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Abstract

We characterize skyrmions in ultrathin ferromagnetic films as local minimizers
of a reduced micromagnetic energy appropriate for quasi two-dimensional materi-
als with perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya
interaction. The minimization is carried out in a suitable class of two-dimensional
magnetization configurations that prevents the energy from going to negative infin-
ity, while not imposing any restrictions on the spatial scale of the configuration.
We first demonstrate the existence of minimizers for an explicit range of the model
parameters when the energy is dominated by the exchange energy. We then investi-
gate the conformal limit, in which only the exchange energy survives and identify
the asymptotic profiles of the skyrmions as degree 1 harmonic maps from the plane
to the sphere, together with their radii, angles and energies. A byproduct of our
analysis is a quantitative rigidity result for degree ± 1 harmonic maps from the
two-dimensional sphere to itself.
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1. Introduction

A skyrmion is a topologically nontrivial field configuration that locally mini-
mizes an energy functional of a nonlinear field theory. As topological solitons [61],
they are localized, have finite energy and exhibit quasi-particle properties, includ-
ing quantized topological charge, attractive or repulsive interactions between each
other, etc.. Since its original formulation by Tony Skyrme in the early 1960s [76],
the mathematical concept of skyrmion has spread over various branches of physics
[73]. In condensed matter physics, a revival of the skyrmion topic was triggered
by experimental observations of skyrmions in non-centrosymmetric bulk magnetic
materials [67,81] and ultrathin ferromagnets [13,74] with distinct top and bottom
interfaces [40]. These magnetic skyrmions consist of local swirls of spins that may
exhibit nanometer size [74], room temperature thermal stability [13] and may be
controlled via electric current [45] or electric field [42]. These properties are highly
desirable for information technology applications, making magnetic skyrmions
attractive for race track memory [79], spintronic logic [82], as well as stochastic
[71] and neuromorphic computing [72].

At the level of the continuum, the starting point in the analysis of magnetic
skyrmions in thin ferromagnetic films is the micromagnetic energy functional [11]

E(m) := Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m) (1.1)

describing the energy (per unit of the film thickness) of a smoothmapm : R2 → S
2

that represents the normalized (|m| = 1) magnetization vector field in a ferromag-
net. The terms in (1.1) are, in order of appearance: the exchange (also called the
Dirichlet energy), the anisotropy, the Zeeman, the Dzyaloshinskii–Moriya inter-
action (DMI), and the stray field energies, respectively. The precise form of these
terms is model-specific and will be spelled out for the particular situation we are
interested in shortly. Coming back to the magnetization m, its topology may be
characterized by the topological charge

N (m) = 1

4π

ˆ
R2

m · (∂1m × ∂2m) dx . (1.2)

This integer-valued quantity corresponds to the Brouwer degree of a smooth map
m which is constant sufficiently far away from the origin, up to the sign due to
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a particular choice of an orientation of R2. The topologically nontrivial localized
magnetization configurations are, hence, characterized by a non-zero value of N
in (1.2). See Hoffman et al. [41] for a discussion of how to distinguish between
skyrmions and antiskyrmions independently of the sign convention for N .

In a two-dimensional model containing only the exchange energy Eex(m) =
Aex

´
R2 |∇m|2 dx , where Aex is the exchange stiffness, Belavin and Polyakov

[6] predicted the existence of skyrmion-like solutions as energy minimizing con-
figurations with constant energy and an explicit profile, which we refer to later as
Belavin–Polyakov profiles. Note, however, that these solutions may not be consid-
ered proper skyrmions, since they exhibit dilation invariance and thus do not exhibit
true particle-like properties. Furthermore, they are easily seen to cease to exist in
the presence of an additional anisotropy term Ea(m) = Ku

´
R2 |m′|2 dx . Here Ku

is the uniaxial anisotropy constant and m′ = (m1,m2) is the in-plane component
of the magnetization vector m = (m′,m3) [24]. Similarly, skyrmion solutions are
destroyed in the presence of an out-of-plane applied magnetic field modeled by
EZ(m) = −μ0Ms

´
R2 H(1 + m3) dx , where H is the magnetic field strength, Ms

is the saturation magnetization, μ0 is the permeability of vacuum, and we sub-
tracted a constant to ensure that the Zeeman energy is finite when m(x) → −e3
sufficiently fast as |x | → ∞. Therefore, additional energy terms are necessary to
stabilize magnetic skyrmions.

Among the known stabilizing energies are higher order exchange [1,44], DMI
[11] and stray field [19,47] terms. In particular, Bogdanov and Yablonskii [11]
considered an additional DMI term of general form, which includes a bulk DMI
term Ebulk

DMI(m) = Dbulk
´
R2 m ·(∇×m) dx , or an interfacial DMI term E surf

DMI(m) =
Dsurf

´
R2(m3∇ · m′ − m′ · ∇m3) dx , where Dbulk and Dsurf are the bulk and the

interfacial DMI strengths [40,70], respectively, and showed that these terms may
give rise to skyrmions. Their model accounts for the stray field in an infinite vortex-
like magnetization configuration along the thickness direction [11]. This prediction
was further verified numerically in the absence [10] and in the presence [9] of an
applied out-of-planemagnetic field. Finally, the analysis ofBüttner et al. indicates
that stray field energy alone (starting with an exact expression for the magnetostatic
interaction energy of a thickness-independentmagnetization configuration in afilm)
maybe sufficient to stabilizemagnetic skyrmions [19].Notice that in all of the above
studies it is assumed that skyrmion solutions possess radial symmetry.

Mathematically, the question of existence of skyrmions as topologically non-
trivial energy minimizers was first systematically addressed (under no symmetry
assumptions) by Esteban [31–33] and by Lin and Yang [57,58]. Specifically, for
the energy of the form of (1.1) consisting of an exchange energy with an additional
Skyrme-type higher order term, Eex(m) = Aex

´
R2 |∇m|2 dx + AS

´
R2 |∂1m ×

∂2m|2 dx , and a special form of an anisotropy/Zeeman term (see the remark in [28,
p. 2]), Ea(m)+EZ(m) = K

´
R2 |m+e3|4 dx , existence of a skyrmion solution as a

minimizer m of E withN (m) = ±1 was proved in [53,58]. Also, curvature of the
underlying space has been explored as another possible mechanism for ensuring
existence of skyrmions [51,65].

