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We have discovered a fundamentally new type of traveling wave solutions in reaction-diffusion

systems—a traveling spike autosoliton.

Using the proposed asymptotic method and the results of the

numerical simulations, we investigated the shape of this autosoliton and the dependence of its basic
characteristics on the system’s parameters for the Brusselator. We have found that this autosoliton may
have very large amplitude and velocity, and that its shape is in detailed qualitative agreement with that
of the traveling pulses observed in the nerve tissue and in certain chemical reactions.

PACS numbers: 82.20.Mj, 03.40.Kf, 05.70.Ln

One of the most picturesque phenomena in nonlin-
ear physics lies in the fact that in certain homogeneous
nonequilibrium systems one can excite steady localized
patterns—autosolitons (AS) [1-3]. A typical example of
an AS is a solitary wave propagating with constant speed
v without decay—a traveling AS. Traveling AS are ob-
served in many nonequilibrium systems, including heated
electron-hole and gas plasmas, Belousov-Zhabotinsky re-
actions, and also in many biological systems, includ-
ing cardiac and nerve tissue (see [1-7] and references
therein).

The equations describing the kinetics of real systems
far from equilibrium are extremely complicated. In or-
der to investigate a traveling wave phenomena in such
systems, Fitz-Hugh and Nagumo proposed a simplified
model which consists of two coupled reaction-diffusion
equations with a specific type of nonlinearity [8]. How-
ever, the shape of the traveling wave solutions realized
in this model [9,10] is qualitatively different from those
observed in the experiments on traveling waves in chem-
ical reactions [11] and nerve tissue [7]. In this Letter we
study the traveling wave solution in a system with a dif-
ferent type of nonlinearity and show that the shape of the
pulse realized in this system is in detailed agreement with
the experiments.

A rather general model of the nonequilibrium systems
of interest is the set of two reaction-diffusion equations:
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T = A6 — q(0,7,A), (N
aJ
S = L2An — Q(0,n.4), @)

where 6 is the activator, i.e., the variable with respect
to which there is positive feedback; 7 is the inhibitor,
i.e., the variable with respect to which there is negative
feedback, and which controls the activator’s growth; and
A is the bifurcation parameter. Various examples of such
systems were considered in Refs. [1—-3] where the physics
of activation and inhibition processes, as well as the
meaning of the variables # and 7, was discussed in detail.
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In the general theory of AS [1,2] it was shown that,
in the monostable systems described by Eqgs. (1) and (2),
traveling AS and more complex autowaves can be excited
in the stability region of the homogeneous state when
a =r719/7y < land € = [/L = a. The theory of these
AS is developed only for the case when the nullcline
of Eq. (1), i.e., the dependence n(#) determined by the
equation ¢(#, n,A) = 0 for A = const, has N or inverted
N form. In other words, for the given values of A and
1 the equation ¢g(#, 7, A) = 0 has three solutions: 6, 0,
and 6,,,x. When o << 1 and € > 1, the front wall of the
AS is a wave of switching from one stable state § = 6,
to the other 6 = 6,,,x for the given value of n = 7,
0 = 6, fully determines the shape and the propagation
velocity v of the wave front—the front wall of the AS.
The back wall of the AS is separated from the front wall
by the distance L; > [. It is followed by the refractory
region, in the periphery of which 8 goes to 6, and 7 goes
to n,. The velocity of the AS has an upper limit of order
[/71¢; and the less is L, the less is v [1,2,9,10].

Far from the bifurcation points the amplitude and the
velocity of the traveling AS in N systems only weakly
depend on the value of @ << 1 and tend to finite values
as a — 0. This allowed us to use standard singular
perturbation theory based on the expansion in the powers
of the small parameter «, to construct the solutions in the
form of traveling broad AS in N systems [9,10].

At the same time, there is a number of physical [1-3],
chemical [12,13], and biological [6,14] systems described
by Egs. (1) and (2) in which the nullcline of Eq. (1) is of
V or A form. In other words, for these V or A systems
the equation g(6,n,A) = 0 has only two solutions, 8,
and 6, for the given A and n = 7. In this case § = 6
corresponds to the region of § and n where dq/d6 < 0,
i.e., according to Eq. (1), it corresponds to the unstable
state of the system for » = const. It was found that when
€ < 1 and a > 1, one can excite static spike AS in such
systems. The amplitude of these AS goes to infinity as
the small parameter € — 0 [1,2,15].
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The existence of traveling wave solutions in A and V
systems is one of the fundamental problems of nonlinear
physics. However, the standard singular perturbation
theory used to construct the solutions in N systems cannot
be applied here. The inapplicability of the standard
singular perturbation theory is a general property of A and
V systems, in which spike AS form [1,2,15]. As we will
show below, for a traveling spike AS it is associated with
the fact that, in addition to smooth and sharp distributions
(outer and inner solutions) in the traveling spike AS, there
exists a region of supersharp distributions, in which the
characteristic length of the variation of both the activator
and the inhibitor is much smaller than that for the smooth
and sharp distributions.

