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Abstract. We study the long time behavior of solutions of the Cauchy
problem for nonlinear reaction-diffusion equations in one space dimen-
sion with the nonlinearity of bistable, ignition or monostable type. We
prove a one-to-one relation between the long time behavior of the solution
and the limit value of its energy for symmetric decreasing initial data in
L2 under minimal assumptions on the nonlinearities. The obtained rela-
tion allows to establish sharp threshold results between propagation and
extinction for monotone families of initial data in the considered general
setting.
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1. Introduction

In this paper, we study the Cauchy problem for the nonlinear reaction-diffusion
equation

ut = uxx + f(u), x ∈ R, t > 0, (1.1)
u(x, 0) = φ(x) ≥ 0 x ∈ R, φ ∈ L2(R) ∩ L∞(R). (1.2)

The nonlinearity f satisfies

f ∈ C1([0,∞)), f(0) = f(1) = 0, f(u) < 0 for u > 1. (1.3)

We are interested in the long time behavior of solution of (1.1). Since u = 0 and
u = 1 are solutions of the stationary problem for (1.1), one possible behavior
of the solution is extinction, i.e., limt→∞ u(x, t) = 0 uniformly in R. Another
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possible behavior of the solution is propagation, i.e., limt→∞ u(x, t) = 1 locally
uniformly in R and, moreover, limt→∞ u(x+ ct, t) = 1 locally uniformly for all
sufficiently small c ∈ R. This type of question was first posed in the context of
combustion modeling, where the considered initial value problem prominently
appears [1–3], and is also relevant to numerous other applications in physics,
chemistry and biology (see, e.g., [4–7]). In the context of combustion, when
cold fuel and oxidizer gases are premixed in a tube, a sufficiently large region of
heated gas generated, say, by a spark will ignite a pair of counter-propagating
flame fronts, while insufficient heating will fail to result in ignition. Under-
standing the nature of the threshold phenomena associated with ignition is,
therefore, important for many phenomena governed by reaction and diffusion
processes.

Mathematical studies of the ignition problem date back to the early 1960s.
In his pioneering work, Kanel’ [8] considered the long time behavior of solution
of (1.1) with ignition nonlinearity f , whose initial condition φ is the charac-
teristic function χ[−L,L](x) of the interval [−L,L]. He proved that there exist
constants L1 ≥ L0 > 0, depending on f , such that extinction occurs when
L < L0, and propagation occurs when L > L1. Aronson and Weinberger [9]
extended this result to bistable nonlinearities and more general initial condi-
tions. These works, however, did not provide any further information on the
nature of the transition between ignition and extinction.

Further insight into the ignition problem was provided very recently by
Zlatoš [10] (see also related works [11,12]), who proved that in the problem
studied by Kanel’ it is possible to choose L0 = L1, i.e., the transition from
extinction to propagation is sharp. He also found that the long time behavior
of the solution with the initial data corresponding to the threshold value L0

is neither extinction nor propagation. In particular, for bistable nonlinearities
the solution of the initial value problem with the data corresponding to L0 con-
verges to the stationary “bump” solution of (1.1), i.e., the unique symmetric
decreasing solution of

v′′(x) + f(v(x)) = 0, x ∈ R. (1.4)

Du and Matano [13] generalized the sharp transition result of Zlatoš to mono-
tone families of compactly supported initial data by using the zero number
counting argument. By a different method, Poláčik [14] gave a higher-dimen-
sional extension, still for compactly supported initial data.

As was pointed out by Matano [15], for bistable nonlinearities all the
works on sharp threshold behavior between ignition and extinction mentioned
above crucially rely on the assumption of the data being compactly supported
(or rapidly decaying) and, therefore, may not be applied to data that lie in
the natural function spaces, such as, e.g., L2(R). The purpose of this work is
to provide such an extension in the context of the problem originally consid-
ered by Kanel’. To achieve this goal, we take advantage of the gradient flow
structure of the considered equation and develop energy-based methods that
are quite different from those used in the above works (for some related works,
see [16–18]). One of the main tools for our analysis of the threshold behavior
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is the result on a one-to-one correspondence between the long time behavior
of the solution and that of its suitably defined energy that we establish in this
paper.

As in the work of Du and Matano [13], we consider an increasing one-
parameter family of initial conditions φλ, λ > 0, satisfying conditions in (1.2),
with lim

λ→0
φλ ≡ 0, and the map λ '→ φλ increasing and continuous in the L2(R)

norm. We also require an additional technical assumption that φλ(x) be a
symmetric decreasing function of x:

(SD) The initial condition φ(x) in (1.2) is symmetric decreasing, i.e., φ(−x) =
φ(x) and φ(x) is non-increasing for every x > 0.

This assumption allows us to avoid a possible long-time behavior consisting of
a bump solution slowly moving off to infinity, which was pointed out for some
related problems [19]. We note that assumption (SD) is equivalent to consid-
ering (1.1) on half-line with Neumann boundary condition and non-increasing
initial data (for some related results, see [17]).

In the case of bistable and ignition nonlinearities (for precise definitions
and statements, see the following section) it is easy to show that if the param-
eter λ is small enough, then extinction occurs. We then wish to know if prop-
agation can occur when λ is large. And a more interesting question is: does
there exist any long time behavior of solution, which is neither extinction, nor
propagation, for intermediate values of λ? On the other hand, for monostable
nonlinearities it is known that propagation occurs for any λ > 0 if f ′(0) > 0
[9], or even when f(u) ∼ up for small u, when p ≤ pc, where pc = 3 is the
Fujita exponent in one space dimension (see e.g., [20,21]). Nevertheless, the
question of long-time behavior is also non-trivial for p > pc and to the best of
our knowledge has not been treated so far.

Here we prove, for bistable and ignition nonlinearities, that if propagation
occurs at some value of λ > 0, then there is a value of λ = λ∗ > 0 which serves
as a sharp threshold between propagation for λ > λ∗ and extinction for λ < λ∗.
We also characterize the behavior of solution at λ = λ∗, thus generalizing the
result of Zlatoš to the considered class of data. And for monostable nonlin-
earities which are supercritical with respect to the Fujita exponent, we prove
that if propagation occurs at some value of λ > 0, then there exists a value
λ∗ > 0, which serves as a sharp threshold between propagation for λ > λ∗

and extinction at λ ≤ λ∗. Note that in this case propagation and extinction
exhaust the list of possible long-time behaviors of solutions. In addition, we
obtain a new sufficient condition for propagation which can be easily verified.
We also note that with minor modifications many of our conclusions still hold
if f(u) is only locally Lipschitz.

Our paper is organized as follows. In Sect. 2 we introduce the background
results related to the variational structure of the considered problem. Then in
Sect. 3 we consider bistable nonlinearities and give our convergence result in
Theorem 1, our one-to-one relation result in Theorem 2 and our sharp thresh-
old result in Theorem 3. Then in Sect. 4 we treat monostable nonlinearities
and give our convergence result in Theorem 4, our one-to-one relation result
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in Theorem 5 and our sharp threshold result in Theorem 6, and in Sect. 5
we present results for ignition nonlinearities, with our convergence result in
Theorem 7, the relation with the limit energy in Theorem 8 and our sharp
threshold result in Theorem 9.

2. Preliminaries

We first recall that existence of classical solutions for (1.1) with initial data
satisfying (1.2) is well known. In view of (1.3), these solutions are positive,
uniformly bounded and, hence, global in time. Furthermore, it is well know
that the derivatives ut(x, t), ux(x, t), uxx(x, t) of the solution of (1.1) can be
estimated in the uniform norm in terms of u itself. More precisely, the uniform
boundedness of |u| in the half-space t > 0 controls the boundedness of |ut|,
|ux| and |uxx| in the half-space t ≥ T for any T > 0 (see, e.g., [22,23]). We will
refer to this boundedness as “standard parabolic regularity.” For our purposes
here, however, we will also need a suitable existence theory for solutions in
integral norms that measure, in some sense, the rate of the decay of solutions
as x → ±∞. This is because we wish to work with the energy functional,
defined as

E[u] :=
∫

R

(
1
2
u2

x + V (u)
)

dx, V (u) := −
∫ u

0
f(s)ds. (2.1)

Clearly, this functional is well-defined for any u ∈ H1(R)∩L∞(R) and of class
C1 in H1(R). Similarly, for a given c > 0 we define the exponentially weighted
functional Φc associated with (2.1) as

Φc[u] :=
∫

R
ecx

(
1
2
u2

x + V (u)
)

dx, (2.2)

which is well-defined for L∞ functions in the exponentially weighted Sobolev
space H1

c (R) with the norm

‖u‖2
H1

c
:= ‖u‖2

L2
c

+ ‖ux‖2
L2

c
, ‖u‖2

L2
c

:=
∫

R
ecxu2dx. (2.3)

Similarly, we can define the space H2
c (R) as the space of functions whose first

derivatives belong to H1
c (R).

The following proposition guarantees existence and regularity properties
of solutions of (1.1) in both the usual and the exponentially weighted Sobolev
spaces.

Proposition 2.1. Under (1.3), there exists a unique solution u ∈ C2
1 (R × (0,∞))

∩ L∞(R × (0,∞))) satisfying (1.1) and (1.2) (using the notations from [24]),
with

u ∈ C
(
[0,∞);L2(R)

)
∩ C

(
(0,∞);H2(R)

)

and ut ∈ C((0,∞);H1(R)). Furthermore, if there exists c > 0 such that the
initial condition φ(x) ∈ L2

c(R) ∩ L∞(R), then the solution of (1.1) and (1.2)
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satisfies

u ∈ C
(
[0,∞);L2

c(R)
)

∩ C
(
(0,∞);H2

c (R)
)
,

with ut ∈ C((0,∞);H1
c (R)). In addition, small variations of the initial data

in L2(R) result in small changes of solution in H1(R) at any t > 0.

Proof. Follows from the arguments in the proof of [25, Proposition 3.1] based
on the approach of [26], taking into consideration that by (1.3) the function
ū(x, t) = max{1, ‖φ‖L∞(R)} is a universal supersolution for the considered
problem. !

Remark 2.2. We note that Proposition 2.1 does not require hypothesis (SD).
However, under (SD) we also have that u(x, t) is a symmetric decreasing func-
tion of x for all t > 0.

