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Signal Propagation and Failure in Discrete Autocrine Relays
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A mechanistic model of discrete one-dimensional arrays of autocrine cells interacting via diffusible
signals is investigated. Under physiologically relevant assumptions, the model is reduced to a system of
ordinary differential equations for the intracellular variables, with a particular, biophysically derived
type of long-range coupling between cells. Exact discrete traveling wave and static kink solutions are
obtained in the model with sharp threshold nonlinearity. It is argued that the considered mechanism
may be used extensively for transmission of information in tissues during homeostasis and development.
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FIG. 1 (color online). The schematics of an autocrine relay.
Understanding the mechanisms of information flow in
living matter is, perhaps, the most fundamental problem
in biophysics. In multicellular organisms, cell-to-cell
communication plays a key role in an organism’s develop-
ment, homeostasis, and function [1–3]. Cell communica-
tion relies on a variety of alternative biophysical
mechanisms, which may involve electrical activity, direct
mechanical contact, exchange of chemical messages, etc.,
and is tightly regulated on both the biophysical and the
genetic levels [1–3].

A classical example of a well-characterized cell com-
munication system is the nerve axon [2,3]. Over half a
century ago, on the basis of careful quantitative experi-
mental studies, Hodgkin and Huxley came up with a
mechanistic model of signal transmission in squid giant
axon [4]. This model was able to quantify the functional
properties of the axon in terms of the biophysically
measurable quantities and brought in one of the first major
success stories in quantitative biology. Since then, it has
become a paradigm for modeling cell communication via
action potentials generated by excitable cell membranes
[2].

On the other hand, while some of the mechanisms of
cell communication are currently well understood, many
are being characterized only now. A large fraction of
information exchange between cells in multicellular or-
ganisms is encoded by diffusible peptide growth factors
[5]. Biochemical and genetic approaches have identified
the key molecular components for signal generation,
transmission, detection, and processing in these systems
[5,6]. Importantly, these mechanisms are often autocrine
in nature; that is, the signal generated by one cell can
affect the same cell and involve positive and negative
feedback [7]. The growing amount of available biochemi-
cal information makes these systems ready for the devel-
opment of quantitative models capable of giving insights
into their functional capabilities [6].

In this Letter, we introduce a mechanistic model of
cell-to-cell communication by diffusible signals in auto-
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crine relays. This model provides a biophysical frame-
work for studying growth factor-mediated signal
transmission in tissues [6,7]. Under biophysically reason-
able assumptions, the model can be simplified to yield
exact closed form solutions in the form of discrete trav-
eling waves, enabling a complete characterization of sig-
nal propagation and failure in the model.

At the core of our model is the mechanism of ligand-
induced ligand release [Fig. 1(a)]. There is an increasing
amount of biochemical, cellular, and genetic evidence
that this kind of positive feedback plays a key role in
tissue homeostasis and development and in disease states
such as cancer [8–12]. In the case of the epidermal growth
factor receptor (EGFR) system, ligand-receptor binding
at the cell surface can induce the activation of the signal
transduction cascades (most notably the mitogen acti-
vated protein kinase pathway) and upregulate the tran-
scription of the EGFR ligands or ligand-releasing
proteases [8–10,13]. While the feedback itself is well
established, its physiological and developmental func-
tions are still unclear. Here, we propose that it can serve
as a module for long-range signal transmission.

We begin by considering a monolayer of cells covered
by a layer of extracellular medium of thickness H.
Diffusible chemical signals (ligands) can move within
the layer and be secreted or absorbed through the surfaces
of a linear array of identical cells of size L at the bottom
of the layer [Fig. 1(b)]. For simplicity, we assume that
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there is only one ligand, whose concentration within the
extracellular space is denoted by s. The uniform secretion
of s by the nth cell at the bottom of the layer is controlled
by an intracellular species (protease) with concentration
pn. After s has been secreted, it diffuses in the extrac-
ellular space and binds to the receptors uniformly distrib-
uted on the cell surfaces. The total number of ligand-
receptor complexes on the cell surface regulates the
downstream processes, such as intracellular signal trans-
duction, which, in turn, determine the rate of production
of the intracellular protease pn [6,8–10,13]. The com-
plexes, whose density is denoted by c, can then either
dissociate, releasing s back into the layer, or be internal-
ized and removed from the layer, Fig. 1(a) [6].

