
EXISTENCE OF MINIMAL CLUSTERS

Let us consider the cluster isoperimetric problem. That is, we are given M ∈ N and a

vector m ∈ (R+)M . A cluster of volume m is a family E = {E1, E2, . . . , EM} where Ei ⊆ RN

are pairwise disjoint Borel sets, with volumes |Ei| = mi for each 1 ≤ i ≤ M . We will write

for brevity |E| = m. We say that E is a cluster of finite perimeter if each Ei is a set of finite

perimeter, and we call perimeter of the cluster E the quantity

P (E) = H N−1
(⋃M

i=1
∂∗Ei

)
.

We define then

J(m) = inf
{
P (E) : |E| = m

}
.

The isoperimetric problem for cluster consists then in looking for minimizers of the functional

J. Each cluster E such that P (E) = J(|E|) is called a minimal cluster. Our goal is to show the

following result.

Theorem 1. For every m ∈ (R+)M there exist minimal clusters of volume m.

To prove the result, we start with some simple observations.

Lemma 2. For every m, m′, m′′ ∈ (R+)M one has

J(m′ +m′′) ≤ J(m′) + J(m′′) , (1)

J(m) ≥ J(|m|, 0, . . . , 0) = Nω
1/N
N |m|

N−1
N , (2)

where as usual |m| = m1 +m2 + · · ·+mM is the norm of the vector m.

Proof. To prove the first inequality, for every ε > 0 we take two bounded clusters E ′ and E ′′

with volumes |E ′| = m′ and |E ′′| = m′′ and such that P (E ′) < J(m′) + ε and P (E ′′) < J(m′′) + ε.

Up to a translation we can assume that the union of the sets E′i does not intersect the union

of the sets E′′j . Hence, define E the cluster defined by Ei = E′i ∪ E′′i for every 1 ≤ i ≤ M . By

construction, we have that |E| = m′ +m′′, thus

J(m′ +m′′) ≤ P (E) ≤ P (E ′) + P (E ′′) < J(m′) + J(m′′) + 2ε .

Since ε > 0 was arbitrary, (1) is proved.

To obtain (2), for any cluster E with volume |E| = m we just define F the set F = ∪Mi=1Ei.

The set F has volume |m|, and by construction ∂∗F ⊆ ∪Mi=1∂
∗Ei, so

P (E) ≥ P (F ) ≥ J(|m|, 0, . . . , 0) .

Taking the infimum over all possible clusters E , we obtain (2). Notice that Nω
1/N
N |m|

N−1
N is

the perimeter of a ball of volume m, which coincides with J(|m|, 0, . . . , 0) by the isoperimetric

inequality. �
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It is reasonable to guess that inequality (1) is strict unless either m′ or m′′ are the zero

vector. We give then the following definition.

Definition 3. Let m ∈ (R+)M . We say that m is irreducible if for every m′, m′′ such that

m′ +m′′ = m and min{|m′|, |m′′|} > 0 one has

J(m) < J(m′) + J(m′′) .

We are going to prove Theorem 1 in some steps. First of all, we will show that there exist

minimal clusters for every irreducible volume; then, we will use this to deduce the existence

of minimal cluster for every volume. In the end, we will notice that actually every volume is

irreducible, see Remark 12.

Proposition 4. Let m ∈ (R+)M be an irreducible volume. Then, there exist minimal clusters

of volume m.

Proof. Let {En}, with n ∈ N, be an optimal sequence of clusters of volume m, that is,

|En| = m ∀n ∈ N , P (EN ) −−−−→
n→∞

J(m) .

