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Properties of wide-peak autosolitons in electron-hole and gas plasmas
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With the use of the multifunctional variational method we have analyzed the shape and other
parameters of a wide-peak autosoliton, which can be excited in electron-hole or slightly ionized gas
plasmas heated by constant electric current or electromagnetic radiation. We have shown that this
autosoliton exists even in very weakly nonequilibrated plasmas. In a number of cases the minimal

pumping power needed to maintain this autosoliton is proportional to e, whereas the maximum
temperature of hot carriers in its center, T „oc e, where e = l/L (( 1, L is the ambipolar
difFusion length, and l is the length of the hot electron energy relaxation.

PACS number(s): 05.70.Ln, 72.30.+q, 52.50.Gj

As a result of the instability of the homogeneous state
in highly nonequilibrated systexns, different kinds of pat-
terns may spontaneously appear [1—4]. Inside the stabil-
ity region of the homogeneous state in such systems one
can excite solitary patterns —autosolitons (AS) [3,5].
Autosolitons in the form of strongly nonequilibrated lo-
calized regions can be easily induced in slightly ionized
gas or sexniconductor plasmas heated by the constant
electric current or electromagnetic radiation (Joule heat-
ing), if certain conditions are fulfilled [3,5,6]. Depending
on the parameters, either wide AS with the size of the
order of ambipolar diffusion length L, or narrow peak AS
with the size of the order of hot electron energy relaxation
length 1 may, as a rule, form in it. General qualitative
theory of such AS is presented in [3,5].

At the same time, under rather ordinary conditions,
AS of a completely different type may form in electron-
hole or gas plasma. These AS —wide-peak autosolitons—have enormously high amplitude and the size big-
ger than the ambipolar diffusion length I. Wide-peak
AS is a striking phenomenon: it is a strongly nonequi-
librated region of big size forming in slightly nonequili-
brated plasma. In this sense, it is similar to the phe-
nomenon of ball lightning in the atxnosphere. The pos-
sibility of existence for such strongly nonequilibrated re-
gions was predicted from the qualitative considerations
[7]. Wide-peak AS were found in numerical simulations
and experimental investigations of the photogenerated
plasma in Ge [8—11].

Wide-peak AS cannot be described within the existing
approaches, as was emphasized in review [5]. Moreover,
up to now there has been no theory of these AS, and only
a few of their qualitative properties were investigated nu-
merically [9,10]. In this paper, we analytically construct
and study a solution in the form of wide-peak AS. For
this purpose, we employ the ideas of the multifunctional
variational method, developed in Ref. [12].

For definiteness let us consider nondegenerate sym-

metric electron-hole plasma (EHP) heated by constant
electric current, in which concentrations, as well as the
other parameters, of electrons and holes are equal to
each other: n = p, effective masses m, = mh, relax-
ation times of xnomentum v„, = 7„h, ——~„oc E" and
energy v„= 7;h ——w, oc E', where E is the energy of an
electron; the diffusion coefBcients of electrons and holes
D, = Dg ——D, and recombination times 7 = 7 h = 7„.
Without loss of generality we will assume that w„ is con-
stant. Let us also, assume that the concentration n is such
that the conditions of quasineutrality and the condition
&„&& r„&& w„where w„ is the characteristic interelec-
tron collision time, are fulfilled. This EHP is described
by the two balance equations: one for the number of par-
ticles n and the other for their effective temperature T
[13].

As follows from physics considered in detail in
[3,7,8,6,5], wide-peak AS is a stratum perpendicular to
the direction of current density j. In other words, the
considered AS is essentially one dimensional. Taking it
into account, we can write the equations describing EHP
as [13—15,5]
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where the x axis is directed along the current, j = const,
o = 2epn, where p = e7„(T)/m„ is plasma conductiv-
ity; no ——G7„, v.„and G are recombination time and
generation rate of electrons and holes, respectively; To is
the temperature of the lattice. Introducing the variables
8 = T/Tp and ri = nD(T)/npDp, where Dp ——D(Tp), we
can rewrite Eqs. (1) and (2) in the form

Present address: Department of Physics, Boston Univer-
sity, Boston, MA 02215.

B(ri8 ~) 2
82 A8 8 —s

I g y+++

1063-651X/94/50(4)/3251(4)/$06. 00 50 3251 1994 The American Physical Society



3252 BRIEF REPORTS

gh
——1+ A, Oh ——1+ A

is stable when A & 1 [13,15].
Applying to this EHP an additional localized short per-

turbation of sufEciently large amplitude, one can excite a
wide-peak static AS (Fig. 1) when the conditions e « 1,
a « 1, and A & 1 are satisfied [8]. Numerical simula-

tions show that the qualitative shape of solutions 8(z)
and )7(z) does not change over a wide range of e and A.
This allows us to use the ideas of the multifunctional vari-

ational method developed in Ref. [12]. Slightly modifying
this method, let us introduce two functionals
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where 0—:, q = ", g =

&
", . We use the second

functional in the form of Eq. (6) because the nonlineari-
ties in it become especially simple. It can be easily seen
that variating @o with respect to q under fixed 8(x) and
variating Cs with respect to 8 under fixed )7(z), and then
equating the variations to zero, one can obtain stationary
Eqs. (3) and (4), respectively. It means that for the sta-
tionary solutions of Eqs. (3) and (4) the change of func-

tional 4„ is zero with respect to a small arbitrary vari-

ation of solution q(z) under fixed 8(z), and the change
of functional 4g is zero with respect to a small arbitrary
variation of solution 8(x) under fixed g(z).