Turning to DMI-stabilized skyrmions, in situations where the energy consists
of exchange Eex(m) = Aex

´
R2 |∇m|2 dx , Zeeman EZ(m) = −μ0MsH

´
R2(1 +
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m3) dx , and bulk DMI EDMI(m) = Dbulk
´
R2 m · (∇ × m) dx terms, existence of

minimizers with non-zero topological charge for suitable values of the parameters
was established by Melcher [64], adapting an argument by Brezis and Coron
[16] for harmonic maps on bounded domains. Furthermore, Melcher demonstrated
that the obtained minimizer is indeed a skyrmion, as the minimum of the energy
is attained for N = 1 (expressed using the sign conventions of the present paper).
In the regime of dominating exchange energy Eex, Döring and Melcher [28]
analyzed the compactness properties of these solutions and proved that they con-
verge to a minimizer of Eex of topological charge N = 1 found by Belavin and
Polyakov [6], which the lower order terms uniquely determine. However, as these
limits do not decay sufficiently fast for the Zeeman energy to be finite, they had to
choose a faster decaying version of the Zeeman energy EZ = K

´
R2 |m + e3|p dx

for p ∈ (2, 4], which only corresponds to a physical model for p = 4, and even
then only to the specific combination of anisotropy and Zeeman terms analyzed in
[53,58]. Furthermore, Li andMelcher [54] proved that, for the above mentioned
physical choices of Eex, EZ and EDMI, axisymmetric skyrmions are stable also
with respect to symmetry-breaking perturbations and are indeed local minimizers
of the model considered by Melcher [64]. For the same model, Komineas et
al. [49] formally established asymptotic formulas for the skyrmion radius and the
energy by means of numerics and asymptotic matching. Finally, they also describe
the skyrmion profile in a large radius regime on the basis of formal asymptotic
analysis [50]. Existence of skyrmions with a uniaxial anisotropy term Ea rather
than a Zeeman term has been shown by Greco [37] in the context of cholesteric
liquid crystals.

As one expects the minimizers of a perturbed exchange energy to be close to
energy-minimizing harmonic maps (i.e., minimizers of the Dirichlet energy), it is
natural to analyze the rigidity of these harmonic maps. The proper context for such
an analysis is the theory of harmonic maps between manifolds, which is reviewed
in papers by Eells and Lemaire [29,30], and byHélein andWood [39]. Here, we
only discuss the immediately relevant results of the theory. First, the classification of
harmonic maps from S

2 to itself in the mathematical literature is independently due
to Lemaire [52] andWood [80], see also [29, (11.5)]. Additionally, they observed
that any harmonic map from S

2 to S
2 is also energy-minimizing in its homotopy

class. It is worth noting that in the setting of maps from R
2 to S2 the classification

result was also formally obtained by Belavin and Polyakov [6]. Second, a linear
version of our stability result, namely that the null-space of the Hessian only arise
from minimality-preserving perturbations, is also well-known in the case of the
identity map id : S2 → S

2 and has been established by Smith [77, Example 2.13],
as well asMazet [62, Proposition 8]. A similar statement in the equivalent setting
of harmonic maps from R

2 to S
2 has furthermore been recently proved by Chen,

Liu and Wei for arbitrary degrees [21]. However, to the best of our knowledge the
corresponding spectral gap estimate has only been obtained in a related setting byLi
andMelcher [54], as well as for the problem of H -bubbles by Isobe [43], and by
Chanillo and Malchiodi [20]. We also point out that, based on related stability
considerations, Davila et al. [23] constructed solutions to the harmonic heat flow
in which degree 1 harmonic maps bubble off at a specified time and at specified
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blow-up locations. Furthermore, strict localminimality results closely related to our
rigidity result, Theorem 2.4 below, have been given by Li and Melcher [54]; Di
Fratta et al. [26]; andDiFratta et al. [25].Also, in themore restrictive equivariant
setting our rigidity result follows fromGustafson et al. [38, Theorem 2.1]. Finally,
very recently Luckhaus and Zemas [60] proved a quantitative stability result for
conformal maps from S

n to itself for all n ≥ 2 under a Lipschitz assumption and
closeness in H1 to the identity.

1.1. Informal Discussion of Results

In this paper, we analyze the energy EQ,κ,δ , to be defined shortly in equation
(2.9) below,which consists of the exchange, anisotropy, surfaceDMI energy, aswell
as the nonlocal stray field energy that is appropriate for thin films [48,68,69]. We
remark that, while ourmethods are capable of dealingwith a non-zero external field,
we have chosen to consider the physically most basic case of vanishing external
field. Note that in this case the energy is unbounded from below, which can be seen
by considering large magnetic bubbles with topological charge N = 1, see for
example [7]. Therefore, an absolute minimizer with the desired topology does not
exist, and instead we have to look for a local minimizer, which means that we need
to identify a suitable constraint. We argue that in the present context one possible
choice is given by [8] ˆ

R2
|∇m|2 dx < 16π. (1.3)

As the Dirichlet energy in the wall of a magnetic bubble scales with the radius,
this bound clearly excludes such competitors. In contrast, to see why the condition
(1.3) would yield skyrmion solutions, we turn to the classical Belavin–Polyakov
bound relating the Dirichlet energy to the topological charge:ˆ

R2
|∇m|2 dx ≥ 8π |N (m)|; (1.4)

see the original paper by Belavin and Polyakov [6] or Lemma A.3 below for
the proof in the present context. Together with the bound (1.3), it a priori excludes
higher topological charges and only allows N = −1, 0, 1. At the same time, we
emphasize that, due to the scale invariance of the Dirichlet energy in two dimen-
sions, the assumption (1.3) does not impose any constraints on the actual size of
the skyrmion. Another minor point is that the energy cannot distinguish between
m and −m and thus only enforces lim|x |→∞ m(x) = e3 or lim|x |→∞ m(x) = −e3.
For definiteness, we simply choose the latter in an averaged sense, which together
with the assumption (1.3) defines our admissible classA of magnetizations, see the
definition in (2.15).

