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Abstract. A biophysical model describing long-range cell-to-cell communication by a diffusible
signal mediated by autocrine loops in developing epithelia in the presence of a morphogenetic pre-
pattern is introduced. Under a number of approximations, the model reduces to a particular kind
of bistable reaction-diffusion equation with strong heterogeneity. In the case of the heterogeneity
in the form of a long strip a detailed analysis of signal propagation is possible, using a variational
approach. It is shown that under a number of assumptions which can be easily verified for particu-
lar sets of model parameters, the equation admits a unique (up to translations) variational traveling
wave solution. A global bifurcation structure of these solutions is investigated in a number of par-
ticular cases. It is demonstrated that the considered setting may provide a robust developmental
regulatory mechanism for delivering chemical signals across large distances in developing epithe-
lia.
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1. Introduction
Embryonic development requires tight spatial control of cell differentiation [16]. One of the most
basic mechanisms for accomplishing this task relies on the establishment of morphogen gradients
in developing epithelia. Morphogen gradients are concentration profiles of proteins that provide
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dose-dependent control of gene expression [24, 2]. Given the low rates of protein diffusion in
tissues, direct action of morphogen gradients is restricted to a small number of cells. Larger terri-
tories can be patterned by cellular relays, where one short-ranged molecule induces the production
of a secondary signal that diffuses a little further, and so on.

In an important version of this mechanism, cells respond to a diffusible signal by releasing
more of the same signaling molecule [9]. The resulting positive feedback loops, termed autocrine
loops, can give rise to waves of signaling that propagate over large distances, coordinating differ-
entiation of dozens and even hundreds of cells. A remarkable example of this effect is the mor-
phogenetic furrow, a traveling wave of cell differentiation that gives rise to a periodic arrangement
of Drosophila photoreceptors [11]. This wave is generated by a positive feedback loop formed by
two diffusible proteins.

In recent work, we have analyzed a number of biophysical models giving rise to front prop-
agation in autocrine relays [20, 22, 21, 19]. There we treated an idealized situation in which the
epithelium is considered as a flat homogeneous sheet of cells of infinite extent. At the same time,
it is very common in development that cell differentiation is punctuated by a sequence of well-
defined patterning events [29, 13, 31]. In this situation each subsequent step of differentiation
proceeds in the gene expression background established during the preceding step. This makes it
necessary within developmental contexts to analyze the problem of signal propagation in strongly
heterogeneous media.

Here we investigate a situation in which autocrine signals act on fields of cells that have been
patterned by previous rounds of signaling and are not necessarily uniform [9]. Specifically, we will
look into a particular case of stratified epithelia, i.e. the epithelia in which the morphogenetic pre-
pattern has the form of long stripes, and study the question of front propagation along the stripes
from a localized stimulus. Mathematically, this setting offers a considerable simplification, since
front propagation in such a problem is closely related to the problem of existence of traveling wave
solutions. In contrast, in more complicated patterned epithelia one would need to work with the
concept of generalized traveling waves (see e.g. [3, 30]). Furthermore, this setting falls within the
scope of the variational approach to front propagation problems developed recently in [17, 14, 18].

Our paper is organized as follows. In Sec. 2., we formulate a biophysical model of patterned ep-
ithelia with an autocrine feedback loop and perform suitable model reductions to make it amenable
to analysis. In Sec. 3., we extend the variational approach of [18] to the problem under consider-
ation and study existence and uniqueness of traveling wave solutions in the case where autocrine
signaling occurs only in a single narrow strip of cells. The main results of this section are contained
in Theorems 1 and 3 of that section. Then, in Sec. 4. we consider a few specific examples in which
the assumptions of the theorems my be verified and present some numerical results. Finally, in
Sec. 5. we summarize our findings and discuss some directions for future research.
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2. Model
Let us begin by formulating the mechanistic model of an autocrine relay which takes into account
the underlying heterogeneity of the gene expression pattern present at a given developmental stage.
For simplicity, we will consider a situation in which only a single signaling molecule is involved in
signal transmission along the epithelium. This signaling molecule (ligand) is subject to the follow-
ing elementary processes: it can diffuse in the thin extracellular space adjacent to the epithelium,
it can reversibly bind to its specific cell surface receptor, and it can be secreted by cells into the
extracellular space. The secretion rate is further assumed to be proportional to the density of a
ligand-processing intracellular species. Importantly, a positive feedback is assumed to exist, via
the mechanism of ligand-induced ligand release, whereby the production of the ligand-processing
intracellular molecules is autocatalytic and is upregulated by an increase in the number of the
signaling molecules bound to their cell surface receptors [22, 21, 20].

