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Instabilities and Disorder of the Domain Patterns in Systems with Competing Interactions

C. B. Muratov
Department of Physics, Boston University, Boston, Massachusetts 02215

(Received 9 October 1996; revised manuscript received 23 December 1996)

The dynamics of domains is studied in a two-dimensional model of the microphase separation of
diblock copolymers in the vicinity of the transition. A criterion for the validity of the mean-field theory
is derived. It is shown that at certain temperatures the ordered hexagonal pattern becomes unstable
with respect to the two types of instabilities: the radially nonsymmetric distortions of the domains, and
the repumping of the order parameter between the neighbors. Both these instabilities may lead to the
transformation of the regular hexagonal pattern into a disordered pattern. [S0031-9007(97)02989-X]

PACS numbers: 64.75.+g, 47.54.+r, 64.60.My, 83.20.Hn
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Formation of complex patterns consisting of d
mains with sharp walls is a beautiful example
self-organization in the systems both near and far fr
thermal equilibrium [1–6]. Recently, it became clear th
long-range competing interactions are responsible for
formation of the domain patterns in the systems as dive
as ferroelectrics and ferrofluids, garnet ferromagne
Langmuir monolayers, type-I superconductors in t
intermediate state, diblock copolymers, and reactio
diffusion systems with long-range inhibition (see [6] an
references therein). In such systems the formation of
uniform state favored by the local properties of the syst
is precluded by the long-range interaction which do
not favor that uniform state. Thus, the system becom
separated into the domains of the alternating values of
“order parameter.” As a result of this separation a
of different equilibrium configurations, including highl
symmetric ones, are possible.

In this Letter we will study the time-dependent mod
of a system with competing interactions in two dime
sions. We will investigate the stability of the stationa
states and show that they undergo instabilities which m
change both the characteristic length scale and the m
phology of the domain patterns. We will also show th
the destabilization of the highly symmetric patterns typ
cally leads to the formation of the disordered patterns.

The microphase separating diblock copolymer melts
a typical example of the systems with the long-ran
competing interactions. There the macroscopic ph
separation of the mutually incompatible monomers is n
allowed since the monomers are connected through
polymer chains. Ohta and Kawasaki obtained the f
energy for this system in the case of the long polym
molecules [7],
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wheref is the order parameter which is proportional
the difference of the monomer concentrations,a and b
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are the coefficients of the Landau-Ginzburg expansion,
last term in Eq. (1) is the long-range interaction characte
ized by the functionG which reflects the connectivity of
the chains,a , N22 is the strength of this interaction,N
is the number of monomers in a chain, and the constanf̄

is determined by the block ratio. The functionG satisfies

2=2Gsx 2 x0d ­ dsddsx 2 x0d . (2)

The model given by Eqs. (1) and (2) in fact has a wid
applicability and can be used to describe the stationa
states in ceramic compounds with the long-range Coulo
bic interactions [8], ferroelectric semiconductors [9], high
temperature superconductors and degenerate magn
semiconductors [10], reaction-diffusion systems with th
long-range inhibitor [2,11], and reaction-controlled spino
dal decomposition [12].

The formation of the domains in the system under co
sideration is due to the competition between the nonloc
interaction and the surface tension which is determined
the local terms in Eq. (1). For the equilibrium pattern th
contributions of these two effects have to be comparab
According to Eq. (1), for the domain of sizeR we have

sRd21 , N22f2Rd12, (3)

wheres is the coefficient of the surface tension. Near th
critical point s ­ s0jtjnsd21d, where t ­ sT 2 TcdyTc,
Tc is the critical temperature andn is the critical exponent
of the Ising model [13]. Because of the long-rang
character of the nonlocal interaction, in estimating i
contribution one can ignore the fluctuations off and put
f ­ f0jtjb in Eq. (3), whereb is the respective critical
exponent of the Ising model. Then, according to Eq. (3
the characteristic size of the equilibrium domain near t
critical point will be

R , N2y3jtjfnsd21d22bgy3. (4)

Substituting this expression into Eq. (3), we obtain th
the free energy of a single domainDF ¿ 1 if

N ¿ jtjf2b2nsd12dgy2. (5)

If this condition is satisfied, we can use the mean-fie
approximation to describe the domain patterns in t
vicinity of the phase transition.
© 1997 The American Physical Society 3149
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In order to study the domain patterns in the mean-fi
limit let us introduce the new variables,

f0 ­
f

f0jtjb
, x0 ­

x
j

,

e2 ­
2
p

2 af
2
0j

3
0

3s0
jtj2b2nsd12d, (6)

where j ­ j0jtj2n is the correlation length, and write
the free energy functional (up to a constant factor a
dropping the primes),
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One should think of Eq. (7) as the mean-field repres
tation of the domain interactions. When the condition
Eq. (5) is satisfied, we havee ø 1, which implies the
strong segregation limit[7]. Notice that in these units
R , e22y3.