In view of Proposition 2.1, by direct calculation we obtain the well-known
identity related to the energy dissipation rate for the solutions of (1.1) valid
for all t > 0:

dE

dt
[u(·, t)] = −

∫

R
u2

t (x, t)dx. (2.4)

In fact, the basic reason for (2.4) is the fact that (1.1) is a gradient flow in L2

generated by E. Similarly, as was first pointed out in [27], Eq. (1.1) written in
the reference frame moving with an arbitrary speed c > 0 is a gradient flow
in L2

c generated by Φc. More precisely, defining ũ(x, t) := u(x + ct, t), which
solves

ũt = ũxx + cũx + f(ũ), (2.5)

it is easy to see with the help of Proposition 2.1 that an identity similar to
(2.4) holds for Φc:

dΦc

dt
[ũ(·, t)] = −

∫

R
ecxũ2

t (x, t)dx. (2.6)

In particular, both E[u(·, t)] and Φc[ũ(·, t)] are well defined and are non-increas-
ing in t for all t > 0. Also note that non-trivial fixed points of (2.5) are varia-
tional traveling waves, i.e., solutions that propagate with constant speed c > 0
invading the equilibrium u = 0 and belong to H1

c (R) [28]. Furthermore, as was
shown in [28], for sufficiently rapidly decaying front-like initial data the prop-
agation speed associated with the leading edge of the solution (see the next
paragraph for the definition) is determined by the special variational traveling
wave solutions which are minimizers of Φc for some unique speed c = c† > 0. In
the context of the nonlinearities considered in this paper, the following prop-
osition gives existence, uniqueness and several properties of these minimizers
(follows directly from [28, Theorem 3.3]; in fact, under these assumptions they
are the only variational traveling waves, see [25, Corollary 3.4]).

Proposition 2.3. Let f satisfy (1.3), let f ′(0) ≤ 0, and let u0 = 1 be the unique
zero of f such that

∫ u0

0 f(u)du > 0. Then there exists a unique c† > 0 and a
unique (up to translation) positive traveling wave solution u(x, t) = ū(x − c†t)
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of (1.1) such that ū(+∞) = 0, ū(−∞) = 1, ū′ < 0, and ū minimizes Φc with
c = c†.

Turning back to the question of propagation, for a given δ > 0 we define
the leading edge Rδ(t) of the solution u(x, t) of (1.1) as

Rδ(t) := sup{x ∈ R : u(x, t) ≥ δ}. (2.7)

If the set {x ∈ R : u(x, t) ≥ δ} = ∅, then Rδ(t) := −∞. Then, as follows
from [28, Theorem 5.8], under the assumptions of Proposition 2.3 for every
φ ∈ L2

c(R) with some c > c†, φ(x) ∈ [0, 1] for all x ∈ R, and lim
x→−∞

φ(x) = 1

the leading edge Rδ(t) propagates asymptotically with speed c† for sufficiently
small δ > 0. Similarly, the same conclusion holds for the initial data obeying
(1.2), provided that φ ∈ L2

c(R) with some c > c† and u(x, t) → 1 as t → ∞
locally uniformly in x ∈ R [28, Corollary 5.9]. In fact, a stronger conclusion can
be made, which implies that the latter condition is equivalent to the stronger
notion of propagation presented in the introduction, extending the results of
Aronson and Weinberger [9, Theorem 4.5] to the considered class of nonlin-
earities.

Proposition 2.4. Under the assumptions of Proposition 2.3, let φ satisfy (1.2)
and assume that u(x, t) → 1 as t → ∞ locally uniformly in x ∈ R. Then for
every δ0 ∈ (0, 1) and every c ∈ (0, c†), where c† is the same as in Proposi-
tion 2.3, there exists T ≥ 0 such that Rδ(t) ≥ ct for every t ≥ T and every
δ ∈ (0, δ0].

Proof. Consider minimizers of Φc among u ∈ X, where X consists of all func-
tions in H1

c (R) with values in [0, 1] that vanish for all x > 0. We claim that
a non-trivial minimizer ūc ∈ X of Φc exists for all c ∈ (0, c†). Indeed, by the
argument in the proof of [28, Proposition 5.5], we have infu∈X Φc[u] < 0 for
any c ∈ (0, c†). By boundedness of u ∈ X, Φc is coercive on X. Existence of a
minimizer then follows from weak sequential lower semicontinuity of Φc on X
(see [29, Lemma 5.3]). Furthermore, by [29, Corollary 6.8], which can be easily
seen to be applicable to ūc, we have ūc(x) → 1 as x → −∞.

Similarly, for large enough R > 0 there exists a non-trivial minimizer
ūR

c ∈ XR of Φc, where XR is a subset of X with all functions vanishing for
x < −R as well. These are stationary solutions of (2.5) with Dirichlet bound-
ary conditions at x = 0 and x = −R, and by strong maximum principle we
have ūR

c < 1. Furthermore, if Rn → ∞, then {ūRn
c } constitute a minimiz-

ing sequence for Φc in X and, in view of the continuity of
∫ 0

−∞ ecxV (u)dx

with respect to the weak convergence in H1
c (R) we have ūRn

c → ūc strongly
in H1

c (R) and, by Sobolev imbedding, also locally uniformly. In particular,
‖ūRn

c ‖L∞(R) → 1 as n → ∞. The proof is then completed by using ūRn
c with

a large enough n depending on δ0 as a subsolution after a sufficiently long
time t. !
Remark 2.5. If in Proposition 2.4 we also have φ ∈ L2

c(R) for some c > c†,
then by [28, Proposition 5.2] for every δ0 > 0 and every c′ > c† there exists
T ≥ 0 such that Rδ(t) < c′t for every δ ≥ δ0, implying that c† is the sharp
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propagation velocity for the level sets in the above sense. The same conclusion
also holds for the “trailing edge”, i.e., the leading edge defined using u(−x, t)
instead of u(x, t), indicating the formation of a pair of counter-propagating
fronts with speed c†.
Remark 2.6. Under hypothesis (SD), the conclusion of Proposition 2.4 clearly
implies propagation in the sense defined in the introduction.

The difficult part in applying Proposition 2.4 is to establish that u(x, t) →
1 locally uniformly in x ∈ R as t → ∞ for a given initial condition φ(x). In the
absence of such a result, we can still appeal to a weaker notion of propagation
of the leading edge analyzed in [27]. Following [27], we call the solution u(x, t)
of (1.1) and (1.2) wave-like, if there exist constants c > 0 and T ≥ 0 such that
φ ∈ L2

c(R) and Φc[u(·, T )] < 0. Note that by monotonicity of Φc[ũ(·, t)] and
the fact that Φc[u(·, t)] = ec2tΦc[ũ(·, t)], it follows that for a wave-like solution
we have Φc[u(·, t)] < 0 for all t ≥ T as well. This fact allows to obtain an
important characterization of the leading edge dynamics for wave-like solu-
tions which is intimately related to the gradient descent structure of (2.5).
We note that in view of the “hair-trigger effect” discussed in the introduction
in the case when u = 0 is linearly unstable [9], we only need to consider the
nonlinearities satisfying f ′(0) ≤ 0.
Proposition 2.7. Let f satisfy (1.3), let f ′(0) ≤ 0, and let u(x, t) be a wave-like
solution of (1.1) and (1.2), i.e., Φc[u(·, T )] < 0 for some c > 0 and T ≥ 0.
Then for all t ≥ T

max
x∈R

u(x, t) ≥ δ0, (2.8)

where

δ0 = inf
{

u ≥ 0 : V (u) < −1
8
c2u2

}
> 0. (2.9)

Furthermore, there exists R0 ∈ R such that for every δ ∈ (0, δ0] we have

Rδ(t) ≥ ct + R0, (2.10)

for all t ≥ T .
Proof. The statement is a direct consequence of [27, Proposition 4.10 and
Theorem 4.11], which remain valid under the assumptions above in view of
Proposition 2.1. For the reader’s convenience, we outline the proof here.

By the definition of a wave-like solution, Φc[u(x, T )] < 0 for some c > 0
and T ≥ 0. By (2.6), we know that for all t ≥ T ,

Φc[u(x + c(t − T ), t)] ≤ Φc[u(x, T )] < 0. (2.11)

Moreover, we have the following obvious property of Φc [29, Lemma 3.1]

Φc[u(x − R, t)] = ecRΦc[u(x, t)], (2.12)

which implies that the sign of Φc is invariant with respect to translations [27,
Corollary 2.4]. In particular, Φc[u(x, t)] < 0 for all t ≥ T . So that

inf
x∈R

(
1
2
u2

x(x, t) + V (u(x, t))
)

< 0, ∀t ≥ T. (2.13)
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Furthermore, by [29, Lemma 2.1] we have

c2

4

∫

R
ecxu2(x, t)dx ≤

∫

R
ecxu2

x(x, t)dx. (2.14)

So (2.13) implies (2.8). In addition, for any c > 0, the hypothesis f ′(0) ≤ 0
guarantees that δ0 > 0.

Let us now prove (2.10). It is enough to verify (2.10) for δ = δ0, because
Rδ(t) ≥ Rδ0(t) whenever δ < δ0. Equation (1.3) implies that V (u) attains its
minimum Vmin ≤ 0 for u ≥ 0. Moreover, by (2.9) we have V (u(x, t)) > 0 for
all x > Rδ0(t). Using (2.12), we obtain

Φc[u(x + Rδ0(t), t)] = e−cRδ0 (t)Φc[u(x + Rδ0(t), t)]

=
∫

R
ec(x−Rδ0 (t))

(
1
2
u2

x(x, t) + V (u(x, t))
)

dx

≥
∫ Rδ0 (t)

−∞
ec(x−Rδ0 (t))Vmindx

=
Vmin

c
. (2.15)

Then, using (2.11), (2.12), and (2.15) together, we have

0 > e−c(Rδ0 (t)−ct)Φc[u(x + cT, T )] ≥ e−c(Rδ0 (t)−ct)Φc[u(x + ct, t)]
= Φc[u(x + Rδ0(t), t)]

≥ Vmin

c
. (2.16)

Dividing (2.16) by a negative number Φc[u(x+cT, T )] and taking the logarithm
of both sides, we have

Rδ0(t) ≥ ct +
1
c

ln
cΦc[u(x + cT, T )]

Vmin
, (2.17)

which implies (2.10). !
One of the goals of our analysis in the following sections will be to show

that under further assumptions on the nonlinearities and hypothesis (SD)
propagation in the sense of Proposition 2.7 implies propagation in the sense
of Proposition 2.4. We note, however, that having merely E[u(·, T )] < 0 for
some T ≥ 0 is not yet sufficient for employing Proposition 2.7, since we cannot
assume a priori that u(x, t) decays exponentially as |x| → ∞. We will overcome
the difficulty in the next section.

A key ingredient of our proofs that allows us to efficiently use variational
methods and to go from sequential limits to full limits as t → ∞ without much
information about the limit states relies on an interesting observation regard-
ing uniform Hölder continuity of the solutions of (1.1) with bounded energy.
This result is stated in the following proposition. We note that a more general
result is also available in RN (it will be discussed in more detail elsewhere).

