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Unusual Coarsening during Phase Separation in Polymer Systems
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We introduce a kinetic model of coarsening of transient polymer networks during the intermediate
stages of phase separation in polymer systems. The model explicitly takes into account the effect of
the connectivity of polymer chains. We show that during the intermediate stages the size of the droplet
grows according to an unusual coarsening Rw- /(3. When the network structure breaks up, the
coarsening law may cross over B~ In¢~!, until only at very late stages the Lifshitz-Slyozov coars-
ening lawR ~ ¢'/? is recovered. [S0031-9007(98)07455-9]

PACS numbers: 64.75.+g, 05.70.Fh, 61.25.Hq, 61.41.+e

Kinetics of phase separation in polymer systems is amich droplets will exert attractive force of ord€t/a on
important problem from both the scientific and the technothe chains that cross their interfaces, pulling them into
logical points of view. Phase separation in such systemthe droplets. Here two qualitatively different situations
is driven by the difference in the chemical potential of theare possible. If the chains are not very long, the initial
species [1-3], so at long times the kinetics of this procestransient time will be enough for a droplet to pull in all the
should fall in the same dynamic universality class as simplehains that come into contact with it, so after the transient
fluids [4]. This is indeed observed in the experiments orthe morphology of the droplets will be disconnected. In
phase separation in polymer solutions and blends (see, faontrast, if the length of the chains is large enough, during
example, [5-7]). Nevertheless, because of the large siz&e initial transient time the chains will be pulled into
of polymer molecules the universal kinetics of phase sepadroplets until they will become fully stretched between
ration may not be seen until very late times. Recent exthe points of entanglement (Fig. 1). The reason for the
periments [8,9] and molecular dynamics simulations [10]atter is that when the chains are sufficiently long (or,
showed that in the intermediate stages of phase separequivalently, when the distance between the droplets is
tion interconnected network structures may be observegmaller than the radius of gyratidr), of the chain before
In other words, in the intermediate stages the system maye quench), a single chain may initially become a part
become dransient ge[11], so its connectivity should play
a crucial role in the kinetics of phase separation.

In this Letter, we introduce a kinetic model of coarsen-
ing of polymer networks during the intermediate stages of
phase separation. For definiteness, we will consider phase
separation in concentrated polymer solutions undergoing a
deep quench into the unstable state. We will show that the
connectivity of the droplets of the polymer-rich phase en-
tirely changes the transport mechanism which determines
the coarsening of droplets, resulting in an unusual coars-
ening law:R ~ ¢'/@*3_ This coarsening will arrest when
the distance between the droplets reaches the value of the
order of the radius of gyratioR, of the polymer chain
before the quench, when the network structure will break
up. After that, a much slower coarsening mechanism may
switch on resulting in the coarsening la® ~ In¢~!.
Only when the distance between droplets becomes of
the order of the length of the fully stretched polymer
chain, the coarsening will cross over to the conventional
Lifshitz-Slyozov mechanism witl® ~ ¢'/3 [12].

When a polymer solution is quenched deep into the
unstable region, spinodal decomposition occurs. After
a relatively short transient period the system segregates
into polymer-rich droplets of size of order, where a

is the statistical segment length. Because of repulsive|G. 1. Transient polymer network. Thick line shows a test
interaction between the polymer and the solvent polymerehain. The arrows indicate the motion of the test chain.
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of several droplets at the same time. Therefore, aftesimplicity, let us consider a three-dimensional system.
the transient period, the morphology of the droplets willThen the droplets can be assumed to be spherical and
be connected. In a stretched state the conformation afniformly distributed over space. Let us introduce the
a chain connecting a pair of droplets will be Gaussiardistribution functionf(R, t) normalized in such a way that
with the effective segment Iengttwe‘/z, whereN, is the the integral [ fdR gives the number of droplets per unit
average number of segments between the entanglemerdlume. Since after the initial formation of the network
points before the quench (Fig. 1). no droplets will be further created, the functignmust
After the network morphology is formed, the motion of satisfy Liouville equation
the chains will significantly slow down since on average
the force acting at the point of attachment of the chain af
at one droplet will be compensated by the opposite force at

from another droplet, thus stretching the chain. The total h i< th ber of chai . f a drool
force, however, will not be exactly equal to zero since theVherem Is the number of chains coming out of a droplet
ndv is the average speed of the chains into the droplet.