To introduce heterogeneity into this problem, we assume that only certain groups of cells ex-
press the extracellular species mediating the positive autocrine feedback loop. Then, within the
continuum modeling framework, the biophysical processes discussed above can be recast into the
following system of equations:

∂S

∂t
= Ds

(
∂2S

∂x2
+

∂2S

∂y2

)
− konRS + koffC + grP + G0(x, y, t), (2.1)

∂C

∂t
= konRS − (koff + kec)C, (2.2)

∂P

∂t
= −kpP + gpσ(C/CT )χp(x, y). (2.3)

Here, S denotes the concentration of the signaling molecule in the thin extracellular layer above the
epithelial cells, P is the density of the ligand-processing intracellular species, and C is the density
of the ligand-receptor complexes. In (2.1), Ds is the effective diffusion constant of the signaling
molecule, R is the receptor density (receptors are assumed to be in excess), kon and koff are the
binding and dissociation constants between the signaling molecule and the receptor, respectively,
and grP is the secretion rate, with gr the proportionality constant. Thus, the secretion rate in (2.1)
is assumed to be proportional to the density of the ligand-processing species P . Furthermore,
(2.2) describes the dynamics of the ligand-receptor complexes and also takes into account signal-
induced endocytosis, whose rate constants is given by kec. Finally, (2.3) contains the first-order
degradation term with the rate kp, as well as the sigmoidal dependence of the production rate on
the density of complexes C, with the threshold CT and the maximum production rate gp. Also in
(2.3), the function χp(x, y) defines the cells in which the ligand-processing intracellular species is
expressed (present), i.e., it is equal to 1 in those cells in which P is present and 0 where it is absent;
and G0(x, y, t) denotes a positive transient perturbation (by some other intracellular species from
an earlier patterning step) which has the effect of signal initiation.

The model just introduced consists of a nonlinear system of coupled partial and ordinary dif-
ferential equations with spatially varying parameters, and as such is rather difficult to analyze. In
the following, we introduce a biophysically-motivated simplification, which has to do with the fact
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that the receptor binding dynamics typically occurs on a time scale much shorter than the times
scale of the patterning events [22, 28]. This results in a steady-state approximation for (2.2). To
further simplify the analysis, we also introduce a steady-state approximation into (2.3). After a
little algebra equations (2.1) – (2.3) reduce to a single equation

∂S

∂t
= Ds

(
∂2S

∂x2
+

∂2S

∂y2

)
− ksS + gsσ(S/ST )χp(x, y) + g0(x, y, t), (2.4)

where we introduced new parameters

ks =
konkecR

koff + kec

, gs =
grgp

kp

, ST =
koff + kec

konR
CT , (2.5)

and g0 is a suitably rescaled version of G0.
Note that the obtained reduced model in (2.4) shares many common features with the classical

models in combustion theory and population biology (see e.g. [4, 23, 30]). In particular, from
dimensional analysis the diffusion length L =

√
Ds/ks naturally emerges. In the developmental

context this length (typically on the order of a few cell diameters) is expected to be of the same
order as the characteristic size of the morphogenetic pre-pattern. Therefore, a question of particular
interest is the interplay between the diffusion and degradation terms in (2.4), setting the diffusion
length scale, with the nonlinear reaction term which is localized in the heterogeneities. In the
following, we investigate this interplay in a specific heterogeneous setting via a rigorous analysis
of existence and multiplicity of traveling wave solutions.

3. Traveling waves
We now consider a particular situation in which the epithelium is considered to be a half-plane, with
the ligand-producing cells forming a semi-infinite strip normal to the reflecting boundary (Figure
1). Without any loss of generality, we can further perform an even extension of the problem to the
whole of R2. Then, after introducing a non-dimensionalization

S =
gs

ks

u, x →
√

Ds

ks

x, t → k−1
s t, ST =

gs

ks

a. (3.1)

we obtain a parabolic problem

ut = ∆u− u + σν,a(u)χ[−l,l](y) + g(x, y, t), (3.2)

for the quantity u : R2 × [0,∞) → [0, 1], with zero initial data. Here

σν,a(u) =
uν

aν + uν
, χ[−l,l](y) =

{
1, |y| ≤ l,

0, |y| > l,
(3.3)
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signal

Figure 1: The schematics of switching on of an autocrine loop in a row of cells expressing a ligand-
processing protease. The ligand is secreted only in a narrow strip of the epithelium, but is degraded
upon binding to receptors which are uniformly distributed throughout the epithelium. The pattern
is initiated by a localized input at the left end of the epithelium and propagates to the right. The
dashed line shows an instantaneous level set of the ligand concentration at the cell surfaces.

and g(x, y, t) ∈ C∞
0 (R2 × [0,∞)) is a given non-negative function (here and below C∞

0 denotes
smooth functions with compact support). In particular, we assumed that the sigmoidal function in
(3.2) is given by a Hill function σν,a(u) with the Hill coefficient ν and the threshold a, which is a
common modeling assumption in the studies of regulatory networks [25].