The evolution of the order parameterf near the phase
transition in the mean-field limit can be described by t
time-dependent Landau-Ginzburg equation obtained fr
Eq. (7) [14]. This equation can be written as a pair
reaction-diffusion equations of the activator-inhibitor typ
in the limit of the fast inhibitor:

≠f

≠t
­ =2f 1 f 2 f3 2 c , (8)

0 ­ e22=2c 1 f 2 f̄ , (9)

wheref plays the role of the activator andc plays the
role of the inhibitor [2], and the time scale has be
absorbed into the definition oft. In the limit e ! 0
these equations are equivalent to the interfacial dynam
problem [11,15]. We would like to emphasize that
this limit Eqs. (8) and (9) are applicable to the syste
with the conserved order parameter. Indeed, the equat
of the interfacial dynamics mentioned above can
alternatively derived from the free energy given by Eq. (
if one assumes the overdamped dynamics of the interf
[11]. The latter is justified for the microphase separati
in the diblock copolymer melts, where the hydrodynam
effects are important.

The domain patterns that form in this kind of system
have been recently studied in great detail in connect
with the patterns forming in highly nonequilibrium sys
tems [15–18]. Muratov and Osipov showed that in t
case of Eqs. (8) and (9) only the patterns whose charac
istic length scale (in these units) is of ordere22y3 can be
linearly stable [15–17]. Thus, if the condition in Eq. (5
is satisfied, on this length scale the mean-field approxim
tion remains valid for the time-dependent theory as we

When jf̄j , 1 and e ø 1, Eqs. (8) and (9) admit the
solutions in the form of the stationary multidomain pa
3150
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terns, including the hexagonal patterns of circular domain
of radiusRs and the periodLp in two dimensions [2,7,15–
18]. It is clear that the period of these patterns (or, ac
tually, the characteristic interdomain distance) must li
within l ø Lp & L, wherel , 1 and L , e21 are the
characteristic length scales of the variation off andc, re-
spectively [2]. Forjf̄j not very close to 1 the radius of
the domains is comparable toLp. Since the characteris-
tic size of the domains is of ordere22y3, the period of the
pattern must also beLp , e22y3 ø L, so the value off
is close to11 inside the domains and close to21 outside.

Let us now study the stability of the hexagonal pattern
It is clear that the results obtained for this pattern should b
qualitatively the same for an arbitrary multidomain pattern
In this case, according to Eq. (9), the relationship betwee
the period and the radius of the domains is

Rs ­ 31y4Lp

µ
1 1 f̄

4p

∂1y2

, (10)

so the ratio RsyLp can be conveniently used as a
parameter instead off̄. According to the general
asymptotic theory of instabilities of domain patterns in
reaction-diffusion systems [16], the dangerous fluctuation
of f are localized in the domain walls and represent th
small distortions of the domains. The damping decreme
g of such fluctuations is determined by the eigenvalue
of a certain operator. Since the hexagonal pattern we a
interested in is periodic, we can partially diagonalize thi
operator by considering the fluctuations modulated by th
wave vectork which lies in the Brillouin zone, and obtain
for the system under consideration [16]µ

2g 1
m2

R2
s

1 l0

∂
dmm0 ­ 23

p
2 e2RsRmm0skd , (11)

wherem andm0 are integers corresponding to the modes o
the azimuthal distortions of the domains,l0 is a constant
independent ofm andk, dmm0 is the Kronecker delta, and
Rmm0skd is a certain matrix with the indicesm andm0. It
is possible to show (the details of the derivations will be
given elsewhere) that the constantl0 is given by

l0 ­ 2
1

R2
s

2
3e2Rsp

2

µ
1 2

2pR2
sp

3 L 2
p

∂
. (12)

Since the characteristic length scale of the pattern is mu
smaller thanL, the Laplacian dominates in the equation fo
the Green’s function involved in the calculation ofRmm0skd
(see Ref. [16]), so this Green’s function may be assume
to satisfy Eq. (2). With this fact in mind it is convenient
to write the expression forRmm0skd in the Fourier space,

Rmm0skd ­
2p

y

X
k0

eism02mdsqk1k0 1py2d

jk 1 k0j2

3 Jmsjk 1 k0jRsdJm0sjk 1 k0jRsd , (13)

wherek0 runs over the reciprocal lattice,Jm are the Bessel
functions,qk1k0 is the angle between the vectork 1 k0

and the x axis, and y ­
p

3 L 2
p y2 is the volume of
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the elementary cell. Notice that forRs ø Lp the off-
diagonal elements ofRmm0 skd become negligibly small, so
for jmj $ 2 we recover the instabilities of the localize
domains—autosolitons [16]. AsRs gets bigger, the
mixing between the vectors corresponding to the differ
values ofm occurs. This mixing, however, is not ver
strong, so one can still label the eigenvectors of Eq. (
with m.

