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1 Basic notions

Let k be an algebraically closed field. Recall that the projective plane over k is the quotient

P2
k =

(
k3 \ {(0, 0, 0)}

)
/ ∼

where (x, y, z) ∼ (x′, y′, z′) if and only if there exists a non-zero element λ in k such that
(x′, y′, z′) = (λx, λy, λz).

Definition 1.1. A projective plane curve over k is

X = {P ∈ P2
k : F (P ) = 0},

where F is a homogeneous polynomial in k[X,Y, Z]. We say that such a curve is

• irreducible if F is irreducible;

• smooth if for every P in X, one of ∂XF (P ), ∂Y F (P ), ∂ZF (P ) is non-zero.

In particular, a projective plane curve X is smooth if for every P in X there exists a unique
tangent line to X at P , given by the equation

∂XF (P )X + ∂Y F (P )Y + ∂ZF (Z)Z = 0.

Remark 1.2. Recall that P2
k can be covered by three copies of the affine plane A2

k:

A2
k

∼−−→ P2
k \ {Z = 0}, (x, y) 7→ (x, y, 1);

A2
k

∼−−→ P2
k \ {Y = 0}, (x, z) 7→ (x, 1, z);

A2
k

∼−−→ P2
k \ {X = 0}, (y, z) 7→ (1, y, z).

Intersecting X with these three subsets gives three affine plane curves, defined by the equations

fz(x, y) = 0, fz(x, y) = F (x, y, 1);

fy(x, z) = 0, fy(x, z) = F (x, 1, z);

fx(y, z) = 0, fx(y, z) = F (1, y, z).

Conversely, one can recover X from fz(x, y) by setting

F := Zdfz

(
X

Z
,
Y

Z

)
, d = deg(fz)

and similarly for fx and fy.
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Definition 1.3. An elliptic curve over k is a smooth irreducible projective plane curve
defined by a polynomial of the form

F = Y 2Z + a1XY Z + a3Y Z2 −X3 − a2X
2Z − a4XZ2 − a6Z

3

with coefficients a1, a2, a3, a4, a6 in k. The equation F = 0 is called a Weierstrass equation
for the elliptic curve.

In this case, the affine curve fz(x, y) = 0 is defined by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)

Moreover, there exists a unique point of the elliptic curve on the projective line {Z = 0}: this is
(0, 1, 0) and is called the point at infinity of the elliptic curve.

Now we show that, if char(k) ̸= 2, 3, after an invertible linear change of variables (with
coefficients in k), we can transform the equation (1.1) into the standard form

y2 = x3 +Ax+B. (1.2)

Indeed, starting from equation (1.1) and substituting

y 7→ 1

2
(y − a1x− a3),

we get
y2 = 4x3 + b2x

2 + 2b4x+ b6,

where b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6. Substituting

x 7→ x− 3b2
36

, y 7→ 1

108
y

yields
y2 = x3 +Ax+B,

where A = 648 b4 − 27 b22 and B = 54 b32 − 1944 b2b4 + 11664 b6. The homogeneous equation is
given by

Y 2Z = X3 +AXZ2 +BZ3.

Note. From now on, we assume char(k) ̸= 2, 3.

Now let F = Y 2Z−X3−AXZ2−BZ3. What is the condition on A,B for the curve {F = 0}
to be smooth?

Note first that (0, 1, 0) is a smooth point, indeed

∂ZF (0, 1, 0) = (Y 2 − 2AXZ − 3BZ2)(0, 1, 0) = 1.

For the other points, we check in the (x, y)-plane:

∂xfz = −3x2 −A

∂yfz = 2y
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and these are both zero if and only if y = 0 and x is a multiple root of x3 +Ax+B. Note that
the latter holds if and only if the discriminant of x3 +Ax+B

∆ = −(4A3 + 27B2)

is zero. In particular, if ∆ ̸= 0, the projective curve defined by F = 0 is smooth. In fact this
condition is also necessary, because if ∂XF (P ) = ∂Y F (P ) = 0, then ∂ZF (P ) = 0 because of
Euler’s formula:

X∂XF + Y ∂Y F + Z∂ZF = deg(F )F.

Exercise 1.4. Verify Euler’s formula for an elliptic curve (or in general, if you prefer).

Next, note that several Weierstrass equations can define the same curve: starting from

Y 2Z = X3 +AXZ2 +BZ3

and substituting X 7→ u2X, Y 7→ u3Y , Z 7→ Z for some non-zero u in k, we get

u6Y 2Z = u6X3 + u2AXZ2 +BZ3.

Dividing by u6 we obtain

Y 2Z = X3 +A′XZ2 +B′Z3, A′ = u−4AX, B′ = u−6B.

Definition 1.5. The j-invariant of the elliptic curve E : Y 2Z = X3 +AXZ2 +BZ3 is

j(E) := 4 · 27 · (4A)3

4A3 + 27B2
∈ k.

Proposition 1.6. If E : y2 = x3 + Ax + B and E′ : y2 = x3 + A′x + B′ are two elliptic
curves with j(E) = j(E′), then there exists a non-zero u in k such that E′ is obtained from
E by the substitutions x 7→ u2x and y 7→ u3y.

Proof. By hypothesis, we have

(4A)3

4A3 + 27B2
=

(4A′)3

4(A′)3 + 27(B′)2
.

Note that A = 0 if and only if A′ = 0 (and, equivalently, j(E) = j(E′) = 0). This in partic-
ular implies B,B′ ̸= 0 and so we get the claim by setting u = (B/B′)1/6.

Note also that B = 0 if and only if j(E) = 1728 (and, equivalently, B′ = 0). In this case
A,A′ ̸= 0 and we get the claim by setting u = (A/A′)1/4.

Finally, if A,B ̸= 0, the same computations hold and we can check that(
B

B′

)2

=

(
A

A′

)3

.

In this case, setting u = (B/B′)1/6 = (A/A′)1/4 we conclude.
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We shall verify later (Remark 3.4) that two elliptic curves are isomorphic if and only if they are
related by a substitution of the above type.
So isomorphism classes of elliptic curves correspond bijectively to values of the j-invariant.

Lemma 1.7. For every j in k, there exists an elliptic curve E over k with j(E) = j.

Proof. If j ̸= 0, 1728, then the elliptic curve

E : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
, (1.3)

whose standard form is given by

y2 = x3 +
27j

1728− j
x− 54j

1728− j
,

is such that j(E) = j. (Note that if j = 0, the curve defined by the equation (1.3) is not smooth.
As seen in the proof of Proposition 1.6, for an elliptic curve E : y2 = x3 + Ax + B, we have

j(E) = 0 if and only if A = 0 (and B ̸= 0) and j(E) = 1728 if and only if B = 0 (and A ̸= 0).
So these cases also arise.

In the language of algebraic geometry, the above discussion shows that A1
k is the moduli

space of elliptic curves over k, each curve corresponding to the point on the line defined by its
j-invariant.

Definition 1.8. Let K be a subfield of k. We say that E is defined over K if there exists
a Weierstrass equation for E with coefficients in K. We define E(K) to be the set of points
of E with coordinates in K.

Typical examples of K will be Q (when char(k) = 0) or Fp (when char(k) = p).

From the above discussion, we obtain:

Corollary 1.9. An elliptic curve E is defined over K if and only if j(E) belongs to K.

2 The group law on an elliptic curve

We start with the following observation, allegedly known to Diophantus.

Remark 2.1. If E is an elliptic curve over k and P,Q are two distinct points in E(k), then the
line PQ has a unique third point of intersection with E. Moreover, if E is defined over a subfield
K of k and P,Q belong to E(K), then the third point is in E(K) too.
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Proof. After a linear coordinate change, we may assume PQ does not go through (0, 1, 0). So we
may argue using the affine equation y2 = x3 + Ax + B. In this case, the line PQ has equation
y = Cx+D. Intersection points correspond to roots of (Cx+D)2 = X3 + AX + B. We know
that if two roots are in K, then there exists a unique third root in K.

There is a complement, attributed to Newton: if P = Q, the same holds by the tangent line at
P to E.

Construction 2.2. Fix a point O in E(k). If P,Q belong to E(k), let R be the third point of
intersection of PQ with E. We define P ⊕Q to be the third point of intersection of RO with E.

Note. If P,Q are in E(K), so is P ⊕Q when E is defined over K and O lies in E(K).

Theorem 2.3. The above construction gives E(K) the structure of an abelian group.

Note that by construction E(K) is clearly commutative with zero element given by the point
O. For every point P in E(K) we construct its inverse (denoted by −P or sometimes by ⊖P ) as
follows: let T be the third point of intersection of the tangent line at O (to E) with E (it may
happen that T = O). We define −P as the third point of intersection of PT with E. The most
difficult part of the proof of Theorem 2.3 is to show that the composition law is associative. We
will prove this after introducing more sophisticated tools.

Remark 2.4. Suppose that O is a flex on E (that is, O is a triple intersection point of E with
the tangent line at O). It is known that there are nine such points. In this case −P is just the
third point of intersection of PO with E; moreover, one checks easily that P ⊕Q⊕R = O if and
only if P,Q,R are collinear (this is not true with every O!).

Key example: O = (0, 1, 0). The tangent line at O to E is {Z = 0} and {Z = 0}∩E = {X =
Z = 0} = {(0, 1, 0)}. In what follows we shall make this choice for O.

With an eye for the proof of associativity, we now recall some basic notions from the geometry
of plane curves.
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Let F be an irreducible polynomial in k[x, y]. Then F defines an affine plane curve

X = {P = (a, b) ∈ A2
k : F (P ) = 0}.

Since F is irreducible, the ideal (F ) is a prime ideal of k[x, y]. In particular, the quotient ring
k[x, y]/(F ) is an integral domain.

Definition 2.5. The coordinate ring of the affine plane curve X is the quotient ring

AX =
k[x, y]

(F )
.

The function field of X is the fraction field

k(X) := Frac(AX)

of the coordinate ring of X.

The elements of k(X) can be viewed as functions f/g on X, with f/g and f1/g1 identified if
F divides fg1 − f1g.

Recall that if P is a point in A2
k, the kernel of the map k[x, y]→ k, f 7→ f(P )

MP := {f ∈ k[x, y] : f(P ) = 0}

is a maximal ideal of k[x, y]. Indeed, setting P = (a, b), the ideal MP contains the maximal ideal
(x− a, y − b). Thus we get MP = (x− a, y − b).
With a slight abuse of notation, we still denote by MP the image of MP in AX .

Definition 2.6. The local ring of X at P is the localization OX,P of AX by MP .

The ring OX,P is a subring of the function field k(X) and is represented by elements of the
form f/g, with g(P ) ̸= 0, again with f/g and f1/g1 identified if F divides fg1 − f1g.

Example 2.7. If F = y3− x− 1 and P = (−1, 0), using the above equivalence relation we have

x+ 1

y
=

y3

y
= y2 ∈ OX,P .

Thus a function in k(X) which at first glance does not look like an element of OX,P may well be
there.

Fact 2.8. Let h be an element in k(X). Then h lies in OX,P for all but finitely many points P .

Proof. Represent h = f/g. Then {g = 0} defines an affine plane curve in A2
k. The plane

curves {F = 0} and {g = 0} do not contain each other (as F is an irreducible polynomial that
does not divide g), hence they meet at finitely many points. This can be proved rigorously by
an elementary argument on polynomials. A more highbrow argument is: the ring AX is an
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integral domain whose transcendence degree over k is 1 (as the equation F = 0 provides an
algebraic dependence relation between the variables x and y). By adding the equation g = 0,
the transcendence degree of the correspondent coordinate ring drops to zero. Hence the plane
curves {F = 0} and {g = 0} cut out a zero-dimensional variety, that is, a finite set of points.
For further details, see [7].

Lemma 2.9. Let X be an affine plane curve. Then

AX =
⋂

P∈X

OX,P .

Proof. Clearly AX is contained in the intersection. On the other hand, let h be an element
in
⋂

P∈X OX,P . Then for each P in X there exist fP , gP in AX with gP (P ) ̸= 0 such that
h = fP /gP . Since AX is Noetherian, the ideal (gP : P ∈ X) is finitely generated, say by
g1, . . . , gr. Then in k(X) we can write

h =
f1
g1

=
f2
g2

= . . . =
fr
gr

so that for each P in X there exists an index 1 ≤ i ≤ r such that gi(P ) ̸= 0. Observe that
(g1, . . . , gr) = AX . Indeed, if not, the ideal (g1, . . . , gr) would be contained in a maximal ideal of
AX , that is, by Nullstellensatz, the image of some (x− a, y − b) in AX . But then for P = (a, b)
we would have gi(P ) = 0 for all indexes i.

Therefore there exist h1, . . . , hr in AX such that
∑r

i=1 higi = 1. Hence

h =

r∑
i=1

hihgi =

r∑
i=1

hi
fi
gi
gi =

r∑
i=1

hifi ∈ AX .

Lemma 2.10. If P is a smooth point of an affine plane curve X (i.e. ∂xF (P ) and ∂yF (P )
are not both zero), then the maximal ideal of OX,P is principal.

Proof. Up to translation, we may assume P = (0, 0). Without loss of generality, we may assume
∂yF (0, 0) ̸= 0. We show that the maximal ideal MP = (x, y) is generated by x, i.e. there exists
f in OX,P such that y = x · f . Note that

0 = F (x, y) = x g(x) + ∂yF (0, 0) y + h(x, y) y

for some g in k[x] and h in k[x, y] such that h(0, 0) = 0. Therefore, setting

f := − g

∂yF (0, 0) + h

yields y = x · f . Since h(0, 0) = 0 and ∂yF (0, 0) ̸= 0, we conclude that f belongs to OX,P .
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Corollary 2.11. If P is a smooth point of X, then OP,X is a discrete valuation ring.