Since m is irreducible, for every ε > 0 there exists some δ > 0 such that

J(m) < J(m′) + J(m′′)− δ ∀m′, m′′ : m′ +m′′ = m, min{|m′|, |m′′|} > ε , (3)

as one readily obtains thanks to the observation that J : (R+)M → R is continuous. Let us then

fix ε > 0, and let n ∈ N be any number such that

P (En) < J(m) +
δ

3
. (4)

Calling for brevity Fn = ∪Mi=1E
n
i , up to a translation we can assume that∣∣Fn ∩ xi > 0

∣∣ =
|m|
2

∀ 1 ≤ i ≤ N . (5)

Let then t ∈ R be such that

H N−1(Fn ∩ {x1 = t}
)
<
δ

3
. (6)

Call now E ′ and E ′′ the two clusters obtained by intersecting En with the two half-spaces {x1 > t}
and {x1 < t}, that is, for every 1 ≤ j ≤M we set

E′j = Ej ∩ {x1 < t} , E′′j = Ej ∩ {x1 > t} .

We have then by (6) and (4)

J(|E ′|)+J(|E ′′|) ≤ P (E ′)+P (E ′′) ≤ P (En)+2H N−1(Fn∩{x1 = t}) ≤ P (En)+
2

3
δ < J(m)+ δ ,

and by (3) we deduce

min{|E ′|, |E ′′|} ≤ ε . (7)

By Fubini Theorem, we can find t1 < 0 < t2 such that (6) is satisfied both with t = t1 and

t = t2, and such that

max{|t1|, |t2|} < 2
|m|
δ
.
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As a consequence, keeping in mind (5), (7) ensures that∣∣Fn ∩ {x1 > 2|m|/δ}
∣∣ ≤ ∣∣Fn ∩ {x1 > t2}

∣∣ ≥ ε ,
and similarly ∣∣Fn ∩ {x1 < −2|m|/δ}

∣∣ ≤ ∣∣Fn ∩ {x1 < t1}
∣∣ ≥ ε ,

Repeating the same argument in the other N − 1 directions, we finally deduce that∣∣∣∣Fn ∩
[
− 2
|m|
δ
, 2
|m|
δ

]∣∣∣∣N ≥ |m| − 2Nε (8)

for every n for which (4) is true.

Notice now that, for every 1 ≤ j ≤ M , the characteristic functions χ
En
j

are bounded in

BV (RN ). Hence, up to a subsequence, we can assume that for every 1 ≤ j ≤ M one has

χ
En
j

∗
BVloc

fj when n → ∞. Since the convergence is locally strong in L1, each function fj is

in fact a characteristic function, say the characteristic function of a set Ej . We immediately

deduce that the sets Ej are essentially disjoint, hence E = {E1, E2, . . . , EM} is a cluster. By

lower semicontinuity of the perimeter, together with the simple observation that for any cluster

E one has

P (E) =
1

2

( M∑
j=1

P (Ei) + P
(
RN \ ∪Mj=1Ej

))
,

we deduce that

P (E) ≤ lim inf P (En) = J(m) .

Of course, the proof will be concluded as soon as we check that |E| = m. In fact, by lower

semicontinuity it is clear that |E| ≤ m (that is, for every 1 ≤ j ≤M one has |Ej | ≤ mj), hence

it suffices to check that |F | = |m|, being F = ∪Mj=1Ej . Since the convergence of the characteristic

functions is strong in L1(D), being D = [−2|m|/δ, 2|m|/δ]N , thanks to (8) we know that

|F | ≥ |m| − 2Nε .

And finally, since ε > 0 was arbitrary, the proof is concluded. �

We can also show that every minimal cluster is bounded.

Proposition 5. Let E be a minimal cluster. Then E is bounded.

In order to proof this proposition, the following technical result is needed. The result is true

in a wide generality, and its proof in the case of minimal clusters is not particularly difficult.

Lemma 6. Let E be any cluster. There exist three positive constants R, ε̄, C > 0 such that the

following holds. Let some constants −ε̄ < εj < ε̄ for 1 ≤ j ≤ M be given. Then, there exists

another cluster E ′ such that Ej \ BR = E′j \ BR, that is, the two clusters differ only inside the

ball of radius R centered at the origin, and moreover

|E′j | = |Ej |+ εj ∀ 1 ≤ j ≤M , P (E ′) ≤ P (E) + C

( M∑
i=1

|εi|
)
. (9)
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Proof (of Proposition 5). Let us call again F = ∪Mi=1Ei, and let R, ε̄, C > 0 be given by

Lemma 6. For every t > R, let us call

ϕ(t) =
∣∣F \Bt

∣∣ ,
where Bt is the ball with radius t centered at the origin. For every 1 ≤ j ≤ M , let us call

Eext
j = Ej \ Bt, and εj = |Eext

j |, so that the cluster Eext satisfies |Eext| = (ε1, ε2, . . . , εM ).

