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Abstract We study multiplicity of the supercritical traveling front solutions for scalar
reaction–diffusion equations in infinite cylinders which invade a linearly unstable equilib-
rium. These equations are known to possess traveling wave solutions connecting an unstable
equilibrium to the closest stable equilibrium for all speeds exceeding a critical value. We
show that these are, in fact, the only traveling front solutions in the considered problems
for sufficiently large speeds. In addition, we show that other traveling fronts connecting to
the unstable equilibrium may exist in a certain range of the wave speed. These results are
obtained with the help of a variational characterization of such solutions.

1 Introduction

Front propagation is a ubiquitous feature of many reaction–diffusion systems in physics,
chemistry and biology [1–6]. A question of particular interest that arises in a number of
applications is related to fronts that invade an unstable equilibrium (for a review, see [7]).
One of the well-known examples of such a system is given by a scalar reaction–diffusion
equation in a cylindrical domain:

ut = !u + f (u, y). (1.1)
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Here u = u(x, t) ∈ R is the dependent variable, x ∈ " ⊂ Rn is a point in a cylindrical
domain " = #×R, whose cross-section # ⊂ Rn−1 is a bounded domain with the boundary
of class C2 (not necessarily simply-connected), and t ∈ [0,+∞) is time. We will often write
x = (y, z) ∈ ", where y ∈ # is the coordinate on the cylinder cross-section and z ∈ R is
the coordinate along the cylinder axis. The function f : R × # → R is a nonlinear reaction
term. On different connected portions of the boundary we assume either Dirichlet or Neu-
mann boundary conditions (see [8] for the motivation of this particular choice of boundary
conditions)

u
∣∣
∂"±

= 0, ν · ∇u
∣∣
∂"0

= 0, (1.2)

where ∂"± = ∂#± × R and ∂"0 = ∂#0 × R. Furthermore, we assume that u = 0 is an
unstable solution of (1.1) in the sense of linear stability.

By front solutions of (1.1), one understands traveling wave solutions, which are special
solutions of (1.1) of the form u(y, z, t) = ū(y, z−ct), connecting monotonically two distinct
equilibria, i.e., stationary z-independent solutions of (1.1). In the present context, of special
interest are the fronts which invade the u = 0 equilibrium. Assuming the invasion happens
from left to right, the profile ū > 0 of such fronts is described by the following equation:

!ū + cūz + f (ū, y) = 0, lim
z→+∞

ū(·, z) = 0 uniformly in #, (1.3)

with the same boundary conditions as in (1.2), where c > 0 is the propagation speed. These
solutions are known to play an important rôle in the long-time behavior of solutions of (1.1)
(for an overview, see e.g., [9]).

The problem of existence and uniqueness of solutions to (1.3) has a long history, going back
to the pioneering works of Kolmogorov, Petrovsky and Piskunov [10], and within the present
context has been extensively studied by Beretsycki and Nirenberg [11], and Vega [12,13].
Specifically, Berestycki and Nirenberg established existence, monotonicity, and uniqueness
of solutions of (1.3) connecting zero to the smallest positive equilibrium for all c ≥ c∗

1,
for some c∗

1 > 0 (for the precise definition, see Sect. 3), in the case of Neumann boundary
conditions [11, Theorem 1.9]. Their methods were later extended by Vega to problems with
Dirichlet boundary conditions [12, Theorem 3.4(B)]. We note that in these works uniqueness
of the front solutions is understood in the class of functions connecting zero ahead of the
front to a prescribed equilibrium behind the front. In general, front solutions of (1.3) may fail
to be unique, even for a fixed value of c, if they are allowed to approach different equilibria.
One example of multiplicity of the front solutions to (1.3) was given by Vega under specific
assumptions on the set of equilibria of (1.1) [12, Remark 3.5(B)].

The question of multiplicity of solutions of (1.3) and (1.2) without prescribing the asymp-
totic behavior behind the front is largely open. The main goal of this paper is to provide some
easily verifiable conditions to establish existence or non-existence of multiple solutions of
(1.3). To this end, we develop variational tools to study existence and multiplicity of super-
critical fronts, i.e., the solutions of (1.3) with speed c > c∗, where c∗ > 0 is some critical
propagation velocity, whose precise value will be specified in Sect. 3. One of the by-products
of our methods is an independent proof of existence of solutions to (1.3) obtained in [11,12].
However, it is worth noticing that our method can yield solutions of (1.3), (1.2) that are differ-
ent from those of [11,12] under easily verifiable conditions, thus establishing multiplicity of
supercritical fronts for certain ranges of propagation speed. At the same time, our variational
characterization, together with some refined analysis of the decay of solutions ahead of the
front also yields global uniqueness of solutions of (1.3) and (1.2) for all c > c&, for some
c& ≥ c∗ which is readily computable. Thus, the solutions obtained in [11,12] are the only
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Multiplicity of supercritical fronts

positive traveling wave solutions for (1.1), (1.2) invading the unstable equilibrium u = 0 for
c large enough, irrespectively of the asymptotic behavior at z = −∞. This is one of the main
contributions of this paper, and we illustrate it by a simple example in which all the estimates
are explicit.

Our approach is mostly variational, based on the ideas developed in [14–18], relying on
the fact that (1.3) is the Euler–Lagrange equation for a suitable functional 'c defined on
the exponentially weighted Sobolev space H 1

c (") (see Sect. 2 for precise definitions). How-
ever, in the application of the direct method of calculus of variations to get existence of the
traveling wave solutions of interest, one runs into the difficulty that these solutions do not
belong to H 1

c ("). To overcome this difficulty, we first construct, by non-variational methods,
an auxiliary function which solves (1.3) for z sufficiently large and subtract its contribution
from the integrand of 'c, thus removing the divergence of the integral. We then minimize
the modified functional to obtain a non-trivial H 1

c (") correction to the prescribed auxiliary
function. As a direct consequence, the existence of a traveling front is established. We point
out that the obtained existence results complement those of [18].

We notice that the solution constructed in this way may depend on the choice of the aux-
iliary function and thus may be non-unique. Nevertheless, we show that this does not happen
for sufficiently large values of c, in which case the obtained solution is the unique front
solution of (1.3). The proof of uniqueness also has both a variational and a non-variational
parts: first, using delicate exponentially weighted L2-estimates, we show that the difference
of any two solutions with the same asymptotic decay at z = +∞ belongs to H 1

c ("), and
then we prove uniqueness by convexity of the respective functional for c large enough.

The paper is organized as follows. In Sect. 2 we introduce hypotheses and notations and
in Sect. 3 we state main theorems. In Sect. 4 we construct an auxiliary function which rep-
resents the principle part of the traveling wave solution for large z. Section 5 describes the
variational setting for the modified functional. In Sect. 6 we present results on existence of
traveling fronts and describe their properties. Section 7 is devoted to the proof of unique-
ness of supercritical fronts traveling with sufficiently large speed. We also discuss a simple
one-dimensional example where the range of velocities for which uniqueness holds can be
explicitly computed. Finally, in Sect. 8 we prove a global stability result for the supercritical
fronts considered in Sect. 7.

2 Preliminaries

In this section, we introduce our assumptions and give some heuristic arguments underlying
our analysis. Throughout this paper we assume # to be a bounded domain (connected open
set, not necessarily simply connected) with a boundary of class C2. We start by listing the
assumptions on the nonlinearity f which we will need in our analysis:

(H1) The function f : [0, 1] × # → R satisfies

f (0, y) = 0, f (1, y) ≤ 0. ∀y ∈ #. (2.1)

(H2) For some γ ∈ (0, 1)

f ∈ C0,γ ([0, 1] × #), fu ∈ C0,γ ([0, 1] × #), (2.2)

where fu := ∂f/∂u.

123

Author's personal copy



P. V. Gordon et al.

Note that hypotheses (H1) and (H2) are, in some sense, the minimal assumptions needed
to guarantee global existence and basic regularity of solutions of (1.1) satisfying

0 ≤ u ≤ 1. (2.3)

From now on, when we speak of the solutions of either (1.1) or (1.3), we always assume that
they satisfy (2.3).

