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Chapter 1

Class Field Theory I

Two problems in Hilbert’s famous list are related to class field theory: one is solved by one of the main
theorems of CFT, and the other is largely open. The one that is solved is related to reciprocity laws,
which will be our starting point.

1.1 Reciprocity laws

1.1.1 Quadratic reciprocity

Recall the definition of the classical Legendre symbol: for p a prime and a ∈ Z prime to p, we define(
a

p

)
=

{
1, if the equation x2 = a has solutions modulo p

−1, otherwise

For p > 2, a result of Euler gives
(

a
p

)
= a

p−1
2 (mod p).

Theorem 1.1.1.1 (Quadratic reciprocity, Gauss). For all pairs of distinct odd primes a, b we have(a
b

)
·
(
b

a

)
= (−1)

a−1
2

b−1
2 .

There are also two so-called subsidiary laws,(
−1
p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 .

One can consider two generalisations: replacing Z with the ring of integers of a number field, or
replacing squares with higher powers.

1.1.2 Hilbert’s reinterpretation

Consider the completions of Q, namely Qp for every prime p and Q∞ = R.

Definition 1.1.2.1 (Hilbert symbol). Let a, b ∈ Qp \ {0}, where p is a prime or ∞. We define

(a, b)p =

{
1, if the equation x2 = ay2 + bz2 has a non-trivial solution in Q3

p

−1, otherwise

A solution (x, y, z) is non-trivial if it is different from (0, 0, 0) (so, equivalently, we are asking for a
Qp-rational point on the projective quadric with equation x2 = ay2 + bz2).

Remark 1.1.2.2. We have the reinterpretation

(a, b)p = 1⇐⇒ b is a norm for the extension Q(
√
a)/Qp ⇐⇒ a is a norm for the extension Q(

√
b)/Qp.

This is immediate to see by manipulating the equation in the definition of the Hilbert symbol.
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6 CHAPTER 1. CLASS FIELD THEORY I

Assume p ̸= 2,∞ and let a, b be integers. There is an explicit formula for the Hilbert symbol:

(a, b)p = [(−1)vp(a)vp(b)avp(b)b−vp(a)]
(p−1)/2

= (−1)(p−1)/2·vp(a)·vp(b) ·
(
a

p

)vp(b)

·
(
b

p

)−vp(a)

,

where the bar denotes reduction modulo p and the second equality follows from Euler’s criterion. In

particular, if p ∤ a, (a, b) =
(

a
p

)vp(b)

. There are also more complicated formulas for p = 2 and ∞.

Remark 1.1.2.3. Note that the minus sign in the exponent of
(

b
p

)
does not matter, because

(
b
p

)
= ±1.

We write the formula in this way with a view towards later generalisations.

Theorem 1.1.2.4 (Hilbert’s reciprocity law). For all a, b ∈ Z \ {0} (or even Q×), we have∏
p

(a, b)p = 1.

Remark 1.1.2.5. If a, b are integers and p ∤ 2ab, then (a, b)p = 1. Moreover, if a, b are both odd, then

(a, b)2 = (−1) a−1
2 · b−1

2 . Using these formulas, Hilbert’s reciprocity law implies quadratic reciprocity.

An advantage of this formulation is that it generalises nicely to number fields, simply replacing Qp

with the completions Kp of the number field K.

Problem 1.1.2.6 (Hilbert’s 9th problem). Generalise this picture to arbitrary n-th powers and arbi-
trary number fields.

1.1.3 Direct attempt at a generalisation

Assume now that K/Q is a finite extension such that µn ⊂ K. In particular, if n > 2, the field K
cannot be embedded in the real numbers.

We shall define, for every prime ideal p ⊂ OK , a Hilbert symbol (a, b)p ∈ µn. It will satisfy∏
p

(a, b)p = 1 ∀a, b ∈ K×.

For n = 2, the product includes the ‘infinite factors’ corresponding to completions isomorphic to R;
otherwise, we ignore the infinite places.

In the next lecture, we will make sense of the definitions of the following objects and check their
properties.

For p ∤ n, and p ̸=∞ if n = 2, we set

(a, b)p = (−1)vp(a)vp(b)avp(b)b−vp(a)
(q−1)/n

,

where q = |OK/p| and we identify (OK/p)
×

with µq−1 via the inverse of the reduction map modulo
p. In particular, if p ∤ (a),

(a, b)p =
(
a(q−1)/n

)vp(b)

.

Let now b ∈ p be an element with vp(b) = 1 and define(
a

p

)
:= (a, b)p.

By the formula above, this definition does not depend on the choice of b. With this definition,
(

a
p

)
is

the unique n-th root of unity congruent to a(q−1)/n modulo p. In particular,
(

a
p

)
= 1 if and only if

the equation xn ≡ a (mod p) has solutions. We will show:

(a, b)p = 1⇔ b is a norm for the extension Kp(
n
√
a)/Kp ⇔ a is a norm for the extension Kp(

n
√
b)/Kp.

Finally, we will show that (a, b)p is bi-multiplicative and anti-commutative.
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1.2 Review of group cohomology

Let G be a group and A be a left G-module (that is, an abelian group equipped with a left action of
G; yet equivalently, a left Z[G]-module). We say that A is trivial if G acts trivially, i.e.,

σa = a ∀σ ∈ G,∀a ∈ A.