In particular, if P is a smooth point of X, every element f in k(X)× can be written as
f = uxn, where u is a unit in OX,P and n is an integer independent of the generator x of MP .

Notation. If P is a smooth point of X, we denote by vP the discrete valuation associated to
OX,P . In particular, if f = uxn as before, we have n := vP (f). If n > 0, we say that f has a
zero of order n at P . If n < 0, we say that f has a pole of order −n at P .

Now let X be an irreducible projective plane curve defined by a homogeneous polynomial F
in k[X,Y, Z] of degree d. Recall that

if Z ̸= 0, then fZ = F (x, y, 1) defines XZ ⊂ A2
k with coordinates x, y;

if Y ̸= 0, then fY = F (x, 1, z) defines XY ⊂ A2
k with coordinates x, z;

if X ̸= 0, then fX = F (1, y, z) defines XX ⊂ A2
k with coordinates y, z.

Recall that fZ and fY are linked by

fY (x, z) = zdfZ

(
x

z
,
1

z

)
.

Now if P lies in X(k)∩{Z ̸= 0}∩ {Y ̸= 0}, then P defines a point of both XZ and XY (that we
still denote by P ). We have a canonical isomorphism OXZ ,P

∼−→ OXY ,P by

g(x, y)

h(x, y)
7−→ g (x/z, 1/z)

h (x/z, 1/z)
. (2.1)

This is an isomorphism because the procedure can be reversed. Obviously we can argue in a
similar way when P lies in X(k) ∩ {Z ̸= 0} ∩ {X ̸= 0} or in X(k) ∩ {X ̸= 0} ∩ {Y ̸= 0}, so we
can define

OX,P :=


OXZ ,P if P ∈ {Z ̸= 0}
OXY ,P if P ∈ {Y ̸= 0}
OXX ,P if P ∈ {X ̸= 0}

and this is well-defined by the above. We can also define k(X) as the common fraction field of
the OX,P :

k(X) := k(XZ) = k(XY ) = k(XX).

So there exists a notion of zero and pole of an element f in k(X) at a point P in X.

Example 2.12. Let X be the elliptic curve with equation

Y 2Z = X3 +AXZ +BZ3.

For Z ̸= 0, the affine curve XZ has equation y2 = x3 + Ax + B and x, y lie in AXZ
(thus in

k(XZ) = k(X)). What about P = (0, 1, 0)? It is contained in XY .

General recipe:

x ∈ k(XZ) =⇒
x

z
∈ k(XY ).
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The affine curve XY has equation z = x3 + Axz2 + Bz3. The maximal ideal of OXY ,P is the
ideal generated by x (because, as in the proof of Lemma 2.10, ∂Z does not vanish at P ). In this
case, we have

z =
1

1−Axz −Bz2︸ ︷︷ ︸
unit

x3

Hence z has a zero of order 3 at P and x/z has a pole of order 2 = 3− 1 at P . Also, the element
y in k(XZ) ( which corresponds to 1/z in k(XY ) by the isomorphism in (2.1)) has a pole of order
3 at P .

Remark 2.13. We have another description of k(X). Consider the quotient set

k̃(X) :=

{
P

Q
: P,Q ∈ k[X,Y, Z] homogeneous, F ∤ Q, deg(P ) = deg(Q)

}/
∼

where the equivalence relation is given by

P

Q
∼ P ′

Q′ ⇐⇒ F | PQ′ − P ′Q.

Here the condition on degrees is needed to get a well-defined function at points of the projective
curve. Recall that

k(X) = k(XZ) = Frac(AXZ
) =

{
f

g
: f, g ∈ k[x, y], fZ ∤ g

}/
∼

where
f

g
∼ f ′

g′
⇐⇒ fZ | fg′ − f ′g.

Define a map k(XZ)→ k̃(X) by

f

g
7−→ f(X/Z, Y/Z)

g(X/Z, Y/Z)
=

f(X/Z, Y/Z)Zd

g(X/Z, Y/Z)Ze
Ze−d,

where d = deg(f) and e = deg(g). This map has an inverse, given by

P

Q
7−→ P (x, y, 1)

Q(x, y, 1)
.

Thus k̃(X) provides another description of the function field of X.

Definition 2.14. Let X be a smooth projective plane curve. The group of divisors on X
is the free abelian group

Div(X) :=
⊕
P∈X

Z · P.

If f is an element of k(X)×, the divisor of f is the element

div(f) :=
∑
P∈X

vP (f) · P ∈ Div(X).
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Note that div(f) ∈ Div(X) because f has only finitely many zeros and poles on X (apply Fact
2.8 to f and 1/f). Also, the map div : k(X)× → Div(X) defined by f 7→ div(f) is a group
homomorphism.

Definition 2.15. Let X be a smooth projective plane curve. The Picard group of X is the
quotient group

Pic(X) := coker(div).

We denote by [D] the class in Pic(X) of an element D in Div(X).

So we have an exact sequence

1→ k× → k(X)×
div−−→ Div(X)→ Pic(X)→ 0.

Definition 2.16. The degree of an element D =
∑

P∈X nP · P in Div(X) is the integer

deg(D) :=
∑
P∈X

nP .

Note that the map deg : Div(X)→ Z defined by D 7→ deg(D) is a group homomorphism.

Proposition 2.17. If f is a non-zero element in k(X), then deg(div(f)) = 0.

Proof. We shall only prove the cases X = P1
k or X an elliptic curve. We start with the case

X = P1
k. We identify points of P1

k with elements of k ∪ {∞}. We may assume that f lies in k[x]
(this is sufficient, as deg ◦ div is a group homomorphism). In particular, we can write

f =
r∏

i=1

(x− ai)
ni ,

whit ni = vai(f). Note that

v∞(f) = − deg(f) = −
r∑

i=1

ni

because x−1 generates the maximal ideal of OP1
k,∞. Hence we get

deg(div(f)) =
∑
P∈X

vP (f) = v∞(f) +

r∑
i=1

vai
(f) = 0.

Now we consider an elliptic curve E of equation y2 = x3 +Ax+B. Write

x3 +Ax+B =

3∏
i=1

(x− ei).
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Then the projection (x, y) 7→ x is a 2 : 1 correspondence except at (ei, 0) and O. Note that
k(E)|k(P1

k), where k(P1
k) = k(x), is a degree 2 field extension, hence a Galois extension with

Galois group isomorphic to Z/2Z. The non-trivial element sends f(x, y) to f̄(x, y) := f(x,−y).
For every f in k(E), the element ff̄ is fixed by the Galois group, thus is in k(x). Then by the
previous case, we have deg(divP1

k
(ff̄)) = 0. Now we show that

deg(divP1
k
(ff̄)) = 2 deg(divE(ff̄)). (2.2)

This will be enough because deg(divE(f)) = deg(divE(f̄)) since vP (f) = v−P (f̄).
For a in k \ {e1, e2, e3}, the element x − a generates the maximal ideal of OP1

k,a
, but also

that of OE,±P , where ±P are the two points above a ∈ P1
k (because ∂yF (±P ) does not vanish).

Since the projection is 2 : 1, this gives the contribution of ±P .
If a = ei, then x− ei generates the maximal ideal of OP1

k,ei
, but not of OE,(ei,0) (there y is a

generator). We have

y2 = (x− ei)
∏
j ̸=i

(x− ej)

and the second factor is a unit in OE,(ei,0). Hence (x − ei) has a zero of order 2 at the point
(ei, 0) of E(k). Finally, the case of O is similar and is left as exercise.

The above argument also make it possible to prove the following basic fact for elliptic curves.

Proposition 2.18. If X is a projective plane curve, then⋂
P∈X

OX,P = k.

Proof in the case of elliptic curves. Let X = E be an elliptic curve, and let f be an element in⋂
P∈E OE,P . Then f is contained in

⋂
P∈E\{O}OE,P and thus in AE\{O} by Lemma 2.9. By

the previous argument, the element ff̄ lies in AP1
k\{∞} = AA1

k
= k[x], thus either it is constant

or has a pole at ∞. In the latter case, using formula (2.2), we see that f then has a pole at O
which contradicts our assumption. So f is constant.

Definition 2.19. If X is a projective plane curve, we set

Div0(X) := ker(deg : Div(X)→ Z).

We define Pic0(X) as the image of Div0(X) in Pic(X).

By Proposition 2.17, we have an exact sequence:

1→ k× → k(X)× → Div0(X)→ Pic0(X)→ 0.

Now assume that X = E is an elliptic curve with O ∈ E. Define the map

Φ : E(k) −→ Pic0(E)
P 7−→ [P −O]

.
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Lemma 2.20. For every P,Q in E, we have

Φ(P ⊕Q) = Φ(P ) + Φ(Q).

Proof. Let R be the third point of intersection of the line PQ with E. Let L1 = 0 and L2 = 0 be
the equations of the lines PQ and RO respectively. Then L1, L2 are homogeneous polynomials
of degree 1, thus the element L1/L2 belongs to k(E). We have

div

(
L1

L2

)
= P +Q+R−R−O − P ⊕Q = (P −O) + (Q−O)− (P ⊕Q−O).

Taking the equivalence classes in Pic0(E), we conclude.

Notation. Let E be an elliptic curve, let P be a point of E and let m be a positive integer. We
set

P⊕m := P ⊕ . . .⊕ P︸ ︷︷ ︸
m times

and P⊕(−m) := (⊖P )⊕ . . .⊕ (⊖P )︸ ︷︷ ︸
m times

.

We also set P⊕0 = O. Finally, if P1, . . . , Pr are points in E, we set∑
1≤i≤r

⊕
Pi = P1 ⊕ . . .⊕ Pr.

Corollary 2.21. Let D =
∑

P∈E mp · P be a divisor on an elliptic curve E. Set∑
(D) :=

∑
P∈E

⊕
P⊕mP ∈ E(k).

Then in Pic(E) we have

[D] =
[∑

(D)
]
+ [(deg(D)− 1)O].

Proof. By Lemma 2.20, for every point Q in E we have Φ(⊖Q) + Φ(Q) = Φ(O) = 0, hence, for
every P,Q in E, we get

Φ(P ⊖Q) = Φ(P ) + Φ(⊖Q) = Φ(P )− Φ(Q).

The case D = P is clear. By the above argument, if the formula holds for D, then it holds for
D + P and D − P .

Corollary 2.22. The map Φ is surjective.

While we are at it, we mention that a special case of Corollary 2.21 is the following classical
theorem, proven by Abel over C.

12



Theorem 2.23 (Abel). If E is an elliptic curve and D =
∑

P∈E mpP is a divisor on E such
that deg(D) = 0,

∑
(D) = O ∈ E, then D = div(f) for some f in k(E).

To conclude the proof of Theorem 2.3, it remains to show that kerΦ is trivial. Once we
prove this, we will get that Φ: E(K) → Pic0(E) is an additive bijection and therefore E(k) is
an abelian group isomorphic to Pic0(E).

Remark 2.24. In general, if X is a smooth projective curve, it is possible to give Pic0(E)
the structure of a projective variety (called the Jacobian variety) such that the addition is
geometrically defined (like the case of elliptic curves) and P 7→ [P − O] induces a map X →
Pic0(X) which is an embedding if X ̸∼= P1

k.

We need the following ‘obvious’ lemma that has many different proofs.

Lemma 2.25. If E is an elliptic curve, then k(E) is not isomorphic to k(P1
k).

Proof. Suppose that X is a plane curve defined by the equation F = 0 and let ρ : k(X)→ k(X)
be a field automorphism, then there exists an induced map (not everywhere defined) ρ̃ : X → X,
because k(X) = Frac(k[x, y]/(F )): let x, y be the image modulo F of x, y respectively, and set
f := ρ(x), g := ρ(y) in k(X). So if P = (a, b), then ρ̃(P ) = (f(a), g(b)). If X = P1

k = {y = 0},
we have k(X) = k(x). Since ρ−1 ◦ ρ = idk(P1

k)
, the induced map ρ̃ must be 1 : 1 (everywhere

where defined), so if f = p/q for p, q in k[x], for every α in k the equation p(x)/q(x) = α has
at most one solution. Thus p(x) − αq(x) = 0 has at most one solution, hence deg(p) ≤ 1 and
deg(q) ≤ 1. Therefore we can write

f =
ax+ b

cx+ d
,

which has at most two fixed points. But for an elliptic curve E the map E → E defined by
(x, y) 7→ (x,−y) has four fixed points, so k(P1

k) cannot be isomorphic to k(E).

Definition 2.26. Let X be a smooth projective plane curve and let D =
∑

P∈X mPP be a
divisor on X. We set D ≥ 0 if and only if mP ≥ 0 for all P in X. We set D1 ≥ D2 if and
only if D1 −D2 ≥ 0.

The previous definition provides a partial order on the group of divisors.

Definition 2.27. Let D be a divisor on X. The Mittag-Leffler space of D is the space

L (D) := {f ∈ k(X)× : div(f) +D ≥ 0} ∪ {0}.

Note that L is a k-vector subspace of k(X).
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Lemma 2.28. Let D,D′ be divisors on X.

(a) If D ≥ D′, then L (D) ⊇ L (D′).

(b) If [D] = [D′] in Pic(X), then L (D) ∼= L (D′).

Proof. The first statement is immediate. For the second, if D′ = D+div(g) for some g in k(X)×,
then the k-linear map L (D)→ L (D′) defined by f 7→ fg has inverse f 7→ fg−1.

Lemma 2.29. For every D in Div(X), we have dimk L (D) < ∞. If D ≥ 0, then
dimk L (D) ≤ deg(D) + 1.

Proof. By Lemma 2.28, part (a), it is enough to prove the second statement because for each
D there exists D′ ≥ 0 such that D′ ≥ D. If D = 0, then L (D) = L (0) =

⋂
P∈X OX,P = k

(Proposition 2.18) and so the lemma is true. By induction, it is enough to prove

∀P ∈ X, D ≥ 0, dimk L (D + P )− dimk L (D) ≤ 1.