Under the above hypotheses the following functional

'c[u] :=
∫

"

ecz

(
1
2
|∇u|2 + V (u, y)

)
dx, V (u, y) := −

u∫

0

f (s, y) ds, (2.4)

is well-defined for all functions obeying (1.2) and (2.3) that lie in the exponentially weighted
Sobolev space H 1

c ("), i.e., functions which satisfy
∫

"

ecz(
∣∣∇u|2 + u2) dx < ∞, (2.5)

for a fixed c > 0.
Our final assumption on f concerns the stability of the trivial equilibrium u = 0. In this

paper, we consider the situation, in which this equilibrium is linearly unstable. This fact is
expressed by the following hypothesis:

(U) There holds

ν0 := min
ψ∈H 1(#)
ψ |∂#±=0

∫
#(|∇yψ |2 − fu(0, y)ψ2) dy∫

# ψ2 dy
< 0. (2.6)

Indeed, the constant ν0 defined in (2.6) is the principal eigenvalue of the problem

!yψk + fu(0, y)ψk + νkψk = 0, (2.7)

with boundary conditions as in (1.2). In particular, for the principal eigenvalue we can assume
ψ0 to satisfy

!yψ0 + fu(0, y)ψ0 + ν0ψ0 = 0, ψ0 > 0, ||ψ0||L∞(#) = 1. (2.8)

Note that under hypothesis (U) we have existence of a particular solution of (1.3) and
(1.2) for some c∗ ≥ c0, where

c0 := 2
√−ν0 > 0, (2.9)

which plays an important rôle for propagation with front-like initial data [18, Theorem 5.8].
As was shown in [18, Theorem 3.3 and Theorem 4.2], there are precisely two alternatives: (i)
either there exists a non-trivial minimizer of 'c† in H 1

c†(") subject to (1.2) for some c† > c0,
in which case c∗ = c†; or (ii) there are no non-trivial minimizers of 'c in H 1

c (") subject to
(1.2) for all c > c0, in which case c∗ = c0 and there is a minimal wave with speed c0. For
our purposes here, it is convenient to introduce the following equivalent characterization of
c∗:

c∗ := inf
{
c > 0 : inf

0≤u≤1
'c[u] = 0

}
, (2.10)
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where the infimum of 'c is taken over all functions in H 1
c (") satisfying (1.2). The equiva-

lence of the two definitions of c∗ is shown by Proposition 6.1.
For c > c∗ any positive solution of (1.3) and (1.2) is expected to satisfy

ū(y, z) - aψ0(y)e−λ−(c,ν0)z, λ±(c, ν) = c ±
√

c2 + 4ν

2
, (2.11)

as z → +∞, with some a > 0 and with ψ0 > 0 being the minimizer of the Rayleigh
quotient in (2.6) normalized as in (2.8). At least formally, the asymptotic behavior of positive
solutions of (1.3) and (1.2) can be obtained by linearizing (1.3) around u = 0, leading to the
formula in (2.11) with the exponential decay rate determined by either λ+(c, ν0) or λ−(c, ν0).
However, the case corresponding to λ+(c, ν0) is impossible, since then the solution would
belong to H 1

c ("), i.e., it would be a variational traveling wave (for the definition and further
discussion, see [16–18]). But by [17, Proposition 3.5] this contradicts the assumption c > c∗.
In other words, for c > c∗ the traveling wave solutions acquire fat tails.

It is also well-known that solutions of (1.3) become z-independent as z → −∞. Thus, as
z → −∞ the function ū(·, z) is expected to approach a critical point of the energy functional

E[v] =
∫

#

(
1
2
|∇yv|2 + V (v, y)

)
dy, (2.12)

which is defined for all v ∈ H 1(#) with values in [0, 1] satisfying Dirichlet boundary
conditions on ∂#±.1 By hypothesis (H2) the critical points of E satisfy the equation

!yv + f (v, y) = 0, v|∂#± = 0, ν · ∇v|∂#0 = 0. (2.13)

Similarly to the case of z → +∞ discussed in the previous paragraph, the convergence of the
traveling wave solution to v = limz→−∞ ū(·, z) satisfying (2.13) can be, at least formally,
obtained from the analysis of (1.3) linearized around v. Introduce

ν̃0 = min
ψ̃∈H 1(#)

ψ̃ |∂#±=0

∫
#(|∇yψ̃ |2 − fu(v, y)ψ̃2) dy

∫
# ψ̃2 dy

, (2.14)

whose principal eigenvalue satisfies

!yψ̃0 + fu(0, y)ψ̃0 + ν̃0ψ̃0 = 0, ψ̃0 > 0, ||ψ̃0||L∞(#) = 1. (2.15)

Then in the generic case ν̃0 > 0, i.e., when v is a strict local minimizer of E, one expects the
solution to approach v from below when z → −∞ as

ū(y, z) - v(y) + ãe|λ−(c,ν̃0)|zψ̃0(y) for some ã < 0, (2.16)

where we noted that the rate of convergence is determined by the only negative value of
λ±(c, ν̃0) [18].

In what follows, we study existence of solutions to (1.3) and (1.2) that admit a particular
variational characterization. These are the traveling wave solutions which are minimizers of
the functional 'w

c defined as

'w
c [u] =

∫

"

ecz

(
1
2
|∇u|2 + V (u, y) − 1

2
|∇w|2 − V (w, y)

)
dx, (2.17)

1 In the variational context throughout this paper, the Dirichlet boundary conditions are understood in the
usual sense of considering the completion of the family of smooth functions whose support vanishes at the
Dirichlet portion of the boundary with respect to the corresponding Sobolev norm.
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for some suitably chosen w : " → R. Specifically, the function w ∈ C2(")∩C1(") should
solve (1.3) and (1.2) far ahead and far behind the front. As we show in Sect. 5, the functional
'w

c [u] is then well defined for all u satisfying (2.3) and u − w ∈ H 1
c (").

3 Main results

In this section, we present the main result of this paper. The first result is concerned with
existence and variational characterization of the supercritical traveling waves and is stated
in the following theorem.

Theorem 1 Assume hypotheses (H1), (H2) and (U) are true. Then, for every c > c∗ and
a ∈ R there exists ū ∈ C2(") ∩ C1(") ∩ W 1,∞(") such that 0 < ū < 1 and:

(i) ū solves (1.3) and (1.2), and there exists w ∈ C2(") ∩ C1(") with values in [0, 1]
solving (1.3) and (1.2) in # × (−∞,−z0) ∪ # × (z0,+∞) for some z0 > 0, such that
the function ū minimizes 'w

c [u] over all u satisfying (2.3), such that u − w ∈ H 1
c (").

(ii) ū(y, z) = aψ0(y)e−λ−(c,ν0)z +O(e−λz), for some λ > λ−(c, ν0) and ψ0 solving (2.8),
uniformly in C1(# × [R,+∞)), as R → +∞.

(iii) ū is a strictly monotonically decreasing function of z, and we have ū(·, z) → v uni-
formly in C1(#), where 0 < v ≤ 1 is a critical point of E, and E[v] < 0.

(iii) ν̃0 ≥ 0, moreover, if ν̃0 > 0, then ū(y, z) = v(y)+ ãψ̃0(y)e−λ−(c,ν̃0)z +O(e−λz), with
some ã < 0 and λ < λ−(c, ν̃0), uniformly in C1(# × (−∞, R]), as R → −∞.

(iv) If w̃ ∈ C2(")∩C1(") with values in [0, 1] solves (1.3) and (1.2) in #× (−∞,−z̃0)∪
# × (z̃0,+∞) for some z̃0 > 0 and w̃ − w ∈ H 1

c ("), then ū also minimizes 'w̃
c .

Let us point out that existence results for supercritical fronts in cylinders were first obtained
in the classical work of Berestycki and Nirenberg under a few extra assumptions [11] (see
also [13,12]). Specifically, they assumed (in our notation and setting) that if v1 is the smallest
positive critical point of E (in the sense that if 0 < v ≤ 1 is a critical point of E, then v ≥ v1)
and if v1 is stable, i.e., if ν̃0 > 0 with v = v1 in (2.14), then there exists a unique (up to
translations) traveling wave solution approaching zero from above as z → +∞ and v1 from
below as z → −∞. Note that existence of v1 and the property ν̃0 ≥ 0 for v = v1 follows
immediately from our hypotheses.

It is easy to see that the existence and monotonicity result for fronts connecting zero and
v1 may also be obtained from a variant of our Theorem 1, in which a minimizer of 'w

c is
constructed in the class of functions bounded above by v1. More precisely, let us define the
value of c∗

1 by (2.10), in which the infimum is taken over all u ∈ H 1
c (") satisfying (1.2) and

such that u ≤ v1:

c∗
1 = inf

{
c > 0 : inf

0≤u≤v1
'c[u] = 0

}
, (3.1)

where, again, the infimum is taken over all u ∈ H 1
c (") satisfying (1.2). Then under hypothe-

ses (H1), (H2), and (U), for every c > c∗
1 ≥ c0 and every a ∈ R there exists ū which satisfies

the conclusions of Theorem 1 with v = v1, where v1 is the smallest positive solution of
(2.13). In particular, it can be seen from Theorem 1 that ū is the minimizer of 'w

c for all w

with values in [0, 1], such that w − ū ∈ H 1
c (").

It is important to point out that using their sliding domains method, Berestycki and
Nirenberg also proved uniqueness of solutions of (1.3) and (1.2) connecting zero and a
non-degenerate v1 for all c > c∗

1 (see also [12,13,19]). On the other hand, a priori one
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Multiplicity of supercritical fronts

cannot expect uniqueness in the more general class of solutions satisfying (2.3), even in one
dimension (see the counter-example in Sect. 7). A natural question, then, is whether for a
given c > c∗ the minimizer given by Theorem 1 is the solution obtained by Berestycki and
Nirenberg. Using the variational characterization of the solution obtained in Theorem 1, we
can give a negative answer to this question in the case when c∗ > c∗

1 for a certain range of
c > c∗.

Corollary 3.1 Let c∗ > c∗
1 . Then c†

v1
> c∗, and for every c∗ < c < c†

v1
the solution ū in

Theorem 1 has v > v1.