In Theorem 2.1, we prove that there exists an explicit constant C > 0 such
that in the regime 0 <

|κ|+δ√
Q−1

≤ C the energy EQ,κ,δ , defined in equation (2.9)

below, does indeed admit minimizers over A. In comparison to Melcher’s work
[64], the main issues are, first, an a priori lack of control of the decay of out-
of-plane component m3 + 1 due to the absence of an external field, and second,
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the presence of the nonlocal terms. To restore control of m3 + 1, we combine the
Gagliardo–Nirenberg–Sobolev inequality with a vectorial version of the Modica–
Mortola argument. To handle the nonlocal terms, we mainly appeal to interpolation
inequalities. The remaining argument closely follows the methods developed by
Brezis and Coron [16] andMelcher [64], ruling out the vanishing and splitting
alternatives of Lions’ concentration-compactness principle [59]. Vanishing, which
heuristically is the collapse of skyrmions via shrinking, is ruled out by combining
the topological bound (1.4) with a construction giving

inf
A

EQ,κ,δ < 8π, (1.5)

so that the scale-dependent contributions to the energy cannot go to zero. In the
case of splitting, i.e., two configurations drifting infinitely far apart from each other,
the combinatorics involved in the requirement N = 1 and the two bounds in (1.4)
and (1.3) imply that at least one of the two pieces has N = 1. As the nonlocal
interaction of two magnetic charges vanishes as they move infinitely far apart, the
two pieces essentially do not interact so that the energy can be strictly lowered
by discarding the piece with N 
= 1. Thus splitting is excluded and the obtained
compactness is sufficiently strong to prove existence of minimizers.

Themost important part of this paper is the description of the asymptotic behav-
ior of the obtained minimizers in Theorem 2.2 for 0 <

|κ|+δ√
Q−1

� 1, corresponding
to the regime dominated by theDirichlet energy: theminimizers of EQ,κ,δ approach
the set of minimizers of the Dirichlet energy

´
R2 |∇m|2 dx , i.e., the set of Belavin–

Polyakov profiles. Here, the challenge is to capture the fact that the skyrmion radius
converges to zero in the limit of dominating exchange energy in order to compensate
all Belavin–Polyakov profiles having infinite anisotropy energy. This intuition can
be gained by making an ansatz-based minimization of suitably truncated Belavin–
Polyakov profiles, which provides us with an upper bound for the minimal energy
in the form of a finite-dimensional reduced energy depending only on the scale of
truncation, the skyrmion radius and rotation angle [8]. Therefore, in order to find a
matching lower bound and to conclude the proof, one has to quantitatively control
closeness of the minimizers to the set of Belavin–Polyakov profiles. To this end, we
prove a rigidity result for Belavin–Polyakov profiles, Theorem 2.4, estimating the
Dirichlet distance of H̊1 maps of degree 1 to the set of Belavin–Polyakov profiles
(see the definition in (2.38)) in terms of the Dirichlet excess

´
R2 |∇m|2 dx − 8π .

Said excess can be directly linked to the scale of truncation, and the stability result
allows us to prove that the lower order contributions to EQ,κ,δ match the upper
bound. A subtle issue here is the fact that the Belavin–Polyakov profile obtained
in Theorem 2.4 does not necessarily approach −e3 at infinity or even have a limit
which is close to−e3. This is related to the logarithmic failure of the critical Sobolev
embedding H1 
↪→ L∞. Instead, we have to ensure the correct behavior at infinity
by proving that otherwise the anistropy energy is too large. The coercivity properties
of the reduced energy finally allow to conclude the proof.

The proof of the rigidity result, Theorem 2.4, relies on first proving a corre-
sponding linear estimate in the form of a spectral gap estimate for the Hessian
at a Belavin–Polyakov profile. To this end, we diagonalize the Hessian using a
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vector-valued version of spherical harmonics. The main difficulty is then to pass
to the nonlinear estimate, specifically in the case where the Dirichlet excess is
small. Existence of a Belavin–Polyakov profile that is close to the minimizer fol-
lows from known compactness properties of minimizing sequences in the harmonic
map problem, and to remove the trivial degeneracies of the Hessian resulting form
the invariances of the energy, we pick the closest Belavin–Polyakov profile in the
H̊1-topology. In order to then apply the spectral gap estimate, we have to justify
that the Hessian gives a good description of the energy close to the minimizer.
However, the higher order terms turn out to be radially weighted L p-norms for
which standard attempts at estimation fail logarithmically. Therefore, we have to
find some problem-specific cancellations, for which we exploit the fact that the
harmonic map problem is conformally invariant and that the Belavin–Polyakov
profiles are conformal maps. This allows us to formulate the rigidity problem for
maps from S

2 to S
2, where the error terms turn into unweighted L p-norms which

are amenable to the Sobolev inequality. The required cancellation is then the fact
that the average of the identity map over S2 vanishes. Finally, we obtain a Moser–
Trudinger type inequality for maps in which the vanishing average assumption is
replaced by closeness to the identity in the H̊1-topology.

1.2. Outline of the Paper

In Sect. 2 we state and discuss our main results in detail. Section 3 is devoted to
providing an explicit representation of the energy Eσ,λ by continuously extending
the nonlocal terms Fvol and Fsurf . In Sect. 4 we give the proof of Theorem 2.4. The
upper bound for the minimal energy and Theorem 2.1, the existence of skyrmions,
can be found in Sect. 5. The proof of Theorem 2.2 is completed in Sect. 6. Finally,
Appendix A collects an introduction to Sobolev spaces on the sphere, the proof of
the topological lower bound along with a classification of its degree 1 extremizers,
and a number of calculations involving Bessel functions necessary for calculating
the energy of the ansatz. Within each subsection, we always first present all propo-
sitions, lemmas and corollaries, while their proofs can be found at the end of the
subsection. Remarks concerning notation can be found at the end of Sect. 2.