If t generates the maximal ideal of OX,P and P has coefficient mP in D, then the k-linear map
φP : L (D + P )→ k defined by f 7→ tmP+1f(P ) has kernel L (D). So φP induces

L (D + P )/L (D) ↪→ k.

Since k is one-dimensional, we conclude.

Notation. For f in k(X)× with div(f) =
∑

P∈X mPP , we set

div0(f) :=
∑

mP>0

mPP

div∞(f) :=
∑

mP<0

(−mP )P

So div(f) = div0(f)− div∞(f).

Proposition 2.30. If k(X) ̸∼= k(P1
k), then there is no f ∈ k(X)× such that div∞(f) = P .

Corollary 2.31. If X is an elliptic curve with origin O and P ̸= O is a point of X, then is
no f ∈ k(X)× such that div(f) = P −O. In particular, kerΦ = 0.

Proof of Proposition 2.30. By hypothesis, for f in k(X), the field k(f) is strictly contained in
k(X) (indeed the first is purely transcendental over k and so is isomorphic to k(P1

k)). Since
k(X) has transcendence degree 1 over k, there exists a k(f)-basis y1, . . . , yn of k(X), with n ≥ 2.
Now assume div∞(f) = P . Fix m > 0 and fix a divisor D ≥ 0 such that y1, . . . , yn lie in L (D),
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set Dm := m · div∞(f) +D. Observe that the elements f jyi are in L (Dm) for 1 ≤ j ≤ m and
1 ≤ i ≤ n. Moreover, they are linearly independent over k, thus dimk L (Dm) ≥ m · n. On the
other hand, by Lemma 2.29 we get

dimk L (Dm) ≤ 1 + deg(Dm) = 1 +m+ deg(D).

For m large, this gives a contradiction.

3 The Riemann-Roch theorem for elliptic curves

The aim of this section is to prove the following result.

Theorem 3.1 (Riemann-Roch for elliptic curves). Let E be an elliptic curve and let D be
a divisor on E such that deg(D) > 0. Then

dimk L (D) = deg(D).

We start with some remarks.

Remark 3.2. Let X be a projective plane curve and let D be a divisor on X.

1. If deg(D) < 0, then L (D) = 0.

Indeed, if L (D) ̸= 0, there exists a f in k(X)× such that div(f) +D ≥ 0. But then

0 ≤ deg(div(f) +D) = deg(div(f)) + deg(D) = deg(D).

2. In general, if X is a smooth projective plane curve defined by the polynomial F of degree
d, the genus of X is

g :=
(d− 1)(d− 2)

2
.

A form of the Riemann-Roch theorem is the following: if D is a divisor of X such that
deg(D) ≥ 2g − 2, then

dimk L (D) = deg(D)− g + 1.

For arbitrary D the inequality ≥ always holds (this is Riemann’s part) and the difference
is equal to the dimension of a certain first cohomology group associated with D.

Exercise 3.3. Show that if deg(D) = 0, then dimk L (D) can be either 0 or 1.

Proof of Theorem 3.1. We start with the case D = mO, for m ≥ 1. If m = 1, we have already
seen in the proof of Lemma 2.29 that L (O) = k. It is sufficient to prove by induction that

dimk L (mO)− dimk L ((m− 1)O) ≥ 1,

because we know that the left hand side must be less then or equal to 1.
It is enough to find for m ≥ 2 an element of k(E) with a pole of order m at O and no poles

elsewhere. We have seen that

div∞

(
X

Z

)
= 2O, and div∞

(
Y

Z

)
= 3O.
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So if m = 2k ≥ 2, we have (X/Z)k ∈ L (mO) \L ((m− 1)O). If m = 2k + 1, we have(
X

Z

)k−1(
Y

Z

)
∈ L (mO) \L ((m− 1)O).

Now we consider the case D = P +mO, for m ≥ 0 and P different from O. If m = 0, we have
again Lk(P ) = k. If m ≥ 1, again it is enough to find an element f in L (mO) \L ((m− 1)O).
Suppose P = (a, b) and consider the projective lines {X − aZ = 0} and {Y + bZ = 0}. Then

{X − aZ = 0} ∩ E = {P,−P,O},
{Y + bZ = 0} ∩ E = {−P,Q,R},

for some Q,R different from P .

Then

div

(
Y + bZ

X − aZ

)
= Q+R+ (−P )− (P +O + (−P )) = Q+R− P −O ≥ −P −mO

and this is strictly less than −mO because P is different from Q,R. This means

Y + bZ

X − aZ
∈ L (P +mO) \L (mO).

For the general case, recall that if [D] = [D′] in Pic(E), then L (D) ∼= L (D′). From
Corollary 2.21, we know that in Pic(E)

[D] =
[∑

(D) + (deg(D)− 1)O
]
.

Thus we reduce to the previous cases.

Remark 3.4. If y2 = x3 +Ax+B and (y′)2 = (x′)3 +A′x′ +B′ define the same elliptic curve
E, then there exists a unit u such that x = u2x′ and y = u3y′.

Indeed {1, x}, {1, x′} are k-basis of L (2O) and {1, x, y},{1, x′, y′} are k-basis of L (3O).
Then x = u1x

′ + r and y = u2y
′ + sx′ + t for some u1, u2, s, t, r in k. Substituting yields

(u2y
′ + sx′ + t)2 = (u1x

′ + r)3 +A(u1x
′ + r) +B.

Checking the equality, we get s = t = r = 0 and u2
2 = u3

1.
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Assume now X a smooth projective plane curve defined over a perfect field K ⊂ k such that
k = K, set G := Gal(k|K). Then G acts on Div(X) by

σ

( ∑
P∈X

mPP

)
=
∑
P∈X

mP σ(P ).

Definition 3.5. The group of K-rational divisors on X is

DivK(X) := {D ∈ Div(X) : σ(D) = D for all σ ∈ G}.

Also, set K(X) := k(X)G. One can show that if X is defined by {F = 0} for some F in
K[x, y], then

K(X) = Frac

(
K[x, y]

(F )

)
.

Definition 3.6. Let D be an element in DivK(X). We define

LK(D) = {f ∈ K(X)× : div(f) +D ≥ 0}.

Note that LK(D) is a K-vector space and that G acts on L (D).

Proposition 3.7. The following equalities hold.

dimK LK(D) = dimk L (D)

L (D)G = LK(D).

This follows from an algebraic result of Spesier, for the proof of which we refer to [9, Lemma
3.7]

Proposition 3.8 (Galois descent). Let V be a finite-dimensional k-vector space with a
semi-linear G-action (i.e. σ(v + w) = σ(v) + σ(w) and σ(λv) = σ(λ)σ(v)).
Then V has a basis consisting of G-invariant vectors (or, in other words, V G ⊗K k

∼−→ V ).

4 Elliptic curves over C

We only include a brief sketch of the theory, referring to the books of Milne [2] or Silverman [5]
for details.

Let w1, w2 be non-zero complex numbers which are R-linearly independent.
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Definition 4.1. A lattice in C is an additive subgroup of C of the form

Λ = {mw1 +mw2 : (m,n) ∈ Z2}.

Note that Λ is a discrete subset for the topology of C. On C/Λ there is an induced topology,
and topologically C/Λ is a torus. It also has a complex analytic structure: together with the
group structure it becomes a complex commutative Lie group.

Definition 4.2. An elliptic function is a meromorphic function f on C such that f(z+w) =
f(z) for all z and for all w in some lattice Λ in C.
We denote by E the field of elliptic functions.

Elliptic functions also be viewed as meromorphic functions on C/Λ. A basic example is:

Example 4.3 (Weierstrass ℘ function).

℘(z,Λ) =
1

z2
+

∑
w∈Λ\{0}

[
1

(z − w)2
− 1

w2

]
.

Fact 4.4. If ℘′ denotes the complex derivative of ℘, then

1. E = C(℘, ℘′).

2. There is a functional equation

(℘′)2 = 4℘3 − g2℘− g3

with g32 − 27g23 ̸= 0. In fact, g2 and g3 are given by the Eisenstein series g2 = 60
∑

w ̸=0
1
w4

and g3 = 140
∑

w ̸=0
1
w6 .

Corollary 4.5. The map

Ψ : C/Λ −→ P2
C

z 7−→ (℘(z), ℘′(z), 1)

has an elliptic curve as its image.

Fact 4.6. The map Ψ is a 1 : 1 correspondence onto its image and induces an isomorphism of
complex Lie groups (where the elliptic curve is considered with its group law). Moreover, every
elliptic curve over C arises from a lattice Λ in this way.

We give a proof sketch of the additivity of Ψ. We first start with the following lemma.

Lemma 4.7. Let n1, . . . , nr be integers and let z1, . . . , zr be complex numbers such that∑r
i=1 ni = 0 and

∑r
i=1 nizi = 0. Then there exists f in E such that (as a formal sum)

div(f) =
∑r

i=1 nizi.
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Here we convene that div(f) counts zeros and poles modulo Λ.

Proof. We consider the Weierstrass σ-function:

σ(z,Λ) := z
∏

w∈Λ\{0}

(
1− z

w

)
exp

(
z

w
+

1

2

( z

w

)2)
.

This is holomorphic on C and has simple zeros at the points in Λ. One checks (log σ)′′ = −℘,
hence there exist a, b in C such that σ(z + w) = exp(az + b)σ(z) for all w in Λ. Now consider

f(z) =

r∏
i=1

σ(z − zi)
ni .

Then f satisfies div(f) =
∑

i nizi and

f(z + w)

f(z)
=

r∏
i=1

exp
(
a(z − zi) + b

)ni
= exp

(
(az + b)

r∑
i=1

ni − a

r∑
i=1

nizi

)
= 1.

Proof of the additivity of Ψ. For each z1, z2 in C, Lemma 4.7 gives a function f in E such that

div(f) = (z1) + (z2)− (z1 + z2)− (0).

By Fact 4.4 (1), there exists F in C(X,Y ) such that f = F (℘, ℘′). So Ψ sends E to the function
field of E. Hence we get a rational function over E with divisor Ψ(z1)+Ψ(z2)−Ψ(z1+z2)−Ψ(0).
Now use E

∼−→ Pic0(E).

Corollary 4.8. If E|C is an elliptic curve, then

E[m] ∼= Z/mZ× Z/mZ,

where E[m] is the set of points of E of order dividing m.

5 Elliptic curves over finite fields

We shall define a zeta function associated with a smooth projective plane curve over a finite field.
To motivate the definition, we first discuss the classical Riemann ζ.

Definition 5.1. The Riemann zeta function is defined by the formula

ζ(s) =
∑
n≥1

1

ns
.

It is absolutely convergent for ℜ(s) > 1 and has the following representation as an Euler
product

ζ(s) =
∏

p prime

1

1− p−s
.
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Facts 5.2. The following properties hold.

1. The function ζ(s) extends to a holomorphic function on C\{1} with a simple pole at s = 1.

2. The function
ξ(s) := π−s/2Γ

(s
2

)
ζ(s),

where Γ(s) :=
∫∞
0

ts−1 exp(−t) dt is the Gamma function (defined for ℜ(s) > 1 and ex-
tended holomorphically to C), satisfies the functional equation

ξ(s) = ξ(1− s).

Conjecture 5.3 (Riemann hypothesis). If 0 ≤ ℜ(s) ≤ 1 and ζ(s) = 0, then ℜ(s) = 1
2 .

Now we consider a smooth projective plane curve C over the finite field Fq with q elements.
We denote

Nm := #C(Fqm)

the number of points of C over Fqm .

Definition 5.4. The zeta function of C is the exponential generating function

ZC(T ) := exp

∑
m≥1

Nm
Tm

m

 .

Why is this a zeta function? Notice that if P = (a0, a1, a2) is a point in C(Fqm), then
σ(P ) = (σ(a0), σ(a1), σ(a2)) is in C(Fqm) for all σ in the Galois group Gal(Fq|Fq), indeed
C = {F = 0} for some homogeneous polynomial F in Fq[X,Y, Z].

Definition 5.5. Given a point P in C(Fq), we set

deg(P ) := min{m ≥ 1: P ∈ C(Fqm)}.

This is the same as the size of the orbit of P under Gal(Fq|Fq).

By definition of the logarithmic series, we have

log

(
1

1− T deg(P )

)
=

∞∑
N=1

TN deg(P )

N
=

∞∑
N=1

deg(P )
TN deg(P )

N deg(P )
.
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Taking the sum over the P -orbits and substituting m = N deg(P ), we get

∑
P -orbits

log

(
1

1− T deg(P )

)
=

∑
P -orbits

∞∑
N=1

deg(P )
TN deg(P )

N deg(P )

=

∞∑
m=1

Tm

m

∑
P -orbits
deg(P )|m

deg(P )

=
∑
m≥1

Tm

m
Nm = log(ZC(T )).

So

ZC(T ) =
∏

P -orbits

1

1− T deg(P )
.

Substitute T = q−s: then ZC(q
−s) looks like the Riemann zeta function.

Recall that the genus of C is the number

g =
(d− 1)(d− 2)

2
.

Theorem 5.6 (Hasse for elliptic curve, Weil in general). The following properties hold.

1. ZC(T ) lies in Q(T ). More precisely

ZC(T ) =
p(T )

(1− T )(1− qT )
, P ∈ Z[T ], P (0) = 1, deg(P ) = 2g.

2. (Functional equation)

ZC(T ) = qg−1 T 2g−2 ZC

(
1

qT

)
.

3. (“Riemann Hypothesis”) If p(T ) =
∏2g

j=1(1− αjT ), then |αj | = q1/2.

Note that, setting ζC(s) := ZC(q
−s), the third condition of Theorem 5.6 means

ζC(s) = 0 =⇒ ℜ(s) = 1/2.

