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Unusual Coarsening during Phase Separation in Polymer Systems

C. B. Muratov
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York

(Received 22 June 1998)

We introduce a kinetic model of coarsening of transient polymer networks during the intermediate
stages of phase separation in polymer systems. The model explicitly takes into account the effect
the connectivity of polymer chains. We show that during the intermediate stages the size of the drople
grows according to an unusual coarsening lawR , t1ysd13d. When the network structure breaks up, the
coarsening law may cross over toR , ln t21, until only at very late stages the Lifshitz-Slyozov coars-
ening lawR , t1y3 is recovered. [S0031-9007(98)07455-9]

PACS numbers: 64.75.+g, 05.70.Fh, 61.25.Hq, 61.41.+e
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Kinetics of phase separation in polymer systems is
important problem from both the scientific and the techn
logical points of view. Phase separation in such syste
is driven by the difference in the chemical potential of th
species [1–3], so at long times the kinetics of this proce
should fall in the same dynamic universality class as sim
fluids [4]. This is indeed observed in the experiments
phase separation in polymer solutions and blends (see,
example, [5–7]). Nevertheless, because of the large s
of polymer molecules the universal kinetics of phase se
ration may not be seen until very late times. Recent e
periments [8,9] and molecular dynamics simulations [1
showed that in the intermediate stages of phase sep
tion interconnected network structures may be observ
In other words, in the intermediate stages the system m
become atransient gel[11], so its connectivity should play
a crucial role in the kinetics of phase separation.

In this Letter, we introduce a kinetic model of coarse
ing of polymer networks during the intermediate stages
phase separation. For definiteness, we will consider ph
separation in concentrated polymer solutions undergoin
deep quench into the unstable state. We will show that
connectivity of the droplets of the polymer-rich phase e
tirely changes the transport mechanism which determin
the coarsening of droplets, resulting in an unusual coa
ening law:R , t1ysd13d. This coarsening will arrest when
the distance between the droplets reaches the value of
order of the radius of gyrationRg of the polymer chain
before the quench, when the network structure will bre
up. After that, a much slower coarsening mechanism m
switch on resulting in the coarsening lawR , ln t21.
Only when the distance between droplets becomes
the order of the length of the fully stretched polyme
chain, the coarsening will cross over to the convention
Lifshitz-Slyozov mechanism withR , t1y3 [12].

When a polymer solution is quenched deep into t
unstable region, spinodal decomposition occurs. Af
a relatively short transient period the system segrega
into polymer-rich droplets of size of ordera, where a
is the statistical segment length. Because of repuls
interaction between the polymer and the solvent polym
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rich droplets will exert attractive force of orderTya on
the chains that cross their interfaces, pulling them in
the droplets. Here two qualitatively different situation
are possible. If the chains are not very long, the initia
transient time will be enough for a droplet to pull in all the
chains that come into contact with it, so after the transie
the morphology of the droplets will be disconnected. I
contrast, if the length of the chains is large enough, durin
the initial transient time the chains will be pulled into
droplets until they will become fully stretched betwee
the points of entanglement (Fig. 1). The reason for th
latter is that when the chains are sufficiently long (o
equivalently, when the distance between the droplets
smaller than the radius of gyrationRg of the chain before
the quench), a single chain may initially become a pa

FIG. 1. Transient polymer network. Thick line shows a tes
chain. The arrows indicate the motion of the test chain.
© 1998 The American Physical Society 3699
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of several droplets at the same time. Therefore, aft
the transient period, the morphology of the droplets wi
be connected. In a stretched state the conformation
a chain connecting a pair of droplets will be Gaussia
with the effective segment lengthaN1y2

e , whereNe is the
average number of segments between the entanglem
points before the quench (Fig. 1).

