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Theory of the Dzyaloshinskii domain-wall tilt in ferromagnetic nanostrips

Cyrill B. Muratov,1 Valeriy V. Slastikov,2 Alexander G. Kolesnikov,3 and Oleg A. Tretiakov4,3,*

1Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

3School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
4Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 22 June 2017; published 16 October 2017)

We present an analytical theory of domain-wall tilt due to a transverse in-plane magnetic field in a ferromagnetic
nanostrip with out-of-plane anisotropy and Dzyaloshinskii-Moriya interaction (DMI). The theory treats the
domain walls as one-dimensional objects with orientation-dependent energy, which interact with the sample
edges. We show that under an applied field the domain wall remains straight, but tilts at an angle to the direction
of the magnetic field that is proportional to the field strength for moderate fields and sufficiently strong DMI.
Furthermore, we obtain a nonlinear dependence of the tilt angle on the applied field at weaker DMI. Our analytical
results are corroborated by micromagnetic simulations.
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I. INTRODUCTION

Domain-wall (DW) statics and dynamics in thin-film ferro-
magnetic systems have been a subject of intense experimental
[1–4] and theoretical [5–9] studies over the last decades due
to their direct relevance to spintronic memory [10] and logic
devices [11]. Recently, it has been realized that ferromagnets
with Dzyaloshinskii-Moriya interaction [12,13] (DMI) may
offer more benefits in this direction [14–16], which led to an
enormous experimental progress for these systems [17–21].

Due to their better technological suitability as smaller and
more robust carriers of information in spintronic nanodevices,
the DWs in ultrathin ferromagnetic films with out-of-plane
anisotropy and interfacial DMI have now become the primary
objects of experimental interest [17–21]. Moreover, it was
discovered that the DWs move much more efficiently in
these systems due to spin-orbit torques [8,22,23]. It was
also demonstrated that in these systems the DW equilibrium
structure changes from Bloch to Néel type in the presence of
strong DMI [24]. Following a theoretical study [15], we refer
below to this new type of magnetic DWs as Dzyaloshinskii
domain walls.

Boulle et al. [16] were the first to discover numerically
that these DWs develop a tilt under in-plane magnetic fields
and applied currents. This DW tilt was shown to depend on
the DMI and field strengths. It was followed by several more
attempts to investigate this phenomena theoretically [25,26]
and multiple experimental studies [17,18,21]. However, up to
now, there is still lack of a unifying theory of the DW tilt and
its dependence on the in-plane magnetic field.

In this paper, we explain these important findings on
more solid theoretical grounds, using variational analysis of
the magnetic energy functional. We study a DW in a thin
nanostrip with perpendicular magnetic anisotropy (PMA) and
interfacial DMI in the presence of a magnetic field applied in
the plane of the strip and perpendicular to its axis, see Fig. 1
for an example. For this system we analytically develop a
proper reduced geometric variational model built on exact one-
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dimensional (1D) DW solutions to describe the equilibrium
tilted two-dimensional (2D) DW configurations. These exact
1D magnetization profiles are in general neither Néel nor Bloch
type, but can be easily computed numerically for all relevant
values of the parameters. We also derive explicit analytical
expressions by expanding the DW energy in the applied field
or DMI strengths.

In the reduced 2D variational problem, we treat the DW as a
curve whose shape is determined by minimizing an appropriate
geometric energy functional. As a result, we show that the DW
in equilibrium remains straight despite the fact that the wall
energy is a function of its local orientation. In particular, for
small fields, the tilt angle is found to be proportional to the
transverse magnetic field strength. One of the features of our
2D analysis is the necessity to include the edge DWs found
earlier in the context of skyrmions [27]. These edge DWs can
be seen in Fig. 1 along the upper and lower strip edges. We
show that the contribution of the edge DWs is also essential
for determining the proper tilt angle. This is because the total
DW energy contains contributions from both the internal and
the edge DWs, and it is the competition among them that
determines the tilt angle. We find that the effect of the edge
DWs becomes weaker when the DMI strength is reduced,
whereas the internal DW energy has a nontrivial dependence
on the DMI, magnetic field, and wall orientation that have to
be properly accounted to determine the equilibrium tilt angle.

The main advantage of our reduced geometric variational
model for tilted DWs is its considerable simplicity compared to
the full micromagnetic description. Specifically, it allows for a
detailed analytical treatment, which highlights the key physical
features of tilted DWs mediated by interfacial DMI in PMA
nanostructures. In particular, it yields explicit closed-form
expressions for the dependence of the equilibrium tilt angle
for a wide range of the material parameters and applied fields.
The obtained analytical predictions are found to be in excellent
agreement with the results of micromagnetic simulations,
indicating that the reduced model captures all the essential
physical aspects of the considered system.

The paper is organized as follows. In Sec. II, we introduce
the full micromagnetic model and its 2D reduction appropriate
for infinite ultrathin ferromagnetic nanostrips. In Sec. III, the
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FIG. 1. An example of a tilted domain wall in a transverse in-
plane magnetic field computed using micromagnetic simulations. The
material parameters are A = 10−11 J/m, K = 1.25 × 106 J/m3, Ms =
1.09 × 106 A/m, D = 2.4 mJ/m2, and By = μ0H = 80 mT (see
Sec. II for precise definitions).

theory of edge domain walls is presented, and in Sec. IV a
detailed analysis of 1D interior wall profiles is carried out.
Next, in Sec. V, we demonstrate how the theory of 1D domain
walls developed in the preceding sections is applied to a
Dzyaloshinskii DW in an infinite 2D nanostrip. In Sec. VI, we
compare our analytical theory with micromagnetic simulations
and show a good agreement between them. Here the additional
effect of dipolar interactions is also discussed. Finally, a
summary and some concluding remarks are presented in
Sec. VII.