• The αj are algebraic integers which have absolute value q1/2 in every complex embedding
(e.g. for g = 1 are conjugate complex numbers but can’t be distinct real numbers).

• Let F be the homogeneous polynomial in Fq[X,Y, Z] defining C. If F lifts to F̃ in
OK [X,Y, Z], with K a number field and OK its ring of integers, then it defines a curve over
C. The first Betti number of this curve (that is, the rank of the first homology/cohomology
group) is 2g.

Theorem 5.6 has the following generalization.

21



Theorem 5.7 (Weil Conjectures). Let X|Fq be a smooth projective variety of dimension
d. Define

ZX(T ) := exp

( ∞∑
m=1

#X(Fqm)
Tm

m

)
.

The following properties hold.

(1) ZX(T ) lies in Q(T ) and in fact

ZX(T ) =
P1(T ) · P3(T ) . . . P2d−1(T )

P0(T ) · P2(T ) . . . P2d(T )

where Pi ∈ Q[T ], Pi(0) = 1, P0(T ) = 1− T , P2d(T ) = 1− qdT .

(2) ZX(T ) satisfies the following functional equation

ZX(T ) = ±q−
χ·d
2 T−χZ

(
1

qdT

)
where χ is a certain Euler characteristic (which in dimension 1 is 2− 2g).

(3) (“Riemann Hypothesis”) If Pi(T ) =
∏

j(1− αi,jT ), then |αi,j | = qi/2 in every complex
embedding.

(4) If X comes via “reduction modulo p” from a smooth projective variety X̃ defined over

some OK , then deg(Pi) is the i-th Betti number of X̃ considered as a variety over C.

Properties (1), (2) and (4) was proved by Grothendieck; property (3) by Deligne (and the fact
that ZX(T ) lies in Q(T ) by Dwork). For the proof of Theorem 5.7 we refer to [6].

Now we prove (1) and (2) in the case of elliptic curves. Let E be an elliptic curve. Write

ZE(T ) =
∏

P -orbits

1

1− T deg(P )
=

∏
P -orbits

(1 + T deg(P ) + T 2 deg(P ) + . . . ) =
∑

D∈DivFq (E)

D≥0

T deg(D).

We use the following lemma.

Lemma 5.8. Let E be an elliptic curve over Fq.

(a) The number A of classes of degree d ≥ 0 in Pic(E) represented by divisors D in DivFq
(E)

is finite and does not depend on d.

(b) Given D ≥ 0 in DivFq (E) , we have

#{D′ ∈ DivFq
(E) : D′ ≥ 0, [D] = [D′] in Pic(E)} = qd − 1

q − 1
,

where d = deg(D).
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Proof. We start by proving (a). From Corollary 2.21, we know that

[D] =
[∑

(D)− (deg(D)− 1)O
]
.

Since D is Fq-rational, the element
∑

(D) lies in E(Fq), but E(Fq) is finite, hence for fixed d
there are finitely many of these. Also, the map D 7→ D − (deg(D))O induces a bijection

{D ∈ DivFq (E) : deg(D) = d} ←→ {D ∈ DivFq (E) : deg(D) = 0}.

This bijection preserves classes in Pic(E).

Now we prove (b). If [D] = [D′], then D′ = D+ deg(f) for some non-zero function f . Recall
that there is an exact sequence

Fq
× → Fq(E)

× div−−→ Div(E)

so there is an injection

Fq(E)
×

Fq
× ↪→ Div(E)

equivariant for G = Gal(Fq|Fq). So there is an injection(
Fq(E)

×

Fq
×

)G

↪→ Div(E)G = DivFq (E).

We will see later (Remark 8.19 below) that the map

Fq(E)× =
(
Fq(E)

×)G −→ (
Fq(E)

×

Fq
×

)G

is surjective: this will be a consequence of Hilbert’s Theorem 90.
So we may assume that the above f lies in Fq(E)×. Note that D′ = D+deg(f) ≥ 0 is equivalent
to f lying in L (D)G = LFq

(D), and by Riemann-Roch theorem LFq
(D) is an Fq-vector space

of dimension deg(D) = d. So the number of these functions is qd − 1. Also, we have

deg(f) = deg(f ′) ⇐⇒ deg

(
f

f ′

)
= 0 ⇐⇒ f

f ′ ∈ F×
q ,

so exactly q − 1 functions have the same divisor.

Proof of (1) for elliptic curves. By Lemma 5.8, we get∑
D∈DivFq (E)

D≥0

T deg(D) = 1 +
∑
d≥1

T d
∑

deg(D)=d
D≥0

1 = 1 +A
∑
d≥1

qd − 1

q − 1
T d

= 1 +
A

q − 1

∑
d≥1

(
(qT )d − T d

)
= 1 +

A

q − 1

(
qT

1− qT
− T

1− T

)
= 1 +

AT

(1− T )(1− qT )
=

1 + aT + qT 2

(1− T )(1− qT )
,

with a = A− 1− q.
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Proof of (2) for elliptic curves. Using (1), a straightforward calculation shows

ZE

(
1

qT

)
=

1 + a
qT + 1

qT 2(
1− 1

qT

)(
1− 1

T

) =
qT 2 + aT + 1

(qT − 1)(T − 1)
= ZE(T ).

Remark 5.9. Write 1 + aT + qT 2 = (1− αT )(1− βT ). Then

logZE(T ) =
∑
m≥1

Nm
Tm

m
= log

(
1

1− T

)
+ log

(
1

1− qT

)
− log

(
1

1− αT

)
− log

(
1

1− βT

)
.

Comparing coefficients, we get

Nm = 1 + qm − αm − βm.

So if (3) is true, then |α| = |β| = q1/2, and we get the Hasse-Weil bound

|Nm − (1 + qm)| ≤ 2 ·
√
qm.

Conversely, if we know that |Nm − (1 + qm)| ≤ C ·
√
qm for some positive C, then (3) follows.

Indeed, recall from complex analysis that if f is a meromorphic function in C, then the
logarithmic derivative f ′/f has simple poles at the zeros and poles of f . So the function

φE(T ) :=
Z ′
E(T )

ZE(T )
− 1

1− T
− q

1− qT

has poles only where ZE(T ) has zeros. By comparing coefficients, we can write

φE(T ) =
∑
m≥0

amTm, am = Nm+1 − qm+1 − 1

So if |am| ≤ Cq(m+1)/2, then the convergence radius of φE(T ) is

lim inf
m→∞

1
m
√
|am|

≥ q−1/2.

So φE(T ) is holomorphic for |T | < q−1/2. Therefore, all reciprocal roots of ZE(T ) have absolute
value less then or equal to q1/2. But then they have absolute value equal to q1/2, because by (2)
we have ZE(T ) = ZE(1/qT ).

Thus it remains to prove:

Theorem 5.10. Let E|Fq be an elliptic curve and let m be a positive integer. Then

|#E(Fqm)− (qm + 1)| ≤ C
√
qm

for some C > 0

As noted in the above remark, the theorem implies the Riemann hypothesis for E and hence
also that we may choose C = 2.
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Proof (Bombieri-Stepanov). Up to changing the power of the prime p, we may assume m = 1.
We construct a non-zero function Φ in Fq(E) that has a pole only at O and zeros at every point in
E(Fq)\{O}. Since deg(div(Φ)) = 0, a bound on the order of pole at O gives a bound on #E(Fq).

We shall fix constants n,m ≥ 0 that will be chosen later. We have seen that LFq
(mO) has

a basis f1, . . . , fm such that each fi is in LFq (iO) \ LFq ((i − 1)O). We also fix s1, . . . , sm in
LFq (nO).

Notation. For each i = 1, . . . ,m, we set f
(q)
i (x, y) = fi(x

q, yq).

Now there are two lemmas:

Lemma 5.11. If b, q are such that q > npb and there exists i such that si ̸= 0, then the
function

Φ :=

m∑
i=1

sp
b

i f
(q)
i

is non-zero.

Lemma 5.12. If mn > pbn + m, then there exist s1, . . . , sm in L (nO) not all zero, such
that

m∑
i=1

sp
b

i f
(q)
i = 0.

If we make choices as in Lemma 5.11 and in Lemma 5.12, then Φ is non-zero, has a pole only
at O (as si and fi have only poles at O), and Φ(P ) = 0 for all P in E(Fq)\{O}. Indeed, a point

P = (a, b) lies in E(Fq) if and only if (a, b) = (aq, bq), that is, if and only if fi(P ) = f
(q)
i (P ) for

each index i, so

Φ(P ) =

m∑
i=1

sp
b

i (P )f
(q)
i (P ) =

m∑
i=1

sp
b

i (P )fi(P ) = 0.

Proof of Lemma 5.11. Suppose by contradiction that Φ = 0. Let h be the index where sh ̸= 0
but si = 0 for all i > h. Then

sp
b

h f
(q)
h = −

h−1∑
i=1

sp
b

i f
(q)
i .

Applying vO (which computes the order of pole at O), we find

pb vO(sh) + q vO(fh) ≥ min
i<h

{
pb vO(si) + q vO(fi)

}
≥ −pbn− q(h− 1).

Hence we get
pb vO(sh) ≥ −pbn− q(h− 1 + vO(fh)) ≥ −pbn+ q > 0.

Therefore sh(O) = 0, but sh has no poles outside O, hence sh = 0.
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Proof of Lemma 5.12. All functions of the form
∑r

i=1 s
pb

i fi are in LFq
((pbn + m)O) and this

is an Fq-vector space of dimension pbn + m by the (easy) special case of the Riemann–Roch
theorem for D = (pbn+m)O. Similarly, dimLFq (nO) = n, hence the s1, . . . , sm can be chosen

in nm ways, but nm > pbn +m, so two of the
∑r

i=1 s
pb

i fi are equal. Their difference is of the
same form and is equal to 0.

Notice that Φ is in Fq(E)×pb

because q > pb. Thus for every P in E(Fq) \ {O} we have
vP (Φ) ≥ pb. On the other hand, Φ lies in L ((pbn+mq)O), so since deg(div(Φ)) = 0, we have

pb(#E(Fq)− 1) ≤ pbn+mq.

Now choose q = p2b, n = pb − 1 and m = pb + 2. Then

q > npb

nm > pbn+m

and so
pb(#E(Fq)− 1) ≤ pb(pb − 1) + (pb + 2)p2b = p3b + 3p2b − pb.

So we get

#E(Fq)− q − 1 = #E(Fq)− p2b − 1 ≤ 3pb − 1 ≤ 3
√

p2b ≤ 3
√
q.

The lower bound comes from a trick: suppose P = (x, y) is such that x lies in Fq. Then xq = x
and y2 = x3 +Ax+B, so yq = ±y. But (x,−y) = −P . Denote by Fq the map (x, y) 7→ (xq, yq).
We have just seen that

#{P ∈ E(Fq) : Fq(P ) = P} − (q + 1) ≤ 3
√
q. (5.1)

Similarly, we get

#{P ∈ E(Fq) : Fq(P ) = −P} − (q + 1) ≤ 3
√
q (5.2)

by the same argument, except we apply Lemma 5.12 with the substitution fi → f
(−)
i , where

f
(−)
i (x, y) = fi(x,−y). Moreover, we have

#{P ∈ E(Fq) : Fq(P ) = P}+#{P ∈ E(Fq) : Fq(P ) = −P} = 2(q − 1)− C (5.3)

for 1 ≤ C ≤ 4 (here C is the number of 2-torsion points of E defined over Fq). But for q large,
(5.1), (5.2) and (5.3) can only hold together if

#{P ∈ E(Fq) : Fq(P ) = P} − (q + 1) ≥ −C ′ − 3
√
q,

where C ′ = C + 4. Choosing C ′′ > 3 + C ′/
√
q, this proves |#E(Fq)− (q + 1)| < C ′′√q.

6 Introduction to p-adic numbers

The notes for this section were taken by Davide Pierrat.
Let us give some motivation for the need of p-adic numbers.
Consider a polynomial f in Z[x1, . . . , xm]. We are interested in studying its roots in Z (that

is, points in Zm where f vanishes). Does a solution exist?
A necessary condition is: f ≡ 0 (mod n) has solution for all n. Equivalently (by Chinese

Remainder Theorem), f ≡ 0 (mod pr) for all choices of p prime, r ≥ 1.
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A solution modulo pr reduces to a solution modulo ps for all s ≤ r. We want some way to
go the other way around, and investigate higher and higher powers of p. The p-adic integers will
allow us to “talk about modulo pr” for all r-s at once.

Definition 6.1. An inverse system of sets indexed by N is given by

• for all n in N, a set Xn;

• for all n in N+, a map φn : Xn → Xn−1.

The inverse limit of the system is

lim←−Xn :=

{
(xn) ∈

∏
n≥0

Xn : φn(xn) = xn−1 for all n > 0

}
.

In other words, it is the set of coherent sequences with elements in Xn.

Note that if the sets Xn are groups (or rings, topological spaces) and the maps φn are group
homomorphisms (resp., ring homomorphisms, continuous maps), then the inverse limit is also
equipped with that additional structure.

Example 6.2. Let k be a field. Let Xn = k[t]/(tn) and let φn : Xn → Xn−1 be the map defined
by p(t) mod tn 7→ p(t) mod tn−1. This is an inverse system of rings whose limit is

lim←− k[t]/(tn) = k[[t]],

the ring of formal power series in one variable.

So we are developing polynomials in power series. Applying a similar construction to the
rings Z/(pn) for a fixed prime p, we get:

Definition 6.3. Let Xn = Z/(pn) and let φn : Z/(pn)→ Z/(pn−1) be the map defined by
x mod pn 7→ x mod pn−1.
The inverse limit Zp of this inverse system is called the ring of p-adic integers.

This definition is due to Kurt Hensel, as is the following proposition.

Proposition 6.4. For a prime p and a polynomial f in Z[x1, . . . , xm], we have

f ≡ 0 (mod pr) is solvable for all r ⇐⇒ f = 0 is solvable in Zp.

