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We analyze patterns of recurrent activity in a prototypical model
of an excitable medium in the presence of noise. Without noise,
this model robustly predicts the existence of spiral waves as the
only recurrent patterns in two dimensions. With small noise,
however, we found that this model is also capable of generating
coherent target patterns, another type of recurrent activity that is
widely observed experimentally. These patterns remain essentially
deterministic despite the presence of the noise, yet their existence
is impossible without it. Their degree of coherence can also be
made arbitrarily high for wide ranges of the parameters, which
does not require fine-tuning. Our findings demonstrate the need
to reexamine current modeling approaches to active biological
media.

stochastic resonance ! noise-induced coherence ! target patterns

I t is now firmly established that excitability is one of the main
dynamical principles behind a variety of biological functions.

Spatially distributed excitable systems, or ‘‘excitable media,’’ are
an important class of excitable systems whose main biological
function is long-range signal transmission through self-sustained
waves of activity (1–10). A canonical example of excitability is
the ability of nerve cells to transmit pulses of electrical activity
in the form of action potentials (4). Perhaps, the most well
known example of excitable media in biology is the heart tissue,
which relies on electrical couplings between excitable cells (2).
On the other hand, many mechanisms of excitability exist in
tissues that are mediated by different chemical messengers,
notably, extracellular calcium (6, 11), ATP (9), and peptide
growth factors (7, 10, 12). In single-cell organisms, such as social
amoeba Dictyostelium discoideum, excitability may arise as an
emergent property of a large population of cells (5, 13). Even on
the level of single cell, excitable dynamics can be seen as, e.g.,
waves of intracellular calcium (8, 14, 15). Because of this
widespread occurrence in biology, nonliving excitable media,
such as the Belousov–Zhabotinsky reaction, catalytic surface
reactions, excitable semiconductor systems, etc., have also at-
tracted considerable interest (3).

The social amoeba D. discoideum, which is arguably one of the
best-studied model organisms exhibiting excitability (see ref. 5
and references therein), is a good case in point. When Dictyo-
stelium cells are starved, they begin to emit pulses of cAMP, a
chemoattractant, which are then relayed to more distant cells by
radially divergent waves or spiral waves of cAMP signaling. The
established wave pattern then initiates a movement of cells
toward the origin of the wave, resulting in cell aggregation; these
cells will later differentiate to form sophisticated fruiting bodies
and complete the organism’s life cycle. Detailed experimental
studies of the patterns of cAMP signaling reveal the standard
phenomenology (1–3, 16) of a 2D excitable medium (5, 17–19).
The basic questions these experiments raise, which are common
to studies of all excitable systems, are about the origin of wave
pattern initiation and selection.

The basic paradigm of an excitable dynamical system involves
the existence of a fast excitatory variable with threshold-like

dynamics coupled to a slow recovery variable responsible for the
relaxation of the system back to the quiescent state (1, 2, 16).
Excitable media are obtained by coupling such dynamical units
locally in an excitatory fashion. This setup provides a basic
module that robustly accounts for the phenomenon of wave
propagation in excitable media, and, in particular, explains the
existence of spiral waves (1, 2, 16). On the other hand, this
minimal setup does not account for wave initiation and, in
particular, fails to explain the existence of target patterns,
another commonly observed pattern in excitable media (1–3, 5,
8, 9, 20, 21).

In reality, excitable systems are always noisy (15, 18, 22). Most
of the time the noise simply perturbs the dynamics and does not
significantly affect the observed behavior. Occasionally, small
noise can have a large effect on the system by triggering rare
events. In excitable media, these rare events can lead to nucle-
ation of radially divergent waves, with the resulting waves
appearing sporadically at random spatial locations and propa-
gating through the medium (23, 24). The randomness in the time
and location of these nucleation events will, therefore, make the
observed wave patterns essentially incoherent. Let us note that
upon increasing the strength of the noise some degree of
coherence may appear because further nucleations are less likely
during the refractory period (25–27). However, it is important to
realize that the strength of the noise required to maintain this
type of activity needs to be sufficiently high. As a result, unless
the parameters are tuned in a way that the system is near a
bifurcation threshold, it is not possible to control the degree of
the pattern’s coherence in this situation (for a more detailed
explanation in the space-independent case, see ref. 28).