Notice that, if Z is the trivial G-module, we have

HomZ[G](Z, A) = AG := {a ∈ A : σ = a ∀σ ∈ G} : (1.2.0.1)

such a homomorphism is determined by the image of 1, and since the G-action on Z is trivial and the
homomorphism is G-equivariant, the image also has to be fixed by G.

Definition 1.2.0.2. We set
Hi(G,A) := ExtiZ[G](Z, A).

The Hi(G,−) are covariant functors from the category of G-modules to the category of abelian
groups. They are also the right derived functors of the functor of invariants A 7→ AG (this follows from
the identification, given by Equation (1.2.0.1), between the functors A 7→ AG and A 7→ HomZ[G](Z, A)).
Given a short exact sequence

0→ A→ B → C → 0

of G-modules, there exists an associated long exact sequence

· · · → Hi(G,A)→ Hi(G,B)→ Hi(G,C)→ Hi+1(G,A)→ · · ·

starting from H0(G,A) = AG.
To compute Hi(G,A), one uses explicit resolutions of Z.

Construction 1.2.0.3. Consider Z[Gi+1] as a Z[G]-module via

σ · (σ0, . . . , σi) = (σσ0, . . . , σσi).

These are free Z[G]-modules. For i > 0, define a connecting map

δi : Z[Gi+1]→ Z[Gi]

by δi =
∑

j(−1)jsij, where
sij : Z[Gi+1]→ Z[Gi]

sends (σ0, . . . , σi) to (σ0, . . . , σj−1, σj+1, . . . , σi).
We get a projective resolution of Z,

· · · δ2−→ Z[G2]
δ1−→ Z[G] δ0−→ Z→ 0.

Terminology. We call

� HomG(Z[Gi+1], A) the i-cochains;

� ker δi the i-cocycles;

� im δi+1 the i-coboundaries.

This is not quite the construction one uses in practice. In Z[Gi+1], consider the basis

[σ1, . . . , σi] := (1, σ1, σ1σ2, . . . , σ1 . . . σi).

These elements freely generate Z[Gi+1] over Z[G], so we may identify i-cochains with functions
[σ1, . . . , σi] 7→ aσ1,...,σi

. In this basis, the maps δi become

aσ1,...,σi 7→ σ1a2,...,σi +

i∑
j=1

(−1)jaσ1,...,σjσj+1,...,σi + (−1)i+1aσ1,...,σi−1 .
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Example 1.2.0.4. A 1-cocycle is a function σ 7→ aσ satisfying aσ1σ2 = σ1aσ2 +aσ1 . It is a 1-coboundary
if there exists a ∈ A such that aσ = σa − a for all σ ∈ G. In the special case when G acts trivially,
H1(G,A) = Hom(G,A) (homomorphisms in the category of groups).

An interesting special case is when G is finite and cyclic, say generated by an element σ of order
n. For a G-module A, define

N : A → A

a 7→
∑n−1

i=0 σ
ia

and
σ − 1 : A → A

a 7→ σa− a.

If A = Z[G], then these maps give rise to the resolution

· · · Z−→ [G]
N−→ Z[G] σ−1−−−→ Z[G] N−→ Z[G] σ−1−−−→ Z[G] σ 7→1−−−→ Z→ 0.

The existence of this resolution implies

H2i+1(G,A) = NA/(σ − 1)A, H2i+2(G,A) = AG/NA,

where NA denotes the kernel of N .
If H < G is a subgroup, there are maps

Res : Hi(G,A)→ Hi(H,A) restriction

Inf : Hi(G/H,AH)→ Hi(G,A) inflation (if H ◁ G)

At the level of cocycles, these are the obvious maps. If A,B,C are G-modules, equipped with a map
of G-modules A×B → C, there are cup-product maps

Hi(G,A)×Hj(G,B)→ Hi+j(G,C)

that are functorial, Z-bilinear, and satisfy a ∪ b = (−1)jb ∪ a.
If G = lim←−i

Gi is a pro-finite group (inverse limit of finite groups), we say that A is a continuous

G-module if ∀a ∈ A the subgroup Ga = {σ ∈ G : σ · a = a} is open in G. One then defines

Hi(G,A) = lim−→
j

Hi(G/Uj , A
Uj ),

where Uj = ker(G→ Gj) and the maps in the direct limit are inflations.

Remark 1.2.0.5. One can show that Hi(G,A) is always a torsion abelian group (for i > 0) and
Hi(G,V ) = 0 when V is a Q-vector space (the second part can be deduced from the first by a
classical argument: Hi(G,V ) is finite, say of order n. Multiplication by n is an automorphism, because
it is on V , and also the zero map, because it is on G. The only group for which the zero map is an
automorphism is the trivial group).

Consider the case where K is a field, Ks is a separable closure of K, and G = Gal(Ks/K). We know
that in this case G = lim←− L⊆Ks

L/K finite Galois

Gal(L/K). We then write for simplicity Hi(K,A) := Hi(G,A).

Theorem 1.2.0.6 (Hilbert’s Theorem 90). If L/K is a finite Galois extension, we have

H1(Gal(L/K), L×) = 0,

and therefore also H1(K,K×
s ) = 0.

Corollary 1.2.0.7. If m is invertible in K, there exists a canonical isomorphism

K×/K×m ∼−→ H1(K,µm).