After the network morphology is formed, the motion o
the chains will significantly slow down since on averag
the force acting at the point of attachment of the cha
at one droplet will be compensated by the opposite for
from another droplet, thus stretching the chain. The tot
force, however, will not be exactly equal to zero since th
droplets between which a piece of the chain is stretch
will not generally have the same radii. The latter wil
result in the difference of the surface pressures leading
the net force of orderTyR, whereR is the characteristic
radius of a droplet, acting on the stretched piece of th
chain (Fig. 1). So, a piece of the chain connecting a pa
of droplets will slowly creep along itself from the droplet
with smaller radius to the droplet with greater radiu
(Fig. 1) with the speed of orderTma2N1y2

e yRL2, where
m is the mobility of an individual segment andL is the
distance between the connected droplets. In estimati
the speed of the chain we assumed that the friction for
is proportional to the number of segmentsL2yN1y2

e a2 in
the chain piece. This creeping motion should result
the transport of segments from the smaller droplets to t
larger ones and, therefore, lead to their coarsening. No
that the connectivity of the chains results in thenonlocal
mass transport, since the creep of the chain is equivale
to taking monomers from one droplet and putting them
instantaneously into the other.

The mass current into a droplet is proportional to th
average speed of the chains into that droplet and t
number of chains that come into it. A peculiar featur
of the considered transport mechanism is the fact th
as long as the average droplet size is smaller than t
distanceaN1y2

e between entanglements, the number o
chains that come out of a given droplet is independe
of time (see Fig. 1). So, the current into the droplet i
simply proportional to the average speed of the chain
This is in contrast with the conventional Lifshitz-Slyozov
mechanism in which the mass current into the dropl
is proportional to the surface area of the droplet [12
Writing the conservation of mass for a droplet of sizeR,
using the expression for the velocity of a stretched portio
of a chain, and taking into account the conservation
volume fraction of the polymer-rich phase, we obtain tha
on averageRd21dRydt , 1yR3. This suggests that the
considered mechanism will result in the average dropl
size growing asR , t1ysd13d and self-similar growth of
the droplet morphology.

Let us demonstrate that this self-similar growth shou
actually take place for low polymer volume fraction when
the system contains many droplets of different sizes. F
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simplicity, let us consider a three-dimensional system
Then the droplets can be assumed to be spherical a
uniformly distributed over space. Let us introduce the
distribution functionfsR, td normalized in such a way that
the integral

R
fdR gives the number of droplets per unit

volume. Since after the initial formation of the network
no droplets will be further created, the functionf must
satisfy Liouville equation

≠f
≠t

­ 2
≠

≠R
smyR22fd , (1)

wherem is the number of chains coming out of a drople
andy is the average speed of the chains into the drople
As was already pointed out, on the time scale of th
considered coarsening process the numberm of chains
coming out of a droplet is time independent. At the
beginning of coarsening all droplets have roughly th
same size of ordera, so on average the numberm will
be the same for all droplets. Therefore, in the following
we will treat m as a constant of order 1. The average
velocity y can be written as

y ­
Z

dPsR0, Ld
1

L2

µ
1
R0

2
1
R

∂
. (2)

Here and in Eq. (1) an appropriate nondimensionalizatio
has been performed. In Eq. (2) the termdPsR0, Ld is
the probability that the droplet of radiusR is connected
with the droplet with radiusR0 at distanceL, the term
1yL2 comes from the dependence of the mobility of the
stretched portion of the chain on its length, and the term
s1yR0 2 1yRd is the driving force.

In the following we will assume that the chains connec
different droplets at random. Let us measure distanc
relative to the droplet of radiusR. Since the chains
are highly stretched, the probabilitydP is essentially the
probability that a random walk of stepaN1y2

e starting from
the origin terminates at a droplet of sizeR0 at distance
L while not crossing any other droplets on its way
This probability is the product of two parts:dPsR0, Ld ­
dP1sR0, LdP2sLd, wheredP1sR0, Ld is the probability that
a droplet of sizeR0 at distanceL is connected to the origin
disregarding the effect of other droplets, andP2 is the
probability that the chain connecting these droplets did no
cross any other droplets. Since by assumption the sam
number of chains comes out of all droplets regardless
their size, the probabilitydP1 can be written as

dP1sR0, Ld ­ CL2fsR0ddR0dL , (3)

whereC is the normalization constant. It is not difficult
to show that for a random walk in the presence of sma
spherical obstacles with the distribution functionf

P2sLd ­ e2kL2

, k ­ 4p
Z

RfdR . (4)
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The constantC is determined by the condition
R

dP ­ 1.
This gives us

C ­
4k3y2

p
p

R
fdR

. (5)

Note thatk and C are determined by the distributionf
and therefore are functions of time.

