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Self-similar dynamics of morphogen gradients
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Morphogen gradients are concentration fields of molecules acting as spatial regulators of cell differentiation
in developing tissues and play a fundamental role in various aspects of embryonic development. We discovered
a family of self-similar solutions in a canonical class of nonlinear reaction-diffusion models describing the
formation of morphogen gradients. These solutions are realized in the limit of infinitely high production rate at
the tissue boundary and are given by the product of the steady state concentration profile and a function of the
diffusion similarity variable. We solved the boundary value problem for the similarity profile numerically and
analyzed the implications of the discovered self-similarity on the dynamics of morphogenetic patterning.

DOI: 10.1103/PhysRevE.84.041916 PACS number(s): 87.17.Pq, 82.40.Ck, 87.18.Hf

I. INTRODUCTION

Reaction-diffusion processes are involved in multiple
aspects of embryogenesis. In particular, a combination of
extracellular diffusion and degradation of locally produced
proteins can establish concentration fields of chemical signals
that control spatial and temporal gene expression patterns in
developing tissues [1]. Such concentration fields are known
as morphogen gradients and have been identified in contexts
as diverse as neural development in vertebrates and wing
morphogenesis in insects [2,3].

Starting with the classical works of Turing and Wolpert
[4,5] (see also [6]), the formation of morphogen gradients
has been the subject of many theoretical studies (for recent
reviews, see, e.g., [7–10]). A canonical model of morphogen
gradient formation is given by the following initial boundary
value problem [8–12]:

∂C

∂t
= D

∂2C

∂x2
− k(C)C, C(x,t = 0) = 0, (1)

−D
∂C

∂x

∣∣∣∣
x=0

= Q, C(x = ∞,t) = 0. (2)

Here C = C(x,t) is the concentration of a morphogen as a
function of distance x � 0 to the tissue boundary and time
t � 0. The morphogen is produced with a constant rate Q at
the tissue boundary (x = 0), diffuses with diffusivity D in the
tissue (x > 0), and is degraded in the tissue following some
rate law characterized by the pseudo-first-order rate constant
k(C) > 0. This model provides a minimal description of
complex biochemical and cellular processes in real tissues and
has been recently used to quantitatively describe morphogen
gradients in a number of experimental systems [11,13–15].

Let us emphasize that morphogens function as regulators of
gene expression. Some of the genes controlled by morphogens
are directly involved in cell differentiation. Other genes
contribute indirectly by regulating processes of gradient for-
mation. For example, a morphogen can induce the expression
of molecules involved in morphogen binding and degradation.
This phenomenon is indeed very common in experimental
systems [2,16,17]. The dependence of gene expression on local
morphogen concentration can be highly nonlinear, reflecting

the presence of cooperative and threshold effects in networks
responsible for intracellular interpretation of morphogens [3].

Based on the ability of morphogens to increase the rate
of their own degradation and the nonlinearity of morphogen-
dependent gene expression, Eldar et al. proposed a model in
which the morphogen degradation rate is given by a power
law [11]:

k(C) = knC
n−1, n > 1, (3)

and demonstrated that power law degradation kinetics may
generate gradients that are robust with respect to large varia-
tions in the source strength. They based their conclusions on
the analysis of the steady version of Eq. (1). Specifically, they
demonstrated that, unlike the solutions of the corresponding
linear problem, i.e., Eqs. (1) and (2) with k(C) ≡ const
(in which the solution depends on Q multiplicatively), the
stationary solution Cs(x) of Eqs. (1)–(3) approaches an
asymptotic limit when Q → ∞. As a consequence, the steady
state of a system operating in the regime of large Q’s will be
insensitive to variations in the strength of the source. This has
important implications for robustness of steady morphogen
gradients established by localized production, diffusion, and
self-induced degradation.