2. Main Results

2.1. The Energy and the Admissible Class

In this paper, we consider the followingmodel [69], based on a rigorous asymp-
totic expansion of the stray field energy given in [48]: For the quality factor Q > 1,
non-dimensionalized film-thickness δ > 0 and DMI-strength κ and on

D := {m ∈ C∞(R2;S2) : m + e3 has compact support} (2.1)

we choose, recalling that m = (m′,m3),

Eex(m) :=
ˆ
R2

|∇m|2 dx, (2.2)
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Ea(m) := Q
ˆ
R2

|m′|2 dx, (2.3)

EZ(m) := 0, (2.4)

EDMI(m) := κ

ˆ
R2

(
m3∇ · m′ − m′ · ∇m3

)
dx, (2.5)

Es(m) := −
ˆ
R2

|m′|2 dx + δ
(
Fvol(m

′) − Fsurf(m3)
)
, (2.6)

where the normalized, nonlocal contributions Fvol(m′) and Fsurf(m3) of the volume
and surface charges, respectively, are defined via

Fvol( f ) := 1

4π

ˆ
R2

ˆ
R2

∇ · f (x)∇ · f (x̃)

|x − x̃ | dx̃ dx, (2.7)

Fsurf( f̃ ) := 1

8π

ˆ
R2

ˆ
R2

( f̃ (x) − f̃ (x̃))2

|x − x̃ |3 dx̃ dx, (2.8)

for f ∈ C∞
c (R2;R2) and f̃ ∈ C∞(R2) such that there exists c ∈ R with f̃ + c

having compact support. They can be interpreted as multiples of the squares of the

H̊− 1
2 -norm of ∇ · m′ and the H̊

1
2 -norm of m3, respectively, and an extension of

these terms of sufficient generality for our purposes can be found in Sect. 3. In total,
our functional may then be expressed as

EQ,κ,δ(m) :=
ˆ
R2

(
|∇m|2 + (Q − 1)|m′|2 − 2κm′ · ∇m3

)
dx

+ δ
(
Fvol(m

′) − Fsurf(m3)
)
,

(2.9)

where we integrated by parts to simplify the DMI term.
In order to remove one of the parameters and make the mathematical structure

of the energy explicit, we further rescale our functional (2.9). We first point out that
the sign of κ is not essential: If we have κ < 0, then considering m̃(x) := m(−x)
gives

EQ,κ,δ(m) = EQ,−κ,δ (m̃) . (2.10)

and thus we may additionally suppose κ ≥ 0. Furthermore, provided κ + δ > 0 we
use the rescaling

x̄ := Q − 1

κ + δ
x and m̄(x̄) := m

(
κ + δ

Q − 1
x̄

)
(2.11)

in the energy (2.9), so that for

σ := κ + δ√
Q − 1

and λ := κ

κ + δ
, (2.12)

we finally obtain EQ,κ,δ(m) = Eσ,λ(m̄), where
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Eσ,λ(m̄) :=
ˆ
R2

|∇m̄|2 dx̄

+ σ 2
( ˆ

R2
|m̄′|2 dx̄ − 2λ

ˆ
R2

m̄′ · ∇m̄3 dx̄ + (1 − λ)
(
Fvol(m̄

′) − Fsurf(m̄3)
) )

(2.13)

for m̄ ∈ D.
Of course, the assumption on regularity and decay at infinity encoded in D is

much too restrictive to allow for existence of minimizers. In view of the discussion
in Sect. 1.1, it would be natural to consider instead the energy on the S

2-valued
variant of the homogeneous Sobolev space H̊1(R2), which we define as a space of
functions

H̊1(R2) :=
{
u ∈ H1

loc(R
2) :

ˆ
R2

|∇u|2 dx < ∞
}

, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues
associated with such a critical space [4, Section 1.3]). Consequently, we aim to
consider the energy Eσ,λ on the set

A :=
{
m ∈ H̊1(R2;S2) :

ˆ
R2

|∇m|2 dx < 16π, m + e3 ∈ L2(R2;R3), N (m) = 1

}
,

(2.15)

where the condition m + e3 ∈ L2(R2;R3) is the appropriate way of prescribing
lim|x |→∞ m(x) = −e3, see Lemma 5.1. Note that the definition of the topological
charge, also referred to as the degree,

N (m) := 1

4π

ˆ
R2

m · (∂1m × ∂2m
)
dx, (2.16)

is valid for all m ∈ H̊1(R2;S2) and is consistent with equation (1.2) for smooth
maps that are constant sufficiently far from the origin. However, due to the non-
local terms, some care needs to be taken in extending the energy to A. To avoid
technicalities before the statement of results, we extend by relaxation, i.e., for
m ∈ H̊1(R2;S2) with m + e3 ∈ L2(R2;R3) we set

Eσ,λ(m) := inf{lim inf
n→∞ Eσ,λ(mn) : mn ∈ D for n ∈ N with lim

n→∞ ‖mn − m‖H1 = 0}.
(2.17)

Corollary 3.2 states that the representation (2.13) is still valid, provided the nonlocal
terms Fvol and Fsurf are interpreted appropriately.

2.2. Statement of the Results

We first establish that the energy Eσ,λ admits minimizers over A for all
λ ∈ [0, 1], provided σ is sufficiently small. In particular, we get existence of
skyrmions even in the case λ = 0, which corresponds to no DMI being present.
Our model therefore predicts skyrmions purely stabilized by the stray field. The
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proof of Theorem 2.1 below closely follows the previous works byMelcher [64]
and Döring andMelcher [28] and relies on the concentration compactness prin-
ciple of Lions [59]. The main new aspect is the inclusion of the nonlocal terms due
to the stray field, which we deal with by standard interpolation inequalities.