Note that since the nonlinear term in (3.2) is uniformly Lipschitz in u and since u = 0 and
u = 1 + max g are a sub- and a super-solution, respectively, by standard parabolic theory [15]
we get global existence of weak solutions of (3.2). In particular, these solutions decay super-
exponentially as |x|, |y| → ∞ and, hence, lie in the exponentially weighted Sobolev spaces H1

c (R2)
for each t ≥ 0 and every c > 0. Here, as usual [18], H1

c (R2) denotes the Hilbert space obtained as
a closure of C∞

0 (R2) with respect to the norm defined by

||u||2H1
c (R2) = ||u||2L2

c(R2) + ||∇u||2L2
c(R2), ||u||2L2

c(R2) =

∫
R2

ecx|u|2dxdy. (3.4)

Following the transient perturbation specified by g, the signal distribution u will solve (3.2)
with g = 0 for t ≥ T , for some T > 0. In other words, for t ≥ T the problem for u be-
comes equivalent to an initial-value problem specified by (3.2) with g ≡ 0 and positive initial data
u0(x, y) = u(x, y, T ) ∈ H1

c (R2) with arbitrary c > 0. As is well known in this general class of
models (see e.g. [8]), depending on the amplitude and size of u0, as well as on the values of ν, a,
and l, one would expect an initiation of a propagating front of signaling. Fronts are traveling wave
solutions of (3.2) which invade the stable equilibrium u = 0 from left to right with some speed
c > 0. We note that in the present context the relevant class of traveling wave solutions are the
so-called variational traveling waves [17, 14, 18], namely functions ū ∈ H1

c (R2) solving

ūxx + ūyy + cūx − ū + σν,a(ū)χ[−l,l](y) = 0 weakly in H1
c (R2). (3.5)
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Indeed, the ability of solutions of equations like (3.2) with the initial data decaying sufficiently fast
at x = +∞ to propagate towards x = +∞ has been shown to depend critically on existence of
minimizers for the functional

Φc[u] =

∫
R2

ecx

(
1

2
|∇u|2 + V (u, y)

)
dxdy, (3.6)

where for our system

V (u, y) =
u2

2
− χ[−l,l](y)

∫ u

0

σν,a(s)ds, (3.7)

over all functions u ∈ H1
c (R2) and c > 0 [17, 14, 18]. In particular, for a wide class of wave-like

solutions, i.e. solutions of (3.2) on which Φc[u(·, t)] < 0 for some c > 0 and t ≥ T only the
variational traveling waves can be the long-time attractors of the dynamics in the reference frame
associated with the leading edge [17, Theorem 4.11]. Therefore, here we will pay special attention
to the study of existence of variational traveling waves in the considered problem. In particular,
we will be interested in the question of multiplicity of these solutions.

By energy arguments [14, Proposition 6.6], one would expect the solutions of (3.5) to approach
an x-independent equilibrium of (3.2), i.e. one expects ū(x, y) → v(y) as x → −∞ uniformly in
y, where v solves the ordinary differential equation

d2v

dy2
− v + σν,a(v)χ[−l,l](y) = 0. (3.8)

Observe that every solution v ∈ H1(R) of (3.8) is a critical point of the energy

E[v] =

∫ +∞

−∞

{
1

2

(
dv

dy

)2

+ V (v, y)

}
dy. (3.9)

In fact, every bounded solution of (3.8) is automatically in H1(R), since the equation becomes
linear for |y| > l and, therefore, every bounded solution of (3.8) is explicitly given by

v(y) =

{
v+el−y, y > l,

v−el+y, y < −l,
(3.10)

for some constants v± > 0. Since the energy E is lower-semicontinuous with respect to the weak
convergence in H1(R) (see, e.g., [7]), existence of a non-trivial solution for (3.8) is equivalent to
existence of a non-trivial minimizer of E.

Note that since v = 0 is always a critical point of E, existence of a non-trivial minimizer of E
is guaranteed by the condition

min
v∈H1(R)

E[v] < 0. (3.11)
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In fact, (3.11) is also a necessary condition for existence of non-trivial solutions of (3.5) with c > 0.
Indeed, every non-trivial solution of (3.5) is a critical point of Φc in H1

c (R2). Hence, we must have
Φc[ū] = 0 [17, Proposition 3.3]. But this is impossible, if (3.11) does not hold, since in this case
by Poincaré inequality [18, Lemma 2.2] we have Φc[ū] ≥ c2

8

∫
R2 ū2dxdy > 0. Furthermore, (3.11)

cannot be satisfied for any l > 0, if the value of a is sufficiently large. Indeed, since min E is a
monotonically decreasing function of l and a monotonically increasing function of a, for (3.11) to
hold we must have a < a0, where

a0 = sup

{
a > 0 : min

u∈[0,1]

(
u2

2
−

∫ u

0

σν,a(s)ds

)
< 0

}
. (3.12)

The value of a0 is the well-known propagation threshold for fronts in the case of l = ∞ [8, 1].
Our main result concerning variational traveling waves stated below is a natural extension of

the results of [18]. Let us note that the main point of the theorem is the statement about uniqueness
of the variational traveling waves, which relies on uniqueness of positive equilibria of E with
negative energy. We point out that in our setting this assumption can be straightforwardly verified
numerically for any set of a, ν and l (see Theorem 3). In this sense the behavior of our system is
expected to be very similar to that of one-dimensional reaction-diffusion equations with a bistable
nonlinearity [8]. Nevertheless, because of technical difficulties we were not able to prove this
result in full generality.