Before proving this, we need a lemma.
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Lemma 6.5. Let (Xn) be an inverse system of nonempty finite sets. Then the inverse limit
lim←−Xn is non empty.

Note: this holds more generally if the Xn are compact Hausdorff spaces and the maps φn are
continuous, but not in general. Counterexample: the inverse limit of the intervals (0, 1/n) in R
with respect to the natural inclusions is their intersection, which is empty.

Proof. The claim is clear if every transition map φn is surjective, as we can recursively choose
lifts to higher and higher values of n. Let us reduce the problem to this particular case.

First note we can compose the maps φi to get φnm = φm ◦ · · · ◦ φn+1 : Xm → Xn whenever
m > n.

Now define
Yn = {x ∈ Xn : x ∈ im(φmn) for all m > n} .

It is easily checked (by crucially using the fact that Xn is finite) that the Yn are non empty.
The transition maps restricted to the sets Yn are surjective, so we have reduced to the case of
surjective transition maps and we are done.

Proof of Proposition 6.4. For the non-trivial implication, let Xr be the set of solution of the
equation f ≡ 0 mod pr. Then the above lemma shows lim←−Xr is non empty, and an element of
this inverse limit is exactly a solution in Zm

p .

Proposition 6.6. An element b = (bn) in Zp is a unit if and only if b1 ̸= 0.

Proof. If (bn) is invertible, then every bn is invertible, so that b1 ̸= 0.
Conversely, if b1 ̸= 0, then the equation bnx ≡ 1 mod pn is solvable by the Euler-Fermat

theorem and gives a unique solution xn in Z/(pn). By uniqueness, the mod pn−1 image of xn

must be xn−1, so the (xn) assemble to a solution of bx = 1 in Zp.

Corollary 6.7. The ring Zp is a local ring with maximal ideal pZp. The residue field is
Zp/pZp = Fp.

Proof. By Corollary 6.6, the complement of pZp is exactly the set of units of Zp.
The map Zp → Fp defined by (an) 7→ a1 induces Zp/pZp = Fp.

From the definitions it follows that
⋂

n≥1 p
nZp = 0. We thus obtain the following statement.

Corollary 6.8. Every nonzero element of Zp can be written as upn, where u is a unit in
Zp and n is a non-negative integer.
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Corollary 6.9. The ring of p-adic integers Zp is an integral domain (and thus a discrete
valuation ring by Corollary 6.8).

Proof. Let x, y be non-zero elements in Zp. Then x = upn and y = vpm. Then the product
xy = uvpm+n is non-zero (we are using the fact that powers of p don’t vanish; this is because
Z→ Zp is injective).

Let Qp be the fraction field of Zp. It follows easily from Corollary 6.8 that every non-zero
element of Qp can be uniquely written as upk, where u is a unit in Zp and k is an integer.

We define the p-adic valuation on Qp by the formula

vp : Qp −→ Z ∪ {+∞}
0 7−→ +∞

upk 7−→ k.

This is indeed a discrete valuation. Namely, it satisfies

vp(xy) = vp(x) + vp(y)

vp(x+ y) ≥ min{vp(x), vp(y)}.

The embedding Z → Zp sending a to the sequence of its mod pn reductions induces an
embedding Q→ Qp of fraction fields. We easily see that

Zp ∩Q = Z(p) :=
{a
b
∈ Q : p ∤ b

}
.

The p-adic valuation can be translated into a norm function on Qp as follows. Let

∥x∥p := e−vp(x),

where we agree that e−∞ = 0. The properties of the valuation translate to

∥xy∥p = ∥x∥p ∥y∥p
∥x+ y∥p ≤ max{∥x∥p , ∥y∥p}.

We used the number e as our base, but any choice of real number α > 1 was fine. Often
α = p is chosen.

Note the triangle inequality is stronger than the usual one. It is sometimes called the “strong
triangle inequality”, and metric spaces satisfying this are called ultrametric spaces.

A consequence of the strong triangle inequality is that a sequence (xn) in Qp is Cauchy if
and only if ∥xn − xn+1∥ tends to 0 as n goes to ∞. This is false for general metric spaces and is
a feature of ultrametric spaces.

Notice Qp is then a complete (ultra)metric space: to see this, it suffices to prove the same
statement for Zp. Cauchy sequences stabilize modulo pk, and hence converge to an element of
Zp.

The following lemma is of crucial importance and is one of the countless forms of Hensel’s
lemma.

Lemma 6.10 (Hensel’s lemma). Let f in Zp[x]. Suppose a1 in Zp is such that f(a1) ≡ 0
(mod p) and f ′(a1) ̸≡ 0 (mod p). Then there exists a in Zp such that f(a) = 0 and a ≡ a1
(mod p).
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Proof. We will construct inductively a sequence (an) in Zp such that

f(an) ≡ 0 (mod pn)

f ′(an) ̸≡ 0 (mod p)

an ≡ an−1 (mod pn−1).

By the last property they will converge to an element a in Zp.
The first term a1 is already given. Suppose an has been defined, and inductively satisfies the

stated conditions. Let an+1 = an + pnb, for some b in Zp yet to be chosen.
By the Taylor formula (no analysis is going on, Taylor expansion for polynomials is purely

formal) we can write
f(an+1) = f(an) + f ′(an)p

nb+ p2nh

for some h in Zp. Since f(an) ≡ 0 (mod pn), we have f(an) = pnc for some c in Zp. As
f ′(an) ̸≡ 0 (mod p), we can find b in Zp such that c+ bf ′(an) ≡ 0 (mod p), so that f(an+1) ≡ 0
(mod pn+1) as required.

Also, since an+1 ≡ an (mod p), we have f ′(an+1) ≡ f ′(an) ̸≡ 0 (mod p).

Two corollaries follow.

Corollary 6.11 (Smooth points of hypersurfaces over Fp lift to Zp). Let f be in
Zp[x1, . . . , xm]. Suppose P = (a1, . . . , am) in Zm

p is such that f(P ) ≡ 0 (mod p) and there
exists an index i such that ∂if(P ) ̸≡ 0 (mod p). Then there exists P ′ = (ã1, . . . , ãm) in Zm

p

such that f(P ) = 0 and ãj ≡ aj (mod p) for all j = 1, . . . ,m.

Proof. Let ãj = aj for all j ̸= i. Then f(a1, . . . , ai−1, xi, ai+1, . . . , am) is a polynomial in a single
variable. The claim follows from the one-variable Hensel lemma.

Corollary 6.12 (Roots of unity in Zp). The ring Zp contains all roots of xp−1 − 1.

Proof. The polynomial xp−1 − 1 has a full set of p− 1 distinct roots modulo p. The claim then
follows from Hensel’s lemma.

Recall every element in a in Q×
p can be written uniquely in the form a = upk where u is in

Z×
p and k in Z. Thus sending a 7→ (u, k) defines an isomorphism

Q×
p
∼= Z×

p × Z.

Let us define the principal unit groups (Einseinheitengruppen in German) by

U (i) =
{
u ∈ Z×

p : u ≡ 1 (mod pi)
}
, i ≥ 1.

These help us study Q×
p through the filtration

Q×
p ⊇ Z×

p ⊇ U (1) ⊇ U (2) ⊇ . . .

Note that
⋂

i≥1 U
(i) = {1}. Let’s investigate the quotients.
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• Q×
p /Z

×
p
∼= Z. We argued this already, and we have seen this quotient splits.

• Z×
p /U

(1) ∼= F×
p . This isomorphism is induced by the map u 7→ u mod p. This is also a

split sequence: a section exists by sending an element of F×
p to the unique (p− 1)-th root

of unity in Z×
p which is congruent to it.

• U (n)/U (n+1) ∼= Fp (additive group) for all n ≥ 1. Indeed there is a map (which is not a
homomorphism) U (i) → piZp given by u 7→ u − 1. This induces a map U (i)/U (i+1) →
piZp/p

i+1Zp
∼= Fp, which is a homomorphism (this can be easily checked).

In summary, we get Q×
p = Z×F×

p ×U (1), and U (1) has a filtration with successive quotients
isomorphic to Fp. We will later see (Proposition 7.15) that

U (1) ∼=

{
Zp, if p > 2

Z2 × Z/(2), if p = 2.

Definition 6.13. An abelian group A is uniquely m-divisible if multiplication by m is a
bijective function from A to itself.

Corollary 6.14. U (1) is uniquely m-divisible for every integer m such that (m, p) = 1.

Proof. Let u be in U (1). Consider the polynomial f(x) = xm − u. The element 1 of Fp is a
simple root of the reduction of f modulo p. By Hensel’s lemma it lifts to a root of f(x).

We are left with proving uniqueness of m-th roots in U (1).

• We first prove that 1 is the only m-th root of 1 in U (1). If u ̸= 1 is an element in U (1) such
that um = 1, there is some n such that u lies in U (n) \U (n+1). If we set u to be the image
of u in Fp

∼= U (n)/U (n+1), we have u ̸= 0 and thus mu ̸= 0 because (m, p) = 1. Under the
isomorphism, mu corresponds to um, so we are done.

• If a, b are elements in U (1) such that am = bm = u, then a/b is an m-th root of 1 which
belongs to U (1). By the above, a/b = 1 so that a = b.

7 Elliptic curves over Qp

Consider the filtration of Z×
p by the principal unit groups. We prove that there is an analoguous

filtration for E(Qp), where E is an elliptic curve over Qp.
Recall that a point P of the projective space P2

Qp
is represented by (x, y, z), where x, y, z are

in Qp and not all zero. In fact, we can assume

min{vp(x), vp(y), vp(z)} = 0.

We get a reduction map
r : P2

Qp
−→ P2

Fp

(x, y, z) 7−→ (x, y, z)
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where, for each a in Qp, we set a = a mod p.

Now we want to define the reduction of an elliptic curve modulo p. But several equations can
define the same elliptic curve: if

y2 = x3 +Ax+B (7.1)

is the affine Weierstrass equation of E, the substitution x 7→ u2x, y 7→ u3y gives the equation

y2 = x3 + (A/u4)x+ (B/u6) (7.2)

which defines the same curve. If here A,B are in Zp and vp(u) < 0, then equation (7.2) modulo
p becomes y2 = x3 whereas equation (7.1) modulo p may be y2 = x3 +Ax+B, with A,B ̸= 0.

Recall that the discriminant of the elliptic curve defined by the Weierstrass equation Y 2Z =
X3 +AXZ2 +BZ3 is given by

∆ = −(4A3 + 27B2)

Definition 7.1. Let Y 2Z = X3 + AXZ2 +BZ3 be an equation for an elliptic curve E for
which vp(∆) is minimal and A,B lie in Zp. We define E as the elliptic curve over Fp defined
by the equation

Y 2Z = X3 +AXZ2 +BZ3,

where A = A mod p and B = B mod p.

We say that E has

• good reduction if E is smooth (that is, if vp(∆) = 0);

• bad reduction otherwise.

Note that bad reduction may happen, e.g. for A = B = p.

In the case of bad reduction, how does E look like?
For this we consider a cubic projective plane curve E over an algebraically closed field k, with
equation Y 2Z = X3 +AXZ2 +BZ3 and ∆ = 0.

Lemma 7.2. The curve E has exactly one singular point.

Proof. Recall that (0, 1, 0) is a smooth point. So we may consider the affine curve given by the
equation y2 = x3 + Ax + B and we know that a point P = (a, b) is not smooth if and only if
b = 0 and a is a multiple root of x3 + Ax + B. But this polynomial has at most one multiple
root (so it has exactly one multiple root), hence E has exactly one singular point.

So suppose P = (a, 0) is the singular point of E. Transform it to (0, 0) by the substitution
x 7→ x− a, y 7→ y. The equation becomes

y2 = (x+ a)3 +A(x+ a) +B = x3 + 3ax2 + (3a2 +A)x+ a2 + aA+B.
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But (0, 0) is on the curve and ∂X vanishes at (0, 0). Therefore

{
a3 + aA+B = 0

3a2 +A = 0

Hence y2 = x3 + 3ax2. Now there are two cases

(a) a = 0 (that is, A = 0), so we get y2 = x3 and E has a cusp.

(b) a ̸= 0 (that is, A ̸= 0), so y2 = x3 + 3ax2 and E has a node (double point) with two
half-tangents y ±

√
−3a x = 0.

Note that if y = cx is a line through the point (0, 0) of E, it meets E in at most one other
point. Indeed,it does not pass through (0, 1, 0) and

(cx)2 = x3 + 3ax2 ⇐⇒ x = 0 or x = −3a+ c2.

So if P,Q are points of E different from (0, 0, 1), the projective line PQ does not pass through
(0, 0, 1), so we can define P ⊕Q as in the case of elliptic curves.

Proposition 7.3. The map (P,Q) 7→ P ⊕Q gives E \ {(0, 0, 1)} the structure of an abelian
group isomorphic to k+ in case (a) and to k× in case (b).

(Here we assume the singular point has been transformed to the origin as above.)

Proof. We shall prove in both cases that there exists a bijection E \{(0, 0, 1)} ↔ k+ (respectively
E \ {(0, 0, 1)} ↔ k×) which sends ⊕ to + (respectively to ·). This will prove that E \ {(0, 0, 1)}
is an abelian group.
Recall that since O = (0, 1, 0), the operation ⊕ is characterized by

P ⊕Q⊕R = O ⇐⇒ P,Q,R are collinear.

(a) The equation is Y 2Z = X3. Here Y = 0 implies X = 0, so E ∩ {Y ̸= 0} = E \ {(0, 0, 1)}.
On the (x, z)-plane, the equation becomes z = x3. The map (x, z) 7→ x defines a bijection
with k, indeed if (x1, z1), (x2, z2), (x3, z3) are on the line z = mx + b, then x1, x2, x3 are
roots of x3 −mx− b = 0, so x1 + x2 + x3 = 0. Thus the bijection is additive.