Theorem 2.1. Let σ > 0 and λ ∈ [0, 1] be such that σ 2(1 + λ)2 ≤ 2. Then there
exists mσ,λ ∈ A such that

Eσ,λ(mσ,λ) = inf
m̃∈A

Eσ,λ(m̃). (2.18)

Note that throughout the rest of the paper we suppress λ in the index of mσ,λ for
simplicity of notation.

We now turn to the heart of the paper, namely, the analysis of the limit σ → 0
in which the Dirichlet energy dominates. As was already pointed out by Döring
andMelcher [28], in this limit one expects minimizers mσ of Eσ,λ to converge to
minimizers of

F(m) :=
ˆ
R2

|∇m|2 dx (2.19)

for m ∈ H̊1(R2;S2) with N (m) = 1, i.e., minimizing harmonic maps of degree
1. These have been identified by Belavin and Polyakov [6], see also Brezis
and Coron [17, Lemma A.1] or Lemma A.3 below, to be given by the previously
mentioned Belavin–Polyakov profiles

B :=
{
S	(ρ−1(• − x)) : S ∈ SO(3), ρ > 0, x ∈ R

2
}

, (2.20)

where	 is a rotated variant of the stereographic projection with respect to the south
pole

	(x) :=
(

− 2x

1 + |x |2 ,
1 − |x |2
1 + |x |2

)
(2.21)

for x ∈ R
2. One can moreover see that they achieve equality in the topological

bound (1.4) in view of ˆ
R2

|∇φ|2 dx = 8π (2.22)

for all φ ∈ B. It is even known, see [29, (11.5)], that B comprises all solutions
φ : R2 → S

2 of the harmonic map equation

�φ + |∇φ|2φ = 0 (2.23)

withN (φ) = 1,meaning all critical points of F of degree 1 are absoluteminimizers.
The task then is to identify which Belavin–Polyakov profiles φ = S	(ρ−1(• −

x)) for S ∈ SO(3) and ρ > 0 are selected in the limit σ → 0. By the requirement
m + e3 ∈ L2(R2;R3), we can certainly expect to have Se3 = e3 in the limit, so
that S = Sθ for some angle θ ∈ [−π, π) and

Sθ :=
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ . (2.24)
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However, even for suchBelavin–Polyakovprofiles it holds thatφ+e3 
∈ L2(R2;R3)

due to logarithmic divergence of the anisotropy term. Consequently, we expect
minimizers to be truncated Belavin–Polyakov profiles which will shrink to keep
the anisotropy energy finite in the limit σ → 0 in the spirit of the construction by
Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also
Sect. 5.2, leads one to believe that the optimal skyrmion radius ρ0 is given asymp-
totically by

ρ0 
 ḡ(λ)

16π

1

| log σ | , (2.25)

where the auxiliary function

ḡ(λ) :=
⎧
⎨

⎩

(
8 + π2

4

)
π λ − π3

4 if λ ≥ λc,

128λ2
3π(1−λ)

+ π3

8 (1 − λ) else,
(2.26)

in which the critical threshold λc is defined as

λc := 3π2

32 + 3π2 , (2.27)

results from the balance of the DMI and stray field terms. The function ḡ(λ) can
straightforwardly be seen to be continuous and satisfy

1

C
≤ ḡ(λ) ≤ C (2.28)

for a universal constant C > 0. Furthermore, the two optimal rotation angles
θ+
0 ∈ [0, π

2 ] and θ−
0 ∈ [−π

2 , 0] are asymptotically

θ±
0 :=

{
0 if λ ≥ λc,

± arccos
(

32λ
3π2(1−λ)

)
else.

(2.29)

Here, the angle θ±
0 = 0 corresponds to a Néel-type skyrmion profile present in

the regime λ ≥ λc of DMI dominating over the stray field, while skyrmions purely
stabilized by the stray field have Bloch-type profiles in view of θ±

0 = ±π
2 for λ = 0.

The following convergence theorem confirms these expectations:

Theorem 2.2. Let λ ∈ [0, 1]. Let mσ be a minimizer of Eσ,λ over A. Then there
exist xσ ∈ R

2, ρσ > 0 and θσ ∈ [−π, π) such that mσ − Sθσ 	(ρ−1
σ (• − xσ )) → 0

in H̊1(R2;R3) as σ → 0, and

lim
σ→0

| log σ |ρσ = ḡ(λ)

16π
, lim

σ→0
|θσ | = θ+

0 , (2.30)

as well as

lim
σ→0

| log σ |2
σ 2 log | log σ |

∣∣∣
∣Eσ,λ(mσ ) − 8π + σ 2

| log σ |
(
ḡ2(λ)

32π
− ḡ2(λ)

32π

log | log σ |
| log σ |

)∣∣∣
∣ = 0. (2.31)
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Remark 2.3. For the convergences in Theorem 2.2, our methods also allow to
provide the following non-optimal (with the exception of the estimate (2.35)) rates:ˆ

R2

∣∣∣∇
(
mσ (x) − Sθσ 	(ρ−1

σ (x − xσ ))
)∣∣∣

2
dx ≤ Cσ 2, (2.32)

∣∣∣∣| log σ |ρσ − ḡ(λ)

16π

∣∣∣∣ ≤
C

| log σ | , (2.33)

∣∣|θσ | − θ+
0

∣∣4 + |λ − λc|
∣∣|θσ | − θ+

0

∣∣2 ≤ C

| log σ | , (2.34)

as well as

1

C

σ 2

| log σ |2 ≤
ˆ
R2

|∇mσ |2 dx − 8π ≤ C
σ 2

| log σ |2 , (2.35)

and
∣
∣∣∣
| log σ |

σ 2

(
Eσ,λ(mσ ) − 8π

)−
(

− ḡ2(λ)

32π
+ ḡ2(λ)

32π

log | log σ |
| log σ |

)∣∣∣∣ ≤
C

| log σ | ,
(2.36)

for C > 0 universal and σ ∈ (0, σ0) with σ0 > 0 small enough and universal. In
fact, our proof does establish all these rates except the one for the angles θσ , whose
proof relies on some lengthy, but elementary estimates. Note that the loss in the rate
of convergence of θσ to θ±

0 for the parameter λ = λc coincides with Néel profiles
becoming linearly unstable.

