfully flat if moreover
M ⊗AB = 0 implies M = 0. A fundamental fact (see e.g. Matsumura,

Commutative Ring Theory, §8) is that the completion Â of a Noether-
ian local ring along its maximal ideal is a faithfully flat A-module.

Lemma 6.6. Assume A → B is a local homomorphism of Noetherian

local rings inducing an isomorphism Â
∼→ B̂. Then B is faithfully flat

over A.

Proof. Assume M is an A-module with M ⊗A B = 0. Tensoring with

B̂ gives

0 = M ⊗A B ⊗B B̂ ∼= M ⊗A B̂ ∼= M ⊗A Â,

in view of B̂ ∼= Â. As Â is faithfully flat over A, we get M = 0.
Similarly, if M ↪→ N is an injective map of A-modules, tensoring

the induced map M ⊗A B → N ⊗A B with B̂ over B, we get the map

M ⊗A Â → N ⊗A Â which is injective by flatness of Â over A. As B̂ is
flat over B, this is only possible if M ⊗A B → N ⊗A B is injective.

Construction 6.7. The functor F 7→ Fan induces homomorphisms

H i(X,F) → H i(Xan,Fan)

for all i ≥ 0 as follows. Choose a projective resolution F → I•. Since
the functor ε∗ is exact, the complex ε∗F → ε∗I• is still a resolution.
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Choose an injective resolution ε∗F → J •. By a general lemma of ho-
mological algebra (which is easy to prove by an inductive construction),
the identity morphism of ε∗F extends to a morphism of complexes

ε∗I• → J •.

Applying the functor ε∗ gives a map

ε∗ε
∗I• → ε∗J •

that we may compose with the adjunction map I• → ε∗ε
∗I•. Taking

global sections we get

Γ(X, I•) → Γ(X, ε∗ε
∗I•) → Γ(X, ε∗J •) = Γ(Xan,J •).

The required maps result by passing to cohomology.

We may now state Serre’s GAGA theorems.

Theorem 6.8 (Serre). Let X be a closed subscheme of PN
C for some

N > 0.

(1) The maps H i(X,F) → H i(Xan,Fan) defined above are isomor-
phisms for all i ≥ 0.

(2) The functor F 7→ Fan induces an equivalence of categories be-
tween coherent algebraic sheaves on X and coherent analytic
sheaves on Xan.

Remark 6.9. Grothendieck has generalized both GAGA theorems to
arbitrary proper schemes over C.

The proof of Theorem 6.8 uses the following analogue of Theorem
5.1 for analytic sheaves (which was actually proven a few years earlier,
using techniques from functional analysis).

Theorem 6.10 (Cartan–Serre). Let F be a coherent analytic sheaf on
PN(C). Then

(1) H i(PN(C),F) is a finite-dimensional C-vector space for i ≥ 0.
(2) H i(PN(C),F(m)) = 0 for i > 0 and m sufficiently large.

Here F(m) for analytic sheaves is defined in the same way as in the
algebraic setting, by patching together the restrictions F|D+(xi) along
the isomorphisms f 7→ (xi/xj)

mf .
We shall only need the second statement, but its proof is based on

the first one, which is the most difficult result of the analytic theory.
Let us note the following consequence:

Corollary 6.11. If F is a coherent analytic sheaf of PN(C), then
F(m) is generated by global sections for m sufficiently large.
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Proof. Let IP be the ideal sheaf of a point P ∈ PN(C). We have an
exact sequence of sheaves

0 → IPF(m) → F(m) → F(m)/IPF(m) → 0.

A piece of its associated long exact sequence reads

H0(PN(C),F(m)) → H0(PN(C),F(m)/IPF(m)) → H1(PN(C), IPF(m)).