The proof Corollary 3.1 can be found at the end of Sect. 8. Let us point out that if c∗ > c∗
1,

then for every c as in Corollary 3.1 and every a ∈ R there exist at least two solutions of (1.3)
and (1.2) satisfying (2.11).

Remark 3.2 Note that the argument leading to Corollary 3.1 also works under the assumption
that c†

v1
> c∗ when c∗ = c∗

1 = c0.

Let us now go back to the question under which conditions the solutions of Berestycki
and Nirenberg, which connect zero with v1 for every c > c∗

1 are, in fact, the unique (up to
translations) solutions of (1.3) and (1.2). In one dimension it is possible to use phase plane
arguments to show that for large enough values of c the only solution of (1.3) connects zero
to v1 (e.g., under non-degeneracy of v1). What about the higher-dimensional case? In the
following we show that the solution connecting zero to v1 is the only traveling wave solution
for large enough speeds, up to translations.

We start by introducing

ν̂0 := min
ψ∈H 1(#)
ψ |∂#±=0

∫
#(|∇yψ |2 − q(y)ψ2) dy∫

# ψ2 dy
, q(y) := max

s∈[0,1]
fu(s, y). (3.2)

In analogy with (2.9), we can then define the quantity

c& := 2
√

−ν̂0, (3.3)

which is easily seen to satisfy c0 ≤ c& < ∞. It turns out that c& gives a lower bound for the
values of c, for which the solution of (1.3) and (1.2) is unique, up to translations. Our global
uniqueness result, which relies on the variational characterization of the obtained solutions
is contained in the following theorem.

Theorem 2 Let c > c&, where c& ≥ c0 is defined in (3.3), and let the assumptions of Theorem
1 be satisfied. Then c& ≥ c∗, and for every c > c& there exists a unique solution of (1.3) and
(1.2) (up to translations).

Furthermore, the unique solution of Theorem 2 is globally stable with respect to pertur-
bations with sufficiently fast exponential decay.

Theorem 3 Let ū be the traveling wave solution with speed c > c& from Theorem 2, and let
0 ≤ u0 ≤ 1 satisfy u0 − ū ∈ L2

c′("), for some c′ > 2λ−(c, ν̂0). Then, if u is the solution of
(1.1) and (1.2) with u(x, 0) = u0(x), we have

||u(y, z + ct, t) − ū(y, z)||L2
c′ (") ≤ Ce−σ t , (3.4)

for some σ > 0, C > 0.
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We note that the result of Theorem 3 also holds in other norms, e.g. with respect to uniform
convergence on compacts (see [20] for details).

Note that as a direct consequence of Theorems 1–3 we have a complete characterization
of the supercritical fronts in problems involving nonlinearities of the kind that was originally
considered in [10,21]:

Corollary 3.3 Under hypotheses (H1), (H2) and (U), assume that, in addition, fu(u, ·) ≤
fu(0, ·) for all u ∈ [0, 1]. Then for each c > c0 there exists a unique (up to translations)
solution of (1.3) and (1.2), which is globally stable in the sense of Theorem 3 with respect
to perturbations in L2

c′("), with any c′ > 2λ−(c, ν0).

This corollary is obtained by noting that under its assumption on the nonlinearity we
simply have ν0 = ν̂0. Therefore, c& = c0 and, in particular, c∗ = c0 as well. In fact, in view
of the conclusion of Theorem 1(ii) the following convergence result holds under a single
assumption on the rate of exponential decay of the initial data.

Corollary 3.4 Under the assumptions of Corollary 3.3, let c > c0 and assume that
u0(y, z) = aψ0(y)e−λ−(c,ν0)z + O(e−λz), for some a ∈ R and λ > λ−(c, ν0). Then the
conclusion of Theorem 3 holds.

In the rest of the paper (H1), (H2), (U) are always assumed to be satisfied.

4 The front far ahead

In this section we start the investigation of supercritical traveling wave solutions. As was
mentioned in the introduction, the first important step in the study of traveling fronts is the
construction of an auxiliary function which solves (1.3) and (1.2) for z large positive and has
the asymptotic behavior given by (2.11). Specifically, we will construct a function w with
the following properties:

(W1) w ∈ C2(") ∩ C1(") and solves

!w + cwz + f (w, y) = 0, (4.1)

in " for z > 3, with the same boundary conditions as in (1.2).
(W2) There exists δ > 0 and a > 0 sufficiently small, such that

w(y, z) = aψ0(y)e−λ−(c,ν0)z(1 + O(e−δz)), z → +∞, (4.2)

where λ−(c, ν0) and ψ0 are defined in (2.11) and (2.8).
(W3) We have

0 ≤ w(y, z) ≤ 2aψ0(y) ≤ 1 ∀(y, z) ∈ ", (4.3)

and w = 0 for all z < 2.

In order to establish existence of a function w satisfying (W1) – (W3), we only need to
prove existence of a solution of (4.1) satisfying (W2) and (W3) for z > 2. Then we obtain
the desired function by multiplying this solution with a cutoff function η ∈ C∞(R), such
that η(z) = 1 for z > 3 and η(z) = 0 for z < 2.

By translational symmetry in the z-direction, any translate of solution of (4.1) is once again
a solution for sufficiently large z. Translations of w are equivalent to adjusting the value of the
constant a in (4.2). Therefore, fixing the constant a in (4.2) is equivalent to fixing translations
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Multiplicity of supercritical fronts

of the solution of (4.1). Thus, the choice of a particular value of a is inconsequential. Indeed,
considering solutions with a fixed and z large enough positive is equivalent to considering
the problem for small enough a > 0 and z > 0. Conceptually, this choice of w resembles
selecting one element of the stable manifold corresponding to the fixed point u = 0 in the
one-dimensional setting (in the sense of ordinary differential equations).

The following proposition establishes existence of a function w with all the desired prop-
erties.

Proposition 4.1 For every c > c0 and every a > 0 sufficiently small, there exists a function
w with properties (W1)–(W3).

The proof of this proposition is based on two lemmas. We first explicitly construct sub and
supersolutions (see definitions (i) and (ii) below) for the problem (4.1) on the right half cyl-
inder (Lemma 4.2). Next we show that if one restrict the problem (4.1) on bounded sections
of the cylinder, then this problem has a solution squeezed between sub and supersolutions
(Lemma 4.3). We then complete the proof of Proposition 4.1 by passing to the limit.

In order to proceed, we introduce the notions of sub and supersolutions:

(i) We call w a supersolution of the problem (4.1), if w ∈ C2(# × (0,+∞)) satisfies the
boundary conditions in (1.2) and

!w + cwz + f (w, y) ≤ 0, z > 0, (4.4)

with

w(0, y) = 2aψ0(y), y ∈ #. (4.5)

(ii) We call w a subsolution for the problem (4.1), if w ∈ C2(# × (0,+∞)) satisfies the
boundary conditions in (1.2) and

!w + cwz + f (w, y) ≥ 0, z > 0, (4.6)

with

w(0, y) = 0, y ∈ #. (4.7)

Lemma 4.2 There exist w and w, the sub- and super-solutions of (4.1), which satisfy (W2)
and (W3), for every a > 0 small enough.

Proof The proof follows by explicit construction of w and w verifying (1.2), (4.4) – (4.7),
(W2), and (W3). By assumption (H2), for ||w||L∞(") ≤ 2a 1 1 there exist constants
k, k̄ > 0, such that

fu(0, y)w − k|w|1+γ ≤ f (w, y) ≤ fu(0, y)w + k̄|w|1+γ . (4.8)

Therefore, the function w satisfying (1.2), (4.5) and

N (w̄) := !w + cwz + fu(0, y)w + k̄w1+γ ≤ 0, (4.9)

in # × (0,+∞) automatically satisfies (4.4), and thus is a supersolution.
Let us show that the function

w(z, y) = aψ0(y)e−λ−z(1 + e−δz) (4.10)
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is a supersolution for some 0 < δ 1 1 (throughout the proof we use the shorthand λ− for
λ−(c, ν0)). Indeed, substituting this function into (4.9), we obtain

N (w) = a(!yψ0 + (λ2
− − cλ− + fu(0, y))ψ0)e

−λ−z(1 + e−δz)

−aδ(c − 2λ− − δ)ψ0e
−(λ−+δ)z (4.11)

+k̄a1+γ ψ
1+γ
0 e−(1+γ )λ−z(1 + e−δz)1+γ .

The first line in (4.11) is identically zero in view of the definition of λ− and ψ0, see (2.8)
and (2.11). Therefore,

N (w) = −aδ(c − 2λ− − δ)ψ0e
−(λ−+δ)z

×
{

1 − k̄aγ ψ
γ
0 (1 + e−δz)1+γ

δ(c − 2λ− − δ)
e−(γ λ−−δ)z

}

. (4.12)

Since also c > 2λ− by (2.11), the factor multiplying the expression in the curly brackets
in (4.12) is negative for δ sufficiently small. Let us show that the expression in the curly
brackets can be made positive by a suitable choice of a and δ. Indeed, since the expression
in the curly bracket is an increasing function of z for δ small enough, we only need to verify
its positivity at z = 0. Then, the result easily follows by choosing δ sufficiently small first,
and then choosing a such that aγ 1 δ.