Brusselator—the model of a hypothetic autocatalytic
reaction introduced by Nicolis and Prigogine [12]—is a
classical model of A and V systems. Equations (1) and
(2) for this model are

90
o = I’A0 + 1+ 6%y — 0(1 + A), 3)
]
77,8—7 = L2An — 0%y + AB. @)

It can be seen that the nullcline of Eq. (3), i.e., the
function n = [@(1 + A) — 1]072, is of A form, and that
the homogeneous state of the system

0;1 = 1, Nh = A (5)

is stable for A < 1 [2,3].

In the numerical simulations of Egs. (3) and (4) with
a <1, e>1,and A <1 in one dimension we found
that in some region of the system’s parameters there exists
a traveling wave solution. Since known spike AS are
strongly localized in the regions of size of order / in
which the maximum value of the activator is much greater
than 6, [1,2], we expected that traveling spike AS would
have a size of order /, and very large amplitude and
velocity. This was taken into account in the numerical
simulations. The boundary conditions were neutral. At
the initial moment the distribution of 7 was homogeneous
with 7 = 7, and the distribution of # was taken in the
form of a pulse with sufficiently large amplitude and the
width of several / near the right boundary. Outside the
pulse 6 was equal to 6,. Traveling spike AS formed
near the right boundary, traveled through the entire space
interval, and disappeared at the left boundary.

Figure 1, which represents a solution in the form of the
traveling spike AS, shows that the value of the activator in
the spike is much greater than 1. Figure 2, in which the AS
velocity is plotted versus « for different values of A, also
shows that, in contrast to the traveling AS in N systems,
where, as was mentioned earlier, the velocity is bounded
from above by the value of the order of [/7g, the velocity
of the traveling spike AS is much greater than [/74.

Keeping in mind these facts, let us study the solution
in the form of traveling spike AS analytically. We
will measure the length and time in units of / and 7y,
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FIG. 1. Distributions of 6(x) and 7(x) in the form of the

traveling spike AS. Numerical solution of Eqgs. (3) and (4)
for a« = 79/7, = 0.02, L =0, A = 0.6. Autosoliton speed
v = 2.711/7y. Length is measured in units of /.

respectively. Let us introduce the automodel variable
z = x + vt. Then Eqgs. (3) and (4), describing a one-
dimensional wave traveling with the velocity v to the left
in the case L = 0, become

do d%e

— =—+ 14+ 702 —-06(1+A
Vi T an N6~ — 6( )s (6)
d
a v &n Al — 7]02. )
dz

Substituting 162 from Eq. (7) into (6) and introducing the
new variables

0=06-—1, n=n—A, (t)]
v 4
A=04 —o—
A=05 ——
A=06 —-8— 1
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FIG. 2. Dependences of traveling spike AS velocity on « for
different values of A. Results of the numerical simulations of
Egs. (3) and (4) with L = 0.
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we get the equation

O, —vh, — 0 =a 'vy,. 9)
Since in our units v >> 1, the Green’s function of Eq. (9)
is approximately

IA

1 u@-2) /
e , z =17,
G(z,7)) = | / (10)
—;e~(ziz)/v, z=7.
The solution of Eq. (9) with the Green’s function from
Eq. (10) will then be

0(z) = —a!

+oo z
x (ef e Vi dy + e‘z/“f e a, dy), an
Zz —0

where 7, = d7(y)/dy.

According to the results of the simulations, the distri-
bution of the inhibitor varies sharply only in the region of
the AS front wall. After the maximum value of the activa-
tor Omax >> 1 is achieved, the inhibitor changes smoothly
with the characteristic length e ~'v (Fig. 1). We can dis-
tinguish three regions: the region of supersharp distri-
butions where both the activator and the inhibitor vary
sharply, the region of sharp distributions where only the
activator varies sharply, and the region of smooth distri-
butions where both the activator and the inhibitor vary
smoothly. We may assume that the maximum value of
0 in the spike is reached at z = 0. Therefore, the region
z < 0 will correspond to the supersharp distributions, the
region z > 0 will correspond to the sharp distributions,
and the region z > 1 will correspond to the smooth dis-
tributions. In the region of sharp distributions the function
1(z) is almost constant. Let us denote this constant as 7;.
Since the maximum value of the activator in the spike is
much greater than 1, n, << 1 in order to satisfy Eq. (7)
in the region of sharp distributions. Therefore, in the
region of supersharp distributions the inhibitor changes
from 7, = A to almost zero. This means that the deriva-
tive 7. in this region is close to a delta function. Let us
take