Proposition 2.8. Suppose that φ satisfies (1.2) and f satisfies (1.3). If E[u(·, t)]
is bounded from below, then u(x, ·) ∈ C1/4([T,∞)) for each x ∈ R and each
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T > 0. Moreover, the corresponding Hölder constant of u(x, t) converges to 0
as T → ∞ uniformly in x.

Proof. We denote E∞ = lim
t→∞

E[u(·, t)]. Then, using (2.4), for any x0 ∈ R and
t2 > t1 ≥ T we have

∫ x0+1

x0

|u(x, t2) − u(x, t1)|dx ≤
∫ t2

t1

∫ x0+1

x0

|ut(x, t)|dxdt

≤
√

t2 − t1

(∫ t2

t1

∫ x0+1

x0

u2
t (x, t)dxdt

)1/2

≤
√

t2 − t1

(∫ ∞

T

∫

R
u2

t (x, t)dxdt

)1/2

=
√

(E[u(·, T )] − E∞)(t2 − t1). (2.18)

On the other hand, by standard parabolic regularity there exists M > 0
such that

‖ux(·, t)‖L∞(R) ≤ M, ‖u(·, t)‖L∞(R) ≤ M ∀t ≥ T, (2.19)

Without loss of generality we can further assume that u(x0, t2) − u(x0, t1) ∈
[0,M ]. Then, for every x ∈ I, where

I := [x0, x0 +
u(x0, t2) − u(x0, t1)

2M
], |I| < 1, (2.20)

we have

u(x, t2) ≥ u(x0, t2) − M(x − x0) ≥ u(x0, t1) + M(x − x0)
≥ u(x, t1), x ∈ I. (2.21)

This implies that
∫ x0+1

x0

|u(x, t2) − u(x, t1)|dx ≥
∫

I
(u(x0, t2) − u(x0, t1) − 2M(x − x0))dx

=
|u(x0, t2) − u(x0, t1)|2

4M
. (2.22)

Then we have

|u(x0, t2) − u(x0, t1)| ≤ 2
√

M(E[u(·, T )] − E∞)1/4(t2 − t1)1/4, (2.23)

i.e., u(x, ·) ∈ C1/4([T,∞)) by the arbitrariness of x0. Moreover, the limit of
the Hölder constant is

lim
T→∞

2
√

M(E[u(·, T )] − E∞)1/4 = 0, (2.24)

which completes the proof. !
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3. Bistable Nonlinearity

We now turn our attention to the study of the bistable nonlinearity, i.e., f ∈
C1([0,∞); R),

f(0) = f(θ0) = f(1) = 0, f(u)
{

< 0, in (0, θ0) ∪ (1,∞),
> 0, in (θ0, 1), (3.1)

for some θ0 ∈ (0, 1). In the following, we assume an extra condition that the u =
1 equilibrium is more energetically favorable than the u = 0 equilibrium, i.e.,

V (1) = −
∫ 1

0
f(s)ds < 0. (3.2)

Actually, in the context of threshold phenomena this is not a restriction, since
propagation (in the sense defined in the introduction) becomes impossible in
the opposite case. Indeed, if the inequality opposite to (3.2) holds, then we
have V (u) ≥ 0 for all u ≥ 0 and, therefore, Rδ ≤ ct for any δ > 0, any c > 0
and large enough t, at least for all φ ∈ L2

c(R) by [28, Proposition 5.2]. Fur-
thermore, if V (1) > 0 and f ′(0) < 0 (the latter condition is not essential and
may be replaced by a weaker non-degeneracy condition introduced in the next
paragraph), then the energy functional in (2.1) is coercive in H1(R), and so it
is not difficult to see that every solution of (1.1) and (1.2) converges uniformly
to zero, implying extinction for all initial data. Thus the only case in which the
situation may be subtle is that of a balanced bistable nonlinearity, i.e., when
V (1) = 0, in which spreading, i.e., sublinear behavior of the leading edge with
time, namely Rδ(t) → ∞ as t → ∞, but Rδ(t) = o(t) for some δ > 0, cannot
be excluded a priori, even for exponentially decaying initial data. The analysis
of the balanced case is beyond the scope of the present paper.

We further make a kind of weak non-degeneracy assumption that f(u) 0
−kup for some p ≥ 1 and k > 0 as u → 0. More precisely, we assume that

f ′(u) ≤ 0 for all u ∈ [0, θ1], for some θ1 > 0, (3.3)

and

lim
u→0

f(u)
up

= −k for some p ≥ 1 and k > 0. (3.4)

Note that (3.3) and (3.4) are automatically satisfied for the generic non-degen-
erate case when f ′(0) < 0. Under conditions (3.1) and (3.2), there exist two
roots of V (u): u = 0, u = θ∗ ∈ (0, 1), and possibly a third root u = θ' > 1.
However, since by (1.3) we have lim sup

t→∞
‖u(x, t)‖L∞(R) ≤ 1, without loss of

generality, in the latter case we may suppose that ‖φ‖L∞(R) < θ'. This implies
that once u > θ∗, we have V (u) < 0.

It is well known that under our assumptions (1.4) possesses “bump”
solutions, i.e., classical positive solutions of (1.4) that vanish at infinity. After
a suitable translation, these solutions are known to be symmetric decreas-
ing and unique (see, e.g., [30, Theorem 5]). In the following proposition we
summarize the properties of the bump solution that are needed for our anal-
ysis.
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Proposition 3.1. Let f satisfy conditions (1.3) and (3.1) through (3.4), and let
v ∈ C2(R) be the unique positive symmetric decreasing solution of (1.4). Then

1. v(0) = θ∗ and E0 := E[v] > 0.
2. If f ′(0) < 0, we have v(x), v′(x), v′′(x) ∼ e−µ|x| for µ =

√
|f ′(0)| as

|x| → ∞.
3. If f ′(0) = 0, then v(x) ∼ |x|−

2
p−1 , v′(x) ∼ |x|−

p+1
p−1 , v′′(x) ∼ |x|−

2p
p−1 as

|x| → ∞.
4. v′ ∈ H1(R).

Proof. The fact that v(0) = θ∗ follows from [30, Theorem 5]. Integrating (1.4)
once, we obtain |v′| =

√
2V (v), where by the previous result the constant of

integration is zero. Upon second integration we arrive at

|x| =
∫ θ∗

v

du√
2V (u)

. (3.5)

The proof then follows by a careful analysis of the singularity in the integral
in (3.5) to establish the decay of the solution. Once the decay is known, the
rest of the statements follows straightforwardly. !

Our main theorems in this section are about the following convergence
and equivalence conclusions.

Theorem 1. Let f satisfy conditions (1.3) and (3.1) through (3.4). Let φ(x)
satisfy condition (1.2) and hypothesis (SD). Then one of the following holds.

1. limt→∞ u(x, t) = 1 locally uniformly in R,
2. limt→∞ u(x, t) = v(x) uniformly in R,
3. limt→∞ u(x, t) = 0 uniformly in R.

We will prove Theorem 1 together with establishing the following one-
to-one relation between the long time behavior of the solutions and those of
their energy E.

Theorem 2. Under the same assumptions as in Theorem 1, we have the fol-
lowing three alternatives:

1. lim
t→∞

u(x, t) = 1 locally uniformly in R ⇔ lim
t→∞

E[u(·, t)] = −∞.
2. limt→∞ u(x, t) = v(x) uniformly in R ⇔ lim

t→∞
E[u(·, t)] = E0.

3. lim
t→∞

u(x, t) = 0 uniformly in R ⇔ lim
t→∞

E[u(·, t)] = 0.

The strategy of our proof is as follows. We wish to show that the limit
behaviors of the energy in Theorem 2 are the only possible ones. So we first
prove that if E[u(·, t)] is not bounded from below, then u converges to 1 locally
uniformly. And the reverse also holds. Then for bounded from below E[u(·, t)],
the solution u(x, t) converges to either 0 or v(x). Finally, the convergence of
u(x, t) to 0 or v(x) implies the corresponding convergence of energy.

Let us begin by assuming that E[u(·, t)] is not bounded from below. In
this case, for cubic nonlinearity Flores proved in [12] that lim

t→∞
u(x, t) = 1

locally uniformly by constructing a proper subsolution. Under (SD), we will
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prove a stronger conclusion. We will prove that if there exists T ≥ 0 such
that E[u(·, T )] < 0, then propagation occurs, in the sense defined in the intro-
duction. Throughout the rest of this section, the assumptions of the above
theorems are always assumed to be satisfied, and u(x, t) always refers to the
solutions of (1.1) and (1.2).

Lemma 3.2. Suppose there exists c0 > 0 such that φ(x) ∈ H1
c0

(R). If there
exists T ≥ 0 such that E[u(·, T )] < 0, then u(x, t) is wave-like.

Proof. First observe that if φ(x) ∈ H1
c0

(R), then u(·, T ) ∈ H1(R) ∩ H1
c0

(R).
Then for any small ε > 0, if E[u(x, T )] = −ε < 0 there exists L > 0 such that
V (u(x, T )) ≥ 0 for |x| ≥ L, and

∫

{x≤−L}

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx <
ε

4
, (3.6)

∫

{x≥L}
ec0x

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx <
ε

4
. (3.7)

Note that if we use smaller positive c instead c0 in the above inequality, the
inequality still holds. And by the definition of L we know that

∫

{|x|<L}

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < −ε. (3.8)

So we can find a sufficiently small c ∈ (0, c0) such that
∫

{|x|<L}
ecx

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < −ε

2
, (3.9)

and

Φc[u(·, T )] =
∫

R
ecx

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < 0. (3.10)

So u is wave-like. !
We next show that for symmetric decreasing solutions and bistable non-

linearities the wave-like property also implies propagation in the sense of the
introduction.

Lemma 3.3. Suppose that u(x, t) is wave-like. Then lim
t→∞

u(x, t) = 1 locally
uniformly in R.

Proof. In view of the definition of θ∗ we have V (u) ≥ 0 whenever 0 ≤ u ≤ θ∗,
hence by (2.9) we have δ0 > θ∗ in Proposition 2.7. Therefore, by that propo-
sition

Rθ∗(t) >
ct

2
, (3.11)

for sufficiently large t. Then, because u(x, t) is symmetric decreasing, for any
L > 0 there exists TL > 0 such that u(x, t) > θ∗ on the interval [−L,L],
for any t ≥ TL. Now, consider u(x, t) solving (1.1) with u(x, TL) = θ∗ for all
x ∈ (−L,L) and u(±L, t) = θ∗ for all t > TL. Since by our assumption on the
nonlinearity the function u(x, TL) is a strict subsolution, in the spirit of [9,
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Proposition 2.2] we have u(·, t) → vL uniformly on [−L,L], where vL solves
(1.4) with vL(±L) = θ∗. Then, by comparison principle we obtain

vL ≤ lim inf
t→∞

u(·, t) ≤ lim sup
t→∞

u(·, t) ≤ 1 uniformly in [−L,L]. (3.12)

Also, by standard elliptic estimates we have vL → v̄ locally uniformly as
L → ∞, where v̄ solves (1.4) in the whole of R. Since by construction v̄ ≥ θ∗,
we have in fact v̄ = 1. Then, passing to the limit in (3.12), we obtain the
result. !