(b) The equation is Y 2Z = X3 + 3aX2Z. The substitution X 7→ X, Y 7→ Y +
√
3aX, Z 7→ Z

yields
(Y +

√
3aX)2Z = X3 + aX2Z,

so
Y 2 + 2

√
3aXY Z = X3,

The substitution X 7→ (2
√
3a)2(X − Y ), Y 7→ (2

√
3a)3Y , Z 7→ Z yields

(2
√
3a)6Y 2Z + (2

√
3a)6(X − Y )Y Z = (2

√
3a)6(X − Y )3,

that is,
XY Z = (X − Y )3.

Thus if Y = 0, then X = 0 and we may again work in the (x, z)-plane, where we have
the equation xz = (x − 1)3. Here if three points (x1, z1), (x2, z2), (x3, z3) are on the line
z = mx+ b, then x1, x2, x3 are roots of x(mx+ b) = (x− 1)3, so x1x2x3 = 1.
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Remark 7.4. If E is defined over a subfield K of k, then O = (0, 1, 0) lies in E(K) and if P,Q
are points in E(K), so is P ⊕Q (using the same argument as for elliptic curves). So E(K) is a
subgroup of E(k).

In case (a), the above proof shows that E(K) is isomorphic to K+. In case (b) it is isomorphic
to K× when

√
3a lies in K; otherwise, one can show that E(K) as a group is isomorphic to

{z ∈ K(
√
3a) : NK(

√
3a)|K(z) = 1},

where NK(
√
3a)|K is the norm of the extension K(

√
3a)|K: if x, y are in K, then

NK(
√
3a)|K(x+

√
3ay) = x2 − 3ay2.

Definition 7.5. Let E be an elliptic curve over Qp. If E has bad reduction, we say that E
has

• additive reduction in case (a);

• multiplicative reduction in case (b).

If moreover (E \ {(0, 0, 1)})(Fp) is isomorphic to F×
p , we say that E has split multiplicative

reduction.

Let E be an elliptic curve over Qp. We denote

E(Qp)
(0) :=

{
P ∈ E(Qp) : r(P ) is a smooth point in E(Fp)

}
.

If E has good reduction, then E(Qp)
(0) = E(Qp). We also denote

E(Qp)
(1) := {P ∈ E(Qp) : r(P ) = (0, 1, 0)} .

Lemma 7.6. The sets E(Qp)
(0) and E(Qp)

(1) are subgroups of E(Qp).

Proof. For E(Qp)
(0), we only have to consider the case of E having bad reduction. Note that if

P,Q,R are points of E(Qp)
(0) on a line L, then r(P ), r(Q), r(R) are on the reduction L of L. If

r(P ) = r(Q), then L is a tangent line to E at r(P ) = r(Q). [Idea: if P,Q,R ̸= (0, 1, 0) and L has
(affine) equation y = mx+b, then the x-coordinates of P,Q,R are roots of (mx+b)2 = x3+Ax+B,
so (mx+ b)2 = x3 +Ax+B will have a multiple root.]

So if P,Q are in E(Qp)
(0), then the line through P and Q cannot reduce to a line passing

through (0, 0, 1), so P ⊕Q ∈ E(Qp)
(0) as well. Then r induces a homomorphism from E(Qp)

(0)

to the smooth part of E(Fp) whose kernel is exactly E(Qp)
(1).
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Lemma 7.7. A point P = (x, y, z) lies in E(Qp)
(1) if and only if there exists a positive

integer N such that

vp

(
x

y

)
= N and vp

(
z

y

)
= 3N.

Proof. Note that by definition of E(Qp)
(1), sufficiency is immediate. For necessity, assume

min{vp(x), vp(y), vp(z)} = 0. Then r(P ) = (0, 1, 0) if and only if vp(x) and vp(z) are both positive
and vp(y) = 0. Hence vp(y/z) < 0 and if we choose an equation Y 2Z = X3+AXZ2+BZ3 with
A,B ∈ Zp, we get vp(x/z) < 0, as(y

z

)2
=
(x
z

)3
+A

(x
z

)
+B.

The equation also gives 3vp(x/z) = 2vp(y/z). So we may set vp(x/z) = −2N and vp(y/z) = −3N
with N > 0. Then vp(z/y) = 3N and vp(x/y) = vp(x/z)− vp(y/z) = N .

Definition 7.8. For each N ≥ 1, we set

E(Qp)
(N) :=

{
(x, y, z) ∈ E(Qp)

(1) : vp

(
x

y

)
≥ N

}
.

Proposition 7.9. The sets E(Qp)
(N) are subgroups of E(Qp) such that⋂

N≥2

E(Qp)
(N) = {(0, 1, 0)}

and there is a group isomorphism

E(Qp)
(N)

E(Qp)(N+1)

∼−→ F+
p .

Proof of Proposition 7.9. The statement on the intersection of the E(Qp)
(N) is obvious. For

the other two, let P = (x, y, z) be a point in E(Qp)
(N). By Lemma 7.7 we may assume that

vp(x) ≥ N , vp(y) = 0 and vp(z) = 3vp(x). Consider P̃ = (p−Nx, y, p−3Nz). Recall that the

equation of E is y2z = x3 +Axz2 +Bz3, where A,B lie in Zp. Plugging in coordinates of P̃ and
correcting coefficients we get

p3N (y2p−3Nz) = p3N (p−Nx)3 + p7NA(p−Nx)(p−3Nz)2 + p9NB(p−3Nz)3.

Thus P̃ is a point on the curve E(N) of equation

y2z = x3 + p4NAxz2 + p6NBz3.

Therefore r(P̃ ) lies in E(N)(Fp), where E(N) has equation y2z = x3. Also, r(P̃ ) ̸= (0, 0, 1) as

vp(y) = 0 and r(P̃ ) = (0, 1, 0) if and only if P lies in E(Qp)
(N+1).
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Note that the reduction P 7→ r(P̃ ) preserves collinearity, thus gives a map with the property

P ⊕Q 7→ r(P̃ )⊕ r(Q̃). By induction on N ≥ 1, we obtain that E(N)(Fp) is a subgroup and the

map P 7→ r(P̃ ) induces a group homomorphism

E(Qp)
(N) −→ E(N)(Fp) \ {(0, 0, 1)}

with kernel E(Qp)
(N+1). Moreover, this map is surjective by Hensel’s lemma (Corollary 6.11).

Since E(N)(Fp) \ {(0, 0, 1)} is isomorphic to F+
p , we conclude.

Corollary 7.10. The group E(Qp) has a filtration

E(Qp) ⊇ E(Qp)
(0) ⊇ E(Qp)

(1) ⊇ E(Qp)
(2) ⊇ . . .

whose successive quotients are isomorphic to F+
p from E(Qp)

(1)/E(Qp)
(2) on and

E(Qp)
(0)/E(Qp)

(1) is isomorphic to the group of smooth Fp-points on E, hence is finite.

Remark 7.11. The quotient E(Qp)/E(Qp)
(1) is also finite (and trivial in case of good reduc-

tion). Indeed, the projective space P2
Qp

has the quotient topology from Q3
p \ {(0, 0, 0)}, which

is compact because it can be covered by the compact sets Z×
p × Zp × Zp, Zp × Z×

p × Zp and

Zp×Zp×Z×
p . Hence E(Qp) is compact because it is closed in P2

Qp
. Moreover, E(Qp)

(0) is open

in E(Qp) because if P is in E(Qp)
(0) with r(P ) = P and Q is close to P in the p-adic topology,

then r(Q) = P and so Q lies in E(Qp)
(0). The conclusion follows from the fact that in a compact

topological group every open subgroup is of finite index.

Corollary 7.12. If (m, p) = 1, then E(Qp)
(1) is uniquely m-divisible.

Proof. For injectivity, suppose there exists P in E(Qp)
(1) \ {O} such that mP = O. Let N be

the integer (given by Proposition 7.9) such that P belongs to E(Qp)
(N) \E(Qp)

(N+1). If P := P
mod E(Qp)

(N+1), then P ̸= O and mP ̸= O because the quotient E(Qp)
(N)/E(Qp)

(N+1) is
isomorphic to F+

p . Contradiction.

For surjectivity, if P is a point in E(Qp)
(1), then there exists Q1 in E(Qp)

(1) such that
P = mQ1 mod E(Qp)

(2), because the quotient E(Qp)
(N)/E(Qp)

(N+1) is isomorphic to F+
p ,

which is m-divisible. Repeating the argument, we get Q2 in E(Qp)
(2) such that P −mQ1 = mQ2

mod E(Qp)
(3) and, for each i ≥ 1, we get inductively Qi in E(Qp)

(i) such that P−m
∑i

j=1 Qj lies

in E(Qp)
(i+1). The following lemma implies that

∑i
j=1 Qj converges to a point Q of E(Qp)

(1),
which then satisfies P = mQ.

Lemma 7.13. Let G be a compact topological group and let {U i}i≥1 be a family of open
normal subgroups of G such that

⋂
i≥1 U

i = {1}. If (gi)i≥1 is a sequence in G such that

gig
−1
i+1 belongs to U i+1 for all i, then there exists an element g in G such that gi converges

to g (i.e. gg−1
i belongs to U i+1 for all i).
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Proof. Set gi := gi mod U i+1. Then g := (gi)i≥1 belongs to Ĝ := lim←−G/U i+1. Let ρ : G → Ĝ

be the natural map. Since
⋂

i≥1 U
i is trivial, this map is injective and its image ρ(G) is a closed

subgroup of Ĝ because G is compact. But in Ĝ the sequence (ρ(gi))i≥1 ⊂ ρ(G) converges to g,
thus g lies in ρ(G).

Remark 7.14. If K|Qp is a finite extension, then vp extends uniquely to a discrete valuation
vK on K. The ring OK := {a ∈ K : vK(a) ≥ 0} is a discrete valuation ring with maximal
ideal generated by an element π and the quotient OK/(π) is isomorphic to Fpr for some positive
integer r. All the above statements hold more generally for K in place of Qp with the same
proofs if one substitutes vp with vK , p with π and Fp with Fpr .

To motivate the next considerations, we return to the case of the multiplicative group of Qp.

Proposition 7.15. In Q×
p , we have

U (1) ∼=

{
Zp if p > 2

Z/2Z× Z2 if p = 2

Before showing this, we define the power series

log(1 + x) =
∑
i≥1

(−1)i−1x
i

i

and we prove the following lemma.

Lemma 7.16. The power series log(1+x) converges for x in U (1). Moreover, if n > 1/(p−1),
then 1 + x ∈ U (n) if and only if log(1 + x) ∈ pnZp.

Recall that, if (ai)i≥1 is a sequence in Qp, then the series
∑

i≥1 ai converges in Qp if and
only if vp(ai)→∞ as i→∞.

Proof of Lemma 7.16. Let x be an element in U (1) and set C := pvp(x) > 1. Since pvp(m) ≤ m
for all positive integers m, we get

vp

(
xm

m

)
= mvp(x)− vp(m) = m

logC

log p
− vp(m) ≥ m

logC

log p
− logm

log p
=

1

log p
log

(
Cm

m

)
→∞

as m→∞. So log(1 + x) is a well-defined element of Qp.
For the second part, we show that if x lies in pnZp for n > 1/(p−1) (so vp(x) ≥ n > 1/(p−1)),

then vp(log(1 + x)) = vp(x). In particular, for n > 1/(p− 1) this means that 1 + x lies in U (n) if
and only if log(1 + x) lies in pnZp. Notice that

vp

(
xm

m

)
− vp(x) = (m− 1)vp(x)− vp(m) > (m− 1)

(
1

p− 1
− vp(m)

m− 1

)
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for all m ≥ 1, so if we prove that
vp(m)

m− 1
≤ 1

p− 1

we conclude, because vp(x) = minm≥1{vp(xm/m)} and so vp(log(1 + x)) = vp(x). Write m =
pvp(m)m0 for some m0 prime to p. Then

vp(m)

m− 1
≤ vp(m)

pvp(m) − 1
=

1

p− 1

vp(m)

pvp(m)−1 + . . .+ p+ 1
≤ 1

p− 1

as pvp(m)−1 + . . .+ p+ 1 ≥ vp(m).

Proof of Proposition 7.15. If p > 2, then Lemma 7.16 implies that the map

log : U (1) −→ pZp
∼= Zp

is well-defined. We show that in fact it is an isomorphism. We can see this by two different
arguments:

1. The inverse of log is given by exp(x) =
∑

i≥0
xi

i! (but then one has to prove similar conver-
gence results for exp).

2. Alternatively, by the second statement of Lemma 7.16, log(U (n)) is contained in pnZp, and
moreover log induces an injective group homomorphism

U (1)/U (n) ↪→ pZp/p
n+1Zp.

Since by the results preceding Definition 6.13 these groups have the same order pn, the
induced map is an isomorphism for all n ≥ 1 and by passing to the inverse limit we get

U (1) ∼= lim←−U (1)/U (n) ∼−−→ lim←− pZp/p
n+1Zp

∼= pZp.

If p = 2, by Lemma 7.16 and by repeating the previous argument, we get U (2) ∼= 22Z2
∼= Z2.

Therefore we conclude by observing that U (1) ∼= ⟨−1⟩ × U (2) ∼= Z/2Z× Z2.

We now sketch without proof an an analogue of the above result for elliptic curves.

Note first that E(Qp) is a commutative p-adic Lie group (i.e. E(Qp) is a p-adic analytic
manifold over Qp, and the addition and the inverse maps are defined by polynomial, hence also
p-adic analytic functions). In general, if G is an arbitrary p-adic Lie group with identity e,
one defines its Lie algebra Lie(G) as the tangent space TeG at e. It is a Qp-vector space of
dimension d = dimG equipped with a Lie bracket [·, ·]. When G is abelian, the Lie bracket
reduces to 0. Using [·, ·] one can define on Qd

p a Lie group structure Lie(G) with the property

Lie(Lie(G)) = Lie(G). In case [·, ·] = 0, this will just be (Q+
p )

d (in general the group law will be
non-commutative).