We now turn to sub-solutions. By the same argument as above, it is enough to show that

M(w) := !w + cwz + fu(0, y)w − kw1+γ ≥ 0 (4.13)

in # × (0,+∞) for some w ≥ 0. Similarly to (4.10), we choose

w = aψ0e
−λ−z(1 − e−δz). (4.14)

Substituting this into (4.13) and using the same arguments as for the supersolution, we obtain

M(w) = aδ(c − 2λ− − δ)ψ0e
−(λ−+δ)z

×
{

1 − kaγ ψ
γ
0 (1 − e−δz)1+γ

δ(c − 2λ− − δ)
e−(γ λ−−δ)z

}

, (4.15)

which is positive for a similar choice of δ and a.
Finally, we note that, as a consequence of our construction, the functions w and w satisfy

(4.2) and (4.3).

We next establish existence of a classical solution of (4.1) on finite sections of the cylinder
away from the boundaries.

Lemma 4.3 Let R > 1. Then there exists wR ∈ C2(# × (1, R)) ∩ C1(# × [1, R]) solving
(4.1) in # × [1, R], and satisfying w ≤ wR ≤ w, where w and w are as in Lemma 4.2.

Proof First, the proof of existence of a weak solution of (4.1) in "R = # × (0, R + 1),
sandwiched between the sub- and the super-solutions of Lemma 4.2 follows by standard
monotone iteration argument (see, e.g., [22, Sect. 9.3].) Furthermore, by standard elliptic
regularity, this solution is regular in the interior of "R [23]. Now, we apply Lp regularity
theory to the solution in "̃R = # × (1, R) ⊂⊂ "R [23, Theorem 9.13] to obtain regularity
up to the boundary on the Dirichlet portions ∂"± of the cylinder:

||wR||W 2,p("̃R) ≤ C(||wR||Lp("R) + ||f ||Lp("R)) ≤ C′||wR||Lp("R), (4.16)
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for some C, C′ > 0 and any p < ∞, where we took into account hypothesis (H2) on f .
Hence, by Sobolev imbedding wR is in C1,α("̃R), for any α ∈ (0, 1). By construction,
w ≤ wR ≤ w in the closure of "̃R . 23

Proof of Proposition 3.1. We now finish the proof of Proposition 4.1 by passing to the limit
R → ∞ in Lemma 4.3. Observe that by the bounds of Lemma 4.3 and the exponential decay
of w and w of Lemma 4.2, we have ||wR||Lp(#×(1,R)) ≤ C, where C > 0 is independent
of R. Therefore, by the estimate of (4.16) we have wR → w in W

2,p
loc (# × (1,∞)) on a

sequence of Rk → ∞. In view of arbitrariness of p < ∞, the convergence of wR to w is
also in C1(# × [2, R − 1]), for any R > 3. Hence, the limit w is a weak solution of (4.1)
in # × [2,∞), and by standard elliptic regularity is also a classical solution. The proof is
completed by multiplying the obtained solution by a cutoff function.

Remark 4.4 Our proof guarantees existence of infinitely many functions satisfying (W1) –
(W3), since existence of a solution for (4.1) also holds for each fixed boundary data at z = 0
satisfying (4.3).

5 Variational setting

As was already noted in the Introduction, certain solutions of (1.3) may be viewed as critical
points of the functional 'c[u] introduced in (2.4). This, however, poses some restrictions
on the type of traveling wave solutions (which are the so-called variational traveling waves
[16,18,17]) captured by this approach. Indeed, in view of the presence of the exponential
weight in the functional the set of admissible functions must be characterized by the natural
exponential decay at z = +∞. At the same time, it is known (see, e.g. [11,13]) that when
u = 0 is an unstable equilibrium of (1.1), generically there are traveling wave solutions which
fail to have this natural exponential decay. In this situation the use of a variational approach
to the construction of traveling wave solutions seems problematic due the divergence of the
respective integrals, even though formally (1.3) is still the Euler–Lagrange equation for 'c.
We propose to eliminate this divergence by subtracting the divergent part of the integrand in
the definition of 'c. Namely, we start by introducing the modified functional in (2.17), where
w is a function satisfying properties (W1) – (W3) of Sect. 4. In other words, we subtract from
the integrand in the definition of 'c its value obtained by substituting an exact solution of
(1.3) for z > 3 (property (W1) of w) and characterized by a prescribed exponential decay at
z = +∞ (property (W2) of w). Note that existence of w with these properties was proved
in Sect. 4 by non-variational techniques.

We next identify the suitable admissible class of functions u on which the new functional
'w

c [u] makes sense. Let u = w + h, for some unknown function h : " → R. With this
definition, we now have 'w

c [u] = /w
c [h], where

/w
c [h] =

∫

"

ecz

(
1
2
|∇h|2 + V (w + h, y) − V (w, y) − V ′(w, y)h

)
dx

−
∫

"

ecz
(
!w + cwz − V ′(w, y)

)
h dx, (5.1)

where here and throughout the rest of this section we use the notation V ′(u, y) :=
∂V (u, y)/∂u and V ′′(u, y) := ∂2V (u, y)/∂u2. Observe that as long as u(x) ∈ [0, 1] for
all x ∈ ", we can use Taylor formula to rewrite /w

c [h] in the following form
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/w
c [h] =

∫

"

ecz

(
1
2
|∇h|2 + 1

2
V ′′(ũ, y)h2

)
dx

−
3∫

2

∫

#

ecz
(
!w + cwz − V ′(w, y)

)
h dydz, (5.2)

for some ũ sandwiched between w and u. Here we took into account hypothesis (H2) and
that, by property (W1) of w, the integrand in the last term in (5.1) is identically zero for z > 3
and z < 2. Now, since V ′, V ′′, w,wz are uniformly bounded and !w ∈ L2(# × (2, 3)), the
functional /w

c is well-defined within the admissible class Aw
c , defined as follows:

Definition 5.1 A function h : " → R is said to belong to the admissible class Aw
c , if

h ∈ H 1
c (") and 0 ≤ h(x) + w(x) ≤ 1 for all x ∈ ".

Note that the assumption that h ∈ Aw
c implies that u = w + h has values in the unit inter-

val is not too restrictive, in view of hypothesis (H1), since u = 0 and u = 1 are sub- and
super-solutions of (1.3) and, hence, are the natural barriers [24].

In order to apply the direct method of calculus of variation, we need to establish weak
sequential lower-semicontinuity and coercivity of the functional /w

c in the considered func-
tion class. Lower-semicontinuity in the considered class of problems was studied in [17], and
we have

Proposition 5.2 For all c > c0, the functional /w
c is sequentially lower-semicontinuous in

the weak topology of H 1
c (") within Aw

c .

Proof The proof follows exactly as in [17, Proposition 5.5]. 23

Thus, the main difficulty in applying a variational approach to supercritical fronts has to
do with coercivity of /w

c . Below we show that coercivity indeed holds for all c > c∗.

Proposition 5.3 The functional /w
c is coercive in Aw

c for every c > c∗.

Proof We carry out the proof in four steps.
Step 1 First of all, since h, V ′, w,wz are uniformly bounded and since !w ∈ L2(# ×

(2, 3)), by a straightforward application of Cauchy–Schwarz inequality we have

∣∣∣∣∣∣

3∫

2

∫

#

ecz
(
!w + cwz − V ′(w, y)

)
h dydz

∣∣∣∣∣∣
≤ K1, (5.3)

for some K1 > 0. On the other hand, using the formula in the proof of [17, Proposition
6.9] and the fact that by the definition of c∗ we have 'c′ [ρ] ≥ 0 for all c′ ∈ (c∗, c) and all
ρ ∈ H 1

c′("), it holds that

'c[h] =
∫

"

ecz

(
1
2
|∇h|2 + V (h, y)

)
dx ≥ c2 − c′2

2c2

∫

"

eczh2
z dx. (5.4)

123

Author's personal copy



Multiplicity of supercritical fronts

Therefore, we have the following estimate:

/w
c [h] + K1 ≥

∫

"

ecz

(
1
2
|∇h|2 + V (h, y)

)
dx

+
∫

"

ecz
(
V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

)
dx

≥ c2−c′2

2c2

∫

"

eczh2
z dx +

∫

"

ecz
(
V (w + h, y)−V ′(w, y)h−V (w, y)−V (h, y)

)
dx.