While not strictly speaking adhering to a �-convergence framework, the proof
of Theorem 2.2 is very much in the spirit of �-equivalence [15] in that we com-
pare the sequence of energies at minimizers to a sequence of finite-dimensional
reduced energies. This simplification allows us to explicitly compute approximate
minimizers and even analyze their stability properties. As is usual in the theory of
�-convergence, the comparison is done via upper bounds obtained by construc-
tion and ansatz-free lower bounds. The constructions have already been alluded to
above. The main ingredient for the lower bounds is the following Theorem 2.4, a
quantitative stability estimate for degree 1 harmonic maps from R

2 to S
2, i.e., for

the maps in the set B, see definition (2.20). Once we know that the minimizers
are close to Belavin–Polyakov profiles, we use this information to estimate the
remaining lower order terms in the energy.

To state the theorem, we first introduce the family of all H̊1-maps from R
2 to

S
2 of degree 1 :

C :=
{
m̃ ∈ H̊1(R2;S2) : N (m̃) = 1

}
. (2.37)

Wenext introduce a notion of distance between elements in this family andBelavin–
Polyakov profiles, which we term the Dirichlet distance:

D(m;B) := inf
φ̃∈B

(ˆ
R2

∣∣∇ (m − φ̃
)∣∣2 dx

) 1
2

. (2.38)

With these definitions we have the following theorem:
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Theorem 2.4. For every m ∈ C there exists φ ∈ B that achieves the infimum in the
Dirichlet distance D(m;B). Furthermore, there exists a universal constant η > 0
such that

ηD2(m;B) ≤ F(m) − 8π. (2.39)

Notice that this result in the more restrictive equivariant setting is contained in [38,
Theorem 2.1].

Well understood compactness properties of minimizing sequences for the
Dirichlet energy [56] ensure the existence of a Belavin–Polyakov profile φ that
is close to an almost minimizerm of the Dirichlet energy but do not provide us with
a rate of closeness. To overcome this issue, we pass to the corresponding linearized
problem, which can easily be solved using a suitable vectorial version of spherical
harmonics, see Proposition 4.2 below. However, naive attempts at explicitly esti-
mating the error terms arising in the linearization procedure tend to break down
due to the logarithmic failure of the critical Sobolev embedding H1 
↪→ L∞ in two
dimensions. Therefore, the main conceptual issue is to find additional cancellations
resulting form the structure of the problem.

The relevant structure, it turns out, is the fact that the harmonic map problem is
conformally invariant, and that all Belavin–Polyakov profiles are conformal maps.
This allows us to reformulate the problem as stability of the identity map id : S2 →
S
2, denoted from now on as idS2 , by considering m̃ := m ◦ φ−1. Nonlinear terms

can then be estimated using the standard Sobolev embedding on the sphere, and
the required cancellation is that the identity map on the sphere has average zero.
This idea leads us to the following estimates, which when expressed on R

2 also
provides topologies in which m itself converges to φ:

Lemma 2.5. There exists a universal constant η̃ > 0 such that the following holds:
Let p ∈ [1,∞). Then there exists a constant Cp > 0 such that if m ∈ H1(S2;S2)
satisfies

´
S2

|∇(m − idS2)|2 dH2 ≤ η̃, then we have the estimate

(ˆ
S2

|m − idS2 |p dH2
) 1

p ≤ Cp

(ˆ
S2

|∇(m − idS2)|2 dH2
) 1

2

. (2.40)

Furthermore, there exists a universal constant C > 0 such that the Moser–
Trudinger type inequality

ˆ
S2
e
2π
3

|m−id
S2

|2
‖∇(m−id

S2
)‖22 dH2 ≤ C (2.41)

holds.

We furthermore point out that Theorem 2.4 implies a corresponding statement
for degree one harmonic maps on S

2, i.e., for minimizers of

FS2 (m̃) :=
ˆ
S2

|∇m̃|2 dH2 (2.42)
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over

CS2 :=
{
m̄ ∈ H1(S2;S2) : NS2(m̄) = 1

}
, (2.43)

where

NS2(m̃) := 1

4π

ˆ
S2
det(∇m̃) dH2 (2.44)

denotes the degree for maps from m̃ : S
2 → S

2, see for example Brezis and
Nirenberg [18] or Sect. A.1 in the appendix for details. Recalling the definition
(2.21) of 	, it can be seen that the minimizers are given by the set of Möbius
transformations

BS2 :=
{
φ ◦ 	−1 : φ ∈ B

}
(2.45)

=
{
	 ◦ f ◦ 	−1 : f (z) := az + b

cz + d
for a, b, c, d ∈ C with ad − bc 
= 0

}
,

(2.46)

where points x ∈ R
2 in the plane are identified with the points z ∈ C in the complex

plane. Indeed, this follows from the conformal invariance of the harmonic map
problem, see Lemma A.2. The second equality is a classical fact we will prove in
LemmaA.3 for the convenience of the reader.A similar nonlinear stability statement
for degree −1 maps is a simple result of the identity NS2(−m̃) = −NS2(m̃) for
m̃ ∈ H1(S2;S2).
Corollary 2.6. For m̃ ∈ CS2 we have

η min
φ̃∈B

S2

ˆ
R2

∣∣∇ (m̃ − φ̃
)∣∣2 dx ≤ FS2 (m̃) − 8π, (2.47)

where η > 0 is the universal constant of Theorem 2.4. Furthermore, for m̃ ∈
H1(S2;S2) with NS2(m̃) = −1 we have the corresponding statement

η min
φ̃∈(−B

S2
)

ˆ
R2

∣∣∇ (m̃ − φ̃
)∣∣2 dx ≤ FS2 (m̃) − 8π. (2.48)

Notice that our result is stronger than the one in [60] for n = 2 in that it does not
require the assumption that the map m̃ be Lipschitz and close in H1(S2;R3) to B.

