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Instabilities and Disorder of the Domain Patterns in Systems with Competing Interactions
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The dynamics of domains is studied in a two-dimensional model of the microphase separation of
diblock copolymers in the vicinity of the transition. A criterion for the validity of the mean-field theory
is derived. It is shown that at certain temperatures the ordered hexagonal pattern becomes unstable
with respect to the two types of instabilities: the radially nonsymmetric distortions of the domains, and
the repumping of the order parameter between the neighbors. Both these instabilities may lead to the
transformation of the regular hexagonal pattern into a disordered pattern. [S0031-9007(97)02989-X]

PACS numbers: 64.75.+g, 47.54.+r, 64.60.My, 83.20.Hn

Formation of complex patterns consisting of do-are the coefficients of the Landau-Ginzburg expansion, the
mains with sharp walls is a beautiful example oflasttermin Eg. (1) is the long-range interaction character-
self-organization in the systems both near and far fromzed by the functionG which reflects the connectivity of
thermal equilibrium [1—6]. Recently, it became clear thatthe chainsp ~ N2 is the strength of this interaction,
long-range competing interactions are responsible for this the number of monomers in a chain, and the consgant
formation of the domain patterns in the systems as diversis determined by the block ratio. The functiGhsatisfies
as ferro_electrics and ferrofluids, garnet ferromggnets, ~V2G(x — ) = 5(d)(x - )
Langmuir monolayers, type-l superconductors in the
intermediate state, diblock copolymers, and reactionThe model given by Egs. (1) and (2) in fact has a wider
diffusion systems with long-range inhibition (see [6] andapplicability and can be used to describe the stationary
references therein). In such systems the formation of thtates in ceramic compounds with the long-range Coulom-
uniform state favored by the local properties of the systen®iC interactions [8], ferroelectric semiconductors [9], high-
is precluded by the long-range interaction which doedemperature superconductors and degenerate magnetic
not favor that uniform state. Thus, the system becomegemiconductors [10], reaction-diffusion systems with the
separated into the domains of the alternating values of th®ng-range inhibitor [2,11], and reaction-controlled spino-
“order parameter.” As a result of this separation a lotdal decomposition [12].

of different equilibrium configurations, including highly =~ The formation of the domains in the system under con-
symmetric ones, are possible. sideration is due to the competition between the nonlocal

In this Letter we will study the time-dependent modelinteraction and the surface tension which is determined by

of a system with competing interactions in two dimen-the local terms in Eq. (1). For the equilibrium pattern the
sions. We will investigate the stability of the stationary contributions of these two effects have to be comparable.
states and show that they undergo instabilities which magiccording to Eq. (1), for the domain of sizewe have
change both the characteristic length scale and the mor- oRIT! ~ NT2g2RI*2, (3)
phology of the domain patterns. We will also show that
the destabilization of the highly symmetric patterns typi-""""" i (-1
cally leads to the formation of the disordered patterns.  c'itical point o = oyt =D, wherer = (T — T.)/T.,
The microphase separating diblock copolymer melts ardeis the c_rltlcal temperature andis the critical exponent
a typical example of the systems with the long-range®f the Ising model [13]. ~Because of the long-range

competing interactions. There the macroscopic phas{::,haracter of the nonlocal interaction, in estimating its

separation of the mutually incompatible monomers is noporltributiog one can ignore the fluctuations¢fand put
allowed since the monomers are connected through th@ = %oll f'nth'_(3)' whderIeB 'E the resp%c;tlve critical
polymer chains. Ohta and Kawasaki obtained the fre§XPonent of the Ising model. Then, according to Eq. (3),

energy for this system in the case of the long polymerthe characteristic size of the equilibrium domain near the
molecules [7] critical point will be

oo ] ddx<(v¢)2 . ag? . bt R ~ N23|¢|vd=D=281/3 (4)
2 2 4 Substituting this expression into Eg. (3), we obtain that

whereo is the coefficient of the surface tension. Near the

a 4 _ , N the free energy of a single domak¥ > 1 if
# 5 [ a0 - 8160 -6 - 81). o o[Brdsal2 o