We found that robustness of the steady state solutions of
Eqs. (1)–(3) discussed above carries over to the solutions of
the full time-dependent problem. Remarkably, we found that
for large values of Q the solution of the initial boundary value
problem given by Eqs. (1)–(3) approaches a self-similar form:

C(x,t) = Cs(x)φ(x/
√

Dt), (4)

where φ(ξ ) is a universal function of ξ = x/
√

Dt which
depends only on n and decreases monotonically from φ = 1
at ξ = 0 to φ = 0 at ξ = ∞. The self-similar profile function
φ(ξ ) is obtained by considering the singular version of the
initial boundary value problem with Q = ∞.

II. SCALING ARGUMENTS

We begin by introducing the dimensionless variables

x ′ = x/L, t ′ = t/T , u = C/C0, (5)
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where

L =
√

D
/(

knC
n−1
0

)
, T = k−1

n C1−n
0 , (6)

and C0 is some reference morphogen concentration, corre-
sponding, e.g., to the threshold of expression of a downstream
regulated gene. In these new variables, the initial boundary
value problem in Eqs. (1)–(3) takes the form

ut = uxx − un, (x,t) ∈ [0,∞) × (0,∞),

ux(0,t) = −α, t ∈ (0,∞), (7)

u(x,0) = 0, x ∈ [0,∞),

where

α = Q/

√
DknC

n+1
0 (8)

is the dimensionless source strength. From now on we drop
the primes from the independent variables.

Let us now discuss the approach of the solutions of Eq. (7)
to the unique steady state, which for this problem is given
explicitly by the following expression [18]:

vα(x) =
{

2(n + 1)

{[2n(n + 1)α1−n]1/(n+1) + (n − 1)x}2

}1/(n−1)

.

(9)

It is not difficult to see that u(x,t) approaches vα(x) from
below as t → ∞, implying that the fraction of the steady
concentration u(x,t)/vα(x) reached at a given point x � 0 at
time t > 0 will approach unity for t � 1 [18]. In view of the
diffusive nature of the processes involved in establishing the
steady concentration profile, one may expect that the approach
to the steady state occurs on the scale associated with diffusion.
Therefore, to better understand the dynamics, we plot this
fraction versus x/

√
t for the solution of Eq. (7) with n = 2

and α = 1 obtained numerically for several values of t . The
result is presented in Fig. 1. One can see from Fig. 1 that the
solution of Eq. (7) at different values of t collapses onto a single
master curve for t � 1. Furthermore, increasing the value of
α makes this collapse sooner. We also checked that the same
phenomenon occurs for different values of n. This strongly
suggests [19] the existence of a hidden self-similarity in the
underlying dynamical behavior of the solutions of Eq. (7).

Note that the solutions of Eq. (7) are invariant with respect
to the following scaling transformation:

α′ = λα, t ′ = λ2(1−n)/(1+n)t, x ′ = λ(1−n)/(n+1)x,
(10)

u′ = λ2/(n+1)u.

In other words, increasing the source strength α by a factor of
λ decreases the time scale of approach to the steady state by
a factor of λ2(n−1)/(n+1) at fixed value of x/

√
t . Therefore, the

approach to the universal curve in Fig. 1 must occur on the
time scale τn ∼ α2(1−n)/(n+1). This scale was recently identified
by us in the analysis of the local accumulation time in the
particular case of Eq. (7) [18]. Observe that τn → 0 as α → ∞
for all n > 1. Thus, our numerical results suggest that in the
limit α → ∞ the ratio u(x,t)/vα(x) depends only on x/

√
t for

all t > 0, exhibiting self-similar behavior.
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FIG. 1. Example of the collapse of the solutions of Eq. (7) onto
a universal master curve at large times. Results of the numerical
solution of Eq. (7) with n = 2 and α = 1. Thin lines show snapshots
of the solutions corresponding to t = 0.1,1,10,100 (the direction of
time increase is indicated by the arrow). The bold line shows the
asymptotic master curve.

III. SINGULAR SOLUTIONS

The numerical observations discussed above suggest the
need to consider the following singular initial boundary value
problem:

ut = uxx − un, (x,t) ∈ (0,∞) × (0,∞),

u(0,t) = ∞, t ∈ (0,∞), (11)

u(x,0) = 0, x ∈ (0,∞).