droplets between which a piece of the chain is stretche . ;
s was already pointed out, on the time scale of the

will not generally have the same radii. The latter will idered . h mbeof chai
result in the difference of the surface pressures leading tons'dered coarsening process the numbeof chains

the net force of ordef’/R, whereR is the characteristic coming out of a droplet is time independent. At the
radius of a droplet, acting on the stretched piece of th€€9iNning of coarsening all droplets have roughly the
chain (Fig. 1). So, a piece of the chain connecting a paip2™e Sizeé of ordex, so on average the number will

of droplets will slowly creep along itself from the droplet € th? same for all droplets. Therefore, in the following
with smaller radius to the droplet with greater radius V€ W.'” treatm as a constant of order 1. The average
(Fig. 1) with the speed of ordefua>N!/?/RL?, where velocity v can be written as

wu is the mobility of an individual segment arid is the 1 /1 1

distance between the connected droplets. In estimating v = f dP(R’,L)—z(—I - —). 2
the speed of the chain we assumed that the friction force L*\R R

i ; 2,2 . . . . o
is propo_r'uor_1a| to the_number. of segr_nerﬁ%/Nj/ a” N Here and in Eq. (1) an appropriate nondimensionalization
the chain piece. This creeping motion should result i 55 peen performed. In Eq. (2) the ted®(R',L) is
the transport of segments from the sm_aller dropl_ets to thg,e probability that the droplet of radiug is connected
larger ones and, therefore, lead to their coarsening. Notgiih the droplet with radiusR’ at distanceL, the term
that the connectivity of the chains results in t@nlocal | /72 comes from the dependence of the mobility of the
mass transport, since the creep of the chain is equivale@yreiched portion of the chain on its length, and the term
to taking monomers from one droplet and putting them(l/R/ — 1/R) is the driving force.
instantaneously into the other. , , In the following we will assume that the chains connect
The mass current into a droplet is proportional to thegjtferent droplets at random. Let us measure distances
average speed of the chains into that droplet and thgs|ative to the droplet of radiu®. Since the chains
number of ghalns that come into it. 'A pgcullar featureg,e highly stretched, the probabiligp is essentially the
of the considered transport mech_anls_m is the fact thaﬁrobability that a random walk of Step\/el/z starting from
as long as the average droplet size is smaller than thge origin terminates at a droplet of siz at distance
distanceaN!/> between entanglements, the number of; \hile not crossing any other droplets on its way.
cha.lns that come out of a given droplet is mdepende'niq-hiS probability is the product of two partgP(R’, L) =
o_f time (see F_|g. 1). So, the current into the droplet_ ISyp,(R', L)P5(L), wheredP; (R, L) is the probability that
simply proportional to the average speed of the chains, grgplet of sizek’ at distancd. is connected to the origin
This is in contrast with the conventional Lifshitz-Slyozov disregarding the effect of other droplets, afd is the
mechanism in which the mass current into the droplehopapility that the chain connecting these droplets did not
is proportional to the surface area of the droplet [12].c/qgs any other droplets. Since by assumption the same

Writing the conservation of mass for a droplet of SRe  nymper of chains comes out of all droplets regardless of
using the expression for the velocity of a stretched portionpgjr size, the probabilityiP; can be written as
of a chain, and taking into account the conservation of

volume fraction of the polymer-rich phase, we obtain that dP(R',L) = CL*f(R")dR'dL, 3)

on averageR?"'dR/dt ~ 1/R3. This suggests that the

considered meChan'S{T‘/(dey)' result in the average droplefyhereC is the normalization constant. It is not difficult
size growing ask ~ ¢ and self-similar growth of to show that for a random walk in the presence of small

the droplet morphology. _ o spherical obstacles with the distribution functifn
Let us demonstrate that this self-similar growth should

actually take place for low polymer volume fraction when
the system contains many droplets of different sizes. For

d -
=~ R ™), @

Pyl)=e ¥, k= 477/ RfdR . (4)
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The constant is determined by the conditiohdP = 1.  a double pole at this value of. The analysis shows

This gives us that this situation is realized if for a given value of
4,632 we havex® = 4/3a, anda; = 27/3%5. Then, the con-
= —F—. (5) stanta; is calculated so that the first of Eq. (8) is sat-
V7 [ fdR isfied. We have done this calculation numerically and
Note thatx and C are determined by the distributioh  found thata, = 1.1027 and A = 4.0446. The solution
and therefore are functions of time. for F in this case is shown in Fig. 2. From this solu-

Writing the probabilitydP in the above form essen- tion one finds that the average radius of the droplet grows
tially constitutes a self-similarity assumption about theas(R) = 0.94:!/°, while the average droplet density de-
connectivity of the network as a function of time. This cays as(n) = 1.14:~'/2. Note that the polydispersity of
should be a good assumption since as smaller droplethe droplets during coarsening is rather small, we have
collapse during coarsening, the chains that came out afR?) — (R)?)/(R)* = 0.023 in d = 3.
them simply reconnect between other droplets. Observe that in his pioneering paper on phase separa-