By construction,
∑
εj = ϕ(t). If t is big enough, then ϕ(t) < ε̄. As a consequence, applying

Lemma 6 we can find a cluster E ′ such that (9) holds. For every 1 ≤ j ≤ M , let us then call

E′′j = E′j ∩Bt. By construction, E ′′ is a cluster satisfying |E ′′| = |E|. Being E a minimal cluster,

also by (9) we get then

P (E) ≤ P (E ′′) ≤ P (E) + Cϕ(t)− P (Eext) + H N−1(F ∩ ∂Bt) . (10)

Let us now notice that H N−1(F ∩ ∂Bt) = −ϕ′(t). Moreover, by (2) we have

P (Eext) ≥ J(ε1, ε2, . . . , εM ) ≥ J(ϕ(t), 0, . . . , 0) = Nω
1/N
N ϕ(t)

N−1
N .

From the estimate (10) we deduce then

−ϕ′(t) ≥ Nω1/N
N ϕ(t)

N−1
N − Cϕ(t) .

SInce ϕ is a decreasing positive function which converges to 0 when t → ∞, for t large enough

we deduce

−ϕ′(t) ≥
Nω

1/N
N

2
ϕ(t)

N−1
N ,

and since N−1
N < 1 we further obtain that ϕ vanishes in finite time, that is, there exists some

t̄ > 0 such that ϕ(t̄) = 0. This precisely means that E is bounded. �

Let us now concentrate ourselves on the question whether some given m ∈ (R+)M is irre-

ducible or not. In positive case, Proposition 4 ensures that there is a minimal cluster of volume

m, hence Theorem 1 is proved. In negative case, instead, there are some nonzero vectors m′, m′′

such that m′ + m′′ = m and J(m) = J(m′) + J(m′′). If both m′ and m′′ are irreducible, then

there are a minimal cluster of volume m′ and another minimal cluster of volume m′′. Since

we can assume the two clusters to have empty intersection, because they are both bounded by

Proposition 5, their union is a minimal cluster of volume m, hence Theorem 1 is again proved.

As a consequence, in some sense we only have to avoid that this argument has to be repeated

infinitely many times. Let us be more precise.

Definition 7. Let m1, m2, . . . , mK be vectors in (R+)M such that |m1| ≥ |m2| ≥ · · · ≥ |mK |,
and let m =

∑K
`=1m

`. We say that (m1, m2, . . . , mK) is a reduction of m if

J(m) =
K∑
`=1

J(m`) .

Moreover, we say that the reduction (m1, m2, . . . , mK) is balanced if K = 1 or

|mK−1| ≥ |m
1|

2
.
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Lemma 8. Let m ∈ (R+)M be a vector. If (m1, m2, . . . , mK) is a reduction of m, then there

exists also a balanced reduction (m̃1, m̃2, . . . , m̃H) of m with m̃1 = m1.

Proof. If K < 3 or K ≥ 3 and |mK−1| ≥ |m1|/2, then the original reduction is already balanced.

Otherwise, let us define a reduction (m̂1, m̂2, . . . , m̂K−1) as follows. The K − 1 vectors m̂`

coincide with the K − 2 vectors m` for 1 ≤ ` ≤ K − 2 together with the vector mK−1 + mK ,

and they are numbered so that |m̂1| ≥ |m̂2| ≥ · · · ≥ |m̂K−1|. We have that m̂1 = m1 since by

construction

|mK−1|+ |mK | ≤ 2|mK−1| < |m1| .