Note that for each n > 1 this problem possesses a singular
stationary solution

v∞(x) =
(

2(n + 1)

(n − 1)2

)1/(n−1) ( 1

x

)2/(n−1)

, (12)

which is the limit of vα(x) as α → ∞ for each x > 0.
Therefore, in view of the discussion above, the solution of
Eq. (11) is expected to take the form

u(x,t) = v∞(x)φ(x/
√

t), (13)

for some universal function φ(ξ ) with values between zero
and 1, which depends only on n.

A. Similarity ansatz

Let us substitute the similarity ansatz from Eq. (13) into
Eq. (11). After some algebra, this leads to the following
equation for the self-similar profile φ:

ξ 2 d2φ

dξ 2
+

(
ξ 3

2
− 4ξ

n − 1

)
dφ

dξ
+ 2(n + 1)

(n − 1)2
φ(1 − φn−1) = 0,

(14)

which must hold for all ξ ∈ (0,∞). Consistent with the inter-
pretation of Eq. (11), this equation needs to be supplemented
with the boundarylike conditions

lim
ξ→0

φ(ξ ) = 1, lim
ξ→∞

φ(ξ ) = 0. (15)

We note that it is possible to prove that Eqs. (14) and (15)
have a unique solution for each n > 1 in a natural mathematical
setting [20].
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B. Numerics

We next construct the self-similar profiles for several
values of n > 1 numerically. We used the shooting method to
construct the solutions of Eq. (14), which requires knowledge
of the asymptotic behavior of φ(ξ ) near ξ = 0 and ξ = ∞. To
obtain this behavior, we linearize Eq. (14) around the equilibria
φ = 0 and φ = 1. Denote the corresponding solutions of the
linearized equations as φ0 and φ1, respectively. By a direct
computation

φ0(ξ ) = C1ξ
2/(n−1)M

(
1

n − 1
,
1

2
,−ξ 2

4

)

+C2e
−ξ 2/4ξ 2/(n−1)U

(
1

2
+ 1

1 − n
,
1

2
,
ξ 2

4

)
, (16)

where M(a,b,z) and U (a,b,z) are the confluent hypergeomet-
ric functions of the first and second kind, respectively [21].
Using the asymptotic expansions of these functions for large
z [21], one can see that φ0(ξ ) → 0 as ξ → ∞, if and only if the
constant C1 = 0. Therefore, from the asymptotic expansion of
U we have

φ(ξ ) ∼ e−ξ 2/4ξ (5−n)/(n−1), ξ → ∞. (17)

Similarly

φ1(ξ ) = ξ 2(n+1)/(n−1)

{
C1M

(
n + 1

n − 1
,
5n − 1

2n − 2
,−ξ 2

4

)

+C2U

(
n + 1

n − 1
,
5n − 1

2n − 2
,−ξ 2

4

) }
. (18)

Once again, for a bounded solution at ξ = 0 we must set
C2 = 0, which leads to

1 − φ(ξ ) ∼ ξ 2(n+1)/(n−1), ξ → 0. (19)

The results of the numerical solution of Eq. (14) whose
asymptotic behavior is governed by Eqs. (16) and (18)
are presented in Fig. 2. One can see that the self-similar
profiles form a monotonically decreasing family of functions
parametrized by n. The solutions φ(ξ ) approach φ(ξ ) = 1 on
finite intervals as n → 1 and φ(ξ ) = 1 − erf(ξ/2) as n → ∞
[the latter solves Eq. (14) corresponding to n = ∞]. We also
found that for the biophysically important case n = 2, in which
the morphogen-induced positive feedback for degradation is
mediated by the simplest bimolecular interaction, the self-
similar profile can be approximated within ∼1% accuracy by
the following simple expression:

φ(ξ ) ≈ 4000 + ξ 9

4000 + 5ξ 6eξ 2/4
, n = 2. (20)

The graph of this function, which essentially coincides with
that of the numerical solution of Eq. (14), is shown in Fig. 2
with a thick line. Note that this profile also coincides with the
limiting profile in Fig. 1 for t = ∞.