Theorem 1. Assume there exists a unique solution v of (3.8) for which E[v] < 0. Then there exists
a unique (up to translations in the x-direction) solution ū of (3.5) for a unique value of c = c† > 0.
Furthermore, ū is a strictly monotonically decreasing function of x converging exponentially to
zero as x → +∞ and |y| → ∞, and u(x, ·) → v uniformly as x → −∞, and ū(x, y) = ū(x,−y).

Outline of Proof. The proof of our result relies on the construction of minimizers of Φc performed
in [14, 18]. Since the arguments of the proofs closely follow those of [18], we will only present
the necessary modifications for the considered problem. These are mainly related to the need to
consider the solutions of (3.5) on the whole of R2.

As was already noted, minimizers of Φc are weak solutions of (3.5). Moreover, by the trun-
cation argument of [14, Proposition 3.3(i)] we have 0 ≤ u ≤ 1, and hence by standard elliptic
regularity theory [10] every minimizer u is a classical solution outside the lines y = ±l, and is
continuous together with its first derivatives in the whole of R2. Also, by the same argument as in
[14, Proposition 3.3(iii)], these solutions decay exponentially uniformly as x → +∞. At the same
time, since el−|y| is a super-solution for (3.5) for |y| > l, by maximum principle we also get the
exponential decay of ū as |y| → ∞.

To prove existence of minimizers of Φc, we need to establish lower-semicontinuity of Φc with
respect to the weak convergence in H1

c (R2). This result easily follows by noting that the sup-
port of the second term in the definition of V is bounded in y. Hence, all the arguments of [14]
carry over. Similarly, the sublevel sets Φc[u] ≤ 0 of the functional Φc subject to the constraint∫

R2 ecx|ux|2dxdy = const are relatively compact in H1
c (R2). So, existence of minimizers for a

unique value of c = c† > 0 follows as in [18, Theorem 3.9]. Similarly, uniqueness and monotonic-
ity of minimizers follows as in [18, Theorem 3.3], applying strong maximum principle separately
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for |y| < l and |y| > l, together with Hopf lemma at |y| = l. By monotonicity and exponential de-
cay as |y| → ∞, we obtain, in turn, that ū(x, y) → v(y) uniformly in y as x → −∞. Furthermore,
again, from the exponential bound on ū for large |y| and the arguments of [18, Theorem 3.3(ii)] we
conclude that v is a critical point of E, such that E[v] < 0 (unique by assumption).

To prove uniqueness of variational traveling waves, we first note that for c = c† every such
solution is a minimizer and, hence, is unique up to translations in the x-direction. On the other
hand, if c > c†, then non-existence follows from [18, Proposition 3.6]. Alternatively, if there exists
a variational traveling wave u for some 0 < c < c†, then by [14, Corollary 6.8] we have u(x, ·) → v
uniformly as x → −∞. On the other hand, this is clearly impossible in view of existence of a sub-
solution of (3.2) lying below u and moving with speed c† − ε for an arbitrary ε > 0 (see the proof
of [18, Proposition 5.5]).

Finally, symmetry of the solution ū with respect to the y = 0 line follows, e.g., by comparing
Φc[ū] with the values of Φc on the even extensions of ū(x, y) and ū(x,−y) from y > 0 to the whole
of R2.

Importantly, the variational characterization of the solutions obtained in Theorem 1 also allows
to efficiently obtain upper and lower bounds on the propagation speed c† of the traveling wave
[17, 14, 18]:

Remark 2. Under the assumptions of Theorem 1, let cmin be such that Φcmin
[u] < 0 for some

u ∈ H1
cmin

(R2), and let cmax be such that Φcmax [u] = 0 implies u = 0 for all u ∈ H1
cmax

(R2). Then
cmin < c† < cmax.

Let us also note that one would actually expect that all traveling wave solutions for (3.2) are,
in fact, variational. The latter is certainly the case, if the problem were considered on a strip rather
than the whole of R2 [18, Proposition 3.7]. To prove this statement, however, one would need to
undertake a careful analysis of the asymptotic behavior of solutions as x → ±∞ on an unbounded
domain.

We now state a result which allows to conveniently characterize all non-trivial critical points of
(3.9) as members of a one-parameter family of functions.