II. MODEL

We consider a thin ferromagnetic nanostrip exhibiting PMA
and interfacial DMI under the influence of an in-plane mag-
netic field. We start with a three-dimensional micromagnetic
energy [28–31] (in the SI units):

E(M) =
∫

�

(
A

M2
s

|∇M|2 + K

M2
s

|M⊥|2 − μ0M · H
)

d3r

+ μ0

∫
R3

∫
R3

∇ · M(r) ∇ · M(r′)
8π |r − r′| d3r d3r ′

+ Dd

M2
s

∫
∂�0

(M‖∇ · M⊥ − M⊥ · ∇M‖)d2r. (1)

Here, M = M(r) is the magnetization vector at point r =
(x,y,z) ∈ � ⊂ R3, where �= (−L/2,L/2) × (−W/2,W/2)
× (0,d) is the nanostrip of length L, width W , and thickness d,
and M⊥ and M‖ are the in-plane and out-of-plane components
of M, respectively. The terms in Eq. (1) are, respectively,
the exchange, uniaxial perpendicular anisotropy, Zeeman,
magnetostatic interactions, and the interfacial DMI terms, and
Ms = |M|, A, K , H, and D are the saturation magnetization,
exchange stiffness, anisotropy constant, applied magnetic
field, and the DMI strength. As usual, μ0 is the permeability
of vacuum. In the magnetostatic energy term, the vector field
M(r) is extended by zero outside �, and ∇ · M is understood
distributionally (i.e., it includes the contributions of boundary
charges). Since the considered DMI is due to interfacial effects,
its contribution to the energy is via a surface integral over the
bottom film surface ∂�0 corresponding to an interface between
the ferromagnet and a heavy metal, and M = (M⊥,M‖) is the
value of M on ∂�0. However, using the standard convention,

we normalize the DMI strength parameter D to a unit volume
of the ferromagnet.

We assume that the applied magnetic field is in the plane of
the film and is normal to the strip axis, i.e., H = H ŷ, where ŷ is
the unit vector in the direction of the y-axis. We also consider
films which are much thinner than the exchange length �ex =√

2A/(μ0M2
s ), so that the magnetization in � is constant along

the film thickness. Measuring lengths in the units of �ex and
setting M(x,y,z) = Msm(x,y) with |m| = 1 in �, we can
rewrite the energy, to the leading order [32] in d/�ex , in the
units of Ad as

E(m) �
∫ l/2

−l/2

∫ w/2

−w/2
[|∇m|2 + (Q − 1)|m⊥|2 − 2hŷ · m⊥

+ κ(m‖∇ · m⊥ − m⊥ · ∇m‖)] dy dx. (2)

Here we defined m⊥ ∈ R2 and m‖ ∈ R to be the respective in-
plane and out-of-plane components of the unit magnetization
vector m, introduced the dimensionless parameters

Q = 2K

μ0M2
s

, κ = D

√
2

μ0M2
s A

, h = H

Ms

, (3)

and defined the rescaled nanostrip dimensions l = L/�ex and
w = W/�ex . In Eq. (3), Q > 1 is the material’s quality factor
yielding PMA, κ is the dimensionless DMI strength, which
without loss of generality may be assumed positive, and h is
the dimensionless applied field strength.

We are interested in the case of long nanostrips corre-
sponding to l 	 w. Note that when l → ∞, the energy in
Eq. (2) diverges even if h = 0 because of the presence of edge
domain walls giving O(l) contribution to the energy [27,33].
Therefore, in order to pass to the limit l → ∞, we need
to subtract from E the contribution of the one-dimensional
ground-state energy e0(h,w) = min E0(m), where

E0(m) =
∫ w/2

−w/2
[|m′|2 + (Q − 1)|m⊥|2 − 2hŷ · m⊥

+ κ((ŷ · m′
⊥)m‖ − (ŷ · m⊥)m′

‖)] dy. (4)

The precise functional form of e0(h,w) is the subject of Sec. III.
Putting everything together, we now write the expression

for the energy that describes a Dzyaloshinskii domain wall
running across the nanostrip as

E(m) =
∫ ∞

−∞

∫ w/2

−w/2
[|∇m|2 + (Q − 1)|m⊥|2

− 2hŷ · m⊥ − w−1e0(h,w)

+ κ(m‖∇ · m⊥ − m⊥ · ∇m‖)] dy dx. (5)

This formula forms the basis for all of the analysis throughout
the rest of the paper.

III. EDGE DOMAIN WALLS

We next focus on the minimizers of E0 from Eq. (4)
in the case of w 	 1 and κ below the threshold of the
onset of helicoidal structures corresponding to x-independent
ground-state magnetization configurations [14,34–36]. From
the physical considerations (for a rigorous mathematical
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justification in the case h = 0, see Ref. [33]), it is clear that
in these states the magnetization vector will rotate in the yz

plane. Hence introducing the ansatz

m(y) = (0, sin θ (y), cos θ (y)) (6)

into Eq. (4), we rewrite E0(m) as

E0(m) =
∫ w/2

−w/2
[|θ ′|2 + (Q − 1) sin2 θ − 2h sin θ + κθ ′] dy.