Before using these properties of the functionals 4„and
4g let us discuss the most adequate shape of trial func-
tions for 8(x) and q(z), and make some estimates for the
values of 8 „=8(0) and g „=g(0). First, let us de-

fine the "peak region" as the region ~z~ & A, where A is

the parameter characterizing the width of the distribu-
tion 8(x), namely, the coordinate of the right minimum

of the function 8(x) (see Fig. 1). In the center of the

peak region where 8 » q Eq. (3) for the stationary case

where length and time are measured in the units of
I, = (DoT„) ~ and 7„, respectively; A = j r, /40oTo
is the plasma excitation level; r = I/I, n = 3T, /27„.
l = [(2 + p) Do7;],w, = T~(To), and oo = )7(no To).

We would emphasize that formation of AS in plasma
is in no way related with overheat instability, and may
occur even if the relaxation times 7; and Tz do not depend
on the energy of the electron [14,15,6,5]. So, for simplicity
we will consider the case in which all relaxation times are
energy independent, i.e., the case s = p = 0.

Let us remind you that the formation of AS in EHP
is associated with the existence of thermal diffusion, i.e. ,

dependence of the diffusion coefBcient on the carrier tem-
perature, which is D(T) = DoT/To ——Do8 in the con-
sidered case. Such a thermal diffusion AS forms in the
stable homogeneous EHP when e « 1 [3,14,15,6,5]. One
can easily derive &om Eqs. (3) and (4) with s = p = 0
that the homogeneous state of the plasma

becomes

'g

, +1=0.

Since the AS is symmetrical with respect to its center,
solution of Eq. (7) in the considered region is

x 1, 2
= —(l: —z )+q)„

2 2

where l:2—:2()7 „—qg). In view of Eq. (8), stationary
Eq. (4) can be approximately written near the point
x=Oas
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Here the two first terms describe the diffusion of 0, with
8 „&q „8 (the inverse condition would mean that
the AS is narrow), while the third and the fourth de-

termine the power delivered to and removed &om EHP.
As follows &om the physics of AS formation [7,8,3,5], all

these processes are significant, so all terms in Eq. (9)
must have the same order of magnitude. Taking it into
account, one can obtain that

~max
-2

'/max & * (10)

As will follow from the analysis of the functionals below,
these estimations prove to be true.

Outside the peak region ( ~z~ & A in Fig. 1)
distribution q(x) goes to )7h approximately
as exp —(1 —A) ~

~z~ . This result follows from the
stationary Eqs. (3) and (4) linearized about the homoge-
neous state with the term by e in Eq. (4) neglected, and
allows us to take the following )7(z) as a trial function:

8(x) = ~

2
u 1 —(-*„)' —8, + 8, , ~z~ & ~,

—6Iq exp I*I + 6Ih x
(12)

Having chosen the trial functions, we are now able to
calculate the integrals in Eqs. (5) and (6). Let us no-

tice that since 0 must be greater than one, the value of
Oq cannot be greater than A, and without loss of accu-

racy we can put Oq ——0. Also, the best agreement of
the results obtained with the use of the multifunctionaL
method with those of numerical simulations of Eqs. (3)
and (4) is achieved when m = 4. Keeping in mind these
facts and estimations of Eq. (10), one can see that the
main contribution to the integral in Eq. (5) is

l:2A (l.2 —A2) 2

2 8p(1+ A)
'

plus irrelevant terms. The variational derivative of the
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where p = (1 —A) ) 2, and l: is the parameter character-
izing the distribution g(z). The trial function for 8(x)
will be as follows:
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functional 4„ is now reduced to the partial derivative
with respect to C. Equating it to zero, we get

0085P5+0go 2 P3
Ba (18)

c)4„(l:2—A )2
BL 2p(1+A) '

which for big values of A gives

l: —A = (1+A)(1 —A)'/'.

(14)

(15)

Solving this simple set of algebraic equations in A and
a, and summarizing all results, we can conclude that for
small e the shape of wide-peak AS is characterized by

A
~max =

210e4 17e2 (8.5)@max =
~ A = Le

4g = 0.0045' a A —0.15Aa A+ 0.18m a A

—0.018aA'8'+ 0.1aAZ'

+0.002&%5+ 0.01 2~2AZ2. (16)

In view of Eqs. (10), the main contribution to the integral
in Eq. (6) is given by the region 0 & x & A. Neglecting
8& and gz in Eqs. (11) and (12), the term g2ln8 in Eq.
(6), and calculating the integral, with m = 4 we get

(19)
Note that the expressions for 8 and g are in agree-
ment with Eq. (10). We have checked that for e & 0.1
the results given by Eq. (19) differ from those obtained
in numerical solution of Eqs. (3) and (4) by no more than
5%.