Our next lemma uses a truncation argument to extend the conclusion
of Lemma 3.3 to solutions that are not necessarily lying in any exponentially
weighted Sobolev space, but have negative energy at some time T ≥ 0.

Lemma 3.4. Suppose that there exists T ≥ 0 such that E[u(·, T )] < 0, then
lim

t→∞
u(x, t) = 1 locally uniformly in R.

Proof. For any L > 0, we construct a cutoff function ϕL(x) = η(|x|/L), where
η is a non-increasing C∞(R) function such that η(x) = 1 for x < 1, and
η(x) = 0 for x > 2. Let φ̂(x;L) = ϕL(x)u(x, T ), so that φ̂(x;L) → u(x, T ) in
H1(R) as L → ∞. By our assumption and continuity of E, there exists a suf-
ficiently large L = L0, such that E[φ̂(x;L0)] < 0. Note that φ̂(x;L0) is a com-
pactly supported function, so it lies in H1

c (R) for any c > 0. Now consider the
solution û(x, t) which satisfies (1.1) with initial condition û(x, 0) = φ̂(x;L0).
From Lemma 3.3, we know that lim

t→∞
û(x, t) = 1 locally uniformly in R. So by

comparison principle u(x, t + T ) ≥ û(x, t), which proves the lemma. !

An obvious corollary to the above lemma is the following.

Corollary 3.5. Suppose that lim
t→∞

E[u(·, t)] = −∞, then lim
t→∞

u(x, t) = 1 locally
uniformly in R.

Our next lemma provides a sufficient condition for propagation, which,
in particular, yields a conclusion converse to that of Corollary 3.5.

Lemma 3.6. Suppose that lim
t→∞

u(x, t) = 1 locally uniformly in R, then
lim

t→∞
E[u(·, t)] = −∞.

Proof. We argue by contradiction. Suppose that lim
t→∞

u(x, t) = 1 locally uni-
formly in R and E[u(·, t)] is bounded below. Then for any L > 0, we can
construct a cutoff function κL(x) = η(|x| − L), where η is defined in the proof
of Lemma 3.4. For any L > 0, κL(x) = 1 for |x| < L + 1, κ(x) = 0 for
|x| > L+2, and |κ′

L(x)| is bounded. Since u(x, t) is symmetric decreasing, κL,
κ′

L are both bounded, and u, ux are both bounded for all t ≥ 1 by standard
parabolic regularity, for ũL(x, t) := κL(x)u(x, t) with any t ≥ 1 we have the
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following energy estimate:

E[ũL(x, t)] = 2
∫ L+1

0
V (u)dx +

∫ L+1

0
u2

xdx

+
∫ L+2

L+1

{(
∂(κLu)
∂x

)2

+ 2V (κLu)

}
dx ≤ 2

∫ L+1

0
V (u)dx + C,

(3.13)

where the constant C is independent of L. Since lim
t→∞

u(x, t) = 1 locally uni-
formly in R, for every L0 > 0 satisfying (L0 + 1)V (1) < −C, we can choose
t0 > 0 such that V (u(x, t0)) < V (1)/2 < 0 for any x ∈ (−L0 − 1, L0 + 1). This
implies that φ̃(x;L0) = κL0(x)u(x, t0) satisfies E[φ̃(x;L0)] < 0.

Note that φ̃(x;L0) is a compactly supported function, so it lies in H1
c (R)

for any c > 0. Now consider the solution ũ(x, t) that satisfies (1.1), with the
initial condition ũ(x, 0) = φ̃(x;L0). By Proposition 2.7, Lemma 3.2, and the
fact that

u(x, t + t0) ≥ ũ(x, t), x ∈ R, t > 0, (3.14)

there exists c > 0 such that for any t > t0,

Rθ∗ > c(t − t0) + R0, (3.15)

for some constant R0 ∈ R. Moreover, we can find T0 > 0 such that for any
t > T0 and |x| ≤ ct/2 we have

u(x, t + t0) ≥ θ∗. (3.16)

On the other hand, by (2.4) there exists a sufficiently large tα ≥ 0 such
that ∫ ∞

tα

∫

R
u2

t (x, t)dxdt < α2, (3.17)

for every α > 0. Let us take α = θ0
√

c/9, t1 > max{t0, tα} and x1 = Rθ0/2(t1).
We also take T > T0 such that x1 < cT/4, and t2 = t1 + T , x2 = x1 + cT .
Then by Cauchy-Schwarz inequality we have

∫ t2

t1

∫ x2

x1

|ut(x, t)|dxdt ≤
√

(x2 − x1)(t2 − t1)
(∫ t2

t1

∫ x2

x1

u2
t (x, t)dxdt

)1/2

≤
√

cT

(∫ ∞

tα

∫

R
u2

t (x, t)dxdt

)1/2

≤ cTθ0
9

. (3.18)

At the same time, since by construction 0 < x1 < cT/4, we also have
∫ t2

t1

∫ x2

x1

|ut(x, t)|dxdt ≥
∫ cT/2

cT/4

(∫ t2

t1

|ut(x, t)|dt

)
dx

≥
∫ cT/2

cT/4
(u(x, t2) − u(x, t1))dx. (3.19)
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Since t2 > T > T0, we have u(x, t2) ≥ θ∗ > θ0 for x ∈ (cT/4, cT/2). And by
the definition of x1 and T , we have u(x, t1) < θ0/2 for x ∈ (cT/4, cT/2). So
we have

∫ t2

t1

∫ x2

x1

|ut(x, t)|dxdt ≥ cTθ0
8

, (3.20)

which contradicts (3.18). !

Note that we have just proved the equivalence in part 1 of Theorem 2.
Indeed, we have a stronger corollary.

Corollary 3.7. We have lim
t→∞

u(x, t) = 1 locally uniformly in R, if and only if
there exists T ≥ 0 such that E[u(·, T )] < 0.

We now turn our attention to the case when E[u(·, t)] is bounded
from below. By Lemmas 3.4 and 3.6, boundedness of E[u(·, t)] implies
lim

t→∞
E[u(·, t)] ≥ 0. Below we prove that in this case either lim

t→∞
u(x, t) = 0

uniformly in R, or lim
t→∞

u(x, t) = v(x) uniformly in R. The idea of our proof
is due to Fife [31, Lemma 10]. We refine Fife’s arguments under our weaker
assumptions on the nonlinearity and (SD).

The next lemma establishes existence of an increasing sequence {tn} tend-
ing to infinity on which the solution converges to a zero of V (u) at the origin,
thus allowing only two possibilities for the value of lim

n→∞
u(0, tn).

Lemma 3.8. If E[u(·, t)] is bounded from below, there exists an increasing
sequence {tn} with lim

n→∞
tn = ∞ such that either lim

n→∞
u(0, tn) = 0, or

lim
n→∞

u(0, tn) = θ∗.

Proof. We multiply ux on both sides of Eq. (1.1), and integrate the products
over (−∞, 0). Then we have

∫ 0

−∞
ux(x, t)ut(x, t)dx =

∫ 0

−∞
(uxx(x, t) + f(u(x, t)))ux(x, t)dx

=
1
2
u2

x(x, t)
∣∣∣∣
0

x=−∞
− (V (u(0, t)) − V (u(−∞, t)))

= −V (u(0, t)). (3.21)

From monotonicity of u on (−∞, 0) and standard parabolic regularity, for t ≥ 1
the left-hand side of (3.21) can be controlled by
∣∣∣∣
∫ 0

−∞
ux(x, t)ut(x, t)dx

∣∣∣∣ ≤ ‖ut(·, t)‖L2(−∞,0)‖ux(·, t)‖L2(−∞,0)

≤ ‖ut(·, t)‖L2(R)‖ux(·, t)‖1/2
L∞(R)|u(0, t)|1/2

≤ ‖ut(·, t)‖L2(R)‖ux‖1/2
L∞(R×(1,∞)) max{1, ‖φ‖1/2

L∞(R)}.

(3.22)
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where we applied Cauchy-Schwarz inequality in the first line. Since E[u(·, t)]
is bounded from below, by (2.4) we have

∫ ∞

1

∫

R
u2

t (x, t)dxdt < ∞. (3.23)

Therefore, there exists an unbounded increasing sequence {tn} such that
lim

n→∞
‖ut(·, tn)‖L2(R) = 0. Since also ‖ux‖L∞(R×(1,∞)) < ∞ by standard

parabolic regularity, this implies that lim
n→∞

V (u(0, tn)) = 0 by (3.21). Fur-
thermore, since lim sup

n→∞
‖u(·, tn)‖L∞(R) ≤ 1, by the assumptions on the nonlin-

earity, V (u) = 0 has only two roots, u = 0 and u = θ∗. Recall that for each
t > 0 the maximum of solution u(·, t) is always at the origin. By the structure
of the nonlinearity f , we know that once u(0, T ) < θ0 for some T ≥ 0, then
lim

t→∞
u(x, t) = 0 uniformly in R. Then, lim

n→∞
V (u(0, tn)) = 0 implies that either

lim
n→∞

u(0, tn) = 0 or lim
n→∞

u(0, tn) = θ∗. !

Lemma 3.9. The sequence {tn} in Lemma 3.8 can be chosen so as tn+1−tn ≤ 1
for every n.

Proof. In view of (3.23), for each n ∈ N we have

lim
n→∞

∫ n+1
2

n
2

∫

R
u2

t (x, t)dxdt = 0. (3.24)

Therefore, there exists {tn} with tn ∈
(

n
2 , n+1

2

)
such that ‖ut(·, tn)‖L2(R) → 0

as n → ∞, which yields the desired sequence. !

In the proof of Lemma 3.8, we already obtained the uniform convergence
corresponding to the first alternative.

Corollary 3.10. Suppose that there exists an increasing sequence {tn} such that
lim

n→∞
tn = ∞, and lim

n→∞
u(0, tn) = 0, then lim

t→∞
u(x, t) = 0 uniformly in R.

Combining the results of Lemmas 3.8 and 3.10, we now prove the follow-
ing result.