(7)

The corresponding Euler-Lagrange equation associated with
E0 is

θ ′′ − (Q − 1) sin θ cos θ + h cos θ = 0, (8)

with boundary conditions

θ ′
(

±w

2

)
= −κ

2
. (9)

Note that Eqs. (8) and (9) obey the following symmetry
relation, which leaves the energy E0 unchanged:

θ → π − θ, y → −y. (10)

Introducing

θh = arcsin

(
h

Q − 1

)
, (11)

we first notice that when w → ∞, we should have either θ →
θh or θ → π − θh, corresponding to the two monodomain
ground states in the extended film for 0 � h < Q − 1. In view
of the symmetry in Eq. (10), it is enough to consider only the
former case.

In computing the minimal value e0(h,w) of E0 for w 	 1
one needs to take into account the contributions of the
boundary layers next to y = ± 1

2w, the so-called edge domain
walls [33]. Below, we show that in the presence of an applied
field the minimal energy admits an expansion of the following
form as w 	 1:

e0(h,w) = −(Q − 1)−1h2w + σ+
edge(h) + σ−

edge(h) + g0(h,w),

(12)

where the first term is the contribution of θ = θh in the
bulk and, the second two terms are the edge domain-wall
contributions from the upper and lower edge, respectively,
whose explicit form will be determined shortly, and the last
term is an exponentially small correction that is negligible for
w 	 1.

We now derive Eq. (12). Close to y = ± 1
2w the solutions

of Eqs. (8) and (9) approaching θh in the sample interior
are expected to be well approximated by those on half-line
approaching θh far from the edge. After a straightforward
integration, we obtain θ (y) � θ±(y ∓ 1

2w), where [37]

θ±(y) = 2 tan−1

(
tan

(
θh

2

)

+ cos(θh) sec2
(

θh

2

)
tan

(
θh

2

) ∓ e∓√
Q−1(y−y±

0 ) cos(θh)

)
. (13)

The unknown values of y±
0 are obtained by substituting the

above expression into Eq. (9), yielding

y±
0 = ±cosh−1

( 2
√

Q−1 cos2 θh

κ
± sin θh

)
cos θh

√
Q − 1

. (14)

Introducing θ±
0 = θ±(0), where, after simplifying the obtained

expressions, one gets explicitly

θ±
0 = arcsin

(
sin θh ∓ κ

2
√

Q − 1

)
. (15)

We can then compute the contributions of the profiles in
Eq. (13) by plugging them into the energy in Eq. (7). After
a rather tedious calculation, up to an exponentially small error
g0(h,w), we obtain Eq. (12) with σ±

edge given explicitly by

σ±
edge = 2

√
Q − 1(θh sin θh + cos θh − cos θ±

0

− θ±
0 sin θh) ± κ(θ±

0 − θh). (16)

Focusing on the regime of moderate values of h � 1, which
is the main regime of practical interest, linearizing Eq. (16) in
h we get

σ±
edge � σ 0

edge ± σ 1
edgeh, 0 < h � 1, (17)

(a)

(b)

FIG. 2. Comparison of the exact edge domain-wall energies in
Eq. (16) with the approximate ones given by Eq. (17) for Q =
1.674 and κ = 0.366 (see Sec. VI for the corresponding material
parameters. For those parameters, the value of h = 0.1 corresponds
to μ0H = 132 mT). (a) Blue and red curves correspond to σ+

edge and
σ−

edge, respectively. Solid lines correspond to the exact values from
Eq. (16) and dashed lines represent the approximation of Eq. (17).
(b) The relative error in approximating 	σedge = σ+

edge − σ−
edge using

Eq. (17) is shown.
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where

σ 0
edge = 2

√
Q − 1

(
1 −

√
1 − κ2

4(Q − 1)

)

− κ arcsin

(
κ

2
√

Q − 1

)
, (18)

σ 1
edge = 2√

Q − 1
arcsin

(
κ

2
√

Q − 1

)
− κ

Q − 1
. (19)

We note that Eq. (17) gives a very good approximation to
the exact expression in Eq. (16), see Fig. 2(a). In fact, the
difference σ+

edge − σ−
edge, which is the relevant quantity for the

domain-wall tilt, is captured by Eq. (16) within a few percent
for practically all values of h and κ , see Fig. 2(b).

Before concluding this section, we make several obser-
vations regarding Eq. (17). First, as expected, σ

0,1
edge → 0

as κ → 0, indicating that the edge domain walls disappear
without DMI irrespectively of the magnitude of h. Of course,
the same conclusion holds for Eq. (16) as well. Second,
for h � 1, the applied field affects the contribution of the
edge domain walls to the energy only through σ 1

edge. At the
same time, it easy to see that as a function of κ we have
σ 1

edge = O(κ3), indicating that the effect of the edge walls is
negligible when the surface DMI is sufficiently weak.

IV. ONE-DIMENSIONAL INTERIOR WALL PROFILE

We now turn to interior walls and obtain the leading order
expressions for the one-dimensional wall profiles and their
energies as functions of the wall orientation for h � 1. We
focus mostly on the two relevant cases that are amenable to an
analytical treatment: h � κ ∼ 1 and h ∼ κ � 1, even though
our method is applicable to all values of the parameters κ

and h for which Dzyaloshinskii walls are expected to exist.
For notational convenience, we introduce the constant two-
dimensional vector

m⊥ = (Q − 1)−1hŷ, (20)

equal to the in-plane component of the equilibrium magneti-
zation in the film bulk.