This leads to the following mechanistic model that
takes into account ligand processing, transport, binding,
and endocytosis:
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Here, kon and koff are the rate constants for forward and
backward ligand-receptor binding, kec is the rate of
receptor-mediated endocytosis, r is the number of recep-
tors per unit area, D is the ligand diffusion constant, gs is
the rate constant for ligand release, and �n�x� � ��Ln�
L� x���x� Ln� is the characteristic function of the sur-
face of the nth cell [here and everywhere below ��x� is the
Heaviside step]. Equation (1) describes ligand diffusion in
the extracellular medium with an impermeable barrier at
the top of the layer, Eq. (2) specifies the boundary con-
dition on cellular surfaces, and Eq. (3) governs the ki-
netics of the complexes. Also, Eq. (4) describes the
cellular response to receptor activation by ligand-receptor
binding. In this equation, kp is the first order degradation
rate constant of the protease, gp is the maximum protease
production rate, and ��C� is a sigmoidal function, whose
argument is the total number of ligand-receptor com-
plexes on the cell surface [14,15].

Since the protease expression is a slow process [16,17],
on the time scale k�1

p the diffusion of s may have enough
time to equilibrate. This occurs on the length scale of a
single cell, if kpL2=D � 1. If also koff ; kec � kp, which
is typically true [6], we can use a quasi-steady-state
approximation for the s and c variables and set the time
derivatives in Eqs. (1) and (3) to zero. Then, after rescal-
ing lengths and times with the cell size L and the protease
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degradation time constant k�1
p , respectively, and suitably

rescaling the dependent variables, we obtain the follow-
ing reduced system of equations:

0 �
@2s

@x2
�
@2s

@y2
;

@s
@y

��������y�h
� 0; (5)

�
@s
@y

� ks
���������y�0

� �
X
n

�npn; (6)

dpn

dt
� �pn � ��cn�; cn � kC0

Z
�n �sdx; (7)

where cn is the total number of ligand-receptor complexes
on the surface of the nth cell, C0 � gsgpL

2=�kpkec� is the
maximum number of complexes on the surface of an
individual cell, and

h �
H
L
; k �
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DL�koff � kec�
; (8)

where R0 � rL2 is the total number of receptors on the
surface of an individual cell (assumed constant). The
obtained linear boundary value problem for cn can be
solved by standard Fourier transform techniques. After
some algebra, the resulting solution is

cn � C0

X�1

m��1

Mn�mpm; (9)

where the coupling coefficients matrix Mm are given by
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�1
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Thus, we get a system of ordinary differential equations
for pn [Eqs. (7) and (9)] coupled through Mm which is
obtained from the original first-principles-based spatially
distributed model (compare with [18–21]).

In our earlier study [17] we demonstrated the possibil-
ity of autocrine signal transmission in the continuum
model of the considered mechanism. While the contin-
uum setup may be well suited for experiments in cell
tissue cultures [22], it ignores the essential discreteness
of cells on the level of tissues. On the other hand, it is well
known that discreteness often results in a failure of the
system’s signal propagating ability (see, e.g., [19]).
Therefore, in the following we study the feasibility of
signal transmission in the fully discrete model. To pro-
ceed, we introduce two more approximations. First, we
assume that the thickness H of the extracellular layer is
much smaller than the cell size L, which is often true in
tissues [16], and expand Mm with h � 1. Retaining only
the leading order term in the Taylor expansion of the
integrand in Eq. (10) and performing the integration,
we obtain that in this limit
118101-2
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where � is a dimensionless parameter, characterizing the
range of cell-cell coupling. Note that the above expres-
sions for the coupling coefficients remain valid when
�h � 1.

Second, we assume that the sigmoidal response of the
protease production to receptor activity is characterized
by a sharp threshold behavior, which is supported by
biochemical measurements [14,15]. This means that we
can set ��C� � ��C� CT�, where CT is the critical num-
ber of complexes needed for protease production activa-
tion. Combining this with the results above and Eq. (7)
yields
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; (13)

where a � CT=C0 is the dimensionless threshold.
We are now going to use Eq. (13) to study signal

propagation and failure in autocrine relays. To do that,
we look for the discrete traveling wave solutions of the
form pn�t� � p�t� n!� [19,20], so that v � Lkp=! gives
the (dimensional) propagation speed and is to be deter-
mined. This leads to a differential-delay equation which
can be solved exactly. For monotone solutions the argu-
ment of the Heaviside function is also a monotone func-
tion, so the threshold is crossed only once. Therefore, with
no loss of generality we may assume that this happens at
t � 0. Then the traveling wave solution advancing the
‘‘on’’ state of signaling from left to right is p�t� � �1�
e�t���t�. From this, the self-consistency condition at t �
0 reads
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FIG. 2. Velocities of advancing and retracting waves as func-
tions of the threshold at � � 1.
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Summing up the geometric series in Eq. (14) and then
solving for !, we obtain explicitly

! � log
�

1� e� � 2a�
1� e��2a�� 1�

�
: (15)

This expression can be used to obtain the speed of the
wave as a function of the physiological parameters. A plot
of the propagation velocity (together with that of a back-
propagating front; see below) for a particular value of the
cell-cell coupling parameter � is presented in Fig. 2.