Fact 7.17. Let G be a p-adic Lie group. There exists a unique homomorphism of Lie groups

log : G→ Lie(G)

inducing the identity Lie(G) → Lie(Lie(G)) on tangents spaces at e. This map induces an
isomorphism on suitable open subgroups (like in the classical case over R or C).
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For the proof (and further details) we refer to [1] or [4]. Note that [5] gives a detailed account
of the theory in the special case of elliptic curves without using the language of Lie theory.

Example 7.18. If G = Q×
p , then Lie(G) = Q+

p and the map log is the p-adic logarithm discussed
above.
If G = E(Qp), then Lie(G) ∼= Q+

p and the map log induces isomorphisms

E(Qp)
(1) ∼= Z+

p if p > 2,

E(Qp)
(2) ∼= Z+

p if p = 2.

It is possible to write down an explicit power series defining log, but the formula is not as simple
as in the case G = Q×

p .
More generally, when A is an abelian variety of dimension g, we have

Lie(A(Qp)) ∼= (Q+
p )

g

and log : U
∼−→ Zg

p for some open subgroup U in A(Qp) (a theorem first proved by Mattuck).

Finally, all of the above again holds more generally over finite extensions of Qp but for log
to converge and induce an isomorphism one needs to take smaller open subgroups.

8 Rudiments of Galois cohomology

In this section we present the basic results on Galois cohomology which will be used later. For
our purpose, we only need to consider cohomology groups in degrees 0 and 1, so we shall define
them “by hand”, but this is part of a more general theory for which we refer to [8].

Definition 8.1. Let G be a group. A G-module is an abelian group A endowed with a
G-action G×A→ A such that

1. σ(a1 + a2) = σ(a1) + σ(a2) for all σ in G and a1, a2 in A.

2. (στ)(a) = σ(τ(a)) for all σ, τ in G and a in A.

Example 8.2. Let L|K be a finite Galois extension with Galois group G. The following are
G-modules.

1. The additive group L+.

2. The multiplicative group L×.

3. The group E(L), where E|K is an elliptic curve.
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Definition 8.3. Let A be a G-module. The 0-th cohomology group of A is

H0(G,A) := AG = {a ∈ A : σ(a) = a for all σ ∈ G}.

The group of 1-cocycles is

Z1(G,A) := {φ : G→ A : φ(στ) = φ(σ) + σ(φ(τ)) for all σ, τ ∈ G}.

The group of 1-coboundaries is the subgroup of Z1(G,A) defined by

B1(G,A) := {φ : G→ A : φ(σ) = a− σ(a) for some a ∈ A}.

The first cohomology group of A is

H1(G,A) := Z1(G,A)/B1(G,A).

Remark 8.4. Let A be G-module.

1. If G acts trivially on A (i.e. σ(a) = a for all σ in G and for all a in A), then H0(G,A) = A
and H1(G,A) = Hom(G,A).

2. H0(G,A) and H1(G,A) are functorial in A, i.e. every G-homomorphism A → B induces
a map Hi(G,A)→ Hi(G,B) for i = 0, 1.

Proposition 8.5 (Long exact sequence). If 0 → A → B → C → 0 is an exact sequence of
G-modules, then there exists an exact sequence

0→ H0(G,A)→ H0(G,B)→ H0(G,C)
δ−→ H1(G,A)→ H1(G,B)→ H1(G,C).

Proof. The definition of the maps in the sequence is clear except for δ. We define δ in the
following way: suppose c is an element in H0(G,C) = CG. Since the map B → C is surjective,
there exists a preimage b in B of c. Note that σ(b) and b have the same image in C because
σ(c) = c implies that b− σ(b) lies in A. One checks that the map σ 7→ b− σ(b) lies in Z1(G,A)
and its class in H1(G,A) does not depend on b. We define δ(c) as this class. Checking that the
sequence is exact is an easy exercise.

Let i : H → G be a group homomorphism. Then every G-module becomes an H-module via
i, and i induces a homomorphism

i∗ : H1(G,A)→ H1(H,A).

In the special case when H is a subgroup of G, the inclusion i : H ↪→ G induces a map

Res: H1(G,AH)→ H1(H,A),

called the restriction map.
If H is a normal subgroup of G, then G/H acts on AH , so the projection G→ G/H induces

a map
Inf : H1(G/H,AH)→ H1(G,A),
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called the inflation map.

Lemma 8.6 (Inflation-restriction sequence). If H is a normal subgroup of G, then

0→ H1(G/H,AH)
Inf−−→ H1(G,A)

Res−−→ H1(H,A)

is an exact sequence.

The proof is easy and is left as exercise.

Theorem 8.7 (Hilbert’s Theorem 90). If L|K is a finite Galois extension andG = Gal(L|K),
then

H1(G,L×) = 0.

Before showing this, we need the following lemma.

Lemma 8.8 (Dedekind). If σ1, . . . , σn are the elements of G, then they are linearly inde-
pendent in the L-vector space of functions L→ L.

Proof of Lemma 8.8. Suppose that σ1, . . . , σn are linearly dependent and consider the shortest
non-trivial linear combination that is zero. We may assume this is

a1σ1 + . . .+ aiσi = 0 (8.1)

for certain non-zero ai in L. Choose x in L such that σ1(x) ̸= σ2(x). Then for every y in L we
get

a1σ1(x)σ1(y) + . . .+ aiσi(x)σi(y) = 0. (8.2)

Evaluating (8.1) at y and multiplying it by σ1(x), we get

a1σ1(x)σ1(y) + . . .+ aiσ1(x)σi(y) = 0. (8.3)

Subtracting (8.3) from (8.2) we get

a2(σ2(x)− σ1(x)) · σ2(y) + . . .+ ai(σi(x)− σ1(x)) · σi(y) = 0,

which holds for all y in L. This is a contradiction, as the previous sequence is non-trivial and
shorter than (8.1).

Proof of Theorem 8.7. Let φ be an element of Z1(G,L×). Consider the map

Φ :=
∑
σ∈G

φ(σ)σ : G→ L×.
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By Lemma 8.8 this is not identically zero, so there exist x, y in L× such that

y = Φ(x) =
∑
σ∈G

φ(σ)σ(x).

Since φ lies in Z1(G,L×), for each τ in G we have

τ(y) =
∑
σ∈G

(τφ(σ))τσ(x) =
∑
σ∈G

φ(τσ)

φ(τ)
τσ(x) =

1

φ(τ)

∑
σ∈G

φ(τσ)τσ(x) =
y

φ(τ)
.

Therefore φ(τ) = y · τ(y)−1 for all τ in G, so φ belongs to B1(G,L×).

Our next goal is to extend the above theory to infinite Galois groups. If we keep the above
definition of H1, Hilbert’s Theorem 90 will not necessarily hold in the infinite case, so we make
a modification.

First we review infinite Galois theory. Let K be a field and let Ks be a separable closure
of K. Consider the partial order on finite Galois extensions L|K (which are contained in Ks)
defined by

L1 ≤ L2 ⇐⇒ L1 ⊆ L2.

Note that if L1 ≤ L2, we get a group homomorphism φL1L2
: Gal(L2|K)→ Gal(L1|K) given by

restriction of automorphisms. The Galois groups Gal(L|K) form a filtered inverse system in the
following sense.

Definition 8.9. A partially ordered set (I,≤) is filtered if

∀ i, j ∈ I ∃ k ∈ I : k ≥ i, k ≥ j.

Definition 8.10. An inverse system of groups indexed by I is given by

• For each i in I, a group Gi;

• For each i ≤ j, a homomorphism φij : Gj → Gi.

The inverse limit of the system is

lim←−Gi :=

{
(gi) ∈

∏
i∈I

Gi : φij(gj) = gi for all i ≤ j

}
.

The dual notion of inverse limit is that of direct limit :
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Definition 8.11. Let (I,≤) be a filtered set. A direct system of abelian groups is given by

• For each i in I, an abelian group Ai;

• For each i ≤ j, a homomorphism φij : Ai → Aj .

The direct limit of the system is

lim−→Ai :=

(⊕
i∈I

Ai

)/{
(0, . . . , 0, ai, 0, . . . , 0, aj , 0, . . .) : φij(ai) = −aj

}
.

Proposition 8.12. In the above example, the Galois groups form a filtered inverse system
whose inverse limit is Gal(Ks|K).

Proof. The fact that the Galois groups form a filtered inverse system is immediate. Now consider
the map

Φ : Gal(Ks|K) −→ lim←−
L

Gal(L|K)

σ 7−→
(
σ|L
)
L
.

This map is surjective: given (σL)L in lim←−L
Gal(L|K), one can glue them together to an element σ

in Gal(Ks|K). More precisely, if x is an element in Ks, then there exists a finite Galois extension
L|K such that x lies in L. Define σ(x) = σL(x). This definition is unambiguous because of the
compatibility of the σL in the inverse system. Then Φ(σ) = (σL)L.

The map Φ is also injective, as if σ is an element in Gal(Ks|K) \ {idKs}, then there exists an
element x in Ks \K such that σ(x) ̸= x. If x lies in an extension L as above, then σ|L(x) ̸= x

and so σ|L ̸= idL.

Remark 8.13. If we put the discrete topology on Gal(L|K) and then the product topology
on
∏

L Gal(L|K), one shows easily that the subgroup lim←−Gal(L|K) of
∏

L Gal(L|K) – endowed
with the induced topology – is closed. Since finite discrete groups are compact and the product
of compact spaces is also compact, we get that lim←−Gal(L|K) is compact. It is also totally
disconnected, i.e. its only connected subsets are one-point sets. A topological group is called
profinite if it is an inverse limit of finite discrete groups. It can be shown that every compact
totally disconnected group is profinite.

The above considerations extend without change to arbitrary infinite Galois extensions of K
in place of Ks but for the definition to follow we only need the case of Ks

Let now G := Gal(Ks|K) and let A be a G-module such that the stabilizer of every a in A is
open (hence of finite index by compactness of G). One can show that this is equivalent to saying
that the action G×A→ A is continuous if A carries the discrete topology.

Note that open subgroups H of G are exactly the subgroups fixing a finite extension L|K
contained in Ks. Indeed, when H is normal, then G/H must be one of the Gal(L|K) in the
inverse system. In the general case choose an open normal subgroup H ′ ⊂ H and apply finite
Galois theory.
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If L|K is a finite Galois extension, by the above it corresponds to an open subgroup H :=
Gal(Ks|L) of G. If L1 ≤ L2, then H2 ≤ H1 and we have an inflation map

Inf : H1(G/H1, A
H1)→ H1(G/H2, A

H2).

In this way, the groups H1(G/H,AH) form a filtered direct system. Thus we can define

H1(G,A) := lim−→
H

H1(G/H,AH).

We make the convention that whenever G is profinite, the group H1(G,A) is to be understood
in the above sense and not as mere group cohomology.

Also, we define
H0(G,A) := AG.

Notation. For i = 0, 1, we define the Galois cohomology groups of K as

Hi(K,A) := Hi(Gal(Ks|K), A).

Hilbert’s Theorem 90 (Theorem 8.7) then immediately extends to the infinite case as follows.

Corollary 8.14. With the previous notation, we have

H1(K, (Ks)×) = 0.

To extend exact sequences from group cohomology to Galois cohomology we need the following
lemma.

Lemma 8.15. Let (I,≤) be a filtered set and let (Ai), (Bi), (Ci) be direct systems indexed
by I. Suppose that for each i in I there is an exact sequence

0→ Ai → Bi → Ci → 0

such that for each i ≤ j the following diagram commutes.

0 Ai Bi Ci 0

0 Aj Bj Cj 0

φA
ij φB

ij φC
ij

Then the sequence
0→ lim−→Ai → lim−→Bi → lim−→Ci → 0

is exact.

The proof follows directly from the definitions and is left as an exercise.
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Corollary 8.16. The long exact sequence (Proposition 8.5) and the inflation-restriction
sequence (Lemma 8.6) hold in Galois cohomology too.

Here in the inflation-restriction sequence one has to assume that the subgroup H of G is
closed.

We arrive at the main application of the above constructions.

Proposition 8.17 (Kummer theory). Let K be a field, let n be a positive integer such that
(n, char(K)) = 1 and let µn be the subgroup of Ks consisting of the n-th roots of unity.
There is a group isomorphism

K×/K×n ∼−→ H1(K,µn).

Proof. Consider the exact sequence of Gal(Ks|K)-modules

1→ µn → (Ks)×
×n−−→ (Ks)× → 1. (8.4)

Part of the long exact sequence is(
(Ks)×

)G ∧n−−→
(
(Ks)×

)G → H1(K,µn)→ H1
(
K, (Ks)×

)
,

but the last group is trivial by Theorem 8.7 and
(
(Ks)×

)G
= K×, thus we conclude.

Note that in exact sequence (8.4) the last map is surjective because Ks is separably closed
and hence every element has an n-th root. One could not write a similar exact sequence for finite
extensions of K.

Remark 8.18. When µn ⊂ K, we have µn
∼= Z/nZ as Gal(Ks|K)-modules and hence

H1(K,µn) ∼= Hom(Gal(Ks|K),Z/nZ).

Following the construction of the map δ in Proposition 8.5 one deduces that under the assumption
µn ⊂ K every Galois extension of K with group Z/nZ is of the form K( n

√
a) for some a ∈ K×.

(This is the classical form of Kummer theory.)