Proof. Consider the short exact sequence of Galois modules 1 → µm → K×
s

x 7→xm

−−−−→ K×
s → 1. The

associated long exact sequence in cohomology gives

H0(K,K×
s )m → H0(K,K×

s )→ H1(K,µm)→ H1(K,K×
s )→ 0.

Since H1(K,K×
s ) = 0 by Hilbert 90, the claim follows. Note that the isomorphism is induced by

a ∈ K× 7→
[
σ 7→ σ m

√
a

m
√
a

]
.

Finally, H2(K,K×
s ) is called the Brauer group ofK and denoted by Br(K). Its elements correspond

to finite-dimensional division algebras over K with centre K.
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1.3 Back to the construction of (a, b)p

The key to the construction is the following theorem of Hasse:

Theorem 1.3.0.1 (Hasse). Let K be a number field and let p be a finite prime of OK . There is a
canonical isomorphism inv : Br(Kp)

∼−→ Q/Z.

Sketch of proof. Note that Kp is a finite extension of Qp. We describe the construction of the invariant
map. Let Knr

p be the maximal unramified extension of Kp. One first proves that Br(Knr
p ) = 0. It

follows that
Br(Kp) = H2(Kp,K

×
p,s)
∼= H2

(
Gal(Knr

p /Kp),
(
Knr

p

)×)
.

Denote by Γ the group Gal(Knr
p /Kp). We have a valuation map v :

(
Knr

p

)× → Z, which induces

H2
(
Γ,
(
Knr

p

)×)→ H2(Γ,Z) ∼= H1(Γ,Q/Z) ∼= Hom(Γ,Q/Z) ∼= Hom(Ẑ,Q/Z) ∼= Q/Z.

Here we have used H2(Γ,Z) ∼= H1(Γ,Q/Z), which comes from considering the sequence of trivial
Γ-modules

0→ Z→ Q→ Q/Z→ 0 :

a segment of the long exact sequence in cohomology is

0 = H1(Γ,Q)→ H1(Γ,Q/Z)→ H2(Γ,Z)→ H2(Γ,Q) = 0,

where the zeroes come from the fact that Q is a Q-vector space (see Remark 1.2.0.5).

Construction 1.3.0.2. Fix a primitive m-th root of unity ω ∈ µm. By Kummer theory, we have an
isomorphism

δp : K×
p /K

×m
p

∼−→ H1(Kp, µm).

Given a, b ∈ K×
p , we can consider

δp(a) ∪ δp(b) ∈ H2(Kp, µ
⊗2
m ).

Since µm is contained in Kp, we can choose an isomorphism µ⊗2
m
∼= µm. The isomorphism does depend

on the choice of ω: we send ω⊗ω 7→ ω. This isomorphism then induces H2(Kp, µ
⊗2
m )

∼−→ H2(Kp, µm).
The long exact sequence in cohomology associated with

1→ µm → K×
p

x 7→xm

−−−−→ K×
p → 1

gives, using Hilbert 90, an isomorphism

H2(Kp, µm) ∼= m Br(Kp).

Finally composing with the invariant map, we get H2(Kp, µm)
∼−→ Z/mZ.

Definition 1.3.0.3. We set
(a, b)p := ωinv(δp(a)∪δp(b)).

One checks that the two choices of ω we have made (one in the construction of the isomorphism
µ⊗2
m
∼= µm, the other here, as the basis of the exponentiation) cancel out, so that this definition is

independent of the choice of ω.

Remark 1.3.0.4.

1. If a, b ∈ K×, one can use δ : K×/K×m ∼−→ H1(K,µm) to construct δ(a) ∪ δ(b) ∈ H2(K,µ⊗2
m ),

and δp(a)∪ δp(b) is obtained by restriction to Gal(Kp,s/Kp) ⊆ Gal(Ks/K). (There is a subtlety
here: the subgroup Gal(Kp,s/Kp) is only defined up to conjugacy, but cohomology is insensitive
to conjugation.)

2. Classically, δ(a) ∪ δ(b) is the class in Br(K) of the cyclic algebra

⟨x, y
∣∣ xm = a, ym = b, xy = ωyx⟩.
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1.4 The theorem of Brauer-Hasse-Noether and Albert

The following is a crucial result in global class field theory. It is one of the two theorems that we will
take for granted in this course.

Theorem 1.4.0.1 (Brauer-Hasse-Noether, Albert). Let K be any number field. The sequence

0→ BrK →
⊕
p

BrKp

∑
invp−−−−→ Q/Z→ 0 (1.4.0.2)

is exact, where the arrow BrK →
⊕

p BrKp is given by the sum of the restrictions to the local Galois
groups.

Since K is arbitrary and the sum ranges over all the places of K, we also have to consider the
archimedean completions Kp = R or C. In the complex case the invariant map is trivial; in the

real case it is induced by Br(R) ∼= Z/2Z ∼=
1
2Z
Z ↪→ Q/Z. In the cohomological interpretation, the

isomorphism is easy to prove using the fact Gal(C/R) is cyclic of order 2. In the interpretation via
central simple algebras, a theorem of Frobenius shows that the only non-trivial central division algebra
over R is given by the Hamilton quaternions.

Here already the fact that the second map in Equation (1.4.0.2) lands in the direct sum, and not
the direct product, of the local Brauer groups, is nontrivial.