Theorem 3. For every ν > 1 and every 0 < a < a0, where a0 is defined in (3.12), there exist
constants 0 < v1 < v2 < 1 such that for every v0 ∈ (v1, v2) there exists a unique value of l > 0
for which (3.8) has a positive solution with v(0) = v0 and v(±∞) = 0. Every positive solution of
(3.8) is symmetric with respect to y = 0 and belongs to this class.

Proof. To characterize all the critical points of E, we start by multiplying (3.8), as usual, by dv/dy
and integrating from −l to y. With the help of (3.10) one obtains(

dv

dy

)2

− v2 + G(v) = G(v−), G(v) = 2

∫ v

0

σν,a(s)ds, (3.13)

where v± are defined in (3.10). Also, from (3.10) and (3.13) with y = l we observe that, in fact,
G(v−) = G(v+). Since, in turn, G(v) is a strictly monotonically increasing function of v, we
actually have v+ = v−.
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Let us now turn to the behavior of positive solutions of (3.8) for −l < y < l. We claim that the
solution is in fact an even function which is monotonically increasing for y < 0 and decreasing for
y > 0. If not, then by symmetry of v with respect to the point where it reaches its maximum we
must have v(y0) = v+ for some −l < y0 < l and without loss of generality we may assume that
v(y) > v+ for all −l < y < y0. But since G(v) < G(v+) for all v < v+, from (3.13) we obtain
that dv/dy < −v for all y > y0, so v(y) < v+ for these values of y. This, once again, contradicts
the condition that v(l) = v+.

Now, integrating (3.13) and taking the symmetry of solutions into account, we obtain an im-
plicit equation for v−:

l =

∫ v0

v−

ds√
G(v−)−G(s) + s2

, G(v0)− v2
0 = G(v−), (3.14)

where we introduced v0 = v(0) and took into account (3.10). Thus, all positive solutions of (3.8)
can be expressed as a one-parameter family, parametrized by v0 ∈ (v1, v2), where v1 is the first
positive root of G(v)− v2 = 0, and v2 > v1 is the root of G′(v)− 2v = 0 (by maximum principle
we have v < v2 for any solution of (3.8)). In view of monotonicity of G(v) − v2 on (v1, v2), for
each v0 ∈ (v1, v2), there exists a unique value of 0 < v− < v0 for which the second of (3.14) holds
and, hence, a unique value of l > 0 for which a bounded positive solution of (3.8) exists.

Let us also give an expression for the energy E of a solution of (3.8) in terms of integrals
similar to those introduced in (3.14). Using (3.10) and substituting (3.13) into (3.9), after a little
algebra we obtain that for a solution characterized by v0 in Theorem 3 it holds

E[v] = 2

∫ v0

v−

√
G(v−)−G(s) + s2 ds−G(v−)l + v2

−. (3.15)

Thus, establishing existence and uniqueness of bounded positive solutions of (3.8) with neg-
ative energy amounts to studying the dependence l(v0) defined in (3.14) and evaluating the sign
of the right-hand side of (3.15) as a function of v0. While this dependence is difficult to study
analytically, it is a straightforward exercise to evaluate the necessary integrals numerically. We
will consider a few specific examples of such a calculation in the following section. Meanwhile,
before concluding this section, let us give a rather general sufficient condition for the assumptions
of Theorem 1 to hold.

Theorem 4. Let 0 < a < a0, where a0 is defined in (3.12), and let l > 0 be sufficiently large. Then
there exists a unique solution v of (3.8) for which E[v] < 0. There is no bounded solution of (3.8),
if l > 0 is sufficiently small.

Proof. Consider the case of l � 1 first. Then it is easy to see that since the integrand in (3.14)
is bounded from below uniformly in v0, (3.14) cannot be satisfied for any v0 ∈ (v1, v2). On the
other hand, suppose now that l � 1. Then, observe that G(v−) − G(s) + s2 is a monotonically
decreasing function of s for s ∈ (v1, v2), and increasing for s ∈ (0, v1). Therefore, for any
v0 ∈ (v1, v2), v− ∈ (0, v0) solving the second equation in (3.14), and any s ∈ [v−, v0 − δ] we have
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s2 − G(s) ≥ (v0 − δ)2 − G(v0 − δ) > 0, provided that δ > 0 is sufficiently small. On the other
hand

G(v−)−G(s) + s2 = 2(σν,a(v0)− v0)(v0 − s) + O((v0 − s)2). (3.16)

Therefore, the integral in (3.14) is uniformly bounded for all v0 ∈ I b (v1, v2), contradicting the
assumption l � 1 for all v0 ∈ I , with I fixed.