As was shown qualitatively by Kerner and Osipov, f
the most dangerous fluctuations the wave vectork will
lie close to the edge of the Brillouin zone [2]. The
are two basic types of fluctuations we need to consid
the fluctuations withm ­ 0 which lead to repumping
of the order parameter between the neighboring doma
[Fig. 1(a)] and the fluctuations withm ­ 2 which lead to
the asymmetric distortions of the domains [Fig. 1(b)] [2
The analysis of Eq. (11) shows that the most danger
fluctuations withm ­ 0 havek ­

1
3 sb1 2 b2d, whereb1

andb2 are the reciprocal lattice vectors which make a120±

angle, while the most dangerous fluctuations withm ­ 2
havek ­

1
2 sb1 1 b2d. The instabilityg , 0 occurs with

respect to repumping whenLp , Lp0 or with respect to
the asymmetric distortion whenLp . Lp2, whereLp0,2

depend one andRsyLp. The resulting stability diagram
is presented in Fig. 2. Figure 2 also shows the period
the equilibrium hexagonal pattern obtained by Ohta a
Kawasaki [7]. One can see that the equilibrium hexago
pattern is stable for all values ofRs (except, possibly,
for RsyLp close to 0.5, where the assumption about t
circular shape of the domains ceases to be valid). In
dimensions the equilibrium hexagonal pattern correspo
to the global minimum of the free energy ifRsyLp ,

0.31, whereas for0.31 , RsyLp , 0.37 (the second
condition means that̄f , 0, i.e., positive domains in the

FIG. 1. Two major types of instabilities of the hexagon
pattern.
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negative background) the global minimum corresponds
the lamellar pattern [7]. Figure 2, however, does not sho
the transition from the hexagonal to the lamellar patte
so, in fact, the equilibrium hexagonal pattern is alway
metastable.

Recall that the values ofe andf̄ strongly depend on the
temperature near the critical point. Suppose that the eq
librium hexagonal pattern formed as a result of the slo
quench of the system belowTc. If now the temperature is
abruptly raised, the domains may become unstable with
spect to the asymmetric distortions. To study the kineti
of this process we solved Eqs. (8) and (9) numerically wi
the initial condition in the form of the hexagonal patter
plus small noise. This process is shown in Fig. 3(a). A
the end of the simulation the system reaches an asympt
state. One can see that the hexagonal pattern transfo
into a highly disordered metastable pattern which consi
of the domains of complex shapes. Notice that this e
fect was observed experimentally in different systems w
competing interactions [19,20]. If the system temperatu
is quickly lowered, the pattern may destabilize with re
spect to repumping. The kinetics of this process is sho
in Fig. 3(b). As the destabilization progresses, some
the domains start to “eat” their neighbors, which resu
in either an increase of the interdomain distance or in t
fusion of some of the neighbors. A lot of the domain
shrink and eventually disappear. All these processes c
ate a lot of disorder. Eventually the distance between t
domains becomes large enough so that the repumping
no longer realized, and the resulting pattern orders som
what at late stages. However, the asymptotic pattern
the end of the simulation is still highly disordered. Notic
that the repumping effect is observed in experiments a
numerical simulations of systems with competing intera
tions [21,22].

In summary, we showed that the stationary multid
main patterns in the systems with long-range competi
interactions may undergo instabilities affecting both th

FIG. 2. Stability diagram for the hexagonal pattern. Th
dashed line corresponds to the equilibrium pattern.
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g.

FIG. 3. (a) Destabilization of the hexagonal pattern with respect to the asymmetric distortions. Distributions off at different
times fore ­ 0.05 andf̄ ­ 0. The system is200 3 230. (b) Destabilization of the hexagonal pattern with respect to repumpin
Distributions off at different times fore ­ 0.025 andf̄ ­ 20.2. The system is200 3 230.
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period and the shape of the domains which typically resu
in the formation of highly disordered metastable pattern
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