A crucial observation is that, in the case µm ⊂ K, the fact that the sequence is a complex is
equivalent to the fact that ∏

p

(a, b)p = 1,

i.e. the general reciprocity law we were looking for! One implication is clear from our work up to now.
The other uses the nontrivial fact that, when µm ⊂ K, every class in BrK is of the form δ(a) ∪ δ(b)
or, in other words, that every central simple algebra over the number field K is cyclic.

The proof of the reciprocity law is not easy; it ultimately relies on explicit computations of Hilbert
symbols trivialized by a cyclotomic extension. In 2017 Dustin Clausen announced a new, more con-
ceptual approach, based on difficult K-theoretic constructions.



Chapter 2

Class Field Theory II

Let K be a finite extension of Qp, let m = [K : Qp] and write v for the valuation of K. Recall that

K× ∼= UK × Z ∼= U
(1)
K × µq−1 × Z,

where Z corresponds to the valuation, UK is the group of units of the ring of integers, and U
(1)
K is the

Einseinheitengruppe
{u = 1 + a : v(a) > 0}.

Fact. U
(1)
K
∼= Zm

p ×F , where F is a finite cyclic p-group and (as above) m = [K : Qp]. A consequence
of this decomposition is that UK is a profinite group, but K× is not, because of the Z component. The
profinite completion of K× is defined as

K̂× := lim←−
[K×:U ]<∞

K×/U ∼= UK × Ẑ.

The main facts of local class field theory are encapsulated in the following result:

Theorem 2.0.0.1. There exists a canonical homomorphism

ρK : K× → Gab
K ,

inducing an isomorphism of topological groups K̂× → Gab
K . Here GK = Gal(K/K), and for a profinite

group G, the symbol Gab denotes the maximal abelian profinite quotient of G.

Definition 2.0.0.2. The map ρK is called the reciprocity map.

2.1 Construction of ρK via the Hilbert symbol

Fix n ∈ Z>0. We know that H1(K,Z/nZ) ∼= Homcont(GK ,Z/nZ) = Homcont(G
ab
K ,Z/nZ). There is

also the Kummer map,
δ : K× → H1(K,µn),

inducing K×/K×n ∼= H1(K,µn), and the cup product

H1(K,Z/nZ)×H1(K,µn)
∪−→ H2(K,µn) ∼= n Br(K)

inv−−→
∼

Z/nZ.

Theorem 2.1.0.1 (Special case of local Tate duality). This is a perfect pairing of finite abelian groups.

Remark 2.1.0.2. Tate duality holds more generally for every finite GK-module A. Setting A∗ :=

Hom(A,K
×
), the statement is that the cup-product

H1(K,A)×H1(K,A∗)→ H2(K,K
×
) = Br(K) ∼= Q/Z

is a perfect pairing of finite abelian groups. Notice that, in the previous application of Tate duality,

we had a fixed n, so instead of K
×

we had µn.

11
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Remark 2.1.0.3. Tate’s original proof relied on local class field theory. There is also a Grothendieck-
style proof by Serre and Tate in Serre’s book Cohomologie galoisienne [Ser94], which ensures that our
arguments are not circular.

Local Tate duality is the second theorem we will take as given, together with the exact sequence of
Theorem 1.4.0.1. The proof of local Tate duality is not as hard as that of the theorem of Albert and
Brauer-Hasse-Noether.

There is a chain of isomorphisms

K×/K×n ∼−−−−−→
Kummer

H1(K,µn)
∼−−−→

Tate
Hom(H1(K,Z/nZ),Z/nZ)

∼= Hom(Hom(GK ,Z/nZ)),Z/nZ) = Hom(Hom(Gab
K ,Z/nZ)),Z/nZ) ∼= Gab

K /n.

In the last isomorphism, we have used duality for finite abelian group, which we can do since the
finiteness is part of the statement of local Tate duality. By passing to the limit in n,

K̂× ∼= lim←−
n

K×/K×n ∼= lim←−
n

Gab
K /n

∼= Gab
K ,

where the first isomorphism follows from the fact that the subgroups of the form K×n are cofinal in
the finite-index subgroups of K×, and the last isomorphism follows from the fact that Gab

K is already
profinite, and so profinite completion acts trivially on it. The map ρK is obtained as the composite

K× → K̂× ∼−→ Gab
K .

Now let L/K be a finite abelian extension. The composition

ρL/K : K× ρK−−→
∼

Gab
K ↠ Gal(L/K)

is surjective, and we have:

Theorem 2.1.0.4. The kernel of ρL/K is NL/K(L×) ⊂ K×. We then get an isomorphism

K×/NL/K(L×)
∼−→ Gal(L/K).

Sketch of proof. We note at the outset that the argument will use no arithmetic, and works for arbitrary
fields. See the book of Gille–Szamuely [GS17] for details.

Assume first that Gal(L/K) =: G is cyclic of order n. Denote by χ : G → Z/nZ an isomorphism,
inducing a surjective character (denoted by the same symbol) χ : GK → Z/nZ. Then Gal(L/K) ∼=
Gab

K / ker(χ). One checks that the diagram

H1(K,Z/nZ)

d

��

×H1(K,µm)
∪ // H2(K,µ)

∼= //
n Br(K)� _

��

H2(K,Z) × H0(K,K
×
)

∪ //

δ

OO

H2(K,µ)
∼= // Br(K)

(2.1.0.5)

commutes, that is, dψ ∪ a = ψ ∪ δa for ψ ∈ H1(K,Z/nZ) and a ∈ K = H0(K,K
×
). The periodicity of

cohomology of cyclic groups gives

H2(G,L×) ∼= (L×)G/N(L×) = K×/NL/K(L×),

and one checks that this map is induced by

K× ∼= H0(K,K
×
)

∪dχ−−→ H2(G,L×).