We consider a one-dimensional profile in the direction
nα = (cos α, sin α), namely, a magnetization configuration
m(ξ ) = (m⊥(ξ ),m‖(ξ )), where ξ = r · nα . Then from Eq. (5)
with w = ∞ the energy per unit length of the wall profile m(ξ )
is

Eα(m) =
∫ ∞

−∞
[|m′|2 + (Q − 1)|m⊥ − m⊥|2

+ κ(m‖(nα · m′
⊥) − m′

‖(m⊥ · nα))]dξ. (21)

The profile is to satisfy the following conditions at infinity:

m⊥(±∞) = m⊥, m‖(±∞) = ±
√

1 − |m⊥|2, (22)

and the associated Euler-Lagrange equation is

m′′
⊥ − (Q − 1)(m⊥ − m⊥) + κm′

‖nα = λ(ξ )m⊥, (23)

m′′
‖ − κ(nα · m′

⊥) = λ(ξ )m‖, (24)

where λ(ξ ) is a scalar Lagrange multiplier due to the pointwise
unit length constraint on m. The wall energy σwall associated
with a solution m = mα(ξ ) of Eqs. (23) and (24) satisfying
(22) is defined as

σwall(α) = Eα(mα). (25)

A distinctive feature of the wall energy in Eq. (25) is that for
κ �= 0 it depends on the wall orientation nα .

It is not possible to find an analytical solution to the system
of Eqs. (22)–(24) for general values of Q, κ , h, and α. Although
it is not difficult to construct such solutions numerically for
any given set of the parameters (see Sec. VI).

A. h � κ ∼ 1 regime

We now wish to obtain the leading order expansion of
σwall(α) for h � 1 and κ ∼ 1. Setting h = 0 in Eqs. (23) and
(24) yields the equation for the profile m0 = m0(ξ ):

m′′
0,⊥ − (Q − 1)m0,⊥ + κm′

0,‖nα = λ0(ξ )m0,⊥, (26)

m′′
0,‖ − κ(nα · m′

0,⊥) = λ0(ξ )m0,‖. (27)

The solution of Eqs. (26) and (27) that satisfies (22) is explicitly
given by

m0(ξ ) = (nα sin θ0(ξ ), cos θ0(ξ )),

θ0(ξ ) = 2 arctan e−ξ
√

Q−1,
(28)

and for h = 0 we have Eα(m0) = σ 0
wall, where

σ 0
wall = 4

√
Q − 1 − πκ. (29)

Notice that σ 0
wall does not depend on α.

To obtain the leading order correction to σ 0
wall, we write

mα = m0 + m1, where |m1| � |m0| = 1, and note that due
to the pointwise unit length constraint, we have m0 · m1 � 0
to the leading order. Next, we substitute this expansion into
Eq. (21) to obtain, keeping only the terms that are linear in m1

and m⊥:

σwall(α) � σ 0
wall +

∫ ∞

−∞
[2m′

0 · m′
1

+ 2(Q − 1)m0,⊥ · (m1,⊥ − m⊥)

+ κ(m0,‖(nα · m′
1,⊥) + m1,‖(nα · m′

0,⊥)

− (nα · m0,⊥)m′
1,‖ − (nα · m1,⊥)m′

0,‖)] dξ. (30)

Integrating by parts and using Eq. (22), this expression may
be rewritten equivalently as

σwall(α) � σ 0
wall + 2κnα · m⊥ − 2(Q − 1)

∫ ∞

−∞
m0,⊥ · m⊥dξ

− 2
∫ ∞

−∞
[m′′

0 · m1 − (Q − 1)m0,⊥ · m1,⊥

− κ(m1,‖(nα · m′
0,⊥) − (nα · m1,⊥)m′

0,‖)] dξ.

(31)

In fact, in the above formula, the integrand in the last integral
is zero to the leading order, which can be seen by multiplying
both sides of the Euler-Lagrange equation in Eqs. (26) and (27)
by m1 and using the condition m0 · m1 = 0 to the leading order
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in h. Thus substituting the profile m0 into the above expression,
after some more algebra, we get that the wall energy up to
O(h2) is

σwall(α) � σ 0
wall − σ 1

wallh sin α, (32)

where

σ 1
wall = 2π√

Q − 1
− 2κ

Q − 1
. (33)

We point out that the obtained expression for σwall(α)
appears to be meaningless when κ = 0, since Eq. (33) suggests
that for h > 0 the wall energy depends on the angle α

even in the absence of DMI. Yet the energy in Eq. (21) is
manifestly independent of α. The reason for this discrepancy
is the fact that our approximations are justified only when
κ ∼ 1 	 h, while the limit of κ → 0 with h > 0 fixed violates
this assumption. In fact, when κ ∼ 1 the magnetization in a
domain wall rotates mostly in the plane spanned by nα and
ẑ, while when κ = 0 the magnetization would prefer to rotate
in the plane spanned by ŷ and ẑ, even if nα �= ŷ. To resolve
this discrepancy, we need to consider the case of κ � h � 1
separately.