We found, however, that under certain conditions the situa-
tion may change in a qualitative way. Remarkably, instead of
making the system behave in an incoherent fashion, the noise
actually leads to the emergence of a highly regular spatiotem-
poral pattern. Furthermore, the degree of the pattern’s coher-
ence is under control and can be made as high as desired by a
suitable choice of the parameters in a broad range that does not
require fine-tuning. In other words, noise can generically result
in the formation of a spatiotemporal pattern that is essentially
deterministic, yet the noise is required and serves as a control
parameter for the observed pattern. Specifically, we show that in
an excitable medium the noise can spontaneously create regions
that periodically emit radially divergent waves that organize
themselves into target patterns. The noise here plays a truly
constructive role by producing a new type of nonrandom be-
havior, fundamentally absent in the system without the noise.
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To demonstrate this point, we performed numerical simula-
tions of a model excitable medium driven by small-amplitude
Gaussian white noise. We were motivated by the experiments on
Dictyostelium by Lee and coworkers (17–19), who studied the
initiation and evolution of the cAMP signaling patterns under
various conditions. Our model is a coarsely discretized version of
a stochastic partial differential equation with the Brusselator-
like kinetics (29) and diffusive excitatory coupling:

#ut ! !u " f"u, v# " $#$.
vt ! %g"u, v#. [1]

Here, u(x, y, t) and v(x, y, t) are the excitatory and recovery
variables, respectively, % is the ratio of the time scales of

excitation and recovery, $(x, y, t) is white noise in time with short
spatial correlation, # is the noise amplitude (assumed to be
small), f(u, v) $ 1 % Au2v & (1 % A)u & Bu5 and g(u, v) $ Au &
u2v are the nonlinearities (A and B are parameters), ! is the 2D
Laplacian, and ut $ &u/&t, etc. (see SI Text for details). A crucial
assumption, which lies at the core of the standard excitability
paradigm, is that there exists a strong separation between the
time scales of the excitatory and the recovery variables; in the
model, this corresponds to the assumption that % '' 1. If this
condition is satisfied, the model is capable of supporting prop-
agating waves in a wide range of parameters in the absence of the
noise, i.e., when # $ 0.

We now present our findings. Our main result is the demon-
stration of an autonomous self-organized periodic wave source

t=4160

t=4000 t=4080

t=4240

Fig. 1. An autonomous self-organized periodic wave source generated by noise. Results of the numerical solution of Eq. 1 with % $ 0.01, # $ 0.05, A $ 0.7,
B $ 6.4 ( 10&5, and h $ 3.16 are shown. The system is discretized by finite difference on a 800 ( 800 grid with reflecting boundary conditions. Red pixels denote
the regions where u ) 5, and the gray scale shows v (white is v $ 1, black is v $ 0, with various shades of gray showing v in between). The system is initially seeded
with u $ 0.5, v $ 0.05 % 0.65 exp(&((x & 400 h)2 % (y & 400 h)2)/(200 h)2), a bell-shaped distribution of the recovery variable. Note that the initial values of v are
all below the deterministic threshold for firing. After a number of cycles a steadily oscillating pattern in which waves are initiated periodically in the center of
the system is established. Once initiated, these waves propagate radially outward, generating a characteristic target pattern. The pattern persisted for as long
as the simulation could be run. The snapshots are taken after *100 periods [see supporting information (SI) Movies 1–10]. Notice the characteristic formation
of the nuclei ahead of the wave, which are then absorbed by the oncoming wave front; this is strongly reminiscent of the observations of cAMP signaling in
Dictyostelium populations (19). We emphasize that this pattern is impossible in the same model in the absence of the noise.
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in an ideally homogeneous system, whose existence is caused
entirely by noise (Fig. 1). To achieve this, we specified an initial
condition in the form of a bell-shaped distribution of the
recovery variable v and a uniform subthreshold distribution of u
and simulated Eq. 1 (for details, see Fig. 1 legend). At first, the
recovery variable v increased uniformly, with the highest value
in the center. When it reached a certain critical value, a wave was
initiated in the center of the system and propagated outward in
a radial fashion, resetting the recovery variable to a lower value.