As IPF is coherent (being a quotient of IP ⊗F), the last group here is
trivial for m sufficiently large by part (2) of the theorem. Since Oan/IP

is a skyscraper sheaf concentrated at P , we have an isomorphism
H0(PN(C),F(m)/IPF(m)) ∼= F(m)P/IPF(m)P , where we have iden-
tified IP with the maximal ideal in OPN (C),P . The exact sequence gives

a surjection H0(PN(C),F(m)) � F(m)P/IPF(m)P , whence a surjec-
tion H0(PN(C),F(m)) � F(m)P by Nakayama’s lemma. As F is co-
herent, such a surjection holds for all points in an open neighbourhood
of P . As PN(C) is compact, we may cover it with finitely many such
open neighbourhoods, so for m sufficiently large F(m)P is generated
by global sections for all points P .

Remark 6.12. An analogous result holds for coherent algebraic sheaves
on a projective scheme. The proof is the same, using Theorem 5.1 (2)
instead of Theorem 6.10 (2).

Proof of Theorem 6.8 (1). Using the isomorphisms

H i(X,F)
∼→ H i(PN

C , ϕ∗F), H i(Xan,Fan)
∼→ H i(PN(C), ϕ∗Fan)

(where the second isomorphism follows as in Remark 3.5), we reduce
to the case X = PN(C).

In this case, we first prove the theorem for F = O(m) by induction
on N , the case N = 0 being obvious. We first treat the case i = 0.
Consider the exact sequence

(4) 0 → O(−1) → O → OH → 0

where H is the hyperplane of equation x0 = 0, and the first map is
given by multiplication by x0 (and we have written OH in place of
iH∗OH , where iH : H ↪→ PN(C) is the inclusion map). Tensoring by
the invertible sheaf O(m+ 1) gives an exact sequence

(5) 0 → O(m) → O(m+ 1) → OH(m+ 1) → 0

where the last term is the sheaf O(m + 1) on H ∼= PN−1 by the pro-
jection formula. We have a commutative diagram

0 −−−−−→ H0(PN
C ,O(m)) −−−−−→ H0(PN

C ,O(m+ 1)) −−−−−→ H0(H,OH(m+ 1))y y y
0 −−−−−→ H0(PN (C),Oan(m)) −−−−−→ H0(PN (C),Oan(m+ 1)) −−−−−→ H0(H(C),Oan

H (m+ 1))

Here the last vertical map is an isomorphism by induction on N . More-
over, the map H0(PN

C ,O) → H0(PN(C),Oan) is also an isomorphism
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(both groups equal C). Therefore the diagram implies that we have
isomorphisms H0(PN

C ,O(m)) → H0(PN(C),Oan(m)) for all m ≤ 0
by descending induction on m starting from the case m = 0. In
the case m > 0 the last upper horizontal map is surjective because
H1(PN

C ,O(m)) = 0 by Theorem 5.7. Thus we may apply the snake
lemma to the diagram, and prove the statement by ascending induc-
tion on m, again starting from the case m = 0.

In the case i > 0 both groups are trivial for m sufficiently large
by Theorems 5.1 (2) and 6.10 (2), so it will suffice to prove that the
theorem holds for O(m) if it holds for O(m+ 1). Now the maps

H i(PN
C ,OH(m+ 1)) → H i(PN(C),Oan

H (m+ 1))

are isomorphisms for all i and m by induction on N , and the maps

H i(PN
C ,O(m+ 1)) → H i(PN(C),Oan(m+ 1))

are isomorphisms for all i by descending induction on m. Writing out
the long exact sequences in cohomology for (5) in both the analytic and
the algebraic setting, the statement for O(m) follows from the above
isomorphisms and the five lemma.

To treat the case of arbitrary F , apply Proposition 5.5 to obtain an
exact sequence

0 → G → O(m)⊕r → F → 0.

Applying the exact functor F 7→ Fan gives an exact sequence

0 → Gan → Oan(m)⊕r → Fan → 0.

