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BOUNDARY HOMOGENIZATION FOR PERIODIC ARRAYS
OF ABSORBERS∗

CYRILL B. MURATOV† AND STANISLAV Y. SHVARTSMAN‡

Abstract. We introduce a homogenization procedure for reaction-diffusion equations in domains
whose boundary consists of small alternating regions with prescribed Dirichlet and Neumann data
of comparable areas. The homogenized problem is shown to satisfy an effective Dirichlet boundary
condition which depends on the geometry of the small-scale boundary structure. This problem is also
related to finding the effective trapping rate for a Brownian particle next to a surface with a periodic
array of perfect absorbers. We use the method of optimal geometric grids to numerically solve the
unit cell problem of homogenization. The geometric homogenization factor is obtained for a number
of cell geometries (stripes, square and hexagonal arrays of disk-shaped absorbers or emitters) as a
function of the surface area fraction occupied by the absorbers. Empirical analytical expressions that
give excellent fits to data for the entire range of area fractions and correct asymptotic behaviors in
the limits of small and large absorber area fractions are proposed.
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1. Introduction. Consider a Brownian particle released from a heterogeneous
boundary composed of perfectly absorbing patches on an otherwise reflecting sur-
face. Depending on the particular application, one might be interested in the flux
of particles from a patchy surface, in the statistical properties of trajectories lead-
ing to capture, or in the rate of a chemical reaction if the particle enters a reacting
medium [2, 16, 24, 28, 36, 43]. Such problems are interesting for several reasons.
First, patterned surfaces can be robustly manufactured using modern microfabrica-
tion techniques and find applications in catalysis and electrochemistry [16]. Second,
strongly heterogeneous boundary value problems of reaction-diffusion type arise in
modeling a variety of nonlinear phenomena, in particular, problems of cell signaling
in developmental biology [2, 24, 31, 40]. In addition, these problems share certain
mathematical aspects with problems arising in a number of other fields, notably in
electrostatics [18, 21, 22, 23].

The interest in problems with patchy surfaces goes back to the 1930’s in connec-
tion with the design of vacuum tubes (see [18, 23] and the references therein). Already
in these early studies it was realized that when the sizes of individual patches are much
smaller than the physical length scale of the problem, such problems can be efficiently
treated by a homogenization approach in which the mixed Dirichlet–Neumann bound-
ary condition on a patchy surface is replaced by an effective homogeneous boundary
condition. These ideas have been further developed in the mathematical works of
many authors (see, e.g., [8, 9, 20, 21, 22, 25, 34]).
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BOUNDARY HOMOGENIZATION 45

More recently, the interest in problems with fine-grained heterogeneous boundary
conditions has been renewed in connection with the studies of cell communication by
diffusing signals [2, 24, 40]. To give an illustrative example, consider a monolayer of
cells covered by a thick layer of extracellular medium. In the extracellular medium,
a signaling molecule can diffuse with diffusion coefficient Ds or be converted to an
inactive form via an enzymatic reaction. Assuming Michaelis–Menten kinetics, we
can write the equation for the concentration S = S(x, y, z, t) of the signal in the
extracellular medium occupying the region z > 0 as

(1.1) St = DsΔS − VmS

Km + S
,

where Δ is the three-dimensional Laplacian and Vm,Km are Michaelis–Menten con-
stants. The signaling molecules, in turn, are secreted by the cells at the bottom of
the extracellular medium (assumed to be at z = 0). This problem becomes strongly
heterogeneous if the cells in the layer consist of groups with different levels of gene
expression, in particular, when a cell surface receptor to which the signaling molecule
can bind is expressed at different levels in different cells or patches of cells. Examples
of this situation abound both in the in vivo epithelial layers and in cell tissue cultures
[3, 41].

For simplicity, let us assume that the layer consists of only two distinct groups of
cells, with the majority not expressing the receptor and the minority expressing it at
sufficiently high levels. The minority cells are also assumed to be arranged periodically
in the cell layer. In this situation the majority cells will be able to secrete the signal,
while the minority cells will act as absorbers by the essentially irreversible binding of
the signaling molecules to the cell surface receptors followed by endocytosis [2, 24, 40].
This leads to the following boundary condition on the surface of the cell layer:

(1.2) −DsSz(x, y, 0, t)|majority = Qsg(x, y, t), S(x, y, 0, t)|minority = 0,

where Qs is the maximum secretion rate and g is the normalized secretion rate at a
given position on the cell layer at a given moment.

Under reasonable biophysical assumptions the size l of a single cell can be con-
siderably smaller than the diffusion length L = (DsKm/Vm)1/2 of the signal in the
extracellular medium, justifying a continuum modeling approach [2, 24, 26, 40]. Since
the seminal contribution by Berg and Purcell, problems with such fine-grained patchy
surfaces have been treated within the effective medium approximation in which the
heterogeneous surface is replaced by a homogeneous one, with a partially absorbing
boundary condition uniform over the entire surface [4, 6, 35, 42]. The Berg–Purcell
approximation is derived for the case of circular absorbers and asymptotically small
absorber surface area fraction. Recently, we have developed a computational homog-
enization procedure for periodic and random dispersions of circular absorbers [4, 5].
This procedure was found to provide an excellent approximation for the statistics of
Brownian particle motion for arbitrary absorber area fractions, is not limited to cir-
cular and perfectly absorbing absorbers, and can be extended to surfaces covered by
the mixtures of absorbers of different sizes. Mathematically, however, this approach
had been justified only for small absorber area fractions, thus essentially covering only
the Berg–Purcell limit [9, 22, 25].