(5.5)

Step 2 By Taylor formula, there exist w̃ and h̃ such that |w̃ −w| < |h| and |h̃| < |h| such
that

V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

= 1
2

(
V ′′(w̃, y) − V ′′(h̃, y)

)
h2. (5.6)

On the other hand, hypothesis (H2) implies that

|V ′′(w̃, y) − V ′′(h̃, y)| ≤ C1|w̃ − h̃|γ , (5.7)

for some C1 > 0. Therefore, for all |h| ≤ a, where a is defined in property (W3) of w, we
obtain

|V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)| ≤ C2a
γ h2, (5.8)

for some C2 > 0.
Now, by boundedness of V ′, V ′′, when |h| > a we also have

|V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)| ≤ C3w, (5.9)

for some C3 > 0.
Step 3 Using (5.6)–(5.8) and the Poincaré inequality [17, Lemma 5.1], one can write

∫

{|h|≤a}

ecz
∣∣V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

∣∣dx

≤ C2a
γ

∫

"

eczh2 dx ≤ 4C2a
γ

c2

∫

"

eczh2
z dx. (5.10)

Similarly, using (5.9) and property (W3) of w we have
∫

{|h|>a}

ecz
∣∣V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

∣∣dx

≤ C3

R∫

−∞

∫

{|h(·,z)|>a}

eczw dydz + C3

∞∫

R

∫

{|h(·,z)|>a}

eczw dydz

≤ 2aC3|#|ecR

c
+ C3

∞∫

R

∫

{|h(·,z)|>a}

eczw dydz, (5.11)
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for any R > 0, where |#| denotes the (n − 1)-dimensional Lebesgue measure of #. Then,
since by Poincaré inequality [17, Lemma 2.1] we have

e−cz

c

∞∫

z

∫

#

ecζ h2
ζ dydζ ≥

∫

#

h2(y, z) dy

≥
∫

{|h(·,z)|>a}

h2(y, z) dy ≥ a2
∫

{|h(·,z)|>a}

dy. (5.12)

Property (W2) implies that w(y, z) ≤ 2ae−λ−z for sufficiently large z. Using this observation
and inequality (5.12), we obtain

∞∫

R

∫

{|h(·,z)|>a}

eczw(y, z)dydz ≤ 2a

∞∫

R



e(c−λ−)z

∫

{|h(·,z)|>a}

dy



 dz

≤ 2
ac

∞∫

R



e−λ−z

∞∫

z

∫

#

ecζ h2
ζ dydζ



 dz

≤ 2
ac

∞∫

R

e−λ−zdz

∞∫

R

∫

#

eczh2
z dydz

= 2
acλ−

e−λ−R

∞∫

R

∫

#

eczh2
z dydz

≤ 2
acλ−

e−λ−R

∫

"

eczh2
z dx. (5.13)

It then follows
∫

{|h|>a}

ecz
∣∣V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

∣∣dx

≤ C4aecR + C5a
−1e−λ−R

∫

"

eczh2
z dx, (5.14)

for some C4, C5 > 0.
In view of the above, for a given a one can choose R sufficiently large so that

∫

{|h|>a}

ecz
∣∣V (w + h, y) − V ′(w, y)h − V (w, y) − V (h, y)

∣∣dx

≤ K2 + C6a
γ

∫

"

eczh2
z dx, (5.15)

where K2 = K2(a) and C6 > 0 is a constant independent of a.
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Step 4 Finally, combining the estimates of Steps 1 and 3 and choosing a small enough,
we obtain

/w
c [h] ≥ −K3 + C7(c − c∗ − ε)

∫

"

eczh2
z dx, (5.16)

where K3, C7 > 0, for any given ε > 0. Therefore, choosing ε sufficiently small and also
making use of the Poincaré inequality [17, Lemma 2.1], we arrive at

∫

"

eczh2
z dx ≤ K,

∫

"

eczh2 dx ≤ K, (5.17)

for some K > 0 on a sub-level set of /w
c . This, in turn, implies that

∫

"

ecz|∇yh|2dx ≤ 2/w
c [h] +

∫

"

ecz|V ′′(ũ, y)|h2dx ≤ K ′, (5.18)

for some K ′ > 0, on that sub-level set as well, and hence the functional /w
c is coercive for

all c > c∗. 23

6 Existence and properties of minimizers of !w
c

In this section we establish existence of traveling wave solutions of (1.1) with exponential
decay governed by (2.11), which are global minimizers of the respective functionals. Let us
point out that in general this approach may not give all such solutions of (1.3) and (1.2).
Nevertheless, as we will show later in Sect. 7, these are in fact the only such solutions for
large enough values of c. Also, for certain classes of nonlinearities, the same result holds for
all traveling wave solutions with c > c0 (see Corollary 3.3).

We begin with a basic characterization of c∗ in (2.10) in terms of existence of minimizers
of the functional 'c for c > c0.

Proposition 6.1 Let c∗ be defined in (2.10). Then c∗ ≥ c0, there is no non-trivial minimizer
of 'c over all u ∈ H 1

c (") satisfying (1.2) for any c > c∗, and if c∗ > c0, there exists a
non-trivial minimizer of 'c∗ over all u ∈ H 1

c∗(") satisfying (1.2).

Proof Suppose first that there exists a non-trivial minimizer of 'c for some c = c† > c0.
Then it is clear that c∗ = c†. Indeed, by [17, Proposition 3.2] and the arguments of [17,
Proposition 6.9] we have inf 'c = 0 for every c ≥ c†. On the other hand, by [18, Equation
(5.4)] we have inf 'c < 0 for all 0 < c < c†.

Alternatively, if there is no non-trivial minimizer for any c > c0, then inf 'c = 0 for all
c > c0. Indeed, if not then there exists a trial function uc ∈ H 1

c (") with values in [0, 1], such
that 'c[uc] < 0, contradicting non-existence of minimizers guaranteed by [18, Theorem
3.3]. On the other hand, arguing as in [18, Theorem 4.2], it is not difficult to see that the trial
function in [18, Equation (4.18)] makes 'c negative for any 0 < c < c0.

The proof of existence of traveling wave solutions in the statement of Theorem 1 follows
from a sequence of propositions below. 23

Proposition 6.2 Let c > c∗ and let w satisfy (W1) – (W3). Then there exists ū ∈ C2(") ∩
C1(") ∩ W 1,∞("), with 0 < ū < 1, such that

(i) ū solves (1.3) with (1.2).
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(ii) ū minimizes 'w
c [u] over all u taking values in [0, 1] and such that u − w ∈ H 1

c (").

Proof By coercivity of /w
c established in Proposition 5.3, if (hn) is a minimizing sequence

from Aw
c , then (hn) is uniformly bounded in H 1

c ("). Hence there exists a subsequence, still
labeled (hn) such that hn ⇀ h̄ in H 1

c ("). Moreover, h̄ is obviously still in Aw
c . Therefore,

by lower-semicontinuity of /w
c in the weak topology of H 1

c (") proved in Proposition 5.2,
the limit h̄ is a minimizer of /w

c in Aw
c . Now, since 'w

c [u] = /w
c [u − w], the function

ū = w + h̄ is also a minimizer of 'w
c over all u, such that 0 ≤ u ≤ 1 and u − w ∈ H 1

c (").
This proves part (ii) of the statement.

To prove part (i), consider the first variation of the functional 'w
c evaluated on ū with

respect to a smooth function ϕ with compact support, vanishing at ∂"±. Since ū is a mini-
mizer and the barriers u = 0 and u = 1 are sub- and supersolutions of (1.3), we have [24]

0 = δ'w
c (ū,ϕ) =

∫

"

ecz {∇ū · ∇ϕ − f (ū, y)ϕ} dx. (6.1)

By elliptic regularity theory [23] ū is a classical solution of (1.3), and ū ∈ W 1,∞(").
Moreover, we also have ū 4≡ 0, since ū = 0 would imply h̄ = ū − w = −w ∈ H 1

c ("),
contradicting our assumptions on w. By strong maximum principle, we then have 0 < ū < 1,
in view of the fact that u = 0 and u = 1 are the sub- and super-solutions of (1.3), respectively
[23,18]. 23
Remark 6.3 We note that the proof of Proposition 6.2 does not rely on the precise details
of the assumptions (W1)–(W3) on the function w. The main ingredient of the proof is that
w solves (1.3) and (1.2) and does not lie in H 1

c ("). Therefore, with a suitable construction
of w our approach may also be applied to supercritical traveling waves in the case ν0 = 0,
yielding existence of traveling wave solutions with non-exponential decay.

It is not difficult to see that the minimizer constructed in Proposition 6.2 has the decay gov-
erned by (2.11). We note that exponential decay of solutions of (1.3) in cylindrical domains
has been extensively studied under various assumptions on the nonlinearity, etc. (see, for
instance, [11,13]). In particular, with minor modifications the arguments of [13] could be
applied in our slightly more general setting. For the sake of completeness, we present the
proof under our set of assumptions, using the techniques of [18] and giving a slightly stronger
decay estimates. We also note that our result establishes the precise rate of exponential decay
given by (2.11) for all solutions of (1.3) with c > c∗.

Proposition 6.4 Let c > c∗ and let ū be a solution of (1.3) and (1.2). Then

ū(y, z) = ae−λ−(c,ν0)zψ0(y)(1 + O(e−δz)), (6.2)

ūz(y, z) = −aλ−(c, ν0)e
−λ−(c,ν0)zψ0(y)(1 + O(e−δz)), (6.3)

uniformly in # for some a ∈ R and δ > 0.