As the system recovered, v remained the highest at the center,
so at some later time the cycle repeated. After many such cycles
a clearly visible target pattern emerged (see Fig. 1). This pattern
maintained its coherence and was not destroyed by the noise (for
several periods of the well formed wave source, see SI Movies
1–10). Moreover, the threshold value of the recovery variable
was found to always remain below the value of v at which an
individual excitable unit will fire in the absence of the noise.
Therefore, it is indeed the noise that initiated the waves via
nucleation, which is clearly seen in Fig. 1 and SI Movie 1. Note
that a characteristic feature of the dynamics is nucleation of new
sources right ahead of the main wave front, which are then
absorbed by the oncoming wave (compare with ref. 19).

Furthermore, we found that the amplitude of the noise rather
sensitively controls the parameters (such as amplitude and
frequency) of the wave source. Upon decreasing the noise
amplitude, the frequency of the source goes down and, at the
same time, firing becomes less regular, until at some critical level
of the noise the target pattern is no longer sustained (with firing
occurring sporadically at random locations). On the other hand,
upon increasing the noise amplitude, firing occurs more fre-
quently, but at the same time the pattern starts to lose its
coherence when the noise is no longer weak.

We next investigate how this mechanism can generate spatio-
temporal patterns in a more realistic setting and the effect of wave
resetting. Fig. 2 shows the results of a simulation in which the initial
states of the units are taken to be identical. We also added a small
smoothly varying subthreshold inhomogeneity [i.e., such that no
spontaneous oscillations that could serve as heterogeneous pace-
makers (30) would occur anywhere in the absence of the noise] to
the parameter A (see SI Text). This inhomogeneity only plays a role
at late stages. One can see that after an initial incubation period,
waves start to appear at random locations throughout the system.
Once initiated, they propagate, leaving a refractory region behind.

t=840

t=1740 t=5060 t=8920

t=1340

t=150 t=200 t=240

t=480

Fig. 2. Establishment of a target patter in a more realistic setting, in which a slowly varying heterogeneity was added to the control parameter A (for details,
see SI Text). Results of the numerical solution of Eq. 1 (see Fig. 1 for more explanation) with the same parameters as in Fig. 1 (except for A), with uniform initial
conditions are shown. The system is discretized by finite difference on a 400 ( 400 grid, with reflecting boundary conditions. Initially, multiple nucleation events
occur, leading to the formation of many competing wave sources, oscillating nearly in synchrony. Because of the presence of the heterogeneity, some of the
sources have higher frequency, so after several periods the source with the highest frequency entrains other sources and takes over the whole system. Note the
increased regularity of the observed wave pattern.
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Then, by the same mechanism as in Fig. 1, the new waves are
initiated at the locations of the previous nucleations. After some
transient, the system gets filled with many competing wave sources
that oscillate almost in synchrony. Here is where the effect of the
slowly varying inhomogeneity becomes important. The frequency
of the sources at different locations becomes slightly different, so
after a while the source with the highest frequency takes over the
whole system (see Fig. 2). This finding is consistent with the
observations of a variety of excitable systems (1, 3, 16). We point
out, however, that a strongly localized heterogeneity will have a
similar effect, so our finding is not inconsistent with the observa-
tions of the Belousov–Zhabotinsky reaction (1, 20, 31).