Moreover, by (1) we have

J(m) =
K∑
`=1

J(m`) ≥
K−2∑
`=1

J(m`) + J(mK−1 +mK) =
K−1∑
`=1

J(m̂`) ≥ J(m) ,

so (m̂1, m̂2, . . . , m̂K−1) is actually a reduction. With an obvious recursion, after at most K−2

steps we obtain a balanced reduction. �

Lemma 9. For every reduction (m1, m2, . . . , mK) of any vector m ∈ (R+)M one has

|m1| ≥ 1

M
|m| .

Proof. A possible cluster of volume m is given by M disjoint balls of volumes m1, m2, . . . , mM .

Hence,

J(m) ≤ Nω1/N
N

(
m

N−1
N

1 +m
N−1
N

2 + · · ·+m
N−1
N

M

)
.

On the other hand, for every reduction (m1, m2, . . . , mK) of m by (2) we have

J(m) =

K∑
`=1

J(m`) ≥ Nω1/N
N

K∑
`=1

|m`|
N−1
N ≥

Nω
1/N
N

|m1|1/N
K∑
`=1

|m`| =
Nω

1/N
N |m|
|m1|1/N

.

Putting together the last two estimates we get

|m1| ≥ |m| |m|N−1(
m

N−1
N

1 +m
N−1
N

2 + · · ·+m
N−1
N

M

)N ,

which concludes the proof since by concavity we have(
m

N−1
N

1 +m
N−1
N

2 + · · ·+m
N−1
N

M

)N
|m|N−1

≤M .

�

Corollary 10. A balanced reduction (m1, m2, . . . , mK) of any vector m ∈ (R+)M has at most

length K = 2M − 1.

Lemma 11. Let m ∈ (R+)M be a given vector. Then, there is a reduction (m1, m2, . . . , mK)

of m such that m1 is irreducible.
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Proof. Let us define

η = inf
{
|m1| : (m1, m2, . . . , mK) is a reduction of m

}
,

and notice that η ≥ |m|/M by Lemma 9. We aim to prove that η is in fact a minimum.

To do so, by Lemma 8 we can take a sequence of balanced reductions for which |m1|
converges to η. Keeping in mind Corollary 10, and calling K = 2M − 1, this means that there

are reductions (m1,n, m2,n, . . . , mK,n) of m with n ∈ N such that |m1,n| → η for n → ∞.

By compactness and by the continuity of J, we immediately deduce that there is a reduction

(m1, m2, . . . , mK) of m for which |m1| = η.

To complete the proof, we have to show that m1 is necessarily irreducible. More precisely,

since the order or vectors with the same norm is not fixed, we aim to show that there is some

irreducible m` with |m`| = η. In fact, if none of the vectors m` with |m`| = η is irreducible,

substituting each of them with a non-trivial reduction provides another reduction of m having

all vectors of norm strictly smaller than η, against the definition of η. �

We are finally in position to prove our main result.

Proof (of Theorem 1). Let us fix the vector m ∈ (R+)M . By Lemma 11 and Lemma 9, we can

find a sequence of irreducible vectors mn ∈ (R+)M such that

m =
∑
n∈N

mn , J(m) =
∑
n∈N

J(mn) . (11)

By Proposition 4, we find a minimal cluster for each volume mn, that is, a cluster En with

|En| = mn and P (En) = J(mn). Since all the clusters En are bounded by Proposition 5, up

to translations we can assume them to be pairwise disjoint. And finally, calling E the cluster

obtained by the union of the clusters En, by (11) we have that E is a cluster of volume m and

with perimeter J(m), hence a minimal cluster for mass m. The proof is then concluded. �

Remark 12. One Theorem 1 has been proved, it is actually not hard to observe that every

volume is irreducible. In fact, otherwise we could find a minimal cluster which is not connected.

And in turn, it is easy to see how to lower the perimeter for such a cluster: the idea is to bring

two different connected components very close to each other, so that there are two small pieces

of the boundaries close to each other and more or less parallel. And then, it is enough to “glue

these two pieces together”, strictly lowering the total perimeter.