Proof We reason as in the proof of [18, Theorem 3.3(iii)], recalling that c > c0 by Proposi-
tion 6.1. By a Fourier expansion of (1.3) in terms of ψk and νk from (2.7), after some algebra
we obtain that ak(z) =

∫
# ū(y, z)ψk(y) dy ∈ C2(R) satisfy

a′′
k + ca′

k − νkak = gk, (6.4)

where

gk(z) =
∫

#

(fu(0, y) − fu(ũ(y, z), y))ū(y, z)ψk(y)dy, (6.5)
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for some 0 < ũ < ū. Using variation of parameters, for any R ∈ R we can write the solution
of (6.4) in the form

ak(z) = a+
k (R)e−λ+(c,νk)(z−R) + a−

k (R)e−λ−(c,νk)(z−R)

− 1
√

c2 + 4νk

z∫

R

eλ+(c,νk)(ξ−z)gk(ξ)dξ

+ 1
√

c2 + 4νk

z∫

R

eλ−(c,νk)(ξ−z)gk(ξ)dξ, (6.6)

where λ± are defined in (2.11). Specifically, since ψ0 > 0 and ū > 0, for k = 0 we have
a0 > 0 and

|g0(z)| ≤ C||u(·, z)||γL∞(#)a0(z), (6.7)

for some C > 0.
Since ū(·, z) → 0 uniformly as z → +∞, by the definition of a0(z) and (6.7) we have

a0(z) → 0 and
g0(z)

a0(z)
→ 0 as z → +∞. (6.8)

Therefore, by (6.6) for every b0 > 0 there exists R̄0 ∈ R, such that for every b ∈ (0, b0) and
every R0 ≥ R̄0 we have

a0(R0) ≤ a+
0 (R)eλ+(c,ν0)b + a−

0 (R)eλ−(c,ν0)b + 1
2

max
R0≤z≤R

a0(z), (6.9)

where R = R0 +b. In fact, the maximum in the last term of (6.9) is attained at z = R0 due to
monotonic decrease of a0(z) for all z ≥ R̄0, provided that R̄0 is large enough. Indeed, in view
of (6.8) we can always choose R̄0 sufficiently large, so that maxz≥R̄0

a0(z) = a0(R̄0). Then,
if a0(z) is not monotonically decreasing, it attains a local minimum at some z0 ∈ (R̄0,+∞).
However, by (6.4) with k = 0 and (6.8) we have

a′′
0 (z0) ≤ 1

2ν0a0(z0) < 0, (6.10)

contradicting minimality of a0(z) at z0.
Recalling that b = R −R0, the monotonicity of a0(z) for z ≥ R̄0 and the estimate in (6.9)

imply that for every ε > 0 there exists b1 > 0 independent of R0, such that

0 ≤ 1
2
e−λ+(c,ν0)ba0(R0) ≤ a+

0 (R) + e−(λ+(c,ν0)−λ−(c,ν0))ba−
0 (R)

≤ a+
0 (R) + εa−

0 (R) ∀R ∈ [R0 + b1, R0 + 2b1], (6.11)

where the last line follows from λ+(c, ν0) > λ−(c, ν0) > 0, choosing b0 large enough.
Therefore, by (6.6) and, in particular, the fact that a0(R) = a+

0 (R) + a−
0 (R) we have

da0

dz

∣∣∣∣
z=R

= −λ−(c, ν0)a
−
0 (R) − λ+(c, ν0)a

+
0 (R)

≤ −1
2
λ−(c, ν0)a0(R) < 0 ∀R ∈ [R0 + b1, R0 + 2b1], (6.12)

provided that ε is small enough. Now, in view of arbitrariness of R0 ≥ R̄0, we con-
clude that the inequality (6.12) in fact holds for all z ≥ R1 := R0 + b1, and so
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a0(z) ≤ a0(R1)e
− 1

2 λ−(c,ν0)(z−R1) for all z ≥ R1. Hence, by [18, Eq. (4.24)] we have
ū(·, z) ≤ Ce−µz, for some C > 0 and µ > 0. From now on, we can argue exactly as
in the proof [18, Theorem 3.3(iii)] to show that either ū(y, z) = ae−λ−(c,ν0)zψ0(y)(1+e−δz)

or ū(y, z) = ae−λ+(c,ν0)zψ0(y)(1 + e−δz), for some a > 0 and δ > 0. Here we took into
account that the slightly stronger multiplicative decay estimate than the one obtained in [18]
follows from the C1 convergence on slices of " for the difference between ū and the leading
order term in [18, Eq. (3.38)] and the Hopf lemma applied to ψ0.

To finish the proof of (6.2), we need to exclude the possibility that the exponential decay
rate is governed by λ+(c, ν0). Indeed, if the latter were true, then by the above estimates
together with similar estimates for |∇ū| following from [18, Eq. (3.38)], we find that ū ∈
H 1

c ("). Therefore, ū satisfies hypothesis (H3) of [18], implying that there exists a non-trivial
minimizer of 'c′ for some c′ ≥ c. Then, by the arguments in the proof of Proposition 6.1,
this would imply that c∗ ≥ c′, thus leading to a contradiction.

Finally, the estimate for ūz in (6.3) is obtained by differentiating (1.3) with respect to z

and using the same arguments as for (6.2). 23

Thus, according to Propositions 6.2 and 6.4 there exist bounded solutions of (1.3) and
(1.2) with the behavior at z = +∞ governed by the slowest exponentially decaying positive
solution of the respective linearized equation. Now we will establish a number of additional
properties of these solutions, based on the minimality of 'w

c evaluated on ū. In particular,
we will show that these solutions have the form of advancing fronts.

Proposition 6.5 Let ū be as in Proposition 6.2. Then

(i) ū(y, z) is a strictly monotonically decreasing function of z.
(ii) ū(·, z) → v in C1(#) as z → −∞, where 0 < v ≤ 1 is a critical point of E, and

E[v] < 0.

Proof We prove monotonicity by using a monotone decreasing rearrangement of ū(y, ·),
following an idea of Heinze [15]. Introducing a new variable ζ = ecz, we can write the
functional 'w

c as

'w
c [ū] = 1

c

∞∫

0

∫

#

(
c2ζ 2ū2

ζ

2
+ |∇yū|2

2
+ V (ū, y) −

c2ζ 2w2
ζ

2
− |∇yw|2

2
− V (w, y)

)

dy dζ.

(6.13)

Let us now perform a one-dimensional monotone decreasing rearrangement of ū in ζ for y

fixed (see [25, Sect. II.3] for details). If ū∗ : " → [0, 1] is the result of this rearrangement,
then ū∗(·, z) = ū(·, z) for all z ≥ R, with R sufficiently large, in view of monotonicity of
ū guaranteed by (6.3) in Proposition 6.4. As a consequence, the function ū∗ belongs to the
admissible class for 'w

c . On the other hand, by [26, Proposition 12] and [25, Lemma 2.6
and Remark 2.34] we know 'c[ū∗] < 'c[ū], unless ū = ū∗, contradicting the minimizing
property of ū. Then, by strong maximum principle the minimizer ū(y, z) is, in fact, a strictly
decreasing function of z. This proves part (i) of the statement.

Once the monotonic decrease of ū is established, by boundedness of ū there exists a limit
of ū(·, z) as z → −∞. The remainder of part (ii) of the statement then follows exactly as in
[17, Proposition 6.6 and Corollary 6.7].

Proof of Theorem 1 The result of parts (i)–(iii) of Theorem 1 follow by combining the results
of Propositions 4.1, 6.2, 6.4 and 6.5 and taking into account translational invariance in z,
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Fig. 1 A numerical example of non-uniqueness of fronts (see text for details).

which allows us to consider only small values of a > 0. Also, in (ii) the arguments in the
proof of [18, Theorem 3.3] are used to establish the estimate on |∇ū|. The result of part (iv)
follows exactly as in [18, Theorem 3.3]. To prove part (v), note that if u satisfies (2.3) and
u − w̃ ∈ H 1

c ("), then by the assumption on w̃ we have that 'w̃
c [u] is well-defined, and by

minimality of 'w
c [ū] we have

'w̃
c [ū] = 'w

c [ū] + 'w̃
c [w] ≤ 'w

c [u] + 'w̃
c [w] ≤ 'w̃

c [u], (6.14)

which proves the claim. 23

7 Global uniqueness of supercritical fronts

Let us now discuss the question whether the obtained traveling wave solutions are unique
among all traveling waves with speed c, up to translations.

First of all, by Proposition 6.4 all bounded positive solutions of (1.3) and (1.2) with c > c∗

must have the asymptotic decay specified by (2.11), which is the same decay of the minimizer
ū of 'w

c . Using the sliding domains method of Berestycki and Nirenberg [27], it is possible to
show that any two traveling front solutions sandwiched between two limiting equilibria must
coincide up to translation (see [13, Theorem 5.1]). Therefore, in order to have non-unique-
ness, two different solutions with, say, a = 1 fixed in (4.2), should have different limiting
behavior at z = −∞.

7.1 Example of non-uniqueness.

Clearly, uniqueness of the traveling front solutions with prescribed exponential decay cannot
hold true in general, even in dimension one. Let us demonstrate such non-uniqueness by
an explicit example. For simplicity, we present a numerical demonstration of existence of
two traveling wave solutions with the same value of the velocity c, the result is then made
rigorous by applying the Theorems of Sect. 3. Namely, let us consider the problem (1.3) in
the one-dimensional setting with the nonlinear term f given by

f (u) =
{

u(1 − 2u), 0 ≤ u < 1
2 ,

(2u − 1)(1 − u)(40u − 21), 1
2 ≤ u ≤ 1.