Upshot. χ ∪ δa = 0 ⇔ dχ ∪ a = 0 ⇔ a ∈ NL/K(L×), which (by our construction of the reciprocity
map as inv (χ ∪ δ(a))) gives the theorem in the cyclic case.

For the general case, decompose Gal(L/K) =
⊕r

i=1 Gal(Li/K) where the Li/K are cyclic and
linearly disjoint, and reduce to the cyclic case.
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2.2 Special case: L/K finite unramified

Denote by λ the residue field of L and by κ the residue field of K. One knows that there is an
isomorphism

Gal(L/K)
∼−→ Gal(λ/κ) ∼= Z/nZ.

The Frobenius automorphism Frob : x 7→ xq of Gal(λ/κ) corresponds, under this isomorphism, to an
element F ∈ Gal(L/K), also called the Frobenius.

Proposition 2.2.0.1. We have
ρL/K(a) = F v(a)

for all a ∈ K×. In particular, ρL/K(a) = 1 if and only if v(a) = 0, and by Theorem 2.1.0.4 we see
that this is also equivalent to a ∈ NL/K(L×). Another important special case is v(a) = 1, in which
case ρL/K(a) = F is a generator of Gal(L/K).

Proof. Let χ be a character of Gal(L/K). By construction of the reciprocity map, we have

χ(ρL/K(a)) = inv (χ ∪ δ(a))

and by Diagram (2.1.0.5) we have

inv (χ ∪ δ(a)) = inv(dχ ∪ a).

We now need to recall the definition of the invariant map. Recall that, in the unramified case, we had

H2(G,Z)×H0(G,L×)
∪ //

v

��

H2(G,L×)
v // H2(K,Z)H1(K,Q/Z) d−1

∼
// // Hom(G,Q/Z)

χ 7→χ(F )
// Z/nZ

H2(G,Z)×H0(G,Z) // H2(G,Z)

55

where d is the connecting map in the long exact sequence induced by 0 → Z → Q → Q/Z → 0.
Inspection of this diagram gives

χ(ρL/K(a)) = χ(F v(a)).

Since this holds for all χ, we obtain as desired ρL/K(a) = F v(a).

2.3 Back to the Hilbert symbol

Suppose µn ⊂ K×. We defined, for a, b ∈ K×,

(a, b)K := ωinv(δ(a)∪δ(b)),

where ω is a fixed primitive n-th root of unity. Identifying µn with Z/nZ by sending ω to 1, we have
a correspondence

δ(a) ∈ H1(K,µn)↔ χa ∈ H1(K,Z/nZ),

where – writing L = K( n
√
a) – one has

χa(σ) =
σ( n
√
a)

n
√
a

.

Corollary 2.3.0.1. If |κ| = q, (n, q) = 1, then

(a, b)K =
[
(−1)v(a)v(b)av(b)b−v(a)

] q−1
n

,

where c is the image of c in the residue field κ, and we identify κ×
∼−→ µq−1. The expression

(−1)v(a)v(b)av(b)b−v(a) is called the tame symbol.
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Proof. Fix π ∈ K× of valuation 1. Using anti-commutativity and bi-multiplicativity of (a, b)K and
(u, u)K = 1 if u is a unit, we are reduced to proving

(u, π)K = u
q−1
n

for every unit u. As we have already discussed, the left-hand side is

inv(χu ∪ δ(π)) = χu(ρL/K(π)) = χu(F ) ≡
n
√
u
q

n
√
u

= u(q−1)/n.

We have thus completely described the Hilbert symbol! Another interesting consequence is:

Corollary 2.3.0.2. We have a commutative diagram

1 // UK
//

��

K× v //

ρK

��

Z //

��

0

1 // IabK
// Gab

K
// Gal(Knr/K) ∼= Ẑ // 0

where IabK is the inertia subgroup.

Proof. The corollary follows from the fact that, for all u ∈ UK , the automorphism ρK(u) maps to 0 in

every finite quotient of Gal(Knr/K) (and is therefore 0 in Ẑ).

Remark 2.3.0.3. The units UK have a descending filtration

UK ⊃ U (1)
K ⊃ U (2)

K ⊃ U (3)
K ⊃ · · · ⊃ U (i)

K ⊃ · · ·

where U
(i)
K = {1 + a ∈ UK : v(a) ≥ i}. Via the reciprocity map, it corresponds to the filtration of Gab

K

by ramification subgroups in the upper numbering.

We conclude our discussion of local class field theory by the existence theorem.

Theorem 2.3.0.4. Every finite index subgroup H of K× is of the form NL/K(L×) for some finite
abelian extension L/K.

Proof. Suppose H ⊂ K× is of finite index. Consider

K×/H ∼= K̂×/Ĥ
∼−−→
ρK

Gal(L/K)

for some L. The composition is ρL/K . From the properties of the reciprocity map already established,

H = ker(ρL/K) = NL/K(L×).

Remark 2.3.0.5. If K is a local field of characteristic p > 0 (i.e., a finite extension of Fq((t)), q = pr),
all statements remain true, but the proof we gave only works for the prime-to-p part. One needs a
separate local duality theorem to address the p-part.