Writing the probabilitydP in the above form essen-
tially constitutes a self-similarity assumption about th
connectivity of the network as a function of time. This
should be a good assumption since as smaller dropl
collapse during coarsening, the chains that came out
them simply reconnect between other droplets.

Having now calculateddP, we can substitute it to
Eq. (2) and integrate overL. As a result, we can write
the expression fory (absorbingm into it) in the form

y ­ L

R
RfdRR
fdR

Z
dR0fsR0d

µ
1
R0

2
1
R

∂
, (6)

where L ­ 6mf, f is the volume fraction of the
polymer-rich phase, and the normalization off was
changed to

R
R3fdR ­ 1. The constantL determines the

rate of the coarsening process. In the following we wi
absorb it into the definition oft. Note that according to
Eq. (6) we have

R
yfdR ­ 0, meaning the conservation

of the overall mass of droplets (assuming that the volum
fraction of the chains outside the droplets is negligible).

Equations (1) and (6) are of the same type as tho
studied by Lifshitz and Slyozov in the theory of coarsen
ing by evaporation-condensation mechanism [12] and c
be treated in the same way. Let us introduce a simila
ity ansatzfsR, td ­ t22y3FsRt21y6d into Eqs. (1) and (6).
Introducingx ­ Rt21y6, we obtain an equation

4F 1 xF0 ­ 6a1
d
dx

£
Fsa2x22 2 x23d

§
, (7)

where the constantsa1 anda2 are given by

a1 ­
Z `

0
xFdx, a2 ­

R`

0 x21FdxR`

0 Fdx
, (8)

and the prime denotes differentiation with respect tox.
The functionF is normalized according toZ `

0
x3Fdx ­ 1 . (9)

Note that from the condition of the conservation o
mass

R
yfdR ­ 0 follows that the second of Eq. (8) is

identically satisfied for any solution of Eq. (7).
Equation (7) can be straightforwardly integrated

F ­ Ae
2

Rx

1

4y4112a1a2y218a1
y526a1a2y216a1y

dy
, (10)

where the constantA is determined via Eq. (9). As in the
Lifshitz-Slyozov theory [12], the solution that is selected
at long times from the extended initial distribution shoul
vanish alongside with all its derivatives at somex ­ xp.
This is only possible if the integrand of Eq. (10) ha
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a double pole at this value ofx. The analysis shows
that this situation is realized if for a given value ofa2

we havexp ­ 4y3a2 anda1 ­ 27y34a4
2. Then, the con-

stant a1 is calculated so that the first of Eq. (8) is sat-
isfied. We have done this calculation numerically an
found thata2 ­ 1.1027 and A ­ 4.0446. The solution
for F in this case is shown in Fig. 2. From this solu-
tion one finds that the average radius of the droplet grow
as kRl ­ 0.94t1y6, while the average droplet density de-
cays asknl ­ 1.14t21y2. Note that the polydispersity of
the droplets during coarsening is rather small, we hav
skR2l 2 kRl2dykRl2 ­ 0.023 in d ­ 3.

Observe that in his pioneering paper on phase sepa
tion in polymer systems de Gennes proposed the coa
ening law R , t1y5 for d ­ 3 in the early stages of
coarsening [13]. In [13] the transport is due to diffusion
of chains between the droplets with Rouse mobility of th
chains [14] which is taken to depend onR. However, it
is clear that Rouse diffusion of the chains will be sup
pressed when the distance between the droplets becom
comparable to the distance between entanglements so
after the onset of phase separation. After that the sy
tem becomes a transient gel, so the coarsening mechan
should change to the one studied by us. Note that the im
portance of highly stretched chains for phase separatio
kinetics was pointed out already in [13].