B. h ∼ κ � 1 regime

When both h and κ are small and comparable, we can
further simplify the argument above to obtain the following
equation for m0 in place of Eqs. (26) and (27) to the leading
order:

m′′
0,⊥ − (Q − 1)m0,⊥ = λ0(ξ )m0,⊥, (34)

m′′
0,‖ = λ0(ξ )m0,‖. (35)

The solution of Eqs. (34) and (35) that satisfies (22) is explicitly
given by m0 = mn

0, where

mn
0(ξ ) = (n sin θ0, cos θ0),

θ0(ξ ) = 2 arctan e−ξ
√

Q−1,
(36)

and n ∈ R2 is an arbitrary constant unit vector. For h = κ = 0,
we have Eα(mn

0) = σ 0
wall, where

σ 0
wall = 4

√
Q − 1. (37)

Notice that σ 0
wall does not depend on α or n and coincides with

the energy of the Néel wall in the absence of nonlocal effects.
Now, writing again mα = mn

0 + m1 and expanding the
energy to the next order in h and κ , we obtain

Eα(m) � σ 0
wall +

∫ ∞

−∞
[2m′

0 · m′
1 + κ(m0,‖(nα · m′

0,⊥)

−m′
0,‖(m0,⊥ · nα)) + 2(Q − 1)

× m0,⊥ · (m1,⊥ − m⊥)]dξ, (38)

and following the same arguments as in Sec. IV A we arrive at

Eα(m) = σ 0
wall − 2πh√

Q − 1
(n · ŷ) − πκ(n · nα). (39)

Finally, in order to find the direction of vector n, we need
to minimize the above energy with respect to n. It is easy to

see that

n = 2πhŷ + πκnα

√
Q − 1∣∣2πhŷ + πκnα

√
Q − 1

∣∣ (40)

minimizes the right-hand side of Eq. (39), and the minimum
of the energy is given by

σwall(α) � 4
√

Q − 1

−π

√
κ2 cos2 α +

(
κ sin α + 2h√

Q − 1

)2

. (41)

Thus the obtained magnetization profile rotates mostly in
the plane spanned by n and ẑ, with n depending sensitively on
both h and κ . Furthermore, the obtained result is consistent
with the one of Sec. IV A. Indeed, expanding the expression in
Eq. (41) in the powers of h with κ � 1 fixed yields Eq. (32) to
linear order in h and the leading order in κ . At the same time,
setting κ = 0 with 0 < h � 1 fixed in Eq. (39), we recover the
wall energy σwall � 4

√
Q − 1 − 2πh√

Q−1
, which is easily seen to

be the wall energy for a profile rotating in the plane spanned by
ŷ and ẑ, consistent with the discussion at the end of Sec. IV A.

V. TWO-DIMENSIONAL PROBLEM

We now demonstrate how the information about one-
dimensional domain walls obtained in the preceding sections
may be applied to a single Dzyaloshinskii domain wall
running across an infinite ferromagnetic nanostrip. For an
illustration of the geometry, see Fig. 3, where the domain wall
is represented by a thick solid curve. Here, we wish to treat the
wall as a one-dimensional object, whose shape is determined
by minimizing an appropriate geometric energy functional.
This energy functional is obtained via a suitable asymptotic
reduction of the two-dimensional micromagnetic energy in
Eq. (5). For a rigorous justification of such an approach in a
closely related context, see Ref. [33].

Using Eq. (12), we can rewrite Eq. (5) in the following way:

E(m) =
∫ ∞

−∞

∫ w/2

−w/2
[|∇m|2 + (Q − 1)|m⊥ − m⊥|2

− w−1(σ+
edge + σ−

edge) − w−1g0(h,w)

+ κ(m‖∇ · m⊥ − m⊥ · ∇m‖)] d2r. (42)

Recall that m⊥ was defined in Eq. (20). We next consider a
domain wall whose shape is described by a smooth curve γ

x = u(y)

α)σwall

x

y

α

αn

H

(y)

σ+
edge σ

_
edge

σ+
edgeσ

_
edge

γ

(

FIG. 3. Schematics of a general domain-wall geometry in an
infinite strip. The up/down symbols indicate the direction of the
magnetization far from the wall and the strip edges.
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which is the graph of a function u : (−w/2,w/2) → R, i.e., for
every r ∈ γ , we have r = (u(y),y) for some y ∈ (−w/2,w/2).
The associated magnetization profile mγ in the vicinity of this
curve will then be close to the optimal one-dimensional interior
wall profile analyzed in Sec. IV. Let r be a point in the vicinity
of γ and let rγ be the orthogonal projection of r on γ . Denote
by nα(rγ ) = (cos α(rγ ), sin α(rγ )) the unit normal vector to γ

at point rγ pointing towards the region where m‖ > 0, with
α(rγ ) the angle that the normal vector nα(rγ ) makes with the
x axis at point rγ . Then the magnetization profile m = mγ

associated with the curve γ is expected to satisfy

mγ (r) � mα((r − rγ ) · nα(rγ )), (43)

where mα is the optimal profile that minimizes the one-
dimensional interior wall energy Eα in Eq. (21). Assuming that
the curvature of γ does not exceed O(w−1), the contribution
to the energy by the neighborhood of γ for w 	 1 is
then dominated by the one-dimensional wall energy Eα(mα)
integrated over γ , which by Eq. (25) is

Eint(mγ ) =
∫

γ

σwall(α(r))ds(r), (44)

where ds is the arclength differential along γ . Thus the energy
of the interior wall is characterized by an anisotropic line
tension.

Away from the interior wall the magnetization obeys

mγ � (m⊥,±
√

1 − |m⊥|2), (45)

consistently with Eq. (43). However, this relation is violated
close to the strip edges, where edge domain walls appear.
Therefore we also need to take into account the edge domain
wall profiles analyzed in Sec. III in those regions. Accordingly,
one expects

mγ � (
0, sin

[
θ+(

y − 1
2w

)]
, cos

[(
θ+(

y − 1
2w

)])
, (46)

for x > u(w/2) and y ∼ w/2, whereas

mγ � (
0, sin

[
θ−(

y + 1
2w

)]
, cos

[
θ−(

y + 1
2w

)])
, (47)

for x > u(−w/2) and y ∼ −w/2. Similarly, in view of the
symmetry relation given by Eq. (10), we also find

mγ � (
0, sin

[
θ−(

1
2w − y

)]
, cos

[
θ−(

1
2w − y

)])
, (48)

for x < u(w/2) and y ∼ w/2, whereas

mγ � (
0, sin

[
θ+( − 1

2w − y
)]

, cos
[
θ+( − 1

2w − y
)])

,

(49)

for x < u(−w/2) and y ∼ −w/2. The corresponding edge
wall energy is then

Eedge(mγ ) = (σ+
edge − σ−

edge)(u(−w/2) − u(w/2)), (50)

recalling that we subtracted the contribution of σ+
edge + σ−

edge
in Eq. (42). Finally, to match the interior and the edge wall
profiles near points x = u(± 1

2w) and y = ± 1
2w, one uses

the construction from Ref. [33], which can be seen not to
contribute to the energy to the leading order.