Moreover, recall that finite-index subgroups of Q×
p (or more generally K× for K a p-adic field) are

automatically open. This is no longer true in positive characteristic, and the profinite completion K̂×

should be taken over open subgroups of finite index. Likewise, the positive characteristic version of
the existence theorem holds for open subgroups of finite index.



Chapter 3

Class Field Theory III

3.1 Global class field theory: construction of the reciprocity
map

Let K/Q be a finite extension and let Ω = Ωf ∪ Ω∞ be the set of places of K, where Ωf (resp. Ω∞)
is the set of finite (resp. Archimedean) places. For every v ∈ ΩK there is a corresponding completion
Kv,

Kv =


finite extension of some Qp, if v ∈ Ωf

R
C

For v finite, denote O×
v the group of units of OKv . Historically, global class field theory was proven

first, and local class field theory was deduced as a consequence. Later, Hasse and Chevalley noticed
that it was possible to package together the local reciprocity maps to give the global one. This is the
approach that we take.

Definition 3.1.0.1 (Chevalley). The idèle group of K is

IK := {(av) ∈
∏
v

K×
v : av ∈ O×

v for all but finitely many places v},

equipped with the restricted product topology. A basis of open neighbourhoods of 1 for this topology is∏
v∈S

Uv ×
∏
v ̸∈S

O×
v ,

where S is a finite subset of ΩK containing Ω∞ and Uv ⊂ K×
v is open. One can prove that IK is a

locally compact topological group, and there is a diagonal embedding K× ↪→ IK which sends a to the
constant sequence (a)v∈Ω.

Definition 3.1.0.2. The idèle class group of K is

CK = IK/K
×.

It is equipped with the quotient topology and is therefore locally compact. It is also Hausdorff, because
the image of K× in IK is discrete.

Notation 3.1.0.3. Let GK := Gal(K/K), Gab
K be its maximal abelian quotient, and let GKv

, Gab
Kv

be

defined similarly. For every v, there is a canonical embedding of Gab
Kv

in Gab
K : at the level of GK , the

embedding is only defined up to conjugacy, but this problem disappears in the abelianisation.
For v ∈ Ωf , we have defined

ρKv
: K×

v → Gab
Kv
⊂ Gab

K .

If Kv = R, set
ρKv : R× → Gal(C/R)

a 7→ τ (1−sign(a))/2,

15
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where τ is complex conjugation (in other words, ρKv sends R>0 to the trivial element and R<0 to
complex conjugation). If Kv = C, we simply take ρv to be the trivial map. Define

ρ̃K : IK → Gab
K

(av) 7→
∏

v ρKv
(av).

This makes sense, because av is a unit for all but finitely many v, and ρKv
(av) is trivial in every

finite unramified extension. More precisely: in order for this element to make sense, it has to induce
a well-defined automorphism for every finite abelian extension L/K. Such an extension is unramified
at all but finitely many places. If we throw away the places that ramify in L and the places at which
(av) is not a unit, the remaining ρKv (av) are trivial on L.

Theorem 3.1.0.4 (Artin, global reciprocity law). The composite

K× → IK
ρ̃K−−→ Gab

K

is trivial.

Proof. Let χ ∈ H1(K,Q/Z) be a character of Gab
K . It induces χv ∈ H1(Kv,Q/Z) for each v. Let

a ∈ K×. We will prove that χ(ρ̃K(a)) is zero for every χ, which implies that ρ̃K(a) itself is zero.
Recall the connecting map d : H1(K,Q/Z)→ H2(K,Z). We have

dχ ∪ a ∈ H2(K,K
×
) = Br(K).

We now invoke part of the Brauer-Hasse-Noether theorem, namely the fact that

Br(K)→
⊕
v

Brv(Kv)
∑

invv−−−−→ Q/Z

is a complex. We obtain

0 =
∑
v

invv(dχv ∪ a) =
∑
v

χv(ρKv (a)) = χ(ρ̃K(a)),

which is what we had to show.

Thus, ρ̃K factors via K×, hence induces a global reciprocity map ρK : CK → Gab
K . We now

discuss its main properties.

Theorem A.

1. ρK induces an isomorphism ĈK → Gab
K of topological groups, where

ĈK := lim←−
Uopen

[CK :U ]<∞

CK/U.

2. ker ρK is the connected component of 1 ∈ CK .

Theorem B. Let L/K be a finite abelian extension and ρL/K be the composition CK → Gab
K →

Gal(L/K). Then ρL/K is surjective, and we have

ker(ρL/K) = NL/K(CL),

where NL/K is induced by the local norms Lw/Kv.

Corollary 3.1.0.5. The open subgroups of finite index in CK are of the form NL/K(CL) for L/K
abelian.

Corollary 3.1.0.6. We have

ker ρK =
⋂

L/K finite abelian

NL/K(CL).
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Remark 3.1.0.7. Corollary 3.1.0.5 (the global existence theorem) can be proven directly using the
corresponding local result and some standard facts from algebraic number theory. The combination of
Corollary 3.1.0.5 and Theorem B then implies Theorem A (1).