Having now calculated/P, we can substitute it to tion in polymer systems de Gennes proposed the coars-
Eqg. (2) and integrate ovet. As a result, we can write ening law R ~ /5 for d = 3 in the early stages of

the expression fov (absorbingn into it) in the form coarsening [13]. In [13] the transport is due to diffusion
[ RfdR 1 1 of chains between the droplets with Rouse mobility of the

v=A f dR’f(R’)(—, — —), (6)  chains [14] which is taken to depend & However, it
Jfdr R R is clear that Rouse diffusion of the chains will be sup-

where A = 6m¢, ¢ is the volume fraction of the pressed when the distance between the droplets becomes

polymer-rich phase, and the normalization ¢f was comparable to the distance between entanglements soon

changed tof R*fdR = 1. The constant\ determines the after the onset of phase separation. After that the sys-

rate of the coarsening process. In the following we willtem becomes a transient gel, so the coarsening mechanism

absorb it into the definition of. Note that according to should change to the one studied by us. Note that the im-

Eqg. (6) we havef vfdR = 0, meaning the conservation portance of highly stretched chains for phase separation

of the overall mass of droplets (assuming that the voluméinetics was pointed out already in [13].

fraction of the chains outside the droplets is negligible).  The coarsening lawk ~ /¢ obtained by us for three
Equations (1) and (6) are of the same type as thosdimensions is in very good agreement with the experimen-

studied by Lifshitz and Slyozov in the theory of coarsen-tal results of Tanaka who finds th&t~ %> for a phase

ing by evaporation-condensation mechanism [12] and caseparating polymer solution in the network state. Also,

be treated in the same way. Let us introduce a similarthe coarsening laR ~ %>* observed in experiments on

ity ansatzf (R, 1) = t2/*F(Rt~"/°) into Egs. (1) and (6). coarsening of thin diblock copolymer films [15,16] is in

Introducingx = R:~'/®, we obtain an equation good agreement with our result for two dimensions.
d Note that in the analysis of coarsening we assumed
4F + xF' = 6a; — [F(a;x™% — x73)], (7)  that the number of chains coming out of a droplet is
dx ) independent of time. This is a good assumption as long
where the constants anda, are given by as the size of the droplet is smaller than the distance
o jf;x—lex aNel/2 between the entanglement points. At the onset of
a = /0 xFdx, a = W (8)  the considered coarsening process the distance between

o _ the droplets is of orderaN!/?, so the radius of a
and the prime denotes differentiation with respectcto droplet will be much smaller than that in the case of
The functionF is normalized according to low polymer volume fraction. In fact, the smallness of

c the polymer volume fraction is the necessary condition
[ x’Fdx = 1.
0

(9)

Note that from the condition of the conservation of
mass [ vfdR = 0 follows that the second of Eq. (8) is I
identically satisfied for any solution of Eq. (7). at

Equation (7) can be straightforwardly integrated

X 4y 41241 apy—18a
F— ae Jimaa e, (10) “l
where the constamt is determined via Eq. (9). As in the 1l
Lifshitz-Slyozov theory [12], the solution that is selected -
at long times from the extended initial distribution should % 05 1 15
vanish alongside with all its derivatives at some= x*. X
This is only possible if the integrand of Eq. (10) has FIG. 2. The distributionF(x) for d = 3.
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for the considered coarsening mechanism to be realizetbecome the dominant transport mechanism. This conclu-
Note, however, that before the size of a droplet becomesion is supported by recent experiments on phase sepa-
comparable thNj/z, the distance between the dropletsration of relatively low molecular weight polymer blends
may reach the value of the order of the radius of gyratiorf19]. In contrast, in polymer melts the mobility of the
R, of the chains before the quench, so the network willdroplets will be significantly smaller, so one would expect
break up. The latter is observed in the late stages ahe mechanism discussed in the preceding paragraph to be
coarsening in the experiments of Tanaka [9]. the dominant one. Notice that because the latter is very
After the breakup of the network one would expectslow, in experiment this can be seen as an arrest and inter-
that the conventional Lifshitz-Slyozov transport mecha-mittency of the droplet growth. This is indeed observed
nism turns on resulting ik ~ ¢'/3 growth law. Note, in the experiments on polymer melts [20,21]
however, that the rate constant for such a mechanism will In conclusion, we have demonstrated that polymer
be extremely small for deep quenches [13] (for recent deehain connectivity may have significant effect on the
velopments, see also [17]). This is due to the fact that th&inetics of phase separation in polymer systems resulting
Lifshitz-Slyozov mechanism would require an evapora-in the unusual coarsening laws in the intermediate stages.
tion of an entire chain from a droplet, which then diffuses This work was supported by AFOSR Grant
through the matrix to another droplet. For deep quenchello. F49620-98-1-0256.
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