Therefore, the right-hand side of (3.14) may become large only when v0 is sufficiently close to
v2 or v1. Consider the first case first. Then we have σν,a(v0) − v0 ∼ v2 − v0, and so the integral
in (3.14) is dominated by the neighbourhood of s = v0 (here and below the symbol “∼” is used
in the sense of asymptotic equivalence in C1 up to an O(1) constant). It is then not difficult to
show that l ∼ ln(v2 − v0)

−1, and so for each large enough l there exists a unique value of v0

sufficiently close to v2, such that (3.14) holds. On the other hand, if v0 is sufficiently close to v1,
then v− ∼ (v0 − v1)

1/(ν+1), and the integral in (3.14) is dominated by the vicinity of v−. A similar
estimate then shows that l ∼ ln(v0−v1)

−1/(ν+1) and, once again, there is a unique value of v0 close
enough to v1 for which (3.14) holds for large enough l.

It remains to analyze the sign of E for these values of v0. If v0 is close to v1, then from
the arguments above we have G(v−)l ∼ v1+ν

− ln v−1
− , which is asymptotically smaller than v2

− for
ν > 1. Therefore, the third term in (3.15) dominates, and we have E > 0 in this case. On the
other hand, if v0 is close to v2, then both the integral and the last term in (3.15) are O(1) quantities.
Therefore, the second term will dominate for l � 1, and we have E < 0.

The result of Theorem 4 appears to be quite expected, since for l � 1 front propagation in the
considered problem should be governed essentially by one-dimensional traveling waves, whereas
for l � 1 the strength of the positive feedback should not be sufficient to sustain a wave of
signaling. It is also natural to expect that the structure of bounded solutions of (3.8) established in
the proof of Theorem 4 in the case l � 1, namely, that there exist precisely two solutions of (3.8),
one with positive energy and the other with negative energy, remains the same as long as (3.11)
holds. Hence, by monotonic decrease of min E as a function of l, one would expect existence of a
threshold value of l = lT > 0, such that the conclusions of Theorem 1 hold if and only if l > lT , for
every ν > 1 and a < a0 fixed. Numerical evidence suggests this to be the case. Mathematically,
however, the issue is to prove uniqueness of solution of (3.8) with negative energy.

4. Examples
We now investigate the question of uniqueness of critical points of E and estimate the wave speeds
in a number of particular cases. We first consider the case of the nonlinearity with the Hill coeffi-
cient ν = 2, corresponding to the case of moderate cooperativity in the response of the autocrine
feedback. In this case from (3.13) we obtain explicitly

G(v) = 2
{

v − a arctan
(v

a

)}
. (4.1)
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Figure 2: (a) Dependence of l on v0 when ν = 2 and a = 0.4. (b) The profiles of the two bounded
solutions for ν = 2, a = 0.4 and l = 4. The solid line shows the solution for which E < 0.
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Figure 3: The energy E of the bounded positive solutions as a function of v0 for ν = 2 and a = 0.4.

Also, we can explicitly calculate the value of v2 appearing in the statement of Theorem 3 in this
case. After some straightforward algebra, we find that v2 = 1

2
(1+

√
1− 4a2), provided that a < 1

2
.

At the same time, we have a0 ≈ 0.4597 < 1
2
. When a < a0, the expression G(v) − v2 remains

positive from v = v2 down to some v = v1 > 0. For example, when a = 0.4, we have v1 ≈ 0.3349
(also, v2 = 0.8 for this value of a). Therefore, when a = 0.4 and 0.335 < v0 < 0.8, there exists
a unique bounded solution of (3.8) with v(0) = v0. We computed the values of l for each v0 from
(3.14) in this interval, the result is shown in Figure 2(a). One can make several observations from
these results. First, there is no positive solution of (3.8) for this value of a when l < l0, where
l0 ≈ 2.358. Second, when l > l0 is fixed, there are precisely two solutions, the one corresponding
to the smaller value of v0 (Figure 2(b), dashed line), and the other corresponding to the larger value
of v0 (Figure 2(b), solid line). Note that as l →∞, the first solution approaches a homoclinic orbit
possessed by (3.8) with l = ∞, while the second solution approaches v = v2 as l →∞.

We also computed the energies of the solutions shown in Figure 2(a). The result, obtained by
numerically integrating the expressions in (3.15) are shown in Figure 3. One can see from this
figure that for each l > l0 only the solution with the larger value of v0 may have negative energy.
This happens when l > lT , for some lT > l0. For example, lT ≈ 3.35 when a = 0.4.

We have simulated the onset of the traveling wave in the system with ν = 2, a = 0.4, and
l = 4 from the initial condition u(x, y, 0) = sech−2 (0.25

√
x2 + y2) in a finite domain [0, 40] ×
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Figure 4: The colormap plot of u in the wave of signaling obtained from the numerical solution
of (3.2) with ν = 2, a = 0.4 and l = 4. Simulations were performed on a 40 × 20 domain with
Neumann boundary conditions, using the standard finite difference discretization with dx = 0.05.