Remark 8.19. We can now also fill in a small gap in a previous proof. Assume K is perfect with
algebraic closure K and G = Gal(K|K). Let C be a plane curve defined over K with function
field K(C) over K. The short exact sequence

1→ K
× → K(C)× → K(C)×/K

× → 1

induces an exact sequence

(K(C)×)G → (K(C)×/K
×
)G → H1(K,K

×
)

where the last term is 0 by Corollary 8.14. Thus the map (K(C)×)G → (K(C)×/K
×
)G is

surjective.
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9 The weak Mordell-Weil theorem for elliptic curves

The aim of this section and the next is to prove the following result, which is due to Mordell in
the case K = Q and to Weil in the general case.

Theorem 9.1 (Mordell-Weil Theorem). Let K|Q be a finite extension an let E|K be an
elliptic curve. Then E(K) is a finitely generated abelian group.

Remark 9.2. Theorem 9.1 holds more generally for an abelian variety A|K (as proven by Weil).

The first step towards the proof is:

Theorem 9.3 (Weak Mordell-Weil Theorem). Let K|Q be a finite extension an let E|K be
an elliptic curve. If m > 1 is an integer, then the quotient group E(K)/mE(K) is finite.

Remark 9.4.

1. Mordell proved Theorem 9.3 only for m = 2, which, as we shall see, is enough for deducing
Theorem 9.1.

2. Even in the case K = Q, the proof passes through some finite extension L|Q (except for
m = 2 if moreover the torsion points of order 2 are contained in E(Q)).

We now start the proof of theorem 9.3.
Recall that, if E|K is an elliptic and K is a fixed algebraic closure of K, we denote by

E[m] the set of points of E(K) of order dividing m. For any extension L|K in K, we set
E[m](L) = E[m] ∩ E(L).

Lemma 9.5. Let k be an algebraically closed field and let E|k be an elliptic curve. The
map m : P 7→ mP is surjective with finite kernel.

Sketch of proof. The map m is defined by polynomial functions, so it is a morphism in the sense
of algebraic geometry. Since E is a projective variety, the image mE is Zariski closed in E. Since
E is connected, the image mE is either E or a point. But mE cannot be a point: to see this, it
is enough to consider the case where m is prime p. If p ̸= 2, we have seen that there exist three
points of order 2 which cannot be killed by p; if p = 2, one can for instance check that there
exist points of order 3.
Finally, since m : P 7→ mP is a non-constant morphism, its kernel E[m] is a proper closed subset
of E, thus it is finite.

Remark 9.6. When k = C, by Corollary 4.8 we have

E[m] ∼= Z/mZ× Z/mZ (9.1)
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as an abelian group. In fact, this also implies the case of algebraically closed fields of characteristic
zero (see [2]). Note that we already know this result for m = 2 (and this is sufficient for the full
Mordell-Weil theorem, as mentioned in Remark 9.4 (1)). Anyway, in case one wants to avoid the
use of the above result, it is sufficient to know that

E[m] ∼= Z/m1Z× . . .× Z/mrZ (9.2)

as an abelian group by Lemma 9.5, and then the proof of Theorem 9.3 will go through with
minimal modifications.

Now let K|Q be a finite extension and let E|K be an elliptic curve. Denote by K a fixed
algebraic closure of K. Lemma 9.5 implies the existence of an exact sequence

0→ E[m](K)→ E(K)
m−→ E(K)→ 0.

Note that, if G = Gal(K|K), this is an exact sequence of G-modules. Thus it induces a long
exact sequence, part of which is given by

E(K)G E(K)G H1(K,E[m](K)) H1(K,E(K)) H1(K,E(K))

E(K) E(K)

m m

Therefore there is an exact sequence

0→ E(K)/mE(K)→ H1(K,E[m](K))→ H1(K,E(K))[m]→ 0.

Here H1(K,E[m](K)) is infinite, but we will prove that it has a finite subgroup containing
E(K)/mE(K) (and this will prove Theorem 9.3). To define this subgroup, we use arithmetic
considerations.

We start with the case K = Q. For every prime p, fix an algebraic closure Qp of Qp and let
Q be the algebraic closure of Q in Qp. Then we have a diagram of embeddings

Q Qp

Q Qp

whence a restriction map
Gal(Qp|Qp) −→ Gal(Q|Q)

σ 7−→ σ|Q

Therefore, there exists an induced map H1(Q, A) → H1(Qp, A) for any Gal(Q|Q)-module A.
Similarly, the immersion Q ↪→ R induces a map H1(Q, A) → H1(R, A) for any Gal(Q|Q)-
module A, where this time Q is the algebraic closure of Q in C.

Now we generalize this to the case of a finite extension K|Q. Let OK be the integral closure
of Z in K. For each non-zero prime ideal p in OK , the localization OK,p of OK at p is a discrete
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valuation ring with fraction field K. Denote by vp : K
× → Z the associated discrete valuation.

We define

ÔK,p := lim←− OK,p/p
iOK,p

Kp := Frac(ÔK,p).

In particular, there exists an embedding K ↪→ Kp which induces a restriction map

Res: H1(K,A)→ H1(Kp, A)

for all Gal(K|K)-modules A after fixing algebraic closures as in the special case above. Also,
every embedding K ↪→ R induces H1(K,A) → H1(R, A) for all Gal(K|K)-modules A. (Note
that in general there may be no embeddings K ↪→ R, or several of them).

We have a commutative diagram with exact rows:

0 E(K)/mE(K) H1(K,E[m]) H1(K,E)[m] 0

0
∏
p

E(Kp)/mE(Kp)
∏
p

H1(Kp, E[m])
∏
p

H1(Kp, E)[m] 0

∏
p Res

∏
p Res

where in the products p runs over all non-zero prime ideals in OK and, with a slight abuse of
notation, over all embeddings K ↪→ R (when they exist).

Definition 9.7. Let m > 1 be an integer. The m-Selmer group of E is

Sel(m)(E) := ker

(
H1(K,E[m])→

∏
p

H1(Kp, E)

)
.

The Tate-Shafarevich group of E is

X(E) := ker

(
H1(K,E)→

∏
p

H1(Kp, E)

)
.

We get the following exact sequence:

0→ E(K)/mE(K)→ Sel(m)(E)→X(E)[m]→ 0. (9.3)

Remark 9.8. The exact sequence (9.3) exists more generally for abelian varieties or even com-
mutative algebraic groups.

We shall now prove:

Theorem 9.9. For every integer m > 1, the group Sel(m)(E) is finite.
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As a direct consequence, we obtain Theorem 9.3:

Corollary 9.10. For every integer m > 1, the groups E(K)/mE(K) and X(E)[m] are
finite.

In fact, there is the following famous conjecture.

Conjecture 9.11. The Tate-Shafarevich group X(E) is finite.

The conjecture is known in some cases but open in general. We shall return to this point
when discussing the Birch–Swinnerton-Dyer conjecture.

Idea of proof of Theorem 9.9. Suppose that E[m] is contained in E(K) and that K contains
the group µm of the m-th roots of unities. Set G = Gal(K|K). Using (9.1) and the fact
that, by assumption, G acts trivially on E[m], we get

H1(K,E[m]) ∼= H1
(
K, (Z/mZ)2

)
= Hom(G, (Z/mZ)2) ∼= Hom(G,Z/mZ)2

∼=
(
H1(G,Z/mZ)

)2 ∼= (H1(K,µm)
)2 ∼= (K×/K×m

)2
,

where the last isomorphism follows from Proposition 8.17. In particular, we can identify
Sel(m) with a subgroup of (K×/K×m)2, so the main idea is to translate the problem in
terms of algebraic number fields, forgetting about elliptic curves. (If one does not want to
use (9.1), the previous isomorphism can be modified using (9.2), obtaining thatH1(K,E[m])
is isomorphic to

⊕r
i=1 K

×/K×mi .)

To reduce to the case discussed above we use the following lemma.

Lemma 9.12. If L|K is a finite extension, then the map

Res: H1(K,E[m])→ H1(L,E[m])

has finite kernel.

Proof. Let H = Gal(L|K). By the inflation-restriction sequence, there is an exact sequence

0→ H1(H,E[m](L))
Inf−−→ H1(K,E[m])

Res−−→ H1(L,E[m]).

But H1(H,E[m](L)) is finite because both H and E[m](L) are finite, so there are finitely many
maps between them.

As consequence, denoting by Sel(m)(EL) the m-Selmer group of E considered as an elliptic
curve defined over L, we get the following result.
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Corollary 9.13. The map Sel(m)(E)→ Sel(m)(EL) has finite kernel.

Thus to prove Theorem 9.9, we may replace K by a finite extension. So we can assume that
K is so large that E[m](K) is contained in E(K) and that K contains µm. In other words, we
are in the situation discussed before Lemma 9.12.

Proposition 9.14. There exists a finite set S consisting of nonzero prime ideals p ⊂ OK

and all the embeddings K ↪→ R such that the image of Sel(m)(E) via the isomorphism
H1(K,E[m])

∼−→ (K×/K×m)2 is contained in({
x ∈ K× : vp(x) ≡ 0 (mod m) for all p /∈ S

}
/K×m

)2
.

In this way the proof of Theorem 9.9 reduces to a purely number-theoretic problem.

To show Proposition 9.14, we need some preliminaries. First we recall that a finite extension
Lp|Kp is unramified if the unique extension vLp

of vp to Lp has values in Z (and not 1
rZ for some

r > 1). In other words, if π is an element of Kp such that vp(π) = 1, then vLp
(π) = 1. Now we

recall the following fact from algebraic number theory.

Fact 9.15. For every integer n ≥ 1, there is a unique unramified extension Lp|Kp of degree n.

(We briefly recall the construction of Lp: If Fq is the residue field of Kp, let α be in Fq such

that Fqn = Fq[α]. If f(X) is the minimal polynomial of α over Fq, consider a monic lift f̃(X)

of f(X) in OKp
[X] (where OKp

is the valuation ring of Kp) and define Lp = Kp[X]/(f̃).)

Lemma 9.16. Let E|Kp be an elliptic curve having good reduction and let m be an integer
prime to p. If Q is a point in E(Kp), then there exists a finite unramified extension Lp|Kp

and a point P in E(Lp) such that mP = Q.

Proof. With notation as at the beginning of Section 7, set Q := r(Q) ∈ E(Fq). By Lemma 9.5

there exists Q̃ in E(Fq) such that mQ̃ = Q. Let n be an integer such that Q̃ lies in E(Fqn)
and let Lp be the degree n unramified extension of Kp. By Hensel’s lemma (more precisely, by

Corollary 6.11), we can lift Q̃ to Q̃ in E(Lp). Note that in E(Fq) we have r(mQ̃) = r(Q) . Hence

Q−mQ̃ ∈ ker
(
r : E(Kp)→ E(Fq)

)
= E(Kp)

(1).

But by Corollary 7.12 (and Remark 7.14, as (m, p) = 1 implies (m, p) = 1) we know that

E(Kp)
(1) is (uniquely) m-divisible, so there exists Q′ in E(Kp)

(1) such that mQ′ = Q − mQ̃.

Setting P = Q′ + Q̃ ∈ E(Lp), we conclude mP = m(Q′ + Q̃) = Q.

Proof of Proposition 9.14. Let S = S1 ∪S2 ∪S3, where S1 is the set of all non-zero primes ideals
p of OK such that E has bad reduction modulo p, S2 is the set of all non-zero primes p dividing
(m) and S3 is the set of all embeddings K ↪→ R. Let α be an element in Sel(m)(E) with image αp
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in H1(Kp, E[m]) for p /∈ S. Since αp maps to zero in H1(K,E), it comes from an element βp in
the quotient E(Kp)/mE(Kp). Now βp is represented by a point Q in E(Kp). Using that p /∈ S,
we may apply Lemma 9.16 to get a finite unramified extension Lp|Kp such that Q is m-divisible
in E(Lp). Therefore βp maps to zero in E(Lp)/mE(Lp), thus αp maps to zero in H1(Lp, E[m]).

βp E(Kp)/mE(Kp) H1(Kp, E[m]) αp

0 E(Lp)/mE(Lp) H1(Lp, E[m]) 0

Since Lp|Kp is unramified, we get the following diagram.

αp H1(Kp, E[m]) (K×
p /K×m

p )2 (Z/mZ)2

0 H1(Lp, E[m]) (L×
p /L

×m
p )2 (Z/mZ)2

∼ vKp

id

∼ vLp

In particular, we deduce that αp corresponds to a pair (α1, α2) ∈ (K×
p /K×m

p )2 such that
vKp

(α1) ≡ vKp
(α2) ≡ 0 (mod m).

To conclude the proof of Theorem 9.3, it is enough to prove the following lemma.

Lemma 9.17. If S is a finite set consisting of non-zero primes of OK and all embeddings
K ↪→ R, then the group{

x ∈ K× : vp(x) ≡ 0 (mod m) for all p /∈ S
}
/K×m

is finite.

To prove Lemma 9.17 we need some tools from algebraic number theory.

Definition 9.18. With the previous notation, define a map

div : K× −→
⊕

p/∈S Z

a 7−→ (vp(a))p/∈S .

The group of S-units in K is

O×
K,S := ker(div).

The S-class group of K is

ClK,S := coker(div).

We need two classical facts, for the proof of which we refer to books on algebraic number
theory such as [3].
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Facts 9.19. The group O×
K,S is finitely generated and the group ClK,S is finite.

Proof of Lemma 9.17. We have the following commutative diagram with exact rows:

0 O×
K,S K× ⊕

p/∈S Z ClK,S 0

0 O×
K,S K× ⊕

p/∈S Z ClK,S 0

0 Ker(divm) K×/K×m
⊕

p/∈S Z/mZ

0 0

m

div

m m m

div

divm

where Ker(divm) = {x ∈ K× : vp(x) ≡ 0 (mod m) for all p /∈ S} /K×m as in the statement. A
diagram chase gives an exact sequence

O×
K,S/mO

×
K,S → Ker→ ClK,S [m]

and we conclude by Facts 9.19.
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