1) If this condition is satisfied, we can use the mean-field

where ¢ is the order parameter which is proportional toapproximation to describe the domain patterns in the
the difference of the monomer concentrationsand b  vicinity of the phase transition.
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In order to study the domain patterns in the mean-fielderns, including the hexagonal patterns of circular domains

limit let us introduce the new variables, of radiusR ; and the period’,, in two dimensions [2,7,15—
b X 18]. It is clear that the period of these patterns (or, ac-
o' = TR x' ==, tually, the characteristic interdomain distance) must lie
within [ < =< L, wherel ~ 1 andL ~ ¢! are the
polel® ¢ ithin | < £, < L, wherel ~ 1 andL ~ e~ are th
&2 - 2V2adiés |26+ (©) characteristic length scales of the variationfoénd, re-
30y ’ spectively [2]. For|¢| not very close to 1 the radius of

where £ = &t|~ is the correlation length, and write the QOmains is com.pargble t6),. Szir;ce the characteris-
the free energy functional (up to a constant factor andic Size of the domains is of order >3, the period of the

dropping the primes), pattern must also b€, ~ e~ < L, so the value ot
) ) 4 is close to+1 inside the domains and close td outside.
F = [ ddx<m _ ¢ + 9" Let us now study the stability of the hexagonal pattern.
2 2 4 It is clear that the results obtained for this pattern should be

€2 J _ , , _ qualitatively the same for an arbitrary multidomain pattern.
+ 7[ dx'[p(x) — 1G(x — XN () — ¢]>- In this case, according to Eq. (9), the relationship between
(7)  the period and the radius of the domains is

One should think of Eq. (7) as the mean-field represen- R, = 31/4£p<ﬂ>1/2’ (10)

tation of the domain interactions. When the condition of 4

Eqg. (5) is satisfied, we have < 1, which implies the so the ratioR,/L, can be conveniently used as a

strong segregation limif7]. Notice that in these units parameter instead ofp. According to the general

R ~ e 23, asymptotic theory of instabilities of domain patterns in
The evolution of the order parametérnear the phase reaction-diffusion systems [16], the dangerous fluctuations

transition in the mean-field limit can be described by theof ¢ are localized in the domain walls and represent the

time-dependent Landau-Ginzburg equation obtained frorsmall distortions of the domains. The damping decrement

Eq. (7) [14]. This equation can be written as a pair ofy of such fluctuations is determined by the eigenvalues

reaction-diffusion equations of the activator-inhibitor typeof a certain operator. Since the hexagonal pattern we are

in the limit of the fast inhibitor: interested in is periodic, we can partially diagonalize this
P operator by considering the fluctuations modulated by the
FYe Vi + ¢ — ¢ — i, (8)  wave vectork which lies in the Brillouin zone, and obtain
_ for the system under consideration [16]
0=€V¢y +¢—¢, ) 2
- —y — —3V2ERRum(k), (11
where ¢ plays the role of the activator ang plays the v+ R2 + 20 |8 = =3V2 € RRpm k), (11)

role of the inhibitor [2], and the time scale has been , , ,
absorbed into the definition of. In the limit e — 0  Wherem andm’ are integers corresponding to the modes of

these equations are equivalent to the interfacial dynamid§'€ @zimuthal distortions of the domain, is a constant
problem [11,15]. We would like to emphasize that inndependent ofn andk, 8, is the Kronecker delt/a, and
this limit Egs. (8) and (9) are applicable to the systems,l"emm’(k)_'S a certain matrix with the indices andm’. It
with the conserved order parameter. Indeed, the equatiofis POSSiPIe to show (the details of the derivations will be
of the interfacial dynamics mentioned above can beIVen elsewhere) that the constantis given by
alternatively derived from the free energy given by Eq. (7) _ 1 3e2R, 27 R?2

if one assumes the overdamped dynamics of the interface A="q2 < B \/5-5,,2). (12)

R V2
[11]. The latter is justified for the microphase separation_. _ .
in the diblock copolymer melts, where the hydrodynamics'nce the characteristic length scale of the pattern is much
effects are important ’ smaller tharl, the Laplacian dominates in the equation for

The domain patterns that form in this kind of Systemsthe Green'’s function involved in the calculationiy,, (k)

have been recently studied in great detail in connectioﬁsee Ref. [16]), so thi_shGrr]t_eep’s fF’”C“.Og may be ass.umed
with the patterns forming in highly nonequilibrium sys- to satisfy Eg. (2). With this fact in mind it is convenient

tems [15-18]. Muratov and Osipov showed that in thel© Write the expression fak,,, (k) in the Fourier space,

case of Egs. (8) and (9) only the patterns whose character- 27 et m Bt m/2)

istic length scale (in these units) is of order?> can be Ry (k) = o < k + k]2

linearly stable [15—-17]. Thus, if the condition in Eq. (5) ) ,

is satisfied, on this length scale the mean-field approxima- X Tk + KRk + KIR,), - (13)