Putting all the leading order contributions to the energy in
Eq. (42) together, we obtain

E(mγ ) � Eint(mγ ) + Eedge(mγ ). (51)

Then, using the parametrization x = u(y) of the curve γ , we
find explicitly

E(mγ ) �
∫ w/2

−w/2
σwall(− arctan u′(y))

√
1 + |u′(y)|2 dy

− (σ+
edge − σ−

edge)(u(w/2) − u(−w/2)), (52)

where we recall that α(r) = − arctan u′(y).
As is well known [38] and can be easily seen directly from

Eq. (52), every critical point γ of γ �→ E(mγ ) is a straight line.
In particular, minimizers of E(mγ ) are straight domain walls
running across the strip. Thus the only free parameter in the
problem is the difference between the x positions u(w/2) −
u(−w/2) of the wall at the top and bottom edges. In fact, from
the dimensional considerations this difference is proportional
to w, i.e., w can be scaled out of the energy. Thus the only free
parameter of the minimization problem for E(mγ ) is the tilt
angle β ∈ (−π

2 , π
2 ) that the line γ = γβ makes with the y axis.

Note that this angle coincides with the angle α defining the
normal vector nα of γβ . To compute the tilt angle, we substitute
the straight line ansatz γβ into Eq. (52), and the angle is then
obtained by minimizing the expression

E(mγβ
)

w
� σwall(β)

cos β
+ (σ+

edge − σ−
edge) tan β (53)

over β, which completely characterizes existence and multi-
plicity of tilted domain walls in the presence of DMI. It is clear
from Eq. (53) that the equilibrium tilt angle is independent
of the strip width and depends only on the dimensionless
material parameters κ and Q and the dimensionless applied
field strength h. In fact, dimensional analysis shows that the
equilibrium tilt angle depends on these parameters only via
two combinations, κ/

√
Q − 1 and h/(Q − 1).

To conclude this section, we note that, as expected, the tilt
angle becomes zero when the effect of the DMI vanishes. This
can be readily seen from Eq. (53), taking into account that for
κ = 0 we have σ+

edge = σ−
edge and σwall becomes independent of

β, see Eqs. (16) and (21). In the rest of this section, we consider
two parameter regimes based on analytical results presented
in Sec. IV A and IV B for which explicit expressions for the
tilt can be obtained.

A. h � κ ∼ 1 regime

In this regime, an approximate expression for σwall(α) is
given by Eqs. (29), (32), and (33), and σ±

edge are given by
Eqs. (17)–(19). Substituting these expressions into Eq. (53),
we obtain

E(mγβ
)

w
� σ 0

wall

cos β
+ h

(
2σ 1

edge − σ 1
wall

)
tan β. (54)

Minimizing this expression yields the unique equilibrium tilt
angle

β = arcsin

(
σ 1

wall − 2σ 1
edge

σ 0
wall

h

)
. (55)
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In particular, since we are in the regime of small applied fields
the equilibrium tilt angle is linear in h:

β �
4h arccos

(
κ

2
√

Q−1

)
4(Q − 1) − πκ

√
Q − 1

. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally coincides

with the formula for the contact angle of a triple junction
between three distinct phases [39]. Nevertheless, in addition
to the contribution of the difference of line tensions σ 0

edge ±
σ 1

edgeh associated with the two edges, the formula also contains
a contribution σ 1

wall due to anisotropy of the line tension of
Dzyaloshinskii wall. At the same time, by inspection the ratio
2σ 1

edge/σ
1
wall never exceeds 6% for all values of κ for which

the one-dimensional domain wall exists in the absence of the
magnetic field, i.e., when |κ| < 4

π

√
Q − 1. Therefore, at not

too high fields, the tilt angle is dominated by the anisotropic
contribution of the applied field to the interior wall energy,
with the edge contributions practically negligible.

B. h ∼ κ � 1 regime

In this regime, the explicit expressions for σwall(α) is given
by Eq. (41). At the same time, recalling that the expression for
σ±

edge in Eq. (17) remains valid also for κ � 1 and that σ 1
edge =

O(κ3), one can see that the contribution of σ+
edge − σ−

edge in
Eq. (53) is negligible. Thus, to the leading order, we arrive at

E
(
mγβ

)
w

� 4
√

Q − 1

cos β

− π

√
κ2 +

(
κ tan β + 2h√

Q − 1 cos β

)2

. (57)

Note that the second term in Eq. (57) is a small perturbation for
the first term, which is a convex even function of β approaching
infinity as β → ±π

2 . Therefore the minimum in Eq. (57) is
attained for |β| � 1.