In this paper we clarify the nature of the approximation proposed by us in our
earlier works [4, 5] by formulating a limit problem which gives rise to a homogenized
boundary condition in the limit ε = l/L → 0. Surprisingly, the homogenized bound-
ary condition found in the limit problem turns out to be different from the mixed
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boundary condition used in earlier studies, thus resulting in a new class of boundary
homogenization problems. Nevertheless, as we show below, using the mixed bound-
ary condition derived in [4, 5] is also consistent with the homogenization limit when
l � L.

For surfaces covered by circular absorbers, we propose a functional form of the
homogenized boundary condition that is valid over a wide range of absorber area
fractions and can be used for both types of the considered two-dimensional absorber
lattices. We find that while the value of the geometric factor in the homogenized
boundary condition depends strongly on the surface area fraction occupied by the
absorbers, it is practically independent of the lattice type (see also [12, 19]). In
addition, we provide new asymptotic results on the behavior of the homogenized
boundary condition at high absorber area fractions. For the case of striped surfaces,
we rederive the effective boundary condition first obtained by Moizhes in [23].

Most of our numerical results are based on the novel algorithm for treating exte-
rior boundary value problems [10, 11, 15]. In the next two sections, we formulate the
homogenization procedure and outline the algorithm for solving the unit cell problem
of homogenization. We then obtain accurate numerical data for the geometric homog-
enization factor for a range of cell geometries and analyze its asymptotic behaviors
at small and large absorber area fractions. Guided by these asymptotic results, we
propose analytical expressions for the geometric homogenization factor as a function
of the absorber area fraction for the considered geometries, which provide excellent
fits to data. In the end, we discuss possible extensions of our results.

2. Problem formulation. We start by considering a general initial-boundary
value problem for a reaction-diffusion equation in the domain Ω ⊂ R

3 with smooth
boundary. We are interested in the situation in which the boundary of Ω contains
a series of alternating small-scale “absorbers” and “emitters,” i.e., regions with pre-
scribed Dirichlet and Neumann data, respectively. Denoting the absorbing portion of
∂Ω by ∂Ωε

0, where ε � 1 characterizes the length scale of the absorbers, we obtain

uε
t = Δuε + fε(x, t, u

ε), uε(x, 0) = uε
0(x),(2.1)

uε|∂Ωε
0

= vε(x, t), ν · ∇uε|∂Ω\∂Ωε
0

= gε(x, t).(2.2)

Here uε = uε(x, t) is scalar, x is the Cartesian coordinate of a point in Ω, and ν
is the outward normal to ∂Ω. A natural question which arises in relation with the
initial-boundary value problem presented above is whether, perhaps after a suitable
rescaling of fε, vε, gε, there is a limit problem associated with (2.1) and (2.2) for a
family of ∂Ωε

0 and fε, vε, gε when ε → 0 and what that limit problem actually is. In
this paper we consider the particular scaling

(2.3) fε = f, uε
0 = u0, vε = v, gε = ε−1g,

corresponding to the presence of strong boundary sources. This limit can be derived
from the model of cell signaling considered in the introduction by assuming that
Qs ∼ DsKm/l. Indeed, it is easy to see that (2.1)–(2.3) with f = u/(1 + u) and
v = 0 can be obtained by rescaling x → Lx, t → (Km/Vm)t, setting u = S/Km, and
sending ε = l/L → 0.

Mathematical studies of homogenization problems in the present context go a long
way back to the works of Marchenko and Khruslov [20, 21, 22]. A related problem of
the Neumann sieve has also been investigated by many authors [8, 9, 25, 34]. Let us
also mention some recent related studies of nonlinear problems of reaction-diffusion
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BOUNDARY HOMOGENIZATION 47

Fig. 2.1. The schematics of the homogenization problem. The mixed Dirichlet (black) and
Neumann (white) portions of the boundary of the original problem (left) are transformed into an
effective inhomogeneous Dirichlet boundary condition (gray) in the homogenized problem (right).

type [1, 14, 17, 22]. We would like to point out, however, that the problem we are
considering here is unusual in a number of ways. In our formulation, we allow for a
suitable rescaling of the Neumann data, which leads to a new type of homogenized
boundary condition. Also, for this reason the dependence of the effective boundary
condition on the geometry of the absorbing portion of the boundary remains non-
trivial even when the absorbers and the emitters occupy comparable portions of the
boundary and in general cannot be expressed in terms of the capacities of individual
absorbers in free space (see also [4, 5]).

In this paper we will use formal asymptotic arguments to show that the limit
problem associated with (2.1)–(2.3) is

(2.4) ut = Δu + f(x, t, u), u(x, 0) = u0(x), u|∂Ω = v(x, t) + κ̄−1(x)g(x, t),

where u is the homogenization limit solution for uε as ε → 0, and κ̄ is a geometric
factor depending on the shape of absorbers ∂Ωε

0. The value of κ̄ is also related to the
effective trapping rate κ for the Brownian particles near the boundary ∂Ω:

(2.5) κ = ε−1κ̄.

In fact, in view of (2.5) the mixed boundary condition

(2.6) ν · ∇uε|∂Ω = κ(v − uε) + ε−1g

becomes indistinguishable from (2.4) in the limit ε → 0. This justifies the use of
(2.6) as a uniform approximation in [4, 5] that remains valid in the Berg–Purcell limit
[6, 9, 20, 21, 22, 25] as well. We note that the idea of homogenizing the boundary
condition on ∂Ω using a mixed boundary condition was first proposed in the studies
of the screening effect of metallic grids on the electrostatic field in vacuum triodes
[18, 23].