Lemma 3.11. Suppose that E[u(·, t)] is bounded from below in t, then either
lim

t→∞
u(x, t) = 0, or lim

t→∞
u(x, t) = v(x), uniformly in R.

Proof. From Lemmas 3.8 and 3.10, we only need to prove that if the increasing
sequence {tn} in Lemma 3.8 satisfies lim

n→∞
u(0, tn) = θ∗, then lim

t→∞
u(x, t) =

v(x) uniformly in R. To prove this, we first prove the locally uniform con-
vergence on the sequence {tn}. Let w(x, t) := u(x, t) − v(x), then in view of
v(0) = θ∗ by Proposition 3.1 we have

wt = wxx + f ′(ũ)w, wx(0, t) = 0, w(0, t) = u(0, t) − θ∗, (3.25)

where ũ is between u and v. We claim that

lim
n→∞

w(x, tn) = 0, (3.26)
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locally uniformly in R. The proof follows from the continuous dependence on
the data for solutions of the initial value problem in x obtained from (3.25)
for each t = tn fixed. Indeed, at t = tn ≥ 1 we denote wn(x) := w(x, tn),
gn(x) := ut(x, tn), Kn(x) := f ′(ũ(x, tn)), αn := u(0, tn) − θ∗, and consider
(3.25) as an ordinary differential equation in x > 0:

w′′
n = gn − Knwn, w′

n(0) = 0, wn(0) = αn. (3.27)

For any L > 0, by integration over (0, L) and an application of Cauchy-Schwarz
inequality we have

max
0≤x≤L

|w′
n(x)| ≤

√
L‖gn‖L2(R) + L‖Kn‖L∞(R) max

0≤x≤L
|wn(x)|

≤
√

L‖gn‖L2(R) + LK max
0≤x≤L

|wn(x)|, (3.28)

where the constant K satisfies

|f ′(s)| ≤ K, 0 ≤ s ≤ max{1, ‖φ(x)‖L∞(R)}. (3.29)

For fixed L > 0, we choose a sufficiently large integer l such that 2δLK ≤
1 for δ := L/l. We next take

Wn,k := max(k−1)δ≤x≤kδ |wn(x)|, k ∈ N, (3.30)
mn,0 := αn, mn,k := max1≤k′≤k Wn,k′ . (3.31)

Then mn,k is non-decreasing in k, and mn,k = max
0≤x≤kδ

|wn(x)|. By (3.28) and

our choice of δ, for any 1 ≤ k ≤ l we have

mn,k − mn,k−1 ≤ δ max
0≤x≤L

|w′
n(x)|

≤ δ(
√

L‖gn‖L2(R) + LKmn,k)

≤ δ
√

L‖gn‖L2(R) +
mn,k

2
. (3.32)

This implies that for any 1 ≤ k ≤ l we have

mn,k ≤ 2mn,k−1 + Gn, (3.33)

where Gn := 2δ
√

L‖gn‖L2(R). Since by definition mn,0 = αn, by iteration and
symmetry of wn(x) we have

max
−L≤x≤L

|wn(x)| = mn,l ≤ 2lαn + (2l − 1)Gn. (3.34)

Now, as n → ∞, by Lemmas 3.8 and 3.9 we know that u(0, tn) − θ∗ → 0
and ‖ut(x, tn)‖L2(R) → 0, so that αn → 0, Gn → 0, and max

−L≤x≤L
|wn(x)| → 0,

i.e., u(x, tn) converges to v(x) locally uniformly. Then by Proposition 2.8 and
the fact that by Lemma 3.9 the sequence {tn} can be chosen so as tn+1−tn ≤ 1,
we can obtain the full limit convergence. Indeed, since the Hölder constant
in t of u(x, t) converges to 0 as n → ∞ uniformly for all |x| ≤ L and all
tn < t < tn+1, we have

|u(x, t)−v(x)| ≤ |u(x, tn)−v(x)|+|u(x, t)−u(x, tn)| → 0 as n→∞. (3.35)
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Finally, let us prove that convergence of u(x, t) to v(x) is, in fact, uniform.
Indeed, since u(x, t) is symmetric decreasing in x and v(x) → 0 as |x| → ∞,
for any L > 0, t > 0 we have

sup
|x|≥L

|w(x, t)| = sup
|x|≥L

|u(x, t) − v(x)|

≤ max
|x|≥L

{u(x, t), v(x)}

≤ max{u(L, t), v(L)}
≤ v(L) + max

|x|≤L
|w(x, t)|. (3.36)

This implies that

sup
x∈R

|w(x, t)| ≤ v(L) + max
|x|≤L

|w(x, t)|. (3.37)

Then, for any ε > 0 we can find L > 0 sufficiently large such that v(L) < ε/2.
We can also find T > 0 such that |w(x, t)| < ε/2 for any x ∈ [−L,L], t > T .
So we get

lim
t→∞

|w(x, t)| = 0, (3.38)

uniformly in x ∈ R, which proves the lemma. !

Note that in view of the results in the preceding lemmas, by proving
Lemma 3.11 we have just proved Theorem 1.

Remark 3.12. By standard parabolic regularity, under the assumptions of
Lemma 3.11 we also have

lim
t→∞

u(x, t) = v(x) in C1(R). (3.39)

We now turn to the study of the limit value of energy. At first, we prove
that the energy of the solution goes to zero, if extinction occurs.

Lemma 3.13. If lim
t→∞

u(x, t) = 0 uniformly in R, then lim
t→∞

E[u(·, t)] = 0.

Proof. From condition (SD), we have
∫

R

1
2
u2

x(x, t)dx =
∫ ∞

0
u2

x(x, t)dx

≤ ‖ux(x, t)‖L∞(R) u(0, t). (3.40)

By standard parabolic regularity, if lim
t→∞

u(x, t) = 0 uniformly in R, then

lim
t→∞

∫

R

1
2
u2

x(x, t)dx → 0. (3.41)

So we only need to show that lim
t→∞

∫

R
V (u(x, t))dx = 0.

If f ′(0) < 0, there exists C > 0 such that

0 ≤ V (u) ≤ Cu2, (3.42)
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for small enough u. Then from the usual energy estimate we obtain

lim
t→∞

‖u(·, t)‖2
L2(R) = 0 exponentially, so that lim

t→∞

∫

R
V (u(x, t))dx = 0 as well.

Alternatively, if f ′(0) = 0, then by (3.4) we have

0 ≤ V (u) ≤ Cup+1, (3.43)

for some C > 0 and sufficiently small u. So it is enough to show that
lim

t→∞
‖u(·, t)‖p+1

Lp+1(R) = 0. In view of (3.4) we can use the solution ū(x, t) of
the heat equation:

ūt = ūxx, x ∈ R, t > T, ū(x, T ) = u(x, T ), x ∈ R, (3.44)

as a supersolution to obtain (see, e.g., [21, Proposition 48.4])

‖u(·, t)‖Lp+1(R) ≤ ‖ū(·, t)‖Lp+1(R) ≤ ((4π(t − T ))− p−1
4(p+1) ‖u(·, T )‖L2(R) → 0

as t → ∞, (3.45)

and the statement follows. !

If, on the other hand, lim
t→∞

u(x, t) = v(x) uniformly in R, then we claim
that E[u(·, t)] has a limit as t → ∞, and the value of the limit is equal to E0

defined in Proposition 3.1. We begin with the analysis of the non-degenerate
case.

Lemma 3.14. Suppose that f ′(0) < 0, then lim
t→∞

u(x, t) = v(x) uniformly in R
implies lim

t→∞
E[u(·, t)] = E0.

Proof. At first, we show that for any fixed L > 0, the energy E[u(·, t);L] of
u(x, t) restricted to [−L,L], namely E[u(·, t);L] :=

∫ L
−L

(
1
2u2

x + V (u)
)
dx, con-

verges to the energy E[v;L] of v(x) restricted to [−L,L]. Then we show that
E[u(·, t)] − E[u(·, t);L] converges to E0 − E[v;L] for sufficiently large L.

Since upon integration of (1.4) we have |v′| =
√

2V (u), on the interval
[−L,L] we can compute

E[v;L] =
∫ L

−L

(
1
2
|v′|2 + V (v)

)
dx = 2

√
2

∫ θ∗

v(L)

√
V (u)du. (3.46)

We also know that u(x, t) → v(x), ux(x, t) → v′(x) uniformly in x ∈
[−L,L], as t → ∞, by Lemma 3.12. This implies that

lim
t→∞

E[u(·, t);L] = E[v;L]. (3.47)

By symmetry of the solution, the remaining part of energy can be estimated
as follows:

E[u(·, t)] − E[u(·, t);L] =
∫ ∞

L
(u2

x(x, t) + 2V (u(x, t)))dx. (3.48)

And by decrease of the solution for x > 0 we know that
∫ ∞

L
u2

x(x, t)dx ≤ u(L, t)‖ux(x, t)‖L∞(R). (3.49)
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By standard parabolic regularity, for t ≥ 1, the above expression con-
verges to 0 as L → ∞. In addition, we have E[v] − E[v;L] → 0 as L → ∞. So
we only need to show that for any δ > 0 there exist a sufficiently large Lδ > 0,
Tδ > 0 such that for any t > Tδ,

∣∣∣∣
∫ ∞

Lδ

V (u(x, t))dx

∣∣∣∣ < δ. (3.50)

If f ′(0) < 0, then there exists K > 0 such that f(u) ≤ −Ku for all
u ∈ [0, θ0/2]. We can then finish the proof of the lemma by an L2 decay esti-
mate similar to the one in the proof of Lemma 3.13. Taking L > 0 satisfying
v(L) < θ0/4, there exists T > 0 such that u(x, t) < θ0/2 for any x ∈ (L,∞)
and any t > T . Then for t > T we have

d

dt

∫ ∞

L
u2dx = 2

∫ ∞

L
u(x, t)(uxx(x, t) + f(u))dx

≤ 2u(L, t)|ux(L, t)| − 2K

∫ ∞

L
u2(x, t)dx. (3.51)

Since lim
t→∞

u(L, t)|ux(L, t)| = v(L)|v′(L)|, from the above inequality and the

relation 0 ≤ V (u(x, t)) ≤ Cu2 on u ∈ [0, θ0] for some C > 0, we know that
there exists T̂ > T such that for any t > T̂

0 ≤
∫ ∞

L
V (u(x, t))dx <

2Cv(L)|v′(L)|
K

. (3.52)

Since v(L)v′(L) → 0 as L → ∞, we have the desired conclusion. !

Now to the degenerate case.

Lemma 3.15. If f ′(0) = 0, then lim
t→∞

u(x, t) = v(x) uniformly in R implies
lim

t→∞
E[u(·, t)] = E0, when (3.3) and (3.4) hold.