To proceed further, we expand the right-hand side of
Eq. (57) in a Taylor series in β up to second order and keep
only the leading terms in h and κ . The result is

E
(
mγβ

)
w

� 4
√

Q − 1 − 2πhκβ√
4h2 + κ2(Q − 1)

+ β2

(
2
√

Q − 1 − πκ

2

)
. (58)

Minimizing this expression in β yields the equilibrium tilt
angle

β � πhκ(
2
√

Q − 1 − πκ
2

)√
4h2 + κ2(Q − 1)

. (59)

This formula is another main finding of our paper. As expected,
the title angle in Eq. (59) goes to zero as h → 0. Moreover,
for h � κ � 1, we obtain an interesting result:

β � πh

2(Q − 1)
, h � κ, (60)

i.e., the equilibrium tilt angle becomes independent of the
DMI strength. In fact, this is in agreement with the prediction
of Eq. (56) for vanishingly small κ .

Similarly, when κ � h � 1, we find another surprising
result:

β � πκ

4
√

Q − 1
, κ � h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of the
DMI strength the measured tilt angle may be used to directly
assess the value of the interfacial DMI constant experimentally
(see discussion in Sec. VII).

VI. COMPARISON WITH MICROMAGNETIC
SIMULATIONS

To validate the conclusions of our analysis, we performed
three types of numerical tests. For the material parameters, we
chose those of a 0.6-nm-thick film corresponding roughly to
two monolayers of Co, with parameters A = 10−11 J/m, K =
1.25 × 106 J/m3, Ms = 1.09 × 106 A/m. The representative
values of the DMI strength and applied field are D = 1 mJ/m2

and μ0H = 100 mT, respectively [16].
We begin by comparing the tilted Dzyaloshinskii domain-

wall profiles from the two-dimensional numerical simulations
obtained using MUMAX3 simulation package within the local
approximation of the magnetostatic energy [47] [as in Eq. (5)],
with the 1D domain-wall profiles mα minimizing Eα in
Eq. (21). In the micromagnetic simulations, we used a
conservative discretization step of 1 nm in the xy plane. To
obtain the one-dimensional profiles mα minimizing Eα , we
solved Eqs. (22)–(24) by writing mα in polar coordinates for
θ and φ:

mα = (sin θ cos φ, sin θ sin φ, cos θ ), (62)

and solving the following evolution problem:

θt = θξξ − (
φ2

ξ + Q − 1
)

sin θ cos θ + h cos θ sin φ

− κφξ sin(φ − α) sin2 θ, (63)

φt = φξξ + 2θξφξ cot θ + h csc θ cos φ

+ κθξ sin(φ − α), (64)

until a steady state was reached. Here the subscripts stand
for the respective partial derivatives. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert equa-
tion, and their steady states solve Eqs. (23) and (23) upon
substitution into Eq. (62). Also, in terms of θ and φ the wall
energy is

Eα(mα) =
∫ ∞

−∞

(
θ2
ξ + φ2

ξ sin2 θ + (Q − 1) sin2 θ

− 2h sin θ sin φ + h2

Q − 1
+ κθξ cos(φ − α)

− κφξ sin(φ − α) cos θ sin θ

)
dξ. (65)

The parameters at the beginning of this section correspond
to the dimensionless parameters Q = 1.674, κ = 0.366, and
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FIG. 4. A one-dimensional y = 0 cut through the computed two-
dimensional profile m (blue dots) vs. a one-dimensional cut through
the optimal profile mγα

(red line). See text for details.

h = 0.073. For these parameters, we carried out MUMAX3 [40]
simulations in an 800 nm × 400 nm strip, which corresponds
to w = 109 	 1, and obtained the magnetization profile with
the tilt angle β � 11.2◦. We then solved Eqs. (63) and (64)
with α = 11.2◦ and obtained the optimal one-dimensional wall
profile mα . The result of the two-dimensional computation is
compared with the one-dimensional profile in Fig. 4, which
plots the z-component of the two-dimensional profile m
along the x axis alongside with the corresponding section
of the optimal profile mγα

obtained from mα . One can see an
almost perfect agreement between the full two-dimensional
simulation result and the theoretical prediction of Sec. IV. The
same agreement is also observed in the other two components
of the magnetization (not shown). This justifies the main
premise of our theory about the one-dimensional character
of the interior wall profiles.

To further test the conclusions of our theory, we computed
the energy σwall(α) of the interior walls as a function of their
orientation angle α from the solutions of Eqs. (63) and (64) for
the considered values of the parameters. The result is plotted
in Fig. 5, along with the analytical approximations given by

�60 �30 0 30 60

1.6

1.8

2.0

2.2

2.4

2.6

�deg�

w
al
l

FIG. 5. The dependence σwall(α) obtained from the numerical
minimization of Eα (blue solid curve), the analytical expressions
given by Eq. (32) (red dashed curve) and Eq. (41) (green dotted
curve), corresponding to the dimensionless parameters Q = 1.674,
κ = 0.366, and h = 0.073.
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FIG. 6. Equilibrium tilt angle β vs applied field By = μ0H for
several values of the DMI strength D, alongside with the predictions
of Eq. (56) (solid lines) and Eq. (59) (dashed lines).

Eqs. (32) and (41). One can see that both analytical formulas
give a fairly good approximation to the exact interior wall
energy σwall(α) for these parameters. The agreement becomes
much better for smaller values of h.

We used the interior wall energy σwall(α) obtained numer-
ically to calculate the equilibrium tilt angle by minimizing
the energy in Eq. (53) numerically. This resulted in a unique
minimizing angle β = 11.4◦, in excellent agreement with the
result of the full two-dimensional simulation. For comparison,
the formulas in Eqs. (56) and (59) yield β = 12.8◦ and
β = 13.5◦, respectively, still in a good agreement with the
two-dimensional result, which is reasonable since both these
formulas are at the limits of their applicability for the
considered parameters.