In the following we will derive explicit expressions for κ̄ in a number of geometries
which give excellent approximations to the values obtained numerically. Let us also
note that it should be possible to put our homogenization procedure on a rigorous
footing using the methods of [22].

Homogenization procedure. At least formally, one can homogenize the fine-
grained boundary condition by studying a boundary layer near ∂Ω and matching the
boundary layer solution with the solution in the interior of the domain (for formal
asymptotic studies of related problems, see, e.g., [34, 38, 39]). Given a point x0 ∈ ∂Ω,
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we choose the coordinates (x, y, z) to be the rescaled Cartesian coordinates in the
vicinity of x0 aligned with the normal ν to ∂Ω at x0:

(2.7) z = −ε−1ν · (x − x0), (x, y) = ε−1ProjT (x0)(x − x0),

where ProjT (x0)(x − x0) denotes the projection of a point x onto the tangent plane
T (x0) to ∂Ω at x0. Then, to leading order in ε, the problem (2.1)–(2.3) near the
boundary reduces to

(2.8) Δu = 0, u|∂Ω0
= v, uz|T (x0)\∂Ω0

= −g,

where u = u(x, y, z) is defined and stays bounded in the upper half-space z > 0, ∂Ω0

is the rescaled version of ∂Ωε
0 projected onto T (x0), with v = v(x0) and g = g(x0)

assumed independent of (x, y). Boundedness of the solution should then imply that
the limit limz→∞ u(x, y, z) exists and is independent of (x, y), depending only on x0

through v and g.

Unit cell of homogenization. Let us now further assume that in the limit
ε → 0 the set ∂Ω0 can be obtained by repeating periodically a unit cell D ⊂ R

2 with
an absorber at D0 ⊂ D almost everywhere in ∂Ωε

0. Then it is easy to see that the
solution of (2.8) can be expressed via the following unit cell problem:

Δū = 0 in D, ν · ∇ū|∂D×(0,∞) = 0,(2.9)

ū|D0×{0} = 0, ūz|(D\D0)×{0} = −1,(2.10)

where we assumed that D is in fact the Wigner–Seitz cell for the periodic problem.
We also assume that D contains the origin in R

2. Now define

(2.11) κ̄−1 = lim
z→∞

ū(0, 0, z).

Then, by linearity of (2.8), we have limz→∞ u(x, y, z) = v + κ̄−1g.
Since ε does not enter (2.1), the homogenized version of this equation remains

unchanged. On the other hand, we need to match the boundary data for this equation
as x approaches ∂Ω with the behavior of the solution of the unit cell problem at
infinity. Matching the values of u for both solutions, we arrive at (2.4), with κ̄ given
by (2.11). Note that since ū is a harmonic function, ν · ∇ū = 0 on ∂D × (0,∞), and
u is bounded, we have

∫∫
D
ū(x, y, z) dxdy = const, independent of z. Hence we also

get an alternative representation for κ̄ in terms of the solution on T (x0) only:

(2.12) κ̄−1 =
1

|D|

∫∫
D\D0

ū(x, y, 0) dxdy.

Stochastic interpretation. We now give a stochastic interpretation of the prob-
lem in (2.9) and (2.10) and demonstrate the meaning of the constant κ̄ as the rescaled
effective trapping rate for a Brownian particle over the surface ∂Ω0 [2, 3, 4]. Suppose
that a Brownian particle with diffusion constant unity starts with equal probability at
a point (x0, y0) anywhere in D on the z = 0 plane at t = 0. Under the assumptions of
periodicity and symmetry of the unit cell, the survival probability P (t) of the particle
at time t > 0 can be found by constraining the particle to move in a semi-infinite
cylinder Σ+ = D × (0,+∞) with reflecting boundary conditions on the sides. Note
that the particle is immediately absorbed if (x0, y0) ∈ D0.
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To simplify matters further, one can restrict the particle to move within a finite
cylinder ΣL = D× (0, L), with L fixed and a reflecting boundary condition at z = L.
Then the average lifetime of such a particle is T =

∫∞
0

P (t)dt [13]. For L 	 1
the average lifetime of the particle in ΣL at long times behaves asymptotically as
T 
 κ−1L for some constant κ depending only on the geometry of D and D0 [4]. This
expression coincides with the exact result for the one-dimensional Brownian motion
in the presence of a partially absorbing boundary condition at z = 0 with trapping
rate κ.

To be more specific, consider the Green’s function G(x, y, z, t|x0, y0, 0, 0) for the
Brownian particle in ΣL starting at (x0, y0) ∈ D on the z = 0 plane. When (x0, y0) �∈
D0, the Green’s function satisfies

Gt = ΔG, Gz|(D\D0)×{0} = −δ(x− x0)δ(y − y0)δ(t),(2.13)

Gz|D×{L} = 0, G|D0×{0} = 0, ν · ∇G|∂D×(0,L) = 0.(2.14)

The survival probability P (t) is then obtained by integrating the Green’s function over
ΣL and then averaging over (x0, y0) ∈ D. This should be compared with the solution
of the one-dimensional problem with a partially absorbing boundary condition at
z = 0:

(2.15) G̃t = G̃zz, G̃z|z=0 = −δ(t) + κG̃|z=0, G̃z|z=L = 0.