Proof. In the spirit of Lemma 3.14, we only need to show that

lim sup
t→∞

∫ ∞

L
V (u(x, t))dx → 0 as L → ∞. (3.53)

By (3.4), for any sufficiently small δ > 0 we have

0 ≤ V (u) ≤ 2kup+1

p + 1
∀u ∈ [0, δ], (3.54)

Furthermore, by Proposition 3.1 we can fix L ∼ δ− p−1
2 2 1 such that v(L) =

δ/2. Because u(L, t) converges to v(L) as t → ∞, for sufficiently large t we
have u(x, t) ≤ δ for all x ≥ L and

0 ≤
∫ ∞

L
V (u(x, t))dx ≤ 2k

p + 1
‖u(·, t)‖p+1

Lp+1(L,∞). (3.55)

Then we only need to control ‖u(·, t)‖Lp+1(L,∞) by δ for large enough t.

Author's personal copy



Vol. 20 (2013) Threshold phenomena for reaction-diffusion equations 1539

We denote by v̄(x) a shift of the bump solution v(x) from Proposition
3.1 which satisfies 0 < v̄ ≤ δ for all x > L and






0 = v̄′′ + f(v̄), x > L,
v̄(L) = δ,
v̄(∞) = 0.

(3.56)

Then we construct a supersolution ū, which solves the half-line problem:





ūt = ūxx + f(ū), x > L, t > T,
ū(L, t) = δ,
ū(x, T ) = max{u(x, T ), v̄(x)}.

(3.57)

Note that since û(x, t) ≡ δ is a supersolution for ū(x, t), we have ū(x, t) ≤ δ
for all x ≥ L and t ≥ T . And by comparison principle we have u(x, t) ≤ ū(x, t)
for all x ≥ L and t ≥ T .

We now introduce

w(x, t) := ū(x, t) − v̄(x) ≥ 0, x > L, t > T, (3.58)

which satisfies the linear equation:

wt = wxx + f ′(w̃)w, x > L, t > T, (3.59)

for some v̄ ≤ w̃ ≤ ū, with homogeneous Dirichlet boundary condition

w(L, t) = 0, t > T. (3.60)

Since 0 ≤ w(x, T ) ≤ u(x, T ), we have w(·, T ) ∈ L2(R) by Proposition 2.1.
Furthermore, in view of (3.3) the solution w̄ of the heat equation with the
same initial and boundary conditions:

w̄t = w̄xx, x>L, t > T, w̄(L, t)=0, t>T, w̄(x, T ) = w(x, T ), x>L,

(3.61)

is a supersolution for w. Then, by the estimate similar to the one in (3.45) and
comparison principle, we have:

‖w(·, t)‖Lp+1(R) ≤‖w̄(·, t)‖Lp+1(R) ≤C(t − T )− p−1
4(p+1) ‖w(·, T )‖L2(R) → 0

as t → ∞. (3.62)

Estimating ‖ū(·, t)‖Lp+1(R) in terms of ‖w(·, t)‖Lp+1(R), we obtain

‖ū(·, t)‖Lp+1(L,∞) ≤ ‖w(·, t)‖Lp+1(L,∞) + ‖v̄‖Lp+1(L,∞) ∀t ≥ T. (3.63)

On the other hand, it is clear that the estimates in Proposition 3.1 apply to v̄
as well. Therefore

‖v̄‖p+1
Lp+1(L,∞) ≤ Cδ

p+3
2 . (3.64)

for some C > 0 and all δ > 0 sufficiently small. Finally, combining (3.62) and
(3.64) in (3.63), by comparison principle we conclude that ‖u(·, t)‖Lp+1(L,∞)

can be made arbitrarily small for all t ≥ T by choosing a sufficiently small δ
in the limit t → ∞. !
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Note that we have now proved our Theorem 2.
Let us finally consider the question of threshold phenomena. We use sim-

ilar notations as in [13]. Let X := {φ(x) : φ(x) satisfies (1.2) and (SD)}. We
consider a one-parameter family of initial conditions φλ, λ > 0, satisfying the
following conditions:
(P1) For any λ > 0, φλ ∈ X, the map λ '→ φλ is continuous from R+ to L2(R);
(P2) If 0 < λ1 < λ2, then φλ1 ≤ φλ2 and φλ1 3= φλ2 in L2(R).
(P3) lim

λ→0
φλ(x) = 0 in L2(R).

We denote by uλ(x, t) the solution of (1.1) with the initial datum φλ.
Here is our main result concerning threshold phenomena for bistable non-

linearities.

Theorem 3. Under the same conditions as in Theorem 1, suppose that (P1)
through (P3) hold. Then one of the following two conclusions is true:
1. lim

t→∞
uλ(x, t) = 0 uniformly in R for every λ > 0;

2. There exists λ∗ > 0 such that

lim
t→∞

uλ(x, t) =






0, uniformly in R, for 0 ≤ λ < λ∗,
v(x), uniformly in R, for λ = λ∗,
1, locally uniformly in R, for λ > λ∗.

Proof. We define

Σ0 := {λ > 0 : uλ(x, t) → 0 as t → ∞ uniformly in x ∈ R},

Σ1 := {λ > 0 : uλ(x, t) → 1 as t → ∞ locally uniformly in x ∈ R}.

We know that λ ∈ Σ0 if and only if there exists T ≥ 0 such that u(0, T ) < θ0.
Clearly the set Σ0 is open. Furthermore, by comparison principle, if λ̂ ∈ Σ0,
then for any λ < λ̂, λ ∈ Σ0. So Σ0 is an open interval.

If Σ1 3= (0, ∅), then the set Σ1 is an open interval (semi-infinite) as
well. Indeed, by Corollary 3.7 for every λ ∈ Σ1 there exists T ≥ 0 such that
E[uλ(·, T )] < 0. Then by continuity of the energy functional in H1(R) and
continuous dependence in H1(R) of the solution at t > 0 on the initial data
in L2(R) (see Proposition 2.1), there exists δ > 0 such that for all |λ′ − λ| < δ
we have E[uλ′(·, T )] < 0. Hence λ′ ∈ Σ1 as well. And by comparison principle,
if λ̃ ∈ Σ1, then for any λ > λ̃, λ ∈ Σ1. Then we know that R+ \ (Σ0 ∪Σ1) is a
closed set, and, more precisely, a closed interval.

We will prove that if R+ \ (Σ0 ∪ Σ1) is not empty, then it contains only
one point. Consider the Schrödinger-type operator:

L = − d2

dx2
+ V(x), V(x) := −f ′(v(x)), (3.65)

and the associated Rayleigh quotient (for technical background, see, e.g.,
[32, Chapter 11]):

R(φ) :=
∫

R
(
|φ′|2 + V(x)φ2

)
dx∫

R φ
2dx

. (3.66)
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To study minimization problem for R, we also consider

L̃ = − d2

dx2
+ Ṽ(x), Ṽ(x) := V(x) + f ′(0) = −(f ′(v(x)) − f ′(0)), (3.67)

with the associated Rayleigh quotient

R̃(φ) = R(φ) + f ′(0). (3.68)

Since Ṽ(x) ∈ L∞(R) and vanishes at infinity, by [32, Theorem 11.5] there
exists a function φ0 ∈ H1(R) such that φ0 3= 0 and φ0 minimizes R̃, provided

E0 := inf{R̃(φ) : φ ∈ H1(R), φ 3= 0} < 0. (3.69)

Moreover, by [32, Theorem 11.8], if there exists a minimizer φ0 ∈ H1(R),
φ0 3= 0, then φ0 can be chosen to be a strictly positive function, and φ0

is unique up to a constant factor. Then, since by Proposition 3.1 we have
v′ ∈ H1(R), translational symmetry of the problem yields (test (1.4) with v′′

and integrate by parts):

R̃(v′) = f ′(0). (3.70)

By (3.3), f ′(0) ≤ 0. Moreover, since v′ changes sign, we know that v′ is not
a minimizer of R̃, so E0 < R̃(v′) ≤ 0, and there exists a positive function
φ0 ∈ H1(R) that minimizes R̃, with

min{R̃(φ) : φ ∈ H1(R), φ 3= 0} = R̃(φ0) < f ′(0). (3.71)

Note that φ0 also minimizes R, with

min{R(φ) : φ ∈ H1(R), φ 3= 0} = R(φ0) =: ν0 < 0. (3.72)

Approximating φ0 by a function with compact support and using it as a
test function, we can then see that

min{R(φ) : φ ∈ H1
0 (−L,L), φ 3= 0} =: νL

0 < 0 (3.73)

as well for a sufficiently large L > 0, and in this case there exists a positive
minimizer φL

0 ∈ H1
0 (−L,L) ∩ C2(−L,L) ∩ C1([−L,L]) such that

L(φL
0 ) = νL

0 φ
L
0 . (3.74)

If Σ1 is not empty and the threshold set R+ \ (Σ0 ∪ Σ1) does not con-
tain only one point, then there exist two distinct values 0 < λ1 < λ2 in
the threshold set. Since f(u) ∈ C1([0,∞)), f ′(u) is uniformly continuous on
[0,max{1, ‖φ‖L∞}]. Thus, there exists δ > 0 such that

|f ′(u1) − f ′(u2)| <
|νL

0 |
2

, (3.75)

for any u1, u2 ∈ [0,max{1, ‖φ‖L∞}] satisfying |u1 − u2| < δ. Since λ1,2 ∈
R+ \(Σ0 ∪Σ1), we have lim

t→∞
uλ1,2(x, t) = v(x) uniformly in x ∈ R. Then, there

exists T sufficiently large, such that |uλ1,2(x, t) − v(x)| < δ for any t ≥ T and
all x ∈ R. So we have

max
x∈[−L,L]

|f ′(v(x)) − f ′(ũ(x, t))| <
|νL

0 |
2

, (3.76)
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for every uλ1(x, t) ≤ ũ(x, t) ≤ uλ2(x, t) and all t ≥ T . However, let w(x, t) =
uλ2(x, t) − uλ1(x, t), then w(x, t) satisfies the following equation,

wt = wxx + f ′(ũ)w, x ∈ R, t > 0, (3.77)

for some uλ1(x, t) ≤ ũ(x, t) ≤ uλ2(x, t). By the strong maximum principle
w(x, t) > 0 for any x ∈ R and t > 0. Hence there exists ε > 0 such that
w(x, T ) > εφL

0 (x). Let εφL
0 (x) =: w(x, t). Then

wt − wxx − f ′(ũ)w = −wxx − f ′(v)w + (f ′(v) − f ′(ũ))w
= νL

0 w + (f ′(v) − f ′(ũ))w

≤ νL
0

2
w

≤ 0, (3.78)

which implies that w(x, t) is a subsolution for t ≥ T . So by comparison prin-
ciple

uλ2 − uλ1 ≥ εφL
0 (x), ∀t ≥ T, (3.79)

i.e., there exists a barrier between uλ1 and uλ2 , which contradicts the assump-
tion that both uλ1(x, t) and uλ2(x, t) converge to v(x) uniformly in R, as
t → ∞. It means that if R+ \ (Σ0 ∪Σ1) is not empty, then it only contains one
point. !