For lower fields h, the agreement with the predictions of the
analytical theory becomes much better. We illustrate this by
presenting the results of the full two-dimensional numerical
simulations against the analytical predictions by Eqs. (56)
and (59) for smaller fields in the whole range of values of
κ . Figure 6 shows the dependence of the equilibrium tilt angle
β on the applied field for several values of the DMI strength. As
can be seen from the figure, the agreement between the theory
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0
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FIG. 7. Equilibrium tilt angle β vs DMI strength D for several
values of the applied field By = μ0H , alongside with the predictions
of Eq. (56) (solid lines) and Eq. (59) (dashed lines).
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FIG. 8. Equilibrium tilt angle β vs magnetic field By from
simulations with and without the dipolar interactions.

and the numerics rapidly increases as the applied magnetic
field or the DMI strength are decreased. This trend can also be
seen from the plot of the equilibrium tilt angle as a function of
the DMI strength for several value of the applied field shown
in Fig. 7.

So far, we presented the results of micromagnetic simu-
lations for a nanostrip, using a common approximation that
neglects the dipolar interaction [32,41]. More precisely, in
the preceding simulations, the effect of dipolar interactions
was accounted only by introducing a local shape anisotropy
term. Let us conclude this section by discussing the results
of micromagnetic simulations for thin nanostrips with the full
account of magnetostatic interaction. The material parameters
and the corresponding dimensionless parameters were the
same as in the simulations without the dipolar interactions.
The length of the nanostrip was extended 1.5 times to reduce
the effect of magnetic charges at the ends of the nanostrip. The
full accounting of the magnetostatic energy in the simulations
leads to an increase in the DW tilt angle, see Fig. 8. One
can see that for the considered parameters the presence of
the dipolar interaction affects the tilt angle relatively weakly
for moderate applied fields and DMI strengths. Notably, the
impact of the dipolar interaction is practically negligible for
sufficiently small DMI strengths, but increases with increasing
DMI strength. We attribute this phenomenon to a decrease in
the DW stiffness as the value of κ is increased, making the
domain wall more susceptible to the presence of the dipolar
interactions.

VII. CONCLUSIONS

We have developed an analytical theory of the Dzyaloshin-
skii domain-wall tilt in a ferromagnetic nanostrip in the
perpendicular in-plane magnetic fields. This type of DW
tilt is a vivid manifestation of the presence of interfacial
DMI in ultrathin ferromagnet/heavy-metal layered structures.
Our theory focuses on the geometric aspect of the problem
and treats the DW as a curve, whose equilibrium shape is
determined by minimizing an appropriate geometric energy
functional.

The main ingredients in our theory are the energy densities
of edge and interior domain walls. The former are computed
explicitly, and the latter can be obtained for any given set

of parameters, using a straightforward numerical procedure.
We have explicitly considered two regimes: the regime when
the dimensionless magnetic field h is much smaller than the
dimensionless DMI strength κ and the regime when they are
both small and comparable. In both regimes, we have found
very good agreement with the micromagnetic simulations for
the tilt angle.

Our theory has three main findings. First, we derived an
exact 1D domain-wall profile for any strength of perpendicular
in-plane magnetic field. Second, we proved that the DW is
always a tilted straight line. Third, this allowed us to obtain
an explicit expression for the DW tilt angle. Moreover, in the
wide range of DMI strength (as long as DW does not develop
yet helicoidal structure), we find that the DW configurations
are in general neither Néel nor Bloch type, and that the DW
energy is anisotropic (depends on the tilt angle).

In the regime of small fields h � κ � 1, we have found
that the equilibrium angle is proportional to the field strength
[Eq. (56)]. On the other hand, for small DMI strengths, the
tilt angle exhibits a strongly nonlinear dependence on the
field strength, even for relatively small fields [Eq. (59)].
Surprisingly, we found that when h � κ � 1 the equilibrium
tilt angle becomes independent of the DMI strength [Eq. (60)],
which can be a good experimental test for our theory. Equally
surprisingly, in the opposite regime κ � h � 1, we have
shown that the equilibrium tilt angle becomes independent
of the applied magnetic field [Eq. (61)].

Our results indicate that for moderate DMI strengths the tilt
angle may be used to directly assess the value of the interfacial
DMI constant experimentally. Currently, the DMI constant
is measured by the following techniques: by observing the
frequency nonreciprocity of spin-wave propagation with Bril-
louin light spectroscopy [20,42,43], by asymmetric magnetic
domain growth, [44] by field-driven domain-wall motion
in the creep regime, [43] by current-driven domain-wall
motion under applied magnetic field, [45] and by asymmetric
hysteresis [46]. Our theory offers another method to obtain the
interfacial DMI constant from the direct measurements of the
tilt angle of the Dzyaloshinskii domain wall.

We propose an experimental method that requires only a
technique for observing the magnetic structure under external
field (e.g., Kerr microscopy). To improve the accuracy of
the DMI determination, one should measure the tilt angle
as a function of magnetic field By , as shown in Fig. 6, and
fit this experimental curve to our theory [see Eqs. (56) or
(59), depending on the smallness of the DMI strength relative
to the magnetic field]. This static method to measure the
DMI constant is simpler and potentially more reliable than
the current dynamic measurement methods. It eliminates the
complexity associated with the interpretation of the data due
to the interplay of different directions of the magnetic field,
various spin-orbit and spin-transfer torques.
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