Here G̃(z, t|0, 0) is the Green’s function of a Brownian particle on an interval (0, L)
with a reflecting boundary condition at z = L and a partially absorbing boundary
condition at z = 0. Using backward Kolmogorov equation [13], the average lifetime
of this particle is easily calculated to be

(2.16) T =
L

κ
.

Thus, the constant κ in (2.15) can be associated with the value of limL→∞(T/L),
where T is obtained from (2.13) and (2.14).

Now, to see how this picture is related to the homogenization limit introduced
in (2.4) earlier, let us define u = limε→0 ε

−1Gε, where Gε is the Green’s function of
the problem in which the absorber D0, the cell D, and the periodic lattice have been
rescaled by ε. Then (2.4) corresponding to (2.13) and (2.14) reads

(2.17) ut = uzz, u(z, 0) = 0, u(0, t) = κ̄−1δ(t), uz(L, t) = 0.

Solving this boundary value problem with the aid of the Laplace transform, U(z, s) =∫∞
0

e−stu(z, t) dt, we find that

(2.18)

∫ L

0

U(z, s) dz =
tanhL

√
s

κ̄
√
s

,

which, up to the factor of ε, is the Laplace transform of the survival probability P (t)
to leading order. From this, the average lifetime of the particle can be found:

(2.19) ε−1T = lim
s→0

∫ L

0

U(z, s) dz =
L

κ̄
,

which, in view of (2.5), is equivalent to (2.16). Note that in deriving (2.19) we took
into account that the homogenized problem in (2.17) should be valid for t 	 ε2,
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the time it takes a particle to diffuse far away from the boundary on the scale of
the absorbers, and that the transient for t � ε2 does not contribute to the average
lifetime in the limit ε → 0. We point out, however, that most of the particles will be
recaptured for t 	 ε2, since P (t) ∼ ε/

√
t � 1 for ε2 � t � 1. However, only the

particles that wander far away from the boundary contribute to T ; hence, it is the
homogenized problem that governs the particle’s average lifetime in the limit ε → 0.

3. Numerical methods. We now describe our numerical approaches to the unit
cell problem in (2.9) and (2.10). The Brownian dynamics algorithm used to obtained
the effective trapping rate κ in [5] has been described previously [2]. Here we use
a novel approach to this problem based on the concept of optimal grids, a recently
proposed method for studying exterior elliptic boundary value problems [10, 11, 15].
Our numerical results are based on the latter method, but we also verified our results
using stochastic simulations with the Brownian dynamics algorithm.

To recast the unit cell problem in the language of optimal grids, first we subtract
the limit at infinity from ū,

(3.1) ũ = ū− κ̄−1,

to ensure that ũ → 0 as z → 0 uniformly in D. Then ũ solves in Σ+ = D × (0,∞)

Δũ = 0, ν · ∇ũ|∂D×(0,∞) = 0, ũ|D×{∞} = 0,(3.2)

ũ(x, y, 0) = v(x, y), ũz(x, y, 0) = −g(x, y),(3.3)

where g(x, y) = 1 in D\D0 and v(x, y) = −κ̄−1 in D0. Thus, what we need to do
is reconstruct the partial Dirichlet data on D0 from partial Neumann data on D\D0

in the considered boundary value problem. We note that this problem is not easily
amenable to standard eigenfunction expansion techniques, since the boundary data
consist of a mixture of Dirichlet and Neumann boundary conditions. This is why the
optimal grid approach can be especially useful for this type of problem.

The method of optimal grids uses a judiciously chosen sequence of grid steps
in a staggered discretization of the Laplacian in Σ+ to approximate the Neumann-
to-Dirichlet map g → v for the boundary value problem in (3.2) and (3.3) on D ×
{0}. As we will show below, this method in fact allows us to treat problems with
mixed Neumann–Dirichlet-type boundary conditions equally well. The method can
be briefly summarized as follows. Let us introduce the complete orthonormal basis

of eigenfunctions of the transverse Laplacian Δ⊥ = ∂2

∂x2 + ∂2

∂y2 in D with Neumann

boundary conditions on ∂D. Then we can write (3.2) as

(3.4)
d2ũl

dz2
− λlũl = 0,

dũl

dz

∣∣∣∣
z=0

= −gl, ũl(+∞) = 0,

where ũl = ũl(z), the values of λl ≥ 0 are the eigenvalues of −Δ⊥, and the subscript l
denotes the corresponding projections on the lth eigenfunction. A simple calculation
shows that in terms of these projections the Neumann-to-Dirichlet map is simply (see,
e.g., [37])

(3.5) vl = ũl(0) = F (λl) gl, F (λ) =
1√
λ
.

The function F (λ) is usually referred to as the impedance function.
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In the optimal grid approach, the impedance function F (λ) is approximated by
a rational function Fn(λ) of order n − 1 by n. This rational function is chosen in
such a way that Fn(λ) is in a certain sense the best possible approximation to the
original impedance function F (λ) on an appropriate spectral interval λ ∈ [λmin, λmax]
[10, 11, 15]. The resulting optimal rational approximant can be written as a continued
fraction:

(3.6) Fn(λ) =
1

λh0 +
1

h1/2 +
1

λh1 + · · · +
1

hn−1/2
,

,

where all hi > 0. A remarkable observation that stands behind the method of optimal
grids is the fact that the impedance function Fn(λ) in (3.6) is also the impedance
function of the discrete problem

(3.7)
1

hi

(
ũl
i+1 − ũl

i

hi+1/2
−

ũl
i − ũl

i−1

hi−1/2

)
− λlũ

l
i = 0, i = 0, 1, . . . , n− 1.