The coarsening lawR , t1y6 obtained by us for three
dimensions is in very good agreement with the experimen
tal results of Tanaka who finds thatR , t0.15 for a phase
separating polymer solution in the network state. Also
the coarsening lawR , t0.23 observed in experiments on
coarsening of thin diblock copolymer films [15,16] is in
good agreement with our result for two dimensions.

Note that in the analysis of coarsening we assume
that the number of chains coming out of a droplet is
independent of time. This is a good assumption as lon
as the size of the droplet is smaller than the distanc
aN1y2

e between the entanglement points. At the onset o
the considered coarsening process the distance betwe
the droplets is of orderaN1y2

e , so the radius of a
droplet will be much smaller than that in the case o
low polymer volume fraction. In fact, the smallness of
the polymer volume fraction is the necessary conditio
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FIG. 2. The distributionFsxd for d ­ 3.
3701



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER1998

u-
a-

t
be
ry
er-
d

r

g
s.

.

v.
for the considered coarsening mechanism to be realiz
Note, however, that before the size of a droplet becom
comparable toaN1y2

e , the distance between the droplet
may reach the value of the order of the radius of gyratio
Rg of the chains before the quench, so the network w
break up. The latter is observed in the late stages
coarsening in the experiments of Tanaka [9].

After the breakup of the network one would expec
that the conventional Lifshitz-Slyozov transport mecha
nism turns on resulting inR , t1y3 growth law. Note,
however, that the rate constant for such a mechanism w
be extremely small for deep quenches [13] (for recent d
velopments, see also [17]). This is due to the fact that t
Lifshitz-Slyozov mechanism would require an evapora
tion of an entire chain from a droplet, which then diffuse
through the matrix to another droplet. For deep quench
the free energy cost of such a fluctuation will be of orde
TN , whereN is the polymerization index, so the rate a
which such an event would occur will be proportional t
e2N which rapidly becomes very small asN increases.
Note, however, that this is not the only possibility for a
transport of chains if the droplets are close enough. I
stead of the whole chain coming out of a droplet, aportion
of a chain containingZ segments may come out. Further
more, this portion of a chain can be highly stretched, s
the free energy cost of such a fluctuation will be of orde
TZ 1 TL2ya2Z, wherea is the statistical segment length
andL is the distance the chain is stretched. For a give
L this expression has a minimum atZ , Lya, so the free
energy cost of having a chain piece sticking out a distan
L from the droplet is of orderTLya ø TN for L ø Na.
On the other hand, if the distance between the droplets
of orderL, there is a good chance that such a protrudin
chain piece will come in contact with another droplet an
stick to it. If this happens, after a relatively short time th
chain will become stretched, and the transport mechani
discussed above will switch on (Fig. 1), leading to a tran
fer of the entire chain from the droplet with the smalle
radius to the one with the greater radius. The rate of su
a process will be proportional toe2Lya, so one would ex-
pect this to lead to coarsening of the formL , ln t21.
Of course, when the distance between the droplets b
comes comparable toNa, such a process will no longer be
feasible, so the conventional Lifshitz-Slyozov mechanis
with the rate proportional toe2N will be realized.

In determining the dominant coarsening mechanism
a real system, one should also consider the coalesce
mechanism [18]. It is clear that while the system i
in the network state this mechanism cannot work sin
the stretched chains prevent the droplets from executi
Brownian motion. On the other hand, when the netwo
breaks up, the mechanism discussed above quickly
comes very slow, so in polymer solutions, where the m
bility of the droplets will be high, coalescence shoul
3702
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become the dominant transport mechanism. This concl
sion is supported by recent experiments on phase sep
ration of relatively low molecular weight polymer blends
[19]. In contrast, in polymer melts the mobility of the
droplets will be significantly smaller, so one would expec
the mechanism discussed in the preceding paragraph to
the dominant one. Notice that because the latter is ve
slow, in experiment this can be seen as an arrest and int
mittency of the droplet growth. This is indeed observe
in the experiments on polymer melts [20,21]

In conclusion, we have demonstrated that polyme
chain connectivity may have significant effect on the
kinetics of phase separation in polymer systems resultin
in the unusual coarsening laws in the intermediate stage

This work was supported by AFOSR Grant
No. F49620-98-1-0256.
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