(7.1)

As can be easily verified, this function satisfies conditions (H1), (H2) and (U). One may
expect that for a range of velocities c close to c0 = 2 the problem (1.3) with nonlinearity
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(7.1) has two traveling front solutions: one connecting u = 0 and u = 1
2 , and another con-

necting u = 0 with u = 1. These two solutions for c = 2.25 are presented in Fig. 1, where
Fig. 1a shows the traveling wave profiles and Fig. 1b shows the corresponding phase portraits.

From the exact traveling wave solution u(z) = 3
4 − 1

4 tanh
(√

5
2 z

)
connecting v1 = 1

2 with

v = 1, we find that c†
v1

= 9√
10

≈ 2.846 (see Sect. 3 for the details of the notations). Also, by

[28, Theorem 5.1] we have c∗ = c∗
1 = 2. Therefore, since c†

v1
> c∗, there are two traveling

wave solutions with speed c = 2.25 by Remark 3.2, one connecting zero to v1 and the other
connecting zero to v. This is what we see numerically in Fig. 1. Note that the value of c&

from (3.3) is easily found to be c& =
√

127
5 ≈ 5.04.

Let us now present some heuristic arguments as to why the solutions of (1.3) and (1.2) are
expected to be unique for large enough c. Suppose that the nonlinearity f becomes strictly
linear for sufficiently small u, i.e. we have f (u, y) ≡ fu(0, y)u for all u ≤ δ, with some
δ > 0. In this case, clearly, the decay of any positive solution of (4.1) must be precisely

w(y, z) = ae−λ−(c,ν0)z ψ0(y) +
∞∑

k=0

a+
k e−λ+(c,νk) ψk(y), z ≥ z0, (7.2)

for some z0 7 1. Here we took into account that when ν0 < νk ≤ 0, if ever, we have
λ−(c, νk) < λ−(c, ν0), hence the presence of a term proportional to e−λ−(c,νk)zψk(y) would
contradict positivity of the solution. Now, fixing the value of a, one can see that any two
solutions of the form (7.2) differ by a function that lies in H 1

c ("), since all the terms in
the series in (7.2) except the first one decay exponentially with the rate strictly greater than
e−cz/2. On the other hand, it is easy to see that for c > c&, where c& is defined in (3.3), the
functional /w

c is strictly convex in H 1
c ("). Therefore, for every value of a and every c > c&

there exists a unique positive solution of (1.3). This seems rather surprising, since, on one
hand, uniqueness in this case is a consequence of convexity of /w

c for c > c&, which, in some
sense, is dictated by what happens in the “core” of the traveling front and thus represents a
nonlinear feature of the problem. On the other hand, uniqueness also relies on the fact that,
regardless of the value of c, any two positive solutions with the same asymptotic decay have
difference that lies in H 1

c ("), which is a property of the behavior far ahead of the front and
represents a linear feature of the problem. From the variational point of view, uniqueness
of solution is also rather surprising, since, in view of Remark 4.4, there are infinitely many
auxiliary functions w that can be used in the construction the functional 'w

c and hence,
potentially, different minimizers, depending on the choice of w.

These heuristic arguments turn out to work in the case of generic nonlinearities in (1.3),
with the result stated in Theorem 2. The proof of this theorem follows from a sequence of
lemmas below.

Lemma 7.1 We have c& ≥ c∗.

Proof First, by the definition of c& we trivially have c& ≥ c0. Now, take any u ∈ H 1
c&(").

Then by hypothesis (H2) there exists ũ : " → R, with 0 < ũ < u, such that

'c& [u] =
∫

"

ec&z

(
1
2
|∇u|2 − fu(ũ, y)u2

)
dx. (7.3)
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Applying the definitions of q and ν̂0 in (3.2), and the Poincaré inequality [17, Lemma 2.1],
we obtain

'c& [u] ≥ 1
2

∫

"

ec&z
(
u2

z + |∇yu|2 − q(y)u2) dx

≥ 1
2

∫

"

ec&z

(
c&2

4
+ ν̂0

)

u2 dx ≥ 0, (7.4)

implying that by (2.10) we have c∗ ≤ c&.

Lemma 7.2 Let c > c0 and let ū1 and ū2 be two solutions of (1.3) and (1.2), and whose
decay at z = +∞ is given by (6.2). Then ū2 − ū1 ∈ H 1

c (").

Proof Introduce h = ū2 − ū1, which satisfies

!h + chz + fu(0, y)h = (fu(0, y) − fu(ũ, y))h, (7.5)

for some ũ bounded between ū1 and ū2. In view of Proposition 6.4, we have

0 ≤ ũ(y, z) ≤ min{1, Ce−λ−(c,ν0)z}, (7.6)

for some C > 0 and all (y, z) ∈ ".
Now, let η ∈ C1(R) be a cutoff function with the following properties: η(z) is a non-

increasing function of z with super-exponential decay at +∞, and η(z) = 1 for z ≤ 0. For
fixed ε > 0 and c′ > 0 let us multiply (7.5) with ec′zhη2

ε , where ηε(z) = η(εz), and integrate
over ". After a few integrations by parts, we obtain

∫

"

ec′z
(

|∇h|2 − c′(c′ − c)

2
h2 − fu(0, y)h2

)
η2

ε dx

+
∫

"

ec′z (
2hhzηεη

′
ε − (c′ − c)h2ηεη

′
ε

)
dx

=
∫

"

ec′z(fu(ũ, y) − fu(0, y))h2η2
ε dx, (7.7)

where η′
ε = dηε/dz.

We are now going to estimate the different terms appearing in (7.7). Let us begin by
noting that by hypothesis (H2) and (7.6) we have |fu(ũ, y) − fu(0, y)| ≤ C|ũ(y, z)|γ ≤
C′(1 + eγ λ−(c,ν0)z)−1 for some C, C′ > 0 and all (y, z) ∈ ". Therefore,

∫

"

ec′z(fu(ũ, y) − fu(0, y))h2η2
ε dx ≤ C′

∫

"

ec′z(1 + eγ λ−(c,ν0)z)−1h2η2
ε dx. (7.8)

On the other hand, since hηε ∈ H 1
c′("), by Poincaré inequality [17, Lemma 2.1] it holds

∫

"

ec′zh2
zη

2
ε dx ≥ c′2

4

∫

"

ec′zh2η2
ε dx

−2
∫

"

ec′zhhzηεη
′
ε dx −

∫

"

ec′zh2|η′
ε|2 dx. (7.9)
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Combining this with the previous estimate and using the variational characterization of the
lowest eigenvalue ν0 in (2.6), from (7.7) we obtain

∫

"

ec′z
(

cc′

2
− c′2

4
+ ν0

)
h2η2

ε dx − |c′ − c|
∫

"

ec′zh2ηε|η′
ε| dx −

∫

"

ec′zh2|η′
ε|2 dx

≤ C

∫

"

ec′z(1 + eγ λ−(c,ν0)z)−1h2η2
ε dx, (7.10)

for some C > 0 independent of ε.
To proceed, we need to choose the cutoff function η in such a way that the terms involving

η′
ε can be bounded by the terms involving ηε uniformly in ε as ε → 0. This can be achieved

by setting η(z) = exp(− 1
2z2) for z > 0. Indeed, consider the last term in the left-hand side

of (7.10). We can write
∫

"

ec′zh2|η′
ε|2 dx ≤ α2

∫

"

ec′zh2η2
ε dx +

∫

{|η′
ε |≥αη}

ec′zh2|η′
ε|2 dx, (7.11)

for any α > 0. From our choice of η, the second integral is over all z ≥ αε−2. Therefore,
assuming h ∈ L2

c′′(") for some c′′ ∈ (0, c′), we have

∫

"

ec′zh2|η′
ε|2 dx ≤ α2

∫

"

ec′zh2η2
ε dx +

∞∫

αε−2

∫

#

ec′zh2|η′
ε2 dydz

≤ α2
∫

"

ec′zh2η2
ε dx + Cε

∫

"

ec′′zh2 dx, (7.12)

where

Cε = sup
z≥αε−2

(
e(c′−c′′)z|η′

ε(z)|2
)

. (7.13)

Similarly,
∫

"

ec′zh2ηε|η′
ε| dx ≤ α

∫

"

ec′zh2η2
ε dx + α−1Cε

∫

"

ec′′zh2 dx. (7.14)

Therefore, we can rewrite (7.10) in the following form (also taking (2.9) into consideration)

∫

"

ec′z

(
cc′

2
−c′2

4
−c2

0

4
−α|c′−c|−α2

)

h2η2
ε dx ≤ C sup

z∈R

(
e(c′−c′′)z

1+eγ λ−(c,ν0)z

) ∫

"

ec′′zh2 dx

+Cε

(
1+|c′−c|

α

) ∫

"

ec′′zh2 dx,

(7.15)

for some C > 0 independent of ε.
Now, by an explicit computation, we have

Cε = sup
ζ≥1

(
α2ζ 2 exp(−ε−2(α2ζ 2 − (c′ − c′′)αζ ))

)
≤ α2, (7.16)
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as soon as c′ − c′′ < α and ε is small enough. Introducing the constants

c± = c ±
√

c2 − c2
0, (7.17)

and using (7.16), we then find that (7.15) is equivalent to

{
(c′ − c−)(c+ − c′) − 8α|c − c′|

} ∫

"

ec′zh2η2
ε dx ≤ C

∫

"

ec′′zh2 dx, (7.18)

with C > 0 independent of ε, whenever c′ − c′′ < α ≤ min(γ λ−(c, ν0), |c′ − c|) and ε is
sufficiently small.