More precisely, if we set (ũl
0 − ũl

−1)/h−1/2 = −gl and ũl
n = 0, then it is not difficult

to show that ũl
0 = Fn(λl)gl, where Fn(λ) is given by (3.6). This suggests using

the following semidiscrete scheme for approximating the Neumann-to-Dirichlet map
arising from (3.2):

(3.8)
1

hi

(
ũi+1 − ũi

hi+1/2
− ũi − ũi−1

hi−1/2

)
+ Δ⊥ũi = 0,

ũ0 − ũ−1

h−1/2
= −g, ũn = 0,

where now ũi = ũi(x, y) and g = g(x, y), with (x, y) ∈ D and a Neumann boundary
condition on ∂D. To obtain a fully discrete problem, one should then use any con-
venient conservative scheme (e.g., the usual five-point stencil if D is a rectangle) to
discretize Δ⊥ in D.

This numerical procedure possesses several advantages. First, the obtained dis-
crete problem can be treated efficiently using the conjugate gradient method because
of the sparse symmetric matrices arising in (3.8). On the other hand, due to the expo-
nential superconvergence of the optimal rational approximation [15] with increasing
n one needs very few nodes (in practice, only 4–6 nodes are often sufficient) to get
a good uniform accuracy of the approximation of the Neumann-to-Dirichlet map on
the entire relevant spectral interval, essentially preserving the quasi-two-dimensional
nature of the problem. Actually, for n sufficiently large the steps hi of the grid ob-
tained from the optimal rational approximant that are suitable for the fully discrete
problem become asymptotically close to those of the optimal geometric grid, whose
steps are explicitly given by [15]

h0 =
h⊥

1 + eπ/(2
√
n)
, h1/2 = h⊥,

hi+1/2 = hi−1/2e
π/

√
n, hi =

√
hi+1/2hi−1/2,(3.9)

where h⊥ is the characteristic grid size of the discretization of the Laplacian Δ⊥ in D.
In the following, we will use the steps of the optimal geometric grid in discretizing the
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problem in the direction of z. Note that the number of grid steps n can be estimated
by considering the effective “length” Lz =

∑n−1
i=0 hi+1/2 of the grid in the z direction:

(3.10) Lz = h⊥
eπ

√
n − 1

e
π√
n − 1

.

By choosing Lz 	 diam(D), we assure that the grid accurately resolves all the scales
of the problem.

This method needs to be adapted for the case of the mixed boundary condition in
(3.2). Since the solution ũn decays rapidly for large n, the flux through the nth node
of the optimal grid can be assumed to be zero. So, as a first step we will replace the
Dirichlet boundary condition in (3.8) with a reflecting boundary condition: ũn+1 =
ũn−1, hn+1/2 = hn−1/2, and set hn = 0 (consistent with the original assumption
ũn = 0). We can also replace the inhomogeneous Neumann boundary condition for
i = 0 with the Dirichlet boundary condition for ũ0 inside D0. Still, the constant κ̄−1

we need to choose there is unknown. Nevertheless, because we can add an arbitrary
constant to ũ in (3.8), we can simply set ũ0 = 0 in D0 and, after obtaining the
solution, identify κ̄−1 with the value of ũn somewhere in D. This is how the value of
κ̄ is extracted from the solution of the mixed boundary value problem on the optimal
grid. Note that a good indicator of the proper choice of n in the problem discretization
is smallness of variation of ũn across D.

4. Results. Now we present the results of the numerical solution of the unit
cell problem of homogenization for a number of unit cell geometries. We will first
consider the case in which the absorbers and emitters form alternating arrays of
stripes, for which an exact solution is available. We will then analyze hexagonal and
square lattices of disk-shaped absorbers or emitters (see Figure 4.1). In all cases, the
geometric factor κ̄ is computed as a function of σ, the surface area fraction covered
by the absorbers.

Our findings can be summarized using a few simple approximation formulas ac-
curately describing the data for most of the values of σ. In the case of periodic arrays
of disk-shaped absorbers of unit radius the dependence κ̄(σ) is well approximated by
the following formula:

(4.1) κ̄(σ) ≈ 4σ(1 + Aσ1/2 −Bσ2)

π(1 − σ)2
,

where the constants A and B depend on the geometry of D. For hexagonal and square
lattices we have A = 1.49, 1.02 and B = 0.92, 0.46, respectively, which approximate
the data obtained numerically within 3% and 6% error in the intervals 0.01 ≤ σ ≤ 0.81
and 0.01 ≤ σ ≤ 0.63, respectively. These coefficients differ somewhat from the fits
of [5] based on earlier, less accurate Brownian dynamics data. Let us note, however,
that the fits to the numerical data are quite insensitive to changes in the coefficients
A and B.

For comparison, we get A = 1.37 and B = 0.37 for a disk-shaped absorber of
radius one in a cylinder with reflecting boundary conditions. With these values of A
and B, (4.1) is valid for the cylinder within 1% error in the interval 0.001 ≤ σ ≤ 0.9
and within 3% for all the available data. Note that the data for both hexagonal and
square lattices differ by no more than 25% from the solution for the cylinder for the
entire range of σ of the simulations, and the agreement increases rapidly when σ is
decreased. On the other hand, the value of κ̄ begins to deviate from the asymptotic
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Fig. 4.1. The geometry of the unit cell for hexagonal (a) and square (b) lattices. The outer
boundary of the rectangle is reflecting. The lines of symmetry are shown by dotted lines.

value κ̄ 
 4σ/π noticeably already for σ � 0.01. In addition, (4.1) also gives an
improvement for fitting the data for randomly distributed absorbers [4], with the
values of A = 0.34 and B = −0.58 giving a 5% error within the interval 0 ≤ σ ≤ 0.5.
Note that there is a more noticeable difference with the cylinder data for random
absorbers compared to periodic geometries, even for small σ. For example, at σ = 0.5
the value of κ̄ for random absorbers is about 30% less than that for the cylinder, while
the latter is virtually indistinguishable from the value for the hexagonal lattice.