2.3. Notation

Throughout the paper, the symbolsC and η denote universal, positive constants
that may change from inequality to inequality, and where we think ofC as large and
η as small. Whenever we use O-notation, the involved constants are understood to
be universal. For matrices A ∈ R

n×m for n,m ∈ N, we use the Frobenius norm
|A| := √tr(AT A).
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3. An Explicit Representation of the Energy

Here, we extend the functionals Fvol and Fsurf to a sufficiently big space of
functions to ensure that our energy Eσ,λ has a practical representation on A, and
that Fvol and Fsurf are defined for the relevant components of the stereographic
projection 	. The main tool to obtain the relevant estimates will be the Fourier
transform, for which we use the convention

F f (k) :=
ˆ
R2

e−ik·x f (x) dx (3.1)

for f ∈ L1(R2) and which we extend to functions f ∈ L p(R2) for 1 < p ≤ 2 in
the usual way, see [55, Section 5.4 and 5.6].

The situation for Fsurf is straightforward: As it is obviously non-negative, we
can simply use the definition (2.8) for all f ∈ L1

loc(R
2) with Fsurf( f ) < ∞. The

Fourier space representation of Fsurf ( f ) obtained from (3.9) for f ∈ H1(R2) below
will nevertheless be helpful to prove estimates and to compute the surface charge
contribution of a Belavin–Polyakov profile. Furthermore, we define

Fsurf( f, g) := 1

8π

ˆ
R2

ˆ
R2

( f (x) − f (x̃))(g(x) − g(x̃))

|x − x̃ |3 dx̃ dx (3.2)

whenever f, g : R2 → R are measurable with Fsurf( f ) < ∞ and Fsurf(g) < ∞.
Turning to the volume charges, for measurable functions f̃ , g̃ : R2 → R

2 with
∇ · f̃ ∈ L2(R2) and ∇ · g̃ ∈ L2(R2) we define

Fvol
(
f̃
)

:= 1

2

ˆ
R2

∣∣∣F
(
∇ · f̃

)∣∣∣
2

|k|
dk

(2π)2
, (3.3)

Fvol
(
f̃ , g̃
)

:= 1

2

ˆ
R2

F
(
∇ · f̃

)
F (∇ · g̃)

|k|
dk

(2π)2
, (3.4)

the latter of which requires Fvol( f̃ ) < ∞ and Fvol (g̃) < ∞.
The following, standard lemmaensures this is indeed an extensionof the original

definition (2.7) and provides a number of interpolation inequalities for both Fsurf
and Fvol we will use throughout the paper:

Lemma 3.1. Formaps f, g : R2 → R such that there exist c, d ∈ Rwith f +c, g+
d ∈ H1(R2) and f̃ : R2 → R

2 such that ∇ · f̃ ∈ L2(R2) we have Fsurf( f, g) ∈ R

and

Fsurf( f ) ≥ 0, (3.5)

Fvol( f̃ ) ≥ 0, (3.6)

|Fsurf( f, g)| ≤ 1

2
‖ f + c‖2‖∇g‖2. (3.7)
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If, for p ∈ (1,∞), we additionally have f̃ , g̃ ∈ L p(R2;R2) ∩ W̊ 1,p′
(R2;R2) with

∇ · g̃ ∈ L2(R2) and p′ = p/(p−1), then we have Fvol( f̃ , g̃) ∈ Rwith the estimate

Fvol
(
f̃ , g̃
)

≤ Cp

∥∥∥ f̃
∥∥∥
p
‖∇ g̃‖p′ . (3.8)

Finally, we have the representation

Fsurf( f, g) = 1

2

ˆ
R2

|k|F( f + c)F(g + d)
dk

(2π)2
, (3.9)

and for f̃ , g̃ ∈ C∞
c (R2;R2) we also have

1

4π

ˆ
R2

ˆ
R2

∇ · f̃ (x)∇ · g̃(x̃)
|x − x̃ | dx̃ dx = 1

2

ˆ
R2

F
(
∇ · f̃

)
F (∇ · g̃)

|k|
dk

(2π)2
.

(3.10)

In particular, the definition (3.3) extends that in (2.7).

With these extensions, we prove that the representation (2.13) of Eσ,λ is still
valid. Notice that the density result below is a variant of [63, Lemma 4.1] (see also
Schoen and Uhlenbeck [75]).

Corollary 3.2. For σ > 0, λ > 0 and m ∈ H̊1(R2;S2) with m + e3 ∈ L2(R2;R3)

there exists a sequence mn ∈ D with limn→∞ ‖mn − m‖H1 = 0, and we have

Eσ,λ(m) =
ˆ
R2

|∇m|2 dx + σ 2
(ˆ

R2
|m′|2 dx − 2λ

ˆ
R2

m′ · ∇m3 dx

+ (1 − λ)
(
Fvol(m

′) − Fsurf(m3)
)
)

.

(3.11)

Proof of Lemma 3.1. We first deal with the surface term. The estimate (3.5) is
trivial. The Fourier representation (3.9) follows immediately from [55, Theorem
7.12, identity (4)]. The estimate (3.7) is then a straightforward consequence of the
Cauchy–Schwarz inequality and Plancherel’s theorem, [55, Theorem 5.3].

Next, we turn to the volume terms. Again, non-negativity (3.6) is a trivial
consequence of the definition (3.3). For f̃ , g̃ ∈ C∞

c (R2;R2), the equality (3.10) is
a result of [55, Theorem 5.2, identity (2)].