Remark 3.16. By Corollary 3.7 and comparison principle, to ensure that λ∗ <
∞ in Theorem 3 it is enough if there exists λ > 0 and φ̃λ ∈ L2(R) such that
0 ≤ φ̃λ ≤ φλ and E[φ̃λ] < 0. This condition is easily seen to be verified for
the family of characteristic functions of growing symmetric intervals studied
by Kanel’ [8]. Also, by Theorem 2 and the monotone decrease of the energy
evaluated on solutions the condition E[φλ] < E0 for some λ > 0 implies that
uλ(x, t) 3→ v(x). In particular, if sup0<λ<λ̄ E[φλ] < E0, then λ∗ > λ̄.

4. Monostable Nonlinearity

In this section, we study the monostable nonlinearity, i.e., f(u) ∈ C1([0,∞), R),

f(0) = f(1) = 0, f(u)
{

> 0, in (0, 1),
< 0, in (1,∞). (4.1)

Moreover, we assume that the monostable nonlinearity f(u) also satisfies

f ′(0) = 0. (4.2)

Typical examples are the Arrhenius combustion nonlinearity

f(u) = (1 − u)e− a
u , a > 0, (4.3)

and the generalized Fisher nonlinearity, i.e., the nonlinearity

f(u) = up(1 − u), (4.4)

with exponent p > 1.
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Under conditions (4.1), there exists one root of V (u): u = 0, and possibly
a second root u = θ' > 1. However, since lim

t→∞
‖u(x, t)‖L∞(R) ≤ 1, without loss

of generality, we suppose that ‖φ‖L∞(R) < θ'. So that we always suppose that
V (u) ≤ 0.

We have the following theorems about convergence and one-to-one rela-
tions between the limit value of the energy and the long time behavior of
solutions, similar to the bistable case.

Theorem 4. Let f satisfy conditions (4.1) and (4.2), and let φ(x) satisfy con-
dition (1.3) and hypothesis (SD). Then one of the following holds.

1. lim
t→∞

u(x, t) = 1 locally uniformly in R,
2. lim

t→∞
u(x, t) = 0 uniformly in R.

Theorem 5. Under the same conditions as in Theorem 4, we have the following
one-to-one relation.

1. lim
t→∞

u(x, t) = 1 locally uniformly in R ⇔ lim
t→∞

E[u(·, t)] = −∞.
2. lim

t→∞
u(x, t) = 0 uniformly in R ⇔ lim

t→∞
E[u(·, t)] = 0.

Throughout the rest of this section, the hypotheses of Theorem 4 are
assumed to be satisfied. We start by establishing the following conclusion.

Lemma 4.1. If lim
t→∞

u(x, t) = 1 locally uniformly in R, then lim
t→∞

E[u(·, t)] =
−∞. And if lim

t→∞
u(x, t) = 0 uniformly in R, then lim

t→∞
E[u(·, t)] ≤ 0.

Proof. Under condition (4.1), we know that
∫

R V (u)dx ≤ 0. And if u → 1
locally uniformly in R, then

lim
t→∞

∫

R
V (u(x, t))dx = −∞. (4.5)

By hypothesis (SD), we have
∫

R

1
2
u2

x(x, t)dx =
∫ ∞

0
u2

x(x, t)dx

≤ ‖ux(x, t)‖L∞(R)u(0, t). (4.6)

Then by standard parabolic regularity the left-hand side of (4.6) is bounded
uniformly in time. So we proved the first conclusion. On the other hand, if
u → 0 uniformly in R, then the left-hand side of (4.6) converges to 0. In view
of V (u(x, t)) ≤ 0, we proved the second conclusion. !

Similarly to Lemma 3.2 for the bistable case, we have the following lemma
for the monostable case.

Lemma 4.2. Assume that there exists c0 > 0 such that φ(x) ∈ H1
c0

(R). If there
exists T ≥ 0 such that E[u(·, T )] < 0, then u(x, t) is wave-like.
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Proof. Since φ(x) ∈ H1
c0

(R), we have u(x, T ) ∈ H1(R)∩H1
c0

(R). For any small
ε > 0, when E[u(x, T )] = −ε < 0, there exists L > 0 such that

0 ≤ 1
2

∫ ∞

L
ec0xu2

x(x, T )dx <
ε

8
, (4.7)

−ε

8
<

∫ ∞

L
ec0xV (u(x, T ))dx ≤ 0. (4.8)

Note that if we use smaller c ≥ 0 instead of c0 in the above inequalities, they
still hold. And by the definition of L we know that

∫ L

−L

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < −3ε
4

. (4.9)

So we can find a sufficiently small c > 0 such that c < c0 and
∫ L

−L
ecx

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < −ε

2
. (4.10)

Then we have

Φc[u(·, T )] =
∫

R
ecx

(
1
2
u2

x(x, T ) + V (u(x, T ))
)

dx < 0. (4.11)

So u is wave-like. !

In contrast to the bistable case, for monostable case boundedness of
energy always implies extinction.

Lemma 4.3. Suppose that E[u(·, t)] is bounded from below for all t ≥ 1, then
lim

t→∞
u(x, t) = 0 uniformly in R.

Proof. Since the unique root of V (u) is 0, arguing as in Lemma 3.8 we know
that u(0, t) → 0 as t → ∞. Then we prove this lemma by using Proposition
2.8. !

Lemma 4.4. Suppose that there exists T ≥ 0 such that E[u(·, T )] < 0. Then
lim

t→∞
u(x, t) = 1 locally uniformly in R.

Proof. The proof is similar to the proof of Lemma 3.4. If E[u(·, T )] < 0 for some
T ≥ 0, then there exists a sufficiently small c > 0 such that Φc[ϕLu(·, T )] < 0
for large enough L > 0, where the cutoff function ϕL is as in Lemma 3.4.
Moreover, by the conditions (4.1) and (4.2), there exists δ0 > 0 defined by
(2.9), such that Proposition 2.7 holds. Then we know that Rδ0(t) > ct+R0 for
some R0 ∈ R. Similarly to Lemma 3.3, since the unique solution of Eq. (1.4)
larger than δ0 is 1 in the whole of R, we conclude that lim

t→∞
u(x, t) = 1 locally

uniformly in R. !

An immediate consequence of Lemmas 4.1 and 4.4 is the following.

Corollary 4.5. Suppose that lim
t→∞

u(x, t) = 0 uniformly in R, then lim
t→∞

E[u(·, t)]
= 0.
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We have thus established Theorems 4 and 5.
Our last theorem in this section concerns with the threshold phenomena

for monostable nonlinearities.

Theorem 6. Under the same conditions as in Theorem 4, suppose that (P1)
through (P3) hold. Then one of the following holds:
1. lim

t→∞
uλ(x, t) = 0 uniformly in x ∈ R for every λ > 0;

2. lim
t→∞

uλ(x, t) = 1 locally uniformly in x ∈ R for every λ > 0;
3. There exists λ∗ > 0 such that

lim
t→∞

uλ(x, t) =
{

0, uniformly in x ∈ R, for 0 < λ ≤ λ∗,
1, locally uniformly in x ∈ R, for λ > λ∗.

Proof. Similarly to the proof of Theorem 3, if neither Σ0 = ∅ nor Σ1 = ∅,
then Σ1 is an open interval. The conclusion then follows. !

Note that our sharp transition result above is nontrivial, e.g., for the
generalized Fisher nonlinearity in (4.4) with p > pc, where pc = 3 is the Fujita
exponent (see, e.g., [20, Theorem 3.2]).

5. Ignition Nonlinearity

The ignition nonlinearity f(u) ∈ C1([0,∞), R) satisfies

f(u)






= 0, in [0, θ0] ∪ {1},
> 0, in (θ0, 1),
< 0, in (1,∞),

(5.1)

for some θ0 ∈ (0, 1). We also suppose that there exists δ > 0 such that

f(u) is convex on [θ0, θ0 + δ]. (5.2)

Under (1.3) and (5.1), except on the interval [0, θ0], there exists at most one
root u = θ' > 1 of V (u). However, since lim sup

t→∞
‖u(x, t)‖L∞(R) ≤ 1, without

loss of generality, we suppose that ‖φ‖L∞(R) < θ'. So that we always have
V (u) ≤ 0.

Here are our main results concerning the long time behavior of solutions
and their energy.

Theorem 7. Let f satisfy conditions (5.1) and (5.2). Let φ(x) satisfy condition
(1.3) and hypothesis (SD). Then one of the following holds.

1. lim
t→∞

u(x, t) = 1 locally uniformly in x ∈ R,
2. lim

t→∞
u(x, t) = θ0 locally uniformly in x ∈ R,

3. lim
t→∞

u(x, t) = 0 uniformly in x ∈ R.

Theorem 8. Under the same assumptions as in Theorem 7, we have the fol-
lowing one-to-one relation.

1. lim
t→∞

u(x, t) = 1 locally uniformly in x ∈ R ⇔ lim
t→∞

E[u(·, t)] = −∞.
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2. lim
t→∞

u(x, t) = θ0 locally uniformly in x ∈ R or lim
t→∞

u(x, t) = 0 uniformly
in x ∈ R ⇔ lim

t→∞
E[u(·, t)] = 0.

We prove the above theorems via a sequence of lemmas.

Lemma 5.1. Suppose that there exists T ≥ 0 such that E[u(·, T )] < 0, then
lim

t→∞
u(x, t) = 1 locally uniformly in R.

Proof. The arguments follow those in the proof of Lemma 3.4. If E[u(·, T )] <
0 for some T ≥ 0, then there exists a sufficiently small c > 0 such that
Φc[ϕLu(·, T )] < 0 for large enough L > 0, where the cutoff function ϕL is as
in Lemma 3.4. Moreover, the condition in (5.1) implies that δ0 > θ0, where δ0
is defined by (2.9). Then from Proposition 2.7, we know that Rδ0(t) > ct + R0

for some R0 ∈ R. Similarly to Lemma 3.3, since the unique solution of Eq.
(1.4) larger than δ0 is 1 in the whole of R, we conclude that lim

t→∞
u(x, t) = 1

locally uniformly in R. !
Lemma 5.2. Suppose that E[u(·, t)] is bounded from below in t. Then either
lim

t→∞
u(x, t) = 0 uniformly in R, or lim

t→∞
u(x, t) = θ0 locally uniformly in R.