Equations (19)were derived under the assumption that
A && 1. More accurate analysis, which takes into account
Eq. (15), shows that the solution in the form of wide-
peak AS abruptly disappears at

Calculating partial derivatives with respect to A and a,
and taking into account that in the considered approxi-
mation the difFerence between 8 and A given by Eq. (15)
is negligible, we can put l'. = A after di8'erentiation and
obtain that

0 = = 0.057aA —0.16& a A —0.15Aa, (17)
BA

A=A, =50m'. (20)

This analysis also shows that when A )& Ap, the first
two formulas in Eqs. (19) hold with good accuracy in
this case, too, and in the last formula one should replace
A by Z.

Thus, as follows from Eqs. (19) and (20), when e « 1,
wide-peak AS exists at extremely low system's excita-

e

100 —. . 100

10 .— 10

ea
I

n/n,

2

-4 0

x/L

0
8

FIG. 1. Distributions of temperature 8 = T/To, parameter q = nD(T)/nsDO, and concentration n in the form of wide-peak
autosoliton. Numerical solutions of Eqs. (3) and (4) for p = s = 0, s = 0.05, n = 0.005, and A = 0.195. Length is measured in
units of L.
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tion levels, i.e. , in practically equilibrium system, and
at the same time it has enormously high amplitude and
size many times larger than the carriers diff'usion length
L. The same conclusion can be drawn for the real EHP,
parameters of electrons and holes in which do not dif-
fer greatly. In this case, one should assume L to be
the ambipolar diff'usion length. In particular, the same
dependences as in Eq. (19) will hold for electron-hole
plasma when the relaxation times are such that p+ s = 0
and p & —2. This situation takes place, for example,
in polar (PbS, PbTe) and nonpolar (Ge, Si) semiconduc-
tors when the momentum and energy of hot electrons
are scattered on deformation optical phonons, for which

p = —z, s =
z [16]. Indeed, for an arbitrary p the func-

tional 4„, corresponding to Eq. (3), will be given by Eq.
(5) with 8 replaced by 8i+". One can easily see that for

p & —
2 and for sufficiently small e and A this functional

only weakly depends on the form of distribution 8(z), so
in our approximation the functional C„will remain un-

changed for these values of p. Since for p+ s = 0 the
functional Crs, corresponding to Eq. (4) has exactly the
same form, we can repeat all calculations of Eqs. (13)—
(18) and again get Eq. (19) for the AS characteristics.
In the case p = —2, 8 =

2 one cannot already assume

that the term r18 r in Eq. (3) vanishes in the center of
AS, so the trial function for r7(z) inside the peak region
should be taken in the form rl(z) =

z (8 —b z ) + rig,
where b is of order one [see Eq. (3) at z = 0 with 8
and rl „given by Eq. (19) and compare it with Eq. (7)].
Proceeding with the same calculations, we will again ar-
rive at Eq. (19), but with difFerent coefficients. So, for

sufficiently small e and A the functional dependence of
the AS characteristics on e and A will remain the same

as in Eq. (19) for this case, too.
In those semiconductors where the effective mass of

holes greatly exceeds the efFective mass of electrons, only
electrons can be heated. A similar situation is realized
in slightly ionized gas plasma heated by electromagnetic
radiation. In these cases the ambipolar diffusion coeK-
cient is D(T) = (T + To) y, , (To), where p; is the mobility
of heavy holes or ions [6]. If the energy of electrons is

scattered on acoustic phonons in semiconductors where
the electron-phonon interaction has polarization charac-
ter, or on certain types of atoms (H, He, for example)
in gas plasmas, and the maximum temperature T „of
hot electrons is less than the energy of ionization, the
energy relaxation time w, can be assumed to be energy
independent [16,17]. In other words, these cases can be
eH'ectively reduced to the case p = s = 0 we have ana-

lyzed, because in the center of AS T )& To. %e noticed
that the considered AS were experimentally discovered in
semiconductors [10,11], where T „ is limited by impact
ionization [8]. At the same time, such AS with gigantic
values of T „can form, for example, in the ionosphere
heated by solar or UHF radiation [6,5].

Numerical simulations show that for sufficiently small
o. wide-peak AS is stable in some region of the values
of A ) Ab. For a given ~ and o. , at certain value of A
we observed local breakdown in the AS center. In the
case o. (& e this breakdown resulted in formation of ~

periodic sequence of wide-peak AS, and in the case o. & ~

wide-peak AS transformed into a pulsating one. %'ith
an increase of A this pulsating AS may split, and as a
result a complex periodically or stochastically pulsating
pattern, similar to the one observed in Ref. [9], forms in

the system.
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