[−10, 10] with Neumann boundary conditions (the effect of the boundary conditions was found to
be negligible). The resulting wave profile at t = 100 is presented in Figure 4. After an initial
transient, the profile of the solution takes the shape of a “finger” advancing from left to right. It
then attains a steadily moving profile with speed c† ≈ 0.107. This speed is in agreement with
the lower bound of cmin = 0.083 obtained by using the trial function ũ(x, y) = 0.8

(1+ex)(1+ey−3.3)
in

Remark 2. On the other hand, estimating Φc[u] for all u ∈ H1
c (R2) such that u(x, y) = u(x,−y),

we find

Φc[u] ≥
∫ +∞

−∞

∫ l

0

ecx(u2
x + u2

y + u2 −G(u))dydx +

∫ +∞

−∞
ecxu2(x, l)dx

≥
∫ +∞

−∞

∫ l

0

ecx
(
(1

4
c2 + µ0 + 1)u2 −G(u)

)
dydx, (4.2)

where µ0 is the smallest eigenvalue of −d2/dy2 with boundary conditions dv/dy = 0 at y = 0 and
dv/dy = −v at y = l, and we applied the Poincaré inequality of [18, Lemma 2.2]. For example,
for l = 4, we have µ0 ≈ 0.1. Then, using (4.1) it is easy to see that when a = 0.4 and l = 4 the term
in the bracket in (4.2) stays positive for all c > cmax ≈ 0.45. Note that for these parameters even a
rather crude lower bound cmin is quite close to the actual value of c†. At the same time, since the
system is near the propagation threshold at these parameters, the (also rather crude) upper bound
cmax considerably overestimates the wave speed. On the other hand, for a = 0.25 and l = 4,
further away from the propagation threshold, by the same arguments we obtain cmin ≈ 1.045 and
cmax ≈ 1.725. These compare more favorably with the value of c† ≈ 1.15 obtained numerically.

The second example we will consider is the case ν = ∞, corresponding to strong cooperativity
of the autocrine feedback. In this case we can explicitly construct all positive symmetric solution
of (3.8) for 0 < a < 1

2
(otherwise there are no solutions). After some straightforward algebra we
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find that there are exactly two solutions for each

l > l0 = ln(1− 2a)−1/2. (4.3)

The first solution

vlow =

{
1−

√
1− 2a cosh y, |y| < l0,

ael0−|y|, |y| ≥ l0,
(4.4)

has v0 = 1 −
√

1− 2a independently of l. Note that, compared to the case ν < ∞ considered
in Theorem 3, the dependence of l on v0 degenerates here. The second solution exists for all
v0 > 1−

√
1− 2a when

l = ln(1− v0)
−1 > l0, (4.5)

and is given by

vhigh =

{
1− (1− v0) cosh y, |y| < l,
1
2
(2− v0)v0e

l−|y|, |y| ≥ l.
(4.6)

Notice that we have vlow < vhigh.
Using (3.15), we can also calculate the energy of each solution obtained above. For the first

solution we obtain

E[vlow] = a + 1
2
(1− 2a) ln(1− 2a) > 0. (4.7)

On the other hand,

E[vhigh] = (1− 2a) ln(1− v0) + 1
2
(2− v0)v0. (4.8)

By direct inspection, the latter expression is a monotonically decreasing function of v0 and be-
comes negative when v0 is sufficiently close to 1. Then, according to (4.5), this implies existence
of a unique critical point of E with negative energy for all l > lT , for some lT = lT (a) > 0,
and non-existence of such a solution for l ≤ lT . Solving the obtained transcendental equations
numerically, we find, e.g., that lT ≈ 2.483 for a = 0.4.

One would naturally expect these conclusions to still hold for ν sufficiently large, but finite.
Hence, for ν � 1 the conclusions of Theorem 1 are expected to remain valid under the assumption
in (3.11) only, with the asymptotic limit v of the traveling wave solution at x = −∞ close to vhigh.
We have found this agreement to be very good quantitatively already for ν ' 6. On the other hand,
the analysis for ν = 2 performed earlier also leads to the same conclusions regarding multiplicity
of the solutions of (3.8).
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5. Conclusions
To summarize, we have introduced a biophysical model of autocrine relays in developing epithelia
in the presence of a morphogenetic pre-pattern. We concentrated our analysis on the case in which
the pre-pattern consists of a long and narrow strip of cells capable of autocrine signaling. We
adapted a variational approach of [18] to establish existence of variational traveling waves, a class
of traveling wave solutions relevant for signal propagation in the considered class of systems [17].
We paid particular attention to the question of multiplicity of these traveling wave solutions and
showed that in all the situations that we considered, the variational traveling wave solution, if
it exists, is also unique (up to translations). Thus, we established that the considered patterned
autocrine relay system is a robust developmental module capable of transmitting chemical signals
across large distances, with a specified transmission speed. It may be viewed as an analogue of
an electrical wire for delivering electrical bits in the conventional digital electric circuits. Also,
similarly to the electric circuits, more complex morphogenetic pre-patterns may be used to deliver
more complicated signals across the morphogenetic field.