To derive Theorem A (2) from A (1) one first proves that if C0
K denotes the connected component

of 1 in CK , the quotient CK/C
0
K is compact. It is also totally disconnected and hence profinite; in

fact, it is the maximal profinite quotient of CK . On the other hand, C0
K is contained in every open

subgroup of CK (this is true in any topological group), so Theorem A (2) follows.
We now turn to the proof of Theorem B. For the surjectivity we need a special case of Chebotarev’s

density theorem:

Theorem 3.1.0.8. Let L/K be a finite abelian extension of number fields and let G = Gal(L/K).
Given g ∈ G, there exist infinitely many places v ∈ ΩK , unramified in L, such that Fv = g, where Fv

is the Frobenius of v. (In fact, they have Dirichlet density 1/#G. For us, it is enough to know that
there exists one such place.)

Chebotarev implies the surjectivity in Theorem B: every element g of Gal(L/K) is of the form
g = Frobv for some v, and it suffices to take the idèle a = (1, 1, . . . , 1, πv, 1, . . .), where πv is a
uniformiser at v. By definition, the reciprocity map takes to

∏
w ̸=v ρw(1) · ρv(πv) = Id ·Frobv = g.

Remark 3.1.0.9. Chebotarev’s theorem is analytic in nature. One can give completely algebraic proofs
of all the main theorems of class field theory, but Chebotarev’s theorem remains a crucial tool when
proving refinements or generalisations.

Now for the computation of the kernel in Theorem B. First write Gal(L/K) ∼=
∏r

i=1 Gal(Li/K) ∼=∏
Z/prii Z as a product of finite cyclic group of prime-power order and L ⊃ Li ⊃ K. We have

CK/NL/K(CL) ∼=
∏
i

CK/NLi/K(CLi
),

so we can reduce to the case where G = Gal(L/K) ∼= Z/prZ. By cyclicity of G and periodicity of
cohomology,

K×/NL/K(L×) ∼= H2(G,L×) = Br(L/K)

and
IK/NL/K(IL) ∼=

⊕
v∈ΩK

K×
v /NLw/Kv

(L×
w)
∼=
⊕
v

Br(Lw/Kv).

When writing the first isomorphism IK/NL/K(IL) ∼=
⊕

v∈ΩK
K×

v /NLw/Kv
(L×

w), we use the fact that
in an unramified extension every unit is a norm to land in the direct sum (as opposed to the direct
product).

Now consider the map CK/NL/K(CL) → Gal(L/K). We will show that the source and target
groups have the same order (which, together with the surjectivity already established, gives the desired
isomorphism). We have

CK/NL/K(CL) = coker
(
K×/NL/K(L×)→ IK/NL/K(IL)

) ∼= coker

(
Br(L/K)→

⊕
v

Br(Lw/Kv)

)
.

By Albert-Brauer-Hasse-Noether (Theorem 1.4.0.1), using that Br(L/K) injects in Q/Z, this cokernel
is a cyclic subgroup of order equal to the maximum of |Br(Lw/Kv)| = max[Lw : Kv] = [L : K]. The
last equality follows again from Chebotarev, which (applied to a generator of the cyclic group G) gives
the existence of an inert place, for which [Lw : Kv] = #G.

Remark 3.1.0.10. We have relied heavily on the Albert-Brauer-Hasse-Noether theorem. However, we
have not used the complete statement: we only needed the fact that the sequence is a complex and the
description of the cokernel of the sum of the invariant maps. We have not used injectivity on the left
(the so-called Hasse principle), which – while very important in itself – does not enter into the proofs
of the main theorems of global class field theory.

Remark 3.1.0.11. For global fields of positive characteristic the statement of Theorem B remains true
with the same proof (which is in fact simpler because the Brauer–Hasse–Noether theorem has a simpler
proof in this case – see e.g. the book by Gille–Szamuely [GS17]). Theorem A holds with the following

modification: the reciprocity map is injective with cokernel Ẑ/Z. It is the existence theorem (Corollary
3.1.0.5) whose proof is more difficult for subgroups of index divisible by the characteristic (see the book
of Artin–Tate [AT09]).
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3.2 Applications

Definition 3.2.0.1. The Hilbert class field HK of K is the maximal abelian extension of K in which
every v ∈ Ωf is unramified and every real place v is completely split.

When v is a real place, define O×
Kv

to be R×. We know that
∏

v ρK(O×
Kv

) has trivial image in
Gal(HK/K) (this is the usual fact that units have trivial image in an unramified extension). It follows
that ρHK/K factors through

(
IK/

∏
v O

×
Kv

)
/ Im(K×) ∼= ClK . This induces an isomorphism

ClK ∼= Gal(HK/K),

and in particular the latter is finite, a fact which is far from trivial.

3.2.1 Generalisation: class fields

The following definitions are due to Weber (originally formulated in the language of generalised class
groups rather than idèles).

Definition 3.2.1.1. A module is a finite formal product m =
∏

v∈ΩK
vnv , where each nv is a non-

negative integer and all but finitely many nv are equal to zero. If nv = 0 for all Archimedean places,
m is simply an ideal. Put

U (0)
v =


O×

Kv
, if v is finite

R×, if v is real

C×, if v is complex.

and, for nv > 0,

U (nv)
v =


{1 + a : v(a) ≥ nv} ⊂ O×

Kv
, if v is finite

R>0, if v is real

C×, if v is real

Let ImK be the subgroup of IK given by
∏

v U
(nv)
v . Let Cm

K be its image in CK .

The following lemma is an easy consequence of the definition of the topology of CK .