Proof. As in Lemma 3.8, there exists an unbounded increasing sequence {tn}
such that

lim
n→∞

V (u(0, tn)) = 0. (5.3)

Since lim sup
n→∞

‖u(·, tn)‖L∞(R) ≤ 1, by the assumptions on the nonlinearity we

have V (u) = 0 if and only if u ∈ [0, θ0]. It implies that there exists a convergent
subsequence of {u(0, tn)} (still denoted by {u(0, tn)}) such that

lim
n→∞

u(x, tn) = α, (5.4)

for some α ∈ [0, θ0].
Suppose that 0 ≤ α < θ0, then there exists T ≥ 0 sufficiently large such

that u(0, T ) < θ0. Then, for any t > T , u(x, t) ≡ θ0 is a supersolution of (1.1),
so that 0 ≤ u(x, t) ≤ θ0 uniformly in R. From the definition of f(u), it then
follows that (1.1) becomes

ut(x, t) = uxx(x, t), (5.5)

for any t > T . By [21, Proposition 48.4] we then have:

‖u(·, t)‖L∞(R) ≤ ((4π(t − T ))− 1
4 ‖u(·, T )‖L2(R) → 0 as t → ∞. (5.6)

It means that if α < θ0, then α = 0, and lim
t→∞

u(x, t) = 0 uniformly in R.
If α = θ0, then by using the same ODE argument as in the proof of

Lemma 3.11, we can prove that lim
t→∞

u(x, t) = θ0 locally uniformly in R. This
proves the lemma. !
Corollary 5.3. Suppose that lim

t→∞
u(x, t) = 1 locally uniformly in R, then

lim
t→∞

E[u(·, t)] = −∞.
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Lemma 5.4. Both lim
t→∞

u(x, t) = 0 uniformly in R and lim
t→∞

u(x, t) = θ0 locally
uniformly in R imply lim

t→∞
E[u(·, t)] = 0.

Proof. By Lemma 5.1, E[u(·, t)] ≥ 0 for these behaviors. And since V (u) ≤ 0
for any u, we have

E[u(·, t)] ≤
∫

R

1
2
u2

x(x, t)dx. (5.7)

So we only need to prove that the right-hand side of (5.7) converges to 0 as
t → ∞. From (SD), we have

∫

R

1
2
u2

x(x, t)dx =
∫ ∞

0
u2

x(x, t)dx ≤ ‖ux(·, t)‖L∞(R)u(0, t). (5.8)

We are done if lim
t→∞

u(x, t) = 0 uniformly in R, because ‖ux(·, t)‖L∞(R) is
bounded by standard parabolic regularity. So we only need to prove that
‖ux(·, t)‖L∞(R) → 0 as t → ∞ for the case lim

t→∞
u(x, t) = θ0 locally uniformly

in R.
We first prove that

lim
t→∞

sup
|x|≤Rθ0 (t)

|ux(x, t)| = 0. (5.9)

Otherwise there exist δ > 0, an increasing sequence {tn} with lim
n→∞

tn = ∞,
and a sequence {xn} with |xn| ≤ Rθ0(tn), such that |ux(xn, tn)| ≥ δ. Since
|xn| ≤ Rθ0(tn), for every n we have u(xn, tn) ≥ θ0 , and without loss of gen-
erality we can assume that xn < 0 and ux(xn, tn) > 0. However, by standard
parabolic regularity, there exists M > 0, such that |uxx(x, t)| < M for all
x ∈ R and all t ≥ 1. This implies that for every n

u

(
xn +

δ

M
, tn

)
> θ0 +

δ2

2M
, (5.10)

which contradicts our assumption that lim
t→∞

u(x, t) = θ0 locally uniformly in R.
Then we estimate |ux(x, t)| on (Rθ0(t),∞). Multiplying (1.1) by ux and

integrating from the leading edge Rθ(t) to ∞, which is justified by Proposition
2.1, for any θ ∈ (0, θ0], we have

∫ ∞

Rθ(t)
ux(x, t)ut(x, t)dx =

∫ ∞

Rθ(t)
ux(x, t)uxx(x, t)dx, (5.11)
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since f(u) = 0 for any u ∈ [0, θ0]. Integrating by parts and applying Cauchy-
Schwarz inequality, we obtain

1
2
u2

x(Rθ(t), t) ≤
(∫ ∞

Rθ(t)
u2

x(x, t)dx

∫ ∞

Rθ(t)
u2

t (x, t)dx

) 1
2

≤
(
θmax

x∈R
|ux(x, t)|

∫ ∞

Rθ(t)
u2

t (x, t)dx

) 1
2

≤
(
θ0 max

x∈R
|ux(x, t)|

∫

R
u2

t (x, t)dx

) 1
2

. (5.12)

Since E[u(·, t)] is bounded from below in t, there exists an increasing sequence
{tn} such that lim

n→∞
tn = ∞ and

lim
n→∞

∫

R
u2

t (x, tn)dx = 0. (5.13)

In turn, since θ is arbitrary in (0, θ0], we have

lim
n→∞

sup
x>Rθ0 (tn)

|ux(x, tn)| = 0. (5.14)

This means that the right-hand side of (5.7) converges to 0 on the sequence
{tn}. The statement of the lemma then follows, since E[u(·, t)] is non-increas-
ing. !

We have now proved our convergence and equivalence theorems for the
ignition nonlinearity. Studying the threshold phenomena for ignition nonlin-
earity is a little different from the situation with bistable nonlinearity. The
main difficulty is to show that the threshold set contains only a single point,
since we cannot construct the type of barrier used in the proof of Theorem
3. Instead we modify the proof by Zlatoš in [10], which uses a rescaling tech-
nique for dealing only with the initial condition in the form of a characteristic
function.

Lemma 5.5. Let f : [0,∞) → R be a Lipschitz function with f(0) = 0. Let
U(x, t) : R × [0,∞) → [0,∞) be a classical solution of

Ut = Uxx + f(U), (5.15)

which is uniformly continuous up to t = 0. Denote by U1(x, t) and U2(x, t)
the solutions of Eq. (5.15) with initial conditions U1(x, 0) and U2(x, 0), respec-
tively, and assume 0 ≤ U1(x, 0) ≤ U2(x, 0) for any x ∈ R, and U1(x0, 0) <
U2(x0, 0) for some x0 ∈ R. Assume also that for any ρ > 0 the set Ω0,ρ = {x ∈
R : U2(x, 0) ≥ ρ} is compact. Finally, assume that there are 0 < θ1 < θ2 and
ε1 > 0 such that for any θ ∈ [θ1, θ2] and ε ∈ [0, ε1], we have

f(θ + ε(θ − θ1)) ≥ (1 + ε)f(θ), (5.16)

and assume ‖U1‖L∞(R×(0,∞)) < θ2 for any t ∈ [0,∞). Then

lim inf
t→∞

inf
U1(x,t)>θ1

U2(x, t) − θ1
U1(x, t) − θ1

> 1, (5.17)
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with the convention that the infimum over an empty set is ∞.

Proof. It is essentially [10, Lemma 4]. !

Theorem 9. Under the same conditions as in Theorem 7, suppose that (P1)
through (P3) hold. Then one of the following holds:

1. lim
t→∞

uλ(x, t) = 0 uniformly in x ∈ R for every λ > 0;
2. There exists λ∗ > 0 such that

lim
t→∞

uλ(x, t) =






0, uniformly in x ∈ R, for 0 < λ < λ∗,
θ0, locally uniformly in x ∈ R, for λ = λ∗,
1, locally uniformly in x ∈ R, for λ > λ∗.

Proof. Similarly to the proof of Theorem 3, we can show that if Σ0 3= (0,∞),
then both Σ0 and Σ1 are open intervals, and hence R+ \ (Σ0 ∪ Σ1) is a closed
interval. Then we only need to prove that R+ \(Σ0 ∪Σ1) contains only a single
point. We need to verify that if f(u) satisfies (5.1) and (5.2), then there exists
ε1 > 0, and 0 < θ1 < θ0 < θ2 < 1 such that condition (5.16) holds. Note
that convexity of f(u) on [θ0, θ0 + δ] implies that f(u) is nondecreasing on
[θ0, θ0 + δ], and θ0 + δ < 1. Taking ε1 = δ/2, θ1 = θ0/2, θ2 = (3θ0 + δ)/3, we
only need to prove that (5.16) holds for any ε ∈ [0, ε1] and θ ∈ [θ0, θ2]. Let
α := θ − θ0 ∈ [0, δ/3]. We have the following estimate of the left-hand side of
(5.16),

f(θ + ε(θ − θ1)) = f

(
θ0 + (1 + ε)α+

εθ0
2

)
≥ f(θ0 + (1 + ε)α), (5.18)

since θ + ε(θ − θ1) < θ0 + δ. By convexity we also have

f(θ0 + α) ≤ f(θ0 + (1 + ε)α)
1 + ε

+
εf(θ0)
1 + ε

, (5.19)

which proves

f(θ0 + (1 + ε)α) ≥ (1 + ε)f(θ0 + α), (5.20)

for any ε ∈ [0, ε1] and α ∈ [0, θ2 − θ0]. Hence (5.16) holds for any θ ∈ [θ1, θ2]
and ε ∈ [0, ε1].

Then we suppose that there exist two distinct values 0 < λ1 < λ2 in the
threshold set R+ \ (Σ0 ∪Σ1). Denote by uλ1(x, t) and uλ2(x, t) these solutions
with initial conditions φλ1 and φλ2 , respectively. Taking θ1, θ2 as above, there
exists T > 0 such that ‖uλ1‖L∞(R×(0,∞)) < θ2, for any t ≥ T . And for any
t ≥ T , let U1(x, t) := uλ1(x, t − T ) and U2(x, t) := uλ2(x, t − T ). Obviously all
the assumptions of Lemma 5.5 hold. So there exists r > 1 such that

lim inf
t→∞

U1(0, t) − θ1
U2(0, t) − θ1

≥ r. (5.21)

But both U1(0, t) and U2(0, t) converge to θ0 as t → ∞. So that the left-hand
side of (5.21) must be 1, which is a contradiction. !

Remark 5.6. The C1 property of f(u) and condition (5.1) imply that f ′(θ0) =
0. If we suppose that f(u) ∈ C[0,∞) ∩ C1(θ0,∞), together with (5.1), and
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lim
u→θ+

0

f ′(u) > 0, then without local convexity condition (5.2) all the conclu-

sions about convergence, equivalence, and sharp transition in this section still
hold.
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