Writing out the associated long exact sequences and using the case F =
O(m), we can proceed by a similar descending induction as above, but
this time on i. To start the induction, use Theorem 4.2 in the algebraic
setting that shows that all groups are 0 in degree > N . The proof
of that theorem goes through in the analytic setting as well, except
that instead of Serre’s vanishing theorem one should use the analogous
theorem for coherent analytic sheaves on affine spaces (more generally,
Stein spaces) which is called Cartan’s ‘Theorem A’. (Alternatively, one
can apply Grothendieck’s general theorem mentioned at the beginning
of Section 4.) When proving the inductive step, the case F = O(m) and
the degree i+1 case first imply the surjectivity of the mapH i(PN

C ,F) →
H i(PN(C),Fan). Since this holds for all coherent sheaves on PN

C , it
also holds for G. Surjectivity of the map for G together with the already
known isomorphisms then implies injectivity for F by a diagram chase.

For the proof of full faithfulness in statement (2) we use a lemma.

Lemma 6.13. Given coherent sheaves F and G on X, we have a
canonical isomorphism

Hom(F ,G)an ∼= Hom(Fan,Gan)
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of sheaves on Xan.

Proof. First we construct a morphism

(6) Hom(F ,G)an → Hom(Fan,Gan).

A section of ε−1Hom(F ,G) over an open subset U ⊂ Xan induces
a morphism of sheaves ε−1F|U → ε−1G|U . Tensoring by Oan

U over
ε−1OX |U gives a morphism of sheaves ε∗F|U → ε∗G|U , i.e. a section of
Hom(Fan,Gan) over U . We thus obtain a morphism of ε−1OX-modules
ε−1Hom(F ,G) → Hom(Fan,Gan) which extends to a morphism of
OXan-modules ε−1Hom(F ,G) ⊗ε−1OX

OXan → Hom(Fan,Gan). This
is the map (6).

To show that (6) is an isomorphism, we consider the induced map
on stalks

Hom(FP ,GP )⊗OX,P
OXan,P → Hom(FP⊗OX,P

OXan,P ,GP⊗OX,P
OXan,P ).

Since OXan,P is flat over OX,P , we conclude by a purely algebraic fact:
given a ring A, a flat A-algebra B and A-modules M , N , the natural
map

HomA(M,N)⊗A B → HomB(M ⊗A B,N ⊗A B)

is an isomorphism. (This is obvious for M = A, hence also for M free
over A. In the general case, write A as a cokernel of a morphism of
free modules, and use flatness of B.)

Proof of Theorem 6.8 (2). We first prove that the functor F 7→ Fan is
fully faithful. Given coherent sheaves F and G on X, part (1) of the
theorem applied to H0 of the sheaf Hom(F ,G) induces an isomorphism

Hom(F ,G) ∼→ H0(Xan,Hom(F ,G)an).

By the lemma above, the right hand side identifies with Hom(Fan,Gan).
It remains to prove that the functor F 7→ Fan is essentially surjective,

i.e. every coherent analytic sheaf G on Xan is isomorphic to Fan for a
coherent algebraic sheaf F on X. First we reduce to the case X = PN

C .
Consider the inclusion map i : X ↪→ PN

C . By the case X = PN
C we

have ian∗ G = Fan for some coherent sheaf F on PN
C . If I is the ideal

sheaf defining X in PN
C , we have (IF)an = Ian(i∗G) = 0 as Ian is the

ideal sheaf defining Xan in PN(C). But then IF = 0. Indeed, this can
be checked on stalks, where it follows from faithful flatness of OXan,P

over OX,P (Lemma 6.6). But IF = 0 means that F is the pushforward
of a coherent sheaf FX on X, and we have Fan

X = G as analytification
commutes with pushforward along closed immersions.

In the case X = PN
C , apply Corollary 6.11 to obtain a surjection

Oan(−m)⊕s � G
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for suitablem and s. Repeating the argument for the kernel of this map
(which is again a coherent analytic sheaf) we obtain an exact sequence

Oan(−n)⊕r → Oan(−m)⊕s → G → 0.

By full faithfulness here the morphismOan(−n)⊕r → Oan(−m)⊕s comes
from a morphism O(−n)⊕r → O(−m)⊕s via the functor F 7→ Fan. As
this functor is moreover (right) exact, we obtain an isomorphism

G ∼= coker (O(−n)⊕r → O(−m)⊕s)an.

Thus F := coker (O(−n)⊕r → O(−m)⊕s) is a good choice.