Our analysis of multiplicity of the traveling wave solutions, which relies on the analysis of the
non-trivial steady states of the governing equation proved possible due to a particular structure of
this equation in the case of a single strip capable of autocrine signaling. We took this structure
into account to obtain a convenient characterization of the steady states (Theorem 3). This is the
most novel aspect of the present analysis. As a result, we obtained easily verifiable conditions
(see Theorem 4 and Sec. 4.) that allow to establish the global structure of the steady solutions
and, as a consequence, of the variational traveling waves as functions of the problem parameters.
Of course, these results are not unexpected for a single reaction-diffusion equation with a bistable
nonlinearity localized to a strip in the plane. Yet, the particular structure of the considered model
allows quantitative analytical studies of existence, multiplicity, and global bifurcations of solutions,
which otherwise can be studied only via large-scale numerical simulations. It is this analysis that
demonstrates the robustness of the underlying signal transmission mechanism.

Naturally, our approach also presents a trade-off between the complexity of the underlying
model and the degree to which this model is amenable to analysis. Indeed, the starting point of
our analysis is a model given by the system (2.1) – (2.3), which is a nonlinear system of coupled
ordinary and partial differential equations. Let us emphasize that even this initial model already
represents a great simplification of reality, since it lumps together many molecular species taking
part in signaling, as well as ignoring all other regulatory mechanisms. Yet further simplifications
leading to (2.4) were necessary to perform rigorous analysis of the model. A major challenge
for mathematics in the present context is to be able to perform similar kind of analysis for more
realistic models, which are always given by systems of coupled equations. Specifically, in the
case of the models of autocrine relays considered in this paper the assumption of slowness of the
variable S compared to all other variables may not always be well-justified [22]. If this assumption
is not made, but one still uses the steady-state approximation for C and sets G0 = 0 for simplicity,
one would arrive at the following simplified model in R2:

ut = uxx + uyy − u + v, (5.1)
vt = k

(
σ(u)χ[−l,l](y)− v

)
, (5.2)
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where we performed a suitable rescaling, and k = kp/ks. Now it is no longer possible to apply
the variational approach of [18] to this system any more. At the same time, it turns out that the
system (5.1), (5.2) falls within the category of degenerate monotone systems and, therefore, can be
studied by the methods of [26, 12, 27]. Another observation, which is not immediately apparent,
is that this system possesses a kind of energy that is monotonically decreasing in time. To see this,
let us express v in terms of u through (5.1) and substitute it into (5.2), then multiply the obtained
equation for u by ut and integrate over space. After some algebra, we obtain

dH

dt
= −

∫∫
R2

{
(1 + k)u2

t dx dy + |∇ut|2
}

dx dy ≤ 0, (5.3)

H[u] =

∫∫
R2

{
1
2
u2

t + k
2
|∇u|2 + kV (y, u)

}
dx dy, (5.4)

where V (y, u) =
∫ u

0

(
s− χ[−l,l](y)σ(s)

)
ds, and H is evaluated on the solutions of (5.1), (5.2).

This functional can be used to establish convergence of the solutions of (5.1), (5.2) to equilibria on
a finite domain, as well as to discriminate between different equilibria as possible limits for t →∞,
in particular, whether a non-trivial equilibrium is reached. We note that this property remains true
when σ is replaced by a more general function, not necessarily sigmoidal, e.g. σ = a2u2/(a4 +u4)
(which is peaked at u ≈ a), and the system above is no longer a monotone system.

Let us mention that despite the existence of the energy H in (5.4), an extension of the tech-
niques of [14, 18] to (5.1), (5.2) for studying propagation does not seem to be possible. The
difficulty arises from the absence of diffusion in the v equation and is, in fact, a common obsta-
cle in carrying the approach of [14, 18] to general systems of reaction-diffusion equations. On
the other hand, if one reinterprets (5.1), (5.2) as a model for two diffusible species, in which u
cross-activates v and vice versa, then, assuming equidiffusion of u and v (i.e. adding a term ∆v
to (5.2)), it is again possible to derive a variational characterization of propagation and traveling
waves, as before. The computation is rather tedious, but the functional Φc whose critical points are
the traveling wave solutions now is:

Φc[u] =

∫∫
R2

ecx
{

1
2
(uxx + uyy)

2 + 1
2
(1 + k)(u2

x + u2
y)

+1
2
c2u2

y + kV (y, u)
}

dx dy. (5.5)

It should then be possible to study the non-trivial minimizers of this functional following Refs.
[14, 18]. In conclusion, analysis of systems of reaction-diffusion equations arising from the models
of developmental pattern formation still remains a significant mathematical challenge. Here the use
of variational methods may show some promise.

Note added in proof. After this paper was accepted for publication, we became aware of some
related results for a similar class of problems [5, 6].
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