We next consider the “inverted” situation, namely, when the absorber occupies
the exterior of the unit disk in a hexagonal or square unit cell. In this case we found
that the expression

(4.2) κ̄(σ) ≈ π

(1 − σ) ln(2.76 + 1.03σ−1)

fits both sets of data within 5% in the whole range of σ. We also computed the depen-
dence κ̄(σ) for a cylinder with a disk-shaped emitter of unit radius in the center. We
found that this dependence agrees with (4.2) within the accuracy of 1% in the interval
0.02 ≤ σ ≤ 0.98 and within 4% for all the available data. In fact, we found that the
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data for both the hexagonal and the square cells are virtually indistinguishable from
the data for the cylinder.

Finally, in the case of absorbing stripes of width 2 alternating with the emitting
stripes we recover the formula from the exact solution obtained by Moizhes [23] (also
see the appendix):

(4.3) κ̄(σ) = − πσ

2 ln sin
(
πσ
2

) .
This formula can be used to test the performance of our numerical method.

4.1. Periodic absorbing stripes. Let us start by considering the problem with
the absorbers in the form of periodic stripes of width 2 alternating with the emitters
of width 2(σ−1 − 1). We discretize Δ⊥ in (3.8) on half-period L = σ−1, using the
standard three-point stencil on the grid xj = jh⊥, j = 0, 1, . . . ,m:

(4.4) h2
⊥Δ⊥ũi(xj) ≈ ũi(xj+1) + ũi(xj−1) − 2ũi(xj),

with reflecting boundary conditions at j = 0 and j = m and with h⊥ = L/m. The
resulting discrete problem can be conveniently represented using an electrical analogy
as a resistor network shown in Figure 4.2 [7]. The bottom left nodes, i = 0, j ≤ σm,
are maintained at zero “potential,” and the right bottom nodes, i = 0, j > σm, are
those through which a unit current is injected. The vertical edges connecting the
ith and the (i + 1)th rows correspond to resistors with resistance hi+1/2, and the
horizontal edges between the node (i, j) and (i, j + 1) correspond to resistors with
resistance h2

⊥/hi.

Fig. 4.2. Representation of the grid in the form of a resistor network (see text for details).
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Fig. 4.3. The dependence κ̄(σ) for absorbing stripes of width 2 alternating with emitting stripes,
obtained from the numerical solution of (2.9) and (2.10). Circles show the data points; the solid
line is the result of plotting (4.3).

The result of the numerical solution of the unit cell problem with n = 10 and
m = 1000 and its comparison with the exact solution are shown in Figure 4.3. Note
that when σ → 0 we have asymptotically κ̄ 
 πσ/(2 lnσ−1), which can be easily seen
from the electrostatic analogy and (2.12), once it is noted that the absorbers each
carry “charge” −4σ−1, and so for σ � 1 the potential ū at distance r from the center
of the nearest absorber is asymptotically ū(r, 0) 
 −(2/πσ) ln r, and κ̄ 
 1/u(σ−1, 0).
On the other hand, when σ → 1, we have asymptotically κ̄ 
 (4/π)(1 − σ)−2; see
the appendix. Our numerical results agree with the exact solution to within 0.3%
in the interval 0.1 ≤ σ ≤ 0.8. Also, the error is at most 1% for 0.01 ≤ σ ≤ 0.94
and within 3% for the entire data set. Let us emphasize that our numerical solution
accurately captures 8(!) orders of magnitude of κ̄(σ) for the stripe geometry.

4.2. Disk absorbers in cylindrical and periodic geometries. We will now
study a particular case in which D0 is a unit disk and D is a concentric disk of
radius R = σ−1/2. Because of the radial symmetry, this problem is essentially two-
dimensional and may therefore be more accurately resolved. On the other hand, we
will also show that the solution of the unit cell problem on a cylinder gives an excellent
approximation to that on a hexagonal cell, as should be expected.

Due to the radial symmetry, we need only consider ū = ū(r, z), with Δ⊥ = ∂2
r +

r−1∂r, and the boundary conditions ūr(0, z) = ūr(R, z) = 0, ū(r, 0) = 0, 0 < r < 1,
and ūz(r, 0) = −1, 1 < r < R. The transverse Laplacian in (3.8) is then discretized
with a three-point stencil using harmonic averaging on a uniform grid rj = jh⊥,
j = 1, 2, . . . ,m [33]:

(4.5) h2
⊥Δ⊥ũi(rj) ≈

ũi(rj−1)

j ln( j
j−1 )

+
ũi(rj+1)

j ln( j+1
j )

−
(

1

j ln( j
j−1 )

+
1

j ln( j+1
j )

)
ũi(rj),

where h⊥ = R/m. To satisfy the boundary conditions at r = 0 and r = R, we set the
flux from the left to all j = 1 nodes to zero and put a reflecting boundary condition
at j = m. The corresponding resistor network in Figure 4.2 will have the first σ1/2m
bottom-left nodes at zero potential, with the rest of the bottom nodes being injection
nodes. The vertical edges connecting the ith and the (i + 1)th rows correspond to
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resistors with resistance hi+1/2/j, and the horizontal edges between the node (i, j)

and (i, j + 1) now correspond to resistors with resistance ln( j+1
j )h2

⊥/hi.
We used this discretization scheme to construct the numerical solution of the

unit cell problem of homogenization in the considered geometry. Let us note that the
obtained scheme is still first order in h⊥ due to the presence of a combination of inho-
mogeneous Neumann and homogeneous Dirichlet boundary conditions. Nevertheless,
the scheme gives an accuracy which is adequate for our purposes, while being able to
resolve over four orders of magnitude of the variation of κ̄ as the value of σ is varied.
In the results presented below we used m = 1000 and n = 10 to compute the value of
κ̄ to within 1% error in the range 0.001 � σ � 0.94.