The analysis of Eq. (15) shows that the discrete travel-
ing waves exist for all values of a < a�cr��� �
�1� e���=�2��. At a � a�cr we have v � 0, and the waves
fail to propagate forward, signifying the propagation
threshold. Note that the phenomenon of propagation fail-
ure is typical for discrete reaction-diffusion systems [18–
20,23–25]. Observe that when � � 1, i.e., when the cou-
pling between cells is long range, the value of a�cr ap-
proaches 1=2, the propagation threshold that can be
obtained from the continuum approximation to Eq. (13).
On the other hand, when � � 1, that is, in the regime of
effectively nearest-neighbor coupling, propagation is still
possible for very small thresholds a < 1=�2�� � 1.

In a similar fashion, one can construct the solutions in
the form of retracting traveling waves of the on state of
signaling. Observe that Eq. (13) is invariant with respect
to the transformation p ! 1� p and a ! 1� a, so the
speed of the backward-propagating waves can be ob-
tained from Eq. (15) by replacing a by 1� a there.
These waves exist as long as a > a�cr��� � �2�� 1�
e���=�2��. Furthermore, it is not difficult to show that
for a�cr � a � a�cr stationary kink solutions, in which
pn � ��n�, exist. Therefore, traveling waves become ar-
rested when the parameter a is changed into this range.
This is supported by the direct numerical simulations of
Eq. (13). Let us point out that when a approaches acr, the
FIG. 3. Propagation-failure diagram for the discrete travel-
ing waves in the model.
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speed of the wave depends singularly as 1= log�ja�
acrj

�1� on the distance to the threshold; see Eq. (15).
This is typical for threshold nonlinearities [23], in con-
trast to discrete systems with smooth nonlinearities
[18,24,25].

The propagation-failure diagram obtained from these
arguments is presented in Fig. 3. Let us give a simple
intuitive interpretation to this figure. In order for a wave
to advance, the threshold a must be sufficiently low, so
that the cell ahead of the wave can sense the incoming
signal and switch on its positive feedback. The shorter the
range of the signal (larger �), the more sensitive (smaller
a) the cell should be to be able to relay the signal. On the
other hand, for high thresholds the role of the on and
‘‘off ’’ states is reversed.

We now demonstrate how our results translate to
a realistic biophysical situation [17,26]. Consider a
representative set of parameters [6], in which L �
5 %m, H � 1 %m, C0�2
103 complexes=cell, CT �
500 complexes=cell, R0 � 104 receptors=cell, k�1

off �
k�1
ec � 5 min, k�1

p � 30 min, kon � 0:1 nM�1 min�1, and
D � 10�7 cm2 s�1. This translates into the dimensionless
parameters h � 0:2, � � 1:18, and a � 0:25. Using these
values and Eq. (15), we obtain the speed v �
0:1 %m=min, or 1:25 cells=h. Let us also point out that
the simplifying assumptions that went into the derivation
of Eq. (15) are satisfied, since h � 1, �h � 1;
k�1
ec ; k�1

off � k�1
p , and kpL2=D � 1:4
 10�3 � 1.

To summarize, we have analyzed a new mechanism for
long-range signal transmission in tissues. The mechanism
is mediated by a well-established positive feedback be-
tween growth factor-mediated receptor activation and
receptor-mediated ligand release. We have used the mo-
lecular and cellular parameters of the EGFR system to
estimate the characteristic rates of wave propagation and
suggest that these slow waves are indeed feasible in vivo.
In reality, such positive feedback is always under the
control of additional mechanisms. For example, multiple
intracellular negative feedback has been described in the
EGFR system [6,11]. Clearly, the addition of slow local
negative feedback may lead to a possibility of transmis-
sions of pulses of autocrine activity, not unlike the action
potentials in neural systems (compare, e.g., with [19,27]),
but on the time scale of days rather than seconds. This
opens up an intriguing possibility of autocrine relays
being actively used for information processing in tissue
homeostasis and repair. Feedback can also modulate the
traveling waves and produce complex spatial patterns in
various developmental contexts [28]. The analytical re-
sults reported in this Letter can be extended to account for
these processes.
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