On the other hand, if the initial distribution of the recovery
variable varies significantly on a sufficiently large spatial scale, as
in Fig. 3, the outcome can be quite different. Here, as a result
of a wave nucleation, broken wave fragments are created, which
then curl up and eventually transform into pairs of counterro-
tating spirals. Wave sources are also created in this situation;
however, because of their lower frequency, they become en-

trained by the spiral later on. Thus, under this type of initial
conditions spirals can be the usual outcome.

To further investigate the formation of the spirals, we repro-
duced the resetting protocol of ref. 19 by uniformly increasing
the value of the excitatory variable above the threshold at t $
1,550 (see Fig. 3 and SI Movie 8). As a result, after a large global
excursion the activity was wiped out; however, after some time
the pattern reappeared and evolved into one spiral that overtook
the transient wave sources. On the other hand, by applying a
larger reset to the value of u, we were able to extinguish the spiral
pattern completely and obtain a target pattern as in Fig. 2 instead
(results not shown). Let us point out the striking similarity of the
basic phenomenology of the experiments of refs. 9, 15, and 17–19
with our findings.

The appearance of noise-induced deterministic wave patterns
is consistent with the mechanism of self-induced stochastic
resonance discovered in ref. 32 (see also ref. 33). We first explain
the mechanism in the setting of stochastic ordinary differential
equations, i.e., when the spatial derivative in Eq. 1 is set to zero,

t=0 t=100 t=190

t=1200t=420

t=4000t=1670t=1550

t=310

Fig. 3. Large variations in the initial conditions may lead to the formation of spirals. Results of the numerical solution of Eq. 1 with the same parameters as
in Fig. 2 (see Fig. 1 for more explanation) are shown. The system is discretized by finite difference on a 400 ( 400 grid, with reflecting boundary conditions. In
contrast to Fig. 2, the initial condition for v is taken to vary significantly in space. As a result of the initial wave nucleation, the wave front runs into regions that
did not yet sufficiently recover and are still incapable of supporting waves; as a result, the front breaks up. The torn-up wave segments then curl up to form pairs
of counterrotating spiral waves. Following the experimental protocol of ref. 19, at t $ 1,500 we reset the values of u to a suprathreshold value (for details, see
SI Text). Soon after, all activity was abolished; after a while, however, waves started to reappear at the locations where the medium was most recovered. The
wave fronts forming as a result became disconnected; eventually, a different spiral wave pattern took over the entire system. Note that resetting u to a higher
value abolished the spiral pattern altogether, reestablishing the target pattern seen in Fig. 2 (see SI Text).
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and the solutions of these equations have no spatial variation,
u + u(t), v + v(t). Because of the strong time-scale separation
between u and v the system spends most of the time in the small
vicinity of the slow manifold [the stable branch of the u-nullcline,
where f(u, v) $ 0 and &f(u, v)/&u ' 0]. In the presence of noise,
however, the system’s trajectory can be kicked out of the basin
of attraction of the slow manifold by a noise-activated event. The
excitable nature of the system ensures that such an event will
result in a large excursion away from the slow manifold. For # ''
1, the likelihood of this excursion on a small fixed time interval
[t0, t0 % !t] is proportional to the Arrhenius factor
exp(&!V(v(t0))/#)!t, where !V(v(t0)) is the effective ‘‘energy’’
barrier (34). In the case when $ is a delta-correlated Gaussian
white noise the barrier height as a function of v is given explicitly
by (35):

!V"v# ! &2 %
u&"v#

u%"v#

f"u , v#du , [2]

where u&(v) is a point on the slow manifold and u%(v) is a point
on the boundary of the basin of its attraction.

As the system creeps up along the slow manifold toward the
equilibrium point (u0, v0), this likelihood rapidly increases,
because the barrier !V(v) is a monotonically decreasing
function of v. In fact, if one fixes !t $ O(%&1), the time scale
of the slow deterministic motion of the recovery variable, then
one can see that this likelihood becomes large when v reaches
a critical value v*, satisfying the equation !V(v*) $ ', where
' $ #log%&1, provided that one chooses ' $ O(1), while %, #
'' 1. So, in the limit %, # 3 0 with ' fixed a large excursion
will happen with probability one when v reaches v* from
below. If, after the excursion, the system always lands at the
same point on the slow manifold (determined by v*), this will
result in an establishment of a bona fide limit cycle (32). We
note that while the deterministic characteristics (e.g., the
period, etc.) of the limit cycle is controlled by the value of ',
the degree of its coherence is controlled by # and thus can be
made as high as desired by choosing # and % small enough,
provided that ' $ #log %&1 is fixed. In practice, the systems is
already very close to the asymptotic limit and coherence is very
high when % ( 10&2.