The results of the numerical solution of this problem are presented in Figure 4.4
both on the logarithmic (a) and linear (b) scale. The fitting form in (4.1) is obtained
using careful analysis of our data, specifically its behavior for σ 
 0 and σ 
 1. Note
that in the limit σ → 0 we recover the well-known asymptotic result κ̄ 
 4σ/π for
small absorber area fractions [6, 21, 25, 34, 39]. By further analyzing our data, we
were able to extract the next-order correction to the leading-order asymptotic formula
mentioned above for σ � 1; this term is associated with the coefficient A in (4.1).
Specifically, we plotted the expression πκ̄(σ)(1− σ)2/(4σ)− 1 on the log-log plot; see
Figure 4.5. From the known σ � 1 asymptotics this expression goes to zero as σ → 0.
One can then see from Figure 4.5 (of course, one needs to discard the data for very
small values of σ as insufficiently accurate) that in the range 0.005 � σ � 0.2 the
data can be well approximated with a straight line with slope 1/2, suggesting that
the next-order correction to the σ → 0 asymptotics gives κ̄(σ) 
 (4σ/π)(1 + Aσ1/2).
At the same time, one can see that as σ → 1, the expression above approaches 1, in
agreement with the asymptotic formula κ̄ 
 (8/π)(1−σ)−2 obtained in the appendix.

We then found that the best fit to the data in terms of the relative error for
the entire range of σ’s is obtained by using the expression in (4.1) which combines
the higher-order correction term Aσ1/2 discussed earlier with an empirical term Bσ2.
The power 2 in the latter was found to be roughly optimal for fitting all our data
(including that for hexagonal and square cells) up to σ 
 1.

To discretize the problems in periodic geometries, we used the standard five-point
stencil to approximate Δ⊥u on an m1 × m2 square grid with m2/m1 ≈

√
3 for the

Fig. 4.4. The dependence κ̄(σ) obtained from the numerical solution of (2.9) and (2.10) for
the unit disk absorber in a cylindrical (crosses), hexagonal (circles), and square (squares) unit cell.
The lines containing these symbols are the fits given by (4.1). In (a), the data are shown on the
log-linear scale; in (b) the same data are plotted on a linear plot. The dashed line in (b) is the
asymptotic expression κ̄ � 4σ/π, valid when σ → 0.
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Fig. 4.5. The dependence κ̄(σ) for the cylinder replotted. The straight line is 1.42σ1/2.

hexagonal cell and m1 = m2 for the square cell and used discrete no-flux boundary
conditions. We used symmetry to transform the problem for both the hexagonal and
the square lattice so that the computational domain in the (x, y) plane is a rectangle
(see Figure 4.1). The results of the computation of κ̄(σ) for both geometries are shown
in Figure 4.4. In both cases, we used n = 8 and m1 = 200. As was already mentioned,
our main observation is that the results for the periodic geometries differ little from
those for the cylinder with the same value of σ. In particular, the asymptotic behaviors
of κ̄(σ) as σ → 0 and σ → 1 essentially coincide with those of the cylindrical cell.

4.3. Disk emitter in cylindrical and periodic geometries. Now we invert
the roles of the absorbers and emitters from the previous section and consider the case
of the emitter in the form of a unit disk. The numerics are the same as above, with
the Neumann and Dirichlet nodes on the computational boundary interchanged. The
results of the numerical solution of the unit cell problem for cylindrical, hexagonal,
and square cells are shown in Figure 4.6 and essentially all fall on the curve given
by (4.2).

Fig. 4.6. The dependence κ̄(σ) obtained from the numerical solution of (2.9) and (2.10) for
the unit disk emitter in a cylindrical (crosses), hexagonal (circles), and square (squares) unit cell.
The solid line is the fit given by (4.2). In (a), the data are shown on the log-linear scale, in (b) the
same data are plotted on a linear plot.
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The fitting form used in (4.2) is essentially an interpolation from the limit be-
haviors for σ → 0 and σ → 1 for a disk-shaped emitter of unit radius in a disk of
radius R = (1 − σ)−1/2. When σ 
 1, we are essentially dealing with an emitter on
an absorbing plane; hence the distribution of ū solving (2.9) and (2.10) will approach
a limit as R → ∞. Then from (2.12) we infer that κ̄ ∼ (1 − σ)−1 as σ → 1. On the
other hand, for σ → 0 the absorber degenerates into a thin rim of width σ/2 along
the outer boundary of D and will carry a linear “charge” density −2π/(2πR) 
 −1
(using the electrostatic analogy). Therefore, one expects, taking into account a re-
flecting boundary condition at r = R, that ū(r, 0) 
 −(1/π) ln{σ(R − r)}, and so
κ̄ 
 π/ lnσ−1 as σ → 0, in agreement with (4.2).