By a density argument, it is sufficient to prove the interpolation result (3.8)
still under the assumption f̃ , g̃ ∈ C∞

c (R2;R2). To this end, we define a vectorial
variant of the Riesz transform

T f̃ := F−1
(
i
k

|k| · F f̃

)
. (3.12)

By the standard fact thatF(∇ · f̃ )(k) = ik ·F f̃ (k) for a.e. k ∈ R
2 and Plancherel’s

identity, we have

1

2

ˆ
R2

F
(
∇ · f̃

)
F (∇ · g̃)

|k|
dk

(2π)2
= 1

2

ˆ
R2

T
(
f̃
)

∇ · g̃ dx . (3.13)
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By the Mihlin–Hörmander multiplier theorem [36, Theorem 6.2.7], T extends to
a bounded operator from L p(R2;R2) to L p(R2) for all p ∈ (1,∞). As a result,
Hölder’s inequality implies the desired inequality (3.8). ��
Proof of Corollary 3.2. By the density result [63, Lemma 4.1] we may choose a
sequencemn ∈ C∞(R2;S2)withmn +e3 ∈ L2 such that limn→∞ ‖mn −m‖H1 =
0. The proof of [28, Lemma 8] implies that we may furthermore take mn + e3 to
have compact support for all n ∈ N, so that we have mn ∈ A. The local terms are
obviously continuous in the H1-topology. Continuity of Fvol and Fsurf is ensured
by Lemma 3.1. ��

4. Rigidity of Degree ± 1 Harmonic Maps

The goal of this section is to prove Theorem 2.4, the quantitative stability
statement for Belavin–Polyakov profiles with respect to the Dirichlet energy F(m).
As explained in Sect. 2.2, it will be helpful at times to think of maps m̃ : S2 → S

2

by setting m̃ := m ◦ φ−1 for some appropriately chosen φ ∈ B. The maps φ ∈ B
have the nice property of being conformal, see [27, Chapter 4, Definition 3]. As
such, the above re-parametrization leaves the harmonic map problem invariant, see
Lemma A.2, and we gain compactness of the underlying sets, as well as a greater
conceptual clarity in some of our arguments.

The definitions of gradients, Laplace operators andSobolev spaces on the sphere
can be found in Sect. A.1. In particular, we use the same symbol for the Euclidean
and Riemannian versions of gradients and Laplace operators as it is always clear
from context which one is meant.

4.1. The Spectral Gap Property for the Linearized Problem

This subsection is devoted to the solution of the linear problem corresponding
to Theorem 2.4 and Corollary 2.6, i.e., we establish the sharp spectral gap property
for the Hessian of F , or equivalently FS2 , at minimizers. The notions and arguments
needed are fairly standard. Here we provide the proof for the convenience of the
reader.

Given a map m ∈ C that is close to φ ∈ B in H̊1(R2;R3), by Lemma A.2 we
also have that m ◦ φ−1 is close to idS2 in H1(S2;R3). Therefore, we only have
to compute the Hessian at the identity map idS2 : S2 → S

2. The corresponding
Hessian on S2 and in local coordinates given by φ ∈ B is, respectively

H(ζ, ξ) :=
ˆ
S2

(∇ζ : ∇ξ − 2ζ · ξ) dH2, (4.1)

Hφ(ζφ, ξφ) :=
ˆ
R2

(
∇ζφ : ∇ξφ − ζφ · ξφ |∇φ|2

)
dx, (4.2)

see [62,77], defined for tangent vector fields ζ, ξ ∈ H1(S2; TS2), see equation
(A.5) for the definition of this space, and

ζφ, ξφ ∈ H1
w(R2; TφS

2)
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:=
{
ξ̃φ ∈ H1

w(R2;R3) : ξ̃φ(x) · φ(x) = 0 for almost all x ∈ R
2
}

. (4.3)

Here, we introduced a vector-valued variant H1
w(R2;R3) of the weighted Sobolev

space

H1
w(R2) :=

{
u ∈ H1

loc(R
2) :

ˆ
R2

(
|∇u|2 + |u|2

1 + |x |4
)

dx < ∞
}

, (4.4)

arising from H1(S2;R3) under parametrization by φ ∈ B due to Lemma A.2, and
the pullback TφS

2 := ⋃
x∈R2{φ(x)} × Tφ(x)S

2 of the tangent bundle TS2 of the
sphere. In particular, note that ζφ · ξφ |∇φ|2 is integrable. As idS2 is a minimizer
of FS2 , the Hessians are non-negative bilinear forms in the sense that for all ξ ∈
H1(S2; TS2) and ξφ ∈ H1

w(R2; TφS
2) we have

H(ξ, ξ) ≥ 0, (4.5)

Hφ(ξφ, ξφ) ≥ 0. (4.6)

In view of identity (4.1), the inequality (4.5) can be interpreted as a Poincaré type
inequality on the space H1(S2; TS2) that does not rely on subtracting averages.

The next step is to identify the null space of the Hessian:

J :=
{
ζ ∈ H1

(
S
2; TS2

)
: H(ζ, ζ ) = 0

}
. (4.7)

It is well known that ζ ∈ J is equivalent to ζ solving the so-called Jacobi equation

L(ζ )(y) := −�ζ(y) − 2ζ(y) − 2(∇ y : ∇ζ(y))y = 0 (4.8)

for all y ∈ S
2, where the Laplace–Beltrami operator is taken component-wise. We

call solutions to the Jacobi equation Jacobi fields. In local coordinates given by
φ ∈ B, i.e., for ζφ := ζ ◦ φ−1, this equation is

Lφ(ζφ) := −�ζφ − |∇φ|2ζφ − 2(∇φ : ∇ζφ) φ = 0. (4.9)

For our purposes we only need to rigorously ensure that ζ ∈ J solves a weak
version of the equation in local coordinates under the (a posteriori unnecessary)
assumption that ζ ∈ J is smooth, which we will do in Lemma 4.1 below for the
convenience of the reader.

Lemma 4.1. Let ζ ∈ J be smooth and φ ∈ B. Then for all ξ ∈ H̊1(R2;R3) ∩
L∞(R2;R3) the function ζφ := ζ ◦ φ satisfies

ˆ
R2

(
∇ζφ : ∇ξ − ζφ · ξ |∇φ|2 − 2φ · ξ ∇φ : ∇ζφ

)
dx = 0. (4.10)

Using the characterization of the Hessian H as the second derivative of FS2 at
idS2 , we can readily find Jacobi fields: If for ε > 0 and t ∈