This picture carries over locally to the stochastic partial
differential equation (Eq. 1), except now the role of a noise-
activated barrier-crossing event is played by a nucleation event.
Assume that the recovery variable v $ v(x, y, t) varies smoothly
on the spatial scale O(%&1). Then, for any point (x0, y0) one can
introduce a ‘‘local’’ nucleation rate in the fixed neighborhood of
that point, provided the size L of this neighborhood lies in the
range 1 '' L '' %&1, where v is nearly constant. Once again, the
probability of a nucleation event in such a neighborhood during
the time interval [t0, t0 % !t] is proportional to exp(&!V(v(x0, y0,
t0)/#) !t, where now:

!V"v# ! %
R2

"!!u" !2 ) 2F"u" , v## dxdy, F"u, v# !%
u&"v#

u

f"*, v#d*.

[3]

Here v is assumed to be constant and u" is the droplet solution
of the equation (the lowest energy saddle point of the energy
functional in Eq. 3) (36):

!u" " f"u" , v# ! 0. [4]

As before, in an excitable medium one expects that the barrier
height !V(v) is a decreasing function of the recovery variable v.
Hence, the nucleation rate will be maximal at the point (x0, y0)
where v is largest, and by the same argument as in the spatially
independent case, with probability one a radially divergent wave
will be nucleated at (x0, y0) in the limit %, # 3 0, with ' $
#log %&1 $ O(1) fixed, whenever v(x0, y0, t) $ max(x,y)v(x, y, t) $
v*, where v* solves !V(v*) $ '. In the wake of the wave v
recovers on the slow time and, correspondingly, large spatial
scale, making re-emergence of another wave at (x0, y0) after a
deterministic O(%&1) time possible. We further corroborated
this scenario numerically from the simulation data shown in Fig.
1. In Fig. 4, we plot the trajectory of the system at point (x0, y0),
which in this case is the center of the computational domain. One
can see that a wave is nucleated in the neighborhood of this point
at regular time intervals whenever v(x0, y0, t) reaches the critical
value of v* & 0.67, consistent with the above explanation. The
value of v* observed in the simulations is in good agreement with

v

t

u

 0
 5000  6000  7000  8000  9000  10000

1.0

 1.5

0.5

 10

 5

 15

Fig. 4. The time series of u(x0, y0, t) (red line) and v(x0, y0, t) (blue line) in Fig. 1 is shown, where (x0, y0) is the point at the center of the computational domain.
Observed is a localized version of self-induced stochastic resonance. The dashed green line shows the average jump-off value of v $ v*.
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the theoretical estimate based on the self-induced stochastic
resonance mechanism (see SI Text).

Lastly, let us comment on the importance of our findings for
modeling. It is commonly accepted that to explain a coherent
dynamic, such as oscillations, etc., in a biological system, one needs
to construct a deterministic model, described by a system of
differential equations, that possesses such a dynamic; noise is
considered largely irrelevant (1, 2, 37). Our results, however, suggest
that proper account of the noise can be indispensable for inter-
preting the observations, even if the noise appears to be ‘‘small.’’
Specifically, we were able to demonstrate that the observed essen-

tial phenomenology (16) of excitable media can be robustly repro-
duced within the basic fast excitation/slow recovery paradigm of
excitable media, if the effect of small noise is accounted for, with
no further assumptions about the existence of pacemakers. These
assumptions are inevitable when modeling excitable media with
purely deterministic equations (1–3, 16, 31).
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