7, = —A8(z) (12)

and substitute it into Eq. (11). As a result, we get that
the solution for the activator in the region of sharp
distributions is

051(2) = Aa"'e /. (13)

Thus, the characteristic length of the activator variation
in this region is v > 1, and the maximum value of the
activator in the spike is

Omax = A" L. (14)

Since the characteristic length of the activator’s vari-
ation in the region of supersharp distributions is much
smaller than that in the sharp distribution region, the
details of the actual supersharp distribution of 7(z) are
not important for the sharp distributions. For this reason
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Eq. (13) represents the actual sharp distribution of the ac-
tivator. As in the standard singular perturbation theory,
the solution in the region of smooth distributions will be
given by Eq. (7) and the equation of local coupling

1+ 76— 601+A)=0 (15)

obtained from Eq. (6) by equating all derivatives to
zero, when 7 relaxes from 7 to its value 7, in the
homogeneous state [1,2]. According to Egs. (7) and (14),
75 = «, i.e., the assumption about the coefficient by the
delta function in Eq. (12) is valid with an accuracy «.

Now let us turn to the supersharp distribution, which
determines the velocity of the traveling spike AS. Sub-
stituting Eq. (12) into Eq. (11) for z < 0, we obtain an
estimate for the distribution of the activator in the super-
sharp region:

0(z) = Aa"'e” . (16)

One can see from Eq. (16) that the characteristic length
of the activator variation in the region of supersharp
distributions is v ! <« 1.

Since Opmax > 1 and v > 1, we can approximately
rewrite Eqgs. (7) and (9) in the region of supersharp dis-
tributions, taking into account only their leading terms, as

a v, = —(A + 7)6?, (17)

0., — v, = a 'vy,. (18)

It can be easily seen that the following scaling transfor-
mation

g/:a_~ - _ 7
A’ A’
(19)
, vall? , zZA
v’ = 7= =%
A all2’

eliminates the dependence of Egs. (17) and (18) on « and
A. This immediately means that the dependence of AS
velocity on the system’s parameters has the form

[caz
v = ﬁ s (20)
a

where C is a constant, independent of « and A. One
can see from Fig. 2 that for sufficiently small o Eq. (20)
holds with very good accuracy with C = 0.73. One can
also see that for « close to the critical value at which the
traveling spike AS disappears, the critical velocity is of
order 1, whereas for the traveling wide AS in N systems
v, ~ a'/?[1,2,10].

Numerical simulations show that the traveling spike
AS is stable in a wide range of the system’s parameters.
When the value of A is varied, at certain value A = A,
the traveling spike AS abruptly disappears. At A close
to but greater than A,, AS has a velocity of order 1 and
amplitude On.x > 1. Equation (20) gives an estimate
for the value of A,. If we take v, ~ 1, the value of
A, ~ al/? <« 1.
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In the analysis above we ignored the diffusion term in
Eq. (4). However, due to its high propagation velocity,
traveling spike AS exists in systems with high inhibitor
diffusion. Indeed, according to Eq. (14) and the fact that
the characteristic length of the activator variation in the
supersharp region is of the order of a!/? [see Eq. (20)],
one can see from Eq. (4) that the diffusion term here can
be neglected if € > a!/2. If « is sufficiently small, this
condition can be satisfied by € < 1, i.e.,, I < L. These
conclusions are supported by the numerical simulations.
For example, for &« = 0.005, A = 0.5 the minimal value
of € at which the traveling spike AS exists is €, = 0.04.
In this case the critical velocity v, = 2.75, that is, of
order 1.

Comparing the solution we obtained in the Brussela-
tor model (Fig. 1) with the profiles of the traveling pulses
observed in the Belousov-Zhabotinsky reaction [11] and
in nerve tissue [7], one can see remarkable similarity be-
tween the shapes of the pulses. The pulse is characterized
by a steep front, which we associate with the region of su-
persharp distributions, followed by a region, which we as-
sociate with sharp distribution, in which the activator goes
down on the considerably greater length scale. Behind the
pulse there is a long refractory region that corresponds to
the smooth distributions in our picture.

If we add a term B> into the right-hand side of
Eq. (3), its nullcline will become of N form for B =
1. This implies that by changing B from 1 to O, i.e.,
by changing only the character of the nonlinearity, one
can significantly change the AS type and increase its
amplitude and velocity by several orders of magnitude.
This effect may play a significant role in understanding
the propagation of nerve pulse and the dynamics of
chemical waves in Belousov-Zhabotinsky reactions.

In physical systems, such as electron-hole and gas
plasmas, the parameter A is the excitation level. For
this reason the conclusion that for &« << 1 the value

of A, < 1 and Oy« > 1 means that in plasma which
is only slightly away from equilibrium one can excite
strongly localized regions of high density or temperature
of electrons (a kind of fireball) which propagate with high
speed in arbitrary directions.
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