tion remains valid for the time-dependent theory as well. wherek’ runs over the reciprocal latticé,, are the Bessel
When|¢| < 1 ande < 1, Egs. (8) and (9) admit the functions, ¥, is the angle between the vectbr+ &’

solutions in the form of the stationary multidomain pat-and the x axis, andv = /3 £p2/2 is the volume of
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the elementary cell. Notice that fR, < £, the off- negative background) the global minimum corresponds to
diagonal elements @&,,,,,(k) become negligibly small, so the lamellar pattern [7]. Figure 2, however, does not show
for |[m| = 2 we recover the instabilities of the localized the transition from the hexagonal to the lamellar pattern
domains—autosolitons [16]. A& gets bigger, the so, in fact, the equilibrium hexagonal pattern is always
mixing between the vectors corresponding to the differenimetastable.

values ofm occurs. This mixing, however, is not very  Recall that the values efand¢ strongly depend on the
strong, so one can still label the eigenvectors of Eq. (11)emperature near the critical point. Suppose that the equi-

with m. librium hexagonal pattern formed as a result of the slow
As was shown qualitatively by Kerner and Osipov, for quench of the system belofi.. If now the temperature is
the most dangerous fluctuations the wave veétowill abruptly raised, the domains may become unstable with re-

lie close to the edge of the Brillouin zone [2]. There spect to the asymmetric distortions. To study the kinetics
are two basic types of fluctuations we need to considerof this process we solved Egs. (8) and (9) numerically with
the fluctuations withm = 0 which lead to repumping the initial condition in the form of the hexagonal pattern
of the order parameter between the neighboring domainglus small noise. This process is shown in Fig. 3(a). At
[Fig. 1(a)] and the fluctuations witlk = 2 which lead to  the end of the simulation the system reaches an asymptotic
the asymmetric distortions of the domains [Fig. 1(b)] [2]. state. One can see that the hexagonal pattern transforms
The analysis of Eq. (11) shows that the most dangerousito a highly disordered metastable pattern which consists
fluctuations withm = 0 havek = %(b1 — b,), whereb,; of the domains of complex shapes. Notice that this ef-
andb, are the reciprocal lattice vectors which makia° fect was observed experimentally in different systems with
angle, while the most dangerous fluctuations with= 2~ competing interactions [19,20]. If the system temperature
havek = 1 (b; + b,). The instabilityy < 0 occurs with IS quickly lowered, the pattern may destabilize with re-
respect to repumping whefi, < £, or with respect to  SPect to repumping. The kinetics of this process is shown
the asymmetric distortion whesi, > £ ,,, whereL,,, in Fig. 3(b). As the destabilization progresses, some of
depend ore andR,/L,. The resulting stability diagram the domains start to “eat” their neighbors, which results
is presented in Fig. 2. Figure 2 also shows the period o €ither an increase of the interdomain distance or in the
the equilibrium hexagonal pattern obtained by Ohta andusion of some of the neighbors. A lot of the domains
Kawasaki [7]. One can see that the equilibrium hexagona$hrink and eventually disappear. All these processes cre-
pattern is stable for all values dR (except, possibly, ate a !Ot of disorder. Eventually the distance betweerj the
for R,/ L, close to 0.5, where the assumption about thedomains becomes large enough so that the repumping is
circular shape of the domains ceases to be valid). In tw§0 longer realized, and the resulting pattern orders some-
dimensions the equilibrium hexagonal pattern correspond4hat at late stages. However, the asymptotic pattern at
to the global minimum of the free energy R,/ L, < the end of the S|mulat|on is still highly d_lsordere_d. Notice
0.31, whereas for0.31 < R,/L, < 0.37 (the second that the repumping effect is observed in experiments and
condition means thap < 0, i.e., positive domains in the numerical simulations of systems with competing interac-
tions [21,22].
In summary, we showed that the stationary multido-
a) repumping main patterns in the systems with long-range competing

. . ‘ ‘ interactions may undergo instabilities affecting both the
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FIG. 1. Two major types of instabilities of the hexagonal FIG. 2. Stability diagram for the hexagonal pattern. The
pattern. dashed line corresponds to the equilibrium pattern.
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FIG. 3. (a) Destabilization of the hexagonal pattern with respect to the asymmetric distortions. Distributipret afifferent
times fore = 0.05 and¢ = 0. The system i200 X 230. (b) Destabilization of the hexagonal pattern with respect to repumping.
Distributions of ¢ at different times fore = 0.025 and¢ = —0.2. The system i200 X 230.
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