Lemma 3.2.1.2. The open subgroups of finite index in CK are precisely those that contain some Cm
K .

Definition 3.2.1.3. Let Km/K be the finite abelian extension whose Galois group Gal(Km/K) is
isomorphic to CK/C

m
K . It is called the ray class field (Strahlklassenkörper) associated with m.

The lemma then implies:

Corollary 3.2.1.4. Every finite abelian extension is contained in some ray class field Km and the
maximal abelian extension is the union of all ray class fields.

Ray class fields give information on the ramification properties of abelian extensions.

Definition 3.2.1.5. For L/K finite abelian, the conductor of L is

f := gcd{m : L ⊂ Km},

for the obvious divisibility relation on modules (m | m′ if and only if nv ≤ n′v for all v, where nv, n
′
v

are the exponents defining the modules m,m′ respectively).

The following is not hard to prove.

Proposition 3.2.1.6. A finite v ramifies in L if and only if v | f. More is true: define the local
conductor of Lw/Kv by

fv := {n : ρLw/Kv
(U

(n)
Kv

) = {1}} if v is finite,

and for infinite v set

fv =

{
0, if Lw = Kv

1, if Lw = C,Kv = R.

Then f =
∏

v∈ΩK
vfv .
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Remark 3.2.1.7.

1. The case of trivial m (all exponents equal to 0) corresponds to the Hilbert class field.

2. A more classical approach: for m =
∏
vnv , define

Jm
K :=

{∏
v

nrv : rv = 0 if nv ̸= 0

}

as the group of fractional ideals prime to m and Pm
K as the subgroup

Pm
K = {principal fraction ideals (a) with a ∈ Unv

v ∀v such that nv > 0}.

One checks that there is a canonical isomorphism CK/C
m
K

∼−→ Jm
K/P

m
K .

3.2.2 Explicit ray class fields

There are two classical cases for which explicit generators of ray class fields are known. They gave the
motivation for Weber to introduce the general notion of class fields and thereby initiate the development
of class field theory.

The rational field K = Q

All modules are of the form m · ∞r, where r ∈ Z≥0 and m ∈ Z. Through local computations, one
can prove1 that Km∞ = Q(ζm). In particular, since the maximal abelian extension is the union of all
ray class fields, we obtain that the maximal abelian extension of Q is Q(µ) =

⋃
n Q(µn). This is the

famous Kronecker-Weber theorem.

K imaginary quadratic

One knows that there exists an elliptic curve E/C such that End(E) ∼= OK . This elliptic curve can be
defined over the field K(j(E)).

Theorem 3.2.2.1. The field K(j(E)) is the Hilbert class field of K.

Remark 3.2.2.2. If we choose a different elliptic curve E′ with the same endomorphism ring, the
j-invariant of E′ is a Galois conjugate of j(E).

Since K is totally imaginary, a module of K is just an ideal m in OK = End(E).

Definition 3.2.2.3. A point P ∈ E(C) is an m-torsion point if γ(P ) = 0 for all γ ∈ m. Let E[m]
be the set of m-torsion points of E.

Choose a Weierstrass equation for E over K(j(E)), say y2 = x3 +Ax+B.

Definition 3.2.2.4 (Weber function). A Weber function h : E → P1 is given by

h(P ) =


x(P ), if A,B ̸= 0

x(P )2, if B = 0⇔ j = 0

x(P )3, if A = 0⇔ j = 1728

Theorem 3.2.2.5 (Weber). The ray class field of K associated with m is given by

Km = K(j(E), h(E[m])).

Corollary 3.2.2.6. The maximal abelian extension of K is

K(j(E), {h(E[m]) : m ⊂ OK}).

See Ghate’s notes in the reference list for details.

1see the second exercise sheet
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A very recent development

At the beginning of the 19th century, the cases K = Q and K imaginary quadratic were the only ones
for which explicit generators of ray class fields were known. This led Hilbert to ask:

Hilbert’s 12th problem. Find special generators for the maximal abelian extension of every number
field.

Progress on Hilbert’s 12th problem was very limited for over a century, until:

Theorem 3.2.2.7 (Dasgupta, Kakde (2024)). Solution for Hilbert’s 12th problem for K totally real.

Recall that a number field is totally real if all its Archimedean places are real, and it is CM if is
a totally imaginary quadratic extension of a totally real field. As a consequence of their work on the
Brumer–Stark conjecture, Dasgupta and Kakde show that every ray class field Km/K that is CM and
cyclic is generated by a “Brumer-Stark unit” (defined by Tate). The composite of these CM ray class
fields is the maximal CM abelian extension Kab

CM of K. Consider now the map

K× → {±1}n
a 7→ (signσ1(a), . . . , signσn(a)),

where σ1, . . . , σn are the embeddings of K into R. Choose α1, . . . , αn = −1 ∈ K whose images give a
Z/2Z-basis of {±1}n. Then

Kab = Kab
CM(
√
α1, . . . ,

√
αn−1),

which implies that Kab is generated by Brumer-Stark units and
√
α1, . . . ,

√
αn−1. This may be con-

sidered a solution to Hilbert’s 12th problem, in the sense that Dasgupta had previously shown that
there are explicitly computable p-adic integral formulas for the Brumer-Stark units – hence, in a sense,
Brumer-Stark units are (as in the classical case) special values of interesting analytic special functions.
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