5. Conclusions. To conclude, we have developed a homogenization procedure
that allows us to treat reaction-diffusion problems in which a fine-grained boundary
consists of portions that inject a strong flux of particles into the system alternating
with portions that work as traps. A novel feature of the homogenization procedure
is that in the homogenization limit the effective boundary condition becomes of inho-
mogeneous Dirichlet type and is related to the Neumann data on the boundary via a
geometric factor that depends only on the shape of the unit cell of homogenization. To
compute this geometric factor, one needs to solve an elliptic boundary value problem
in a semi-infinite domain.

To find the geometric factor numerically for a number of geometries, we used the
method of geometric optimal grids to discretize the unit cell problem. This method
proved to be very effective in resolving the multiscale nature of the problem, as the
geometric factor changes by many orders of magnitude upon changes in the emitter
to absorber area fraction. Our numerical results are in excellent agreement with the
available exact solution and the asymptotic behaviors found by us for large and small
fractions of surface area occupied by the absorbers.

Our results can be naturally extended in a number of ways. First, it is possible to
extend our result to the case in which ideal absorbers are replaced by partial absorbers;
i.e., instead of the Dirichlet data on the absorbers one would prescribe mixed boundary
conditions. This problem is important for cell signaling applications, since in reality
cell surface receptors do not always work as perfect absorbers [2, 24, 40]. Moreover,
in many problems related to cell signaling the same surface can play the role of an
absorber or emitter depending on the state of the individual cell in a layer. Also, a
related extension is to consider a heterogeneous layer consisting of cells of different
types, with different absorption and emission properties.

Second, it would be interesting to consider the situation in which signaling is
coupled to changes in the state of the cell in a cell layer; this is, of course, what
happens in real tissues [29, 30, 31, 32]. One point to investigate here is how the
solution of the homogenized problem couples back to the intracellular dynamics. One
intriguing possibility is that the cell might be able to read the flux of the signaling
molecules coming onto its surface. Indeed, when the cells in the layer act as nearly
perfect absorbers, most of the signaling molecules in the layer of extracellular space
above the cell will be bound to the cell surface receptors. But at the same time the
number of signal-receptor complexes will be determined by the rate of signal-induced
receptor endocytosis [2, 24, 40], which will be balanced by the net flux of the signaling
molecules coming to the cell from the extracellular medium. Therefore, under certain
conditions one would expect the number of receptor-bound signaling molecules to be
proportional to the surface flux of free signaling molecules.

Finally, on the numerical side, one could also consider the problem in which the
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absorbers and the emitters do not lie on a plane in the homogenization limit but in-
stead form a short-scale topography. To solve the unit cell problem of homogenization
in such a setup, one could combine, say, a finite volume discretization of the space
between the peaks of the topography with an optimal geometric grid above it. Of
course, our method is not limited by a particular choice of the geometry of the cell,
and so it can be easily applied to cells of arbitrary shapes. One can further improve
the accuracy and efficiency of our method by using discretization schemes aligned
with the boundaries of the absorbers; this work is currently in progress [27].

Appendix A. Behavior of κ̄(σ) for absorbing stripes as σ → 1. We can
estimate the behavior of κ̄ for stripes as σ → 1 directly by analyzing the formula in
(4.3). This formula was obtained by Moizhes from the exact solution of this problem,
which is given by [23]

(A.1) ū(x, y) = Rew(x + iy), w(z) = iz +
2i

πσ
arccos

(
sin

(
πσz
2

)
sin

(
πσ
2

) )
.

On the other hand, it is also instructive to derive this asymptotic result without
resorting to the solution in (A.1), since it shows how to find the asymptotic behavior
as σ → 1 for more general stripe-like geometries.

So, first consider bounded solutions of the following auxiliary problem in R
2:

(A.2) Δu = 0, y > 0, u(x, 0) = 0, |x| > a, uy(x, 0) = −1, |x| < a.

It is not difficult so see that the exact solution to this problem is

(A.3) u(x, y) = Reu0(x + iy), u0(z) =
√

a2 − z2 + iz,

with the usual branch cut (−∞,−a] ∪ [a,+∞) on the real axis. In particular, when

r =
√
x2 + y2 → ∞, with arg(x + iy) fixed, we have

(A.4) u = O
(a
r

)
, y �= 0, uy = O

(
a2

r2

)
, y = 0.

Therefore, to within O(a2/L2) the solution ū for the 2L-periodic array of stripes can
be taken to be a superposition of the solutions in (A.3):

(A.5) ū(x, y) 

∞∑

n=−∞
Reu0(x + iy − (2n + 1)L).

To obtain the leading-order behavior of κ̄, we use (2.12) and average ū over half-period

(A.6) κ̄−1 =
1

L

∫ L

0

Reu0(x) dx =
πa2

4L
.

In view of the fact that 1 − σ = a/L and L = σ−1, we obtain

(A.7) κ̄ 
 4

π(1 − σ)2
, σ → 1.

In the case of an infinite cylinder with radius R → 1+ the leading-order solution
can be similarly constructed to be ū(r, z) 
 Reu0(R − r − iz), with a = R − 1. So,
averaging this expression over z = 0, we obtain

(A.8) κ̄−1 =
2

R2

∫ R

0

Reu0(r, 0) rdr =
a2(3πR− 4a)

6R2
.
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From this and the fact that R = σ−1/2, we obtain to leading order

(A.9) κ̄ =
8

π(1 − σ)2
, σ → 1.
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