C. Dynamics

Let us now discuss the dynamical behavior of the obtained
self-similar solutions of Eq. (11). The picture remains quali-
tatively the same for all n > 1, so in the following we restrict
our attention to the biophysically important case of n = 2.
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FIG. 2. Self-similar profiles φ(ξ ) for different values of n.
Results of the numerical solution of Eqs. (14) and (15) for n =
1.25,1.5,2,3,4,6,∞. The thick line is the graph of the function given
by Eq. (20) overlaying the profile for n = 2.

First consider the time course of the solution u(x,t) given by
Eq. (13) at a fixed location, i.e., at a fixed value of x > 0. From
the self-similarity ansatz in Eq. (13) it is clear that the time
scale of these dynamics is governed by diffusion, i.e., t ∼ x2.
A convenient characterization of local dynamical time scale
can be made in terms of the local accumulation time τ∞(x) =∫ ∞

0 tp(x,t)dt , where the probability-density-like quantity
p(x,t) = 1

v∞(x)
∂u(x,t)

∂t
[18,22]. Upon substitution of Eq. (13)

into this formula and an integration by parts, one obtains

τ∞(x) = ax2, a = 2
∫ ∞

0
ξ−3[1 − φ(ξ )]dξ, (21)

where numerically a � 0.122. We note that by Eq. (19) the
integral in Eq. (21) converges for all n > 1. The solution
for several values of x is shown in Fig. 3. Furthermore, as
follows from Eqs. (17) and (19), when t � τ∞(x), we have
u(x,t) ∼ (x/t3/2)e−x2/(4t), which is exponentially small. At the
same time, for t � τ∞(x) we have [v∞(x) − u(x,t)]/v∞(x) ∼
[τ∞(x)/t]3, i.e., u approaches the stationary solution, with
the distance to the stationary solution decaying as O(t−3).

We now consider the motion of the level sets of the
solutions of Eq. (11). For a given c > 0, let us define xc(t) as
the unique value of x, such that u(x,t) = c for each t > 0. As
follows from Eqs. (13), the function xc(t) can be determined

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

t

u
x,

t

x 1

x 1.5

x 0.75

FIG. 3. Self-similar solutions u(x,t) of Eq. (11) at several values
of x for n = 2.
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FIG. 4. The positions xc(t) of level sets {u(x,t) = c} of the self-
similar solution of Eq. (11) at several values of c for n = 2.

parametrically as

xc = [6φ(ξ )/c]1/2, t = 6φ(ξ )/(cξ 2), n = 2. (22)

The graphs of xc(t) for a few values of c are shown in Fig. 4.
Once again, the dynamics of xc can be characterized by the
local accumulation time τ∞(x∞

c ) given by Eq. (21), where
x∞

c = (6/c)1/2 is the asymptotic value of xc(t) as t → ∞.
One can see from Eqs. (17) and (22) that for t � τ∞(x∞

c ) we
have xc � 2(t ln t−1)1/2. Thus, all level sets move together for
short times, as can also be seen from Fig. 4. On the other hand,
for t � τ∞(x∞

c ) the level set position xc(t) approaches x∞
c

as x∞
c − xc(t) = O(t−3). Within ∼2% accuracy the functions

xc(t) can be approximated by the following simple expression:

xc(t) ≈
(

4t ln[3.2 + 6/(ct)]

1 + 0.76ct

)1/2

, n = 2. (23)

This formula implies that xc(t) comes within 5% of x∞
c at

t � 2τ∞(x∞
c ).

IV. CONCLUSION

In conclusion, we characterized the dynamics of mor-
phogen gradients in models with self-induced morphogen
degradation. Our results reveal the presence of self-similarity
in the course of the approach of the concentration profiles to
their steady states in either the limit of large source strengths
or for large distances away from the source. In addition to
demonstrating the self-similar nature of the dynamics, we
constructed these self-similar solutions numerically for several
values of n. The obtained solutions may be readily used to
study various characteristics of the local kinetics of morphogen
concentration. In particular, Eqs. (22) and (23) obtained from
the numerical self-similar solutions provide a characterization
of threshold crossing events, which determine the times at
which a morphogen gradient switches the gene expression on
or off at a given point.
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