We now note that by Proposition 6.4 we have h ∈ L2
c′′(") for some c′′ ∈ (c−, c+). There-

fore, we can choose c′ = c′′ + 1
2α, with α so small that the quantity in the curly brackets

in (7.18) is positive. Then, passing to the limit ε → 0 in (7.18), by monotone convergence
theorem we can conclude that, in fact, we have h ∈ L2

c′("). Applying the same argument to
(7.7) we find that also h ∈ H 1

c′("), with c′ ∈ (c′′, c+). Finally, iterating this argument, we
find that

h ∈ H 1
c′("), ∀c′ < c+. (7.19)

In particular, h ∈ H 1
c ("), which completes the proof. 23

Lemma 7.3 Let c > c&. Then the functional /w
c is strictly convex on Aw

c .

Proof First of all, let us point out that due to the presence of the exponential weight the
functional /w

c is not twice continuously differentiable in H 1
c ("), so the convexity of the

functional cannot be concluded by evaluating the second variation of /w
c . Nevertheless,

what we will show below is that the functional /w
c is strongly convex [29], i.e., there exists

σ > 0 such that for every h1, h2 ∈ Aw
c it holds

/w
c [h2] ≥ /w

c [h1] + δ/w
c (h1, h2 − h1) + σ

2
||h2 − h1||2L2

c (")
. (7.20)

Indeed, by hypothesis (H2) we have

/w
c [h2] = /w

c [h1] + δ/w
c (h1, h2 − h1) + 1

2

∫

"

ecz|∂z(h2 − h1)|2dx

+1
2

∫

"

ecz
(
|∇y(h2 − h1)|2 − fu(ũ, y)(h2 − h1)

2) dx, (7.21)

for some 0 ≤ ũ ≤ 1. Now, by Poincaré inequality [17, Lemma 2.1], we have

1
2

∫

"

ecz|∂z(h2 − h1)|2dx ≥ c2

8
||h2 − h1||2L2

c (")
, (7.22)

and by the definition of ν̂0 in (3.2)

1
2

∫

"

ecz
(
|∇y(h2 − h1)|2 − fu(ũ, y)(h2 − h1)

2) dx ≥ ν̂0

2
||h2 − h1||2L2

c (")
. (7.23)

123

Author's personal copy



P. V. Gordon et al.

Strong convexity then follows with σ = 1
4c2 + ν̂0 > 0, in view of c > c& and implies strict

convexity [29, Chapter 12.H∗]. 23

Proof of Theorem 3 Let ū1 and ū2 be as in Lemma 7.2. Without loss of generality we may
assume that a is sufficiently small in (6.2). Let us define w to be a suitably truncated version
of ū1. Then, by hypothesis (H2) the functional /w

c is of class C1 and by Lemma 7.3 is also
strictly convex on Aw

c . Then h1 := ū1 −w belongs to Aw
c . In fact, the function h2 := ū2 −w

also belongs to Aw
c , in view of Lemma 7.2. On the other hand, since the equivalent func-

tional 'w
c is also strictly convex, it has at most one critical point. Therefore, since ū1 and ū2

solve the Euler–Lagrange equation (1.3) for 'w
c and are, therefore, critical points of 'w

c , we
conclude that ū1 = ū2.

We end this section by the proof of Corollary 3.1.

Proof of Corollary 3.1 By assumption we have c∗ > c∗
1. Then, since c∗

1 ≥ c0, there exists
a non-trivial minimizer ū∗ of 'c∗ among all 0 ≤ u ≤ 1. Furthermore, since ū∗ is not a
minimizer of 'c∗ [u] over all u ≤ v1, we have limz→−∞ ū∗(·, z) > v1. In particular, this
means that for

c†
v1

:= inf
{
c > 0 : inf

v1≤u≤1
'v1

c [u] = 0
}

(7.24)

we have c†
v1

≥ c∗. If not, for u1 = min(ū∗, v1) and u2 = max(ū∗, v1) we would obtain
'c∗ [ū∗] = 'c∗ [u1] + '

v1
c [u2] ≥ 'c∗ [u1], implying that u1 ≤ v1 is a non-trivial minimizer.

However, this contradicts the fact that there are no non-trivial minimizers of 'c∗ that lie
below v1.

Next, let us show that c†
v1

> c∗. Indeed, since the infimum in (7.24) is attained, with
the value of c†

v1
being the speed of the non-trivial minimizer of '

v1

c
†
v1

over all u such that

u − v1 ∈ H 1
c (") and v1 ≤ u ≤ 1. Indeed, there exists a sequence cn → c†

v1
from below and

a sequence of functions un ≥ v1 such that '
v1
cn [un] < 0. Therefore, in view of the fact that

ν̃0 ≥ 0 for v = v1, by [18, Theorem 3.3] applied to '
v1
c (see also the proof of [20, Lemma

3.5]), there exists a non-trivial minimizer of '
v1
c for some c ≥ c†

v1
, and by the definition of

c†
v1

and the arguments in the proof of Proposition 6.1 we have c = c†
v1

.
Now, by the argument in the proof of [20, Lemma 3.5] for every 0 ≤ u ≤ v1, such

that u − w ∈ H 1
c ("), with w as in Theorem 1, and u(·, z) → v1 in C1(#) as z → −∞,

the value of 'w
c [u] can be lowered by extending u above v1 for every c < c†

v1
. Since the

solution ū constructed in Theorem 1 is a minimizer of 'w
c [u], it then follows that limz→−∞

ū(·, z) > v1.

8 Global asymptotic stability of fast fronts

We now investigate the stability properties of traveling wave solutions with speed c > c∗

obtained in the preceding sections. Let us point out in the first place that one cannot expect
these traveling wave solutions to be stable in the usual sense (say, with respect to small L∞

perturbations). Indeed, under hypotheses (H1), (H2) and (U) a truncation of the traveling wave
solution with any c > c∗ by a cutoff function that vanishes identically for all z ≥ R 7 1
would not converge to the corresponding traveling wave, but will instead propagate with the
asymptotic speed c∗ of the critical front [18, Theorem 5.8]. Similarly, modifying the rate
of exponential decay in front of the traveling wave solution with speed c > c∗ may lead to
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acceleration or slowdown of the front (see e.g. [30–32]), or even lead to irregular behavior
[33]. Therefore, stability of these traveling wave solutions should be considered with respect
to suitable classes of perturbations [30,34]. Here we show global stability of the (unique)
supercritical traveling waves with c > c& under perturbations lying in the weighted space
L2

c′(") with suitably chosen c′ > 0.
We begin with a general existence result for the solutions of (1.1) of the form

u(y, z, t) = ū(y, z − ct) + w(y, z − ct, t), (8.1)

where ū is given by Theorem 1 with some fixed c > c∗, and w lying in an appropriate
exponentially weighted space. The function w satisfies the following parabolic equation

wt = !w + cwz + f (ū + w, y) − f (ū, y). (8.2)

Easily adapting [20, Proposition 3.1] (see also [18]), we can obtain the following basic
existence and regularity result for the initial value problem associated with (8.2):

Proposition 8.1 For any c′ > 0, let w0 ∈ L2
c′(") and let 0 ≤ ū+w ≤ 1. Then there exists a

unique solution w ∈ Cα((0,∞);H 2
c′("))∩C1,α((0,+∞);L2

c′("))∩C([0,+∞);L2
c′(")),

for all α ∈ (0, 1), of (8.2) and the same boundary conditions as in (1.2), such that w(x, 0) =
w0(x).

We are now in a position to complete the proof of Theorem 3, following the method
introduced in [16].

Proof of Theorem 3 Without loss of generality, we may assume that c′ < 2λ+(c, ν̂0), where
λ±(c, ν) are defined in (2.11). The result in Proposition 8.1 implies that we can multiply (8.2)
by ec′zw and integrate over ". Using hypothesis (H2) and the definition of q(y) in (3.2), we
have

∫

"

ec′zwwt dx ≤
∫

"

ec′z (!w + cwz − q(y)w)w dx. (8.3)

Then, after a number of integrations by parts, we obtain

d

dt

∫

"

ec′zw2 dx ≤ −2
∫

"

ec′z
(

w2
z + c′(c − c′)

2
w2 + |∇yw|2 − q(y)w2

)
dx. (8.4)

Applying the Poincaré inequality [17, Lemma 2.1] and the definition of ν̂0 in (3.2), we then
arrive at

d

dt

∫

"

ec′zw2dx ≤ 2

(
c′2

4
− cc′

2
− ν̂0

) ∫

"

ec′zw2 dx

= 1
2
{c′ − 2λ−(c, ν̂0)}{c′ − 2λ+(c, ν̂0)}

∫

"

ec′zw2 dx. (8.5)

Therefore, since c′ ∈ (2λ−(c, ν̂0), 2λ+(c, ν̂0)), the coefficient in front of the integral in
the right-hand side of (8.5) is negative, which implies exponential decay of the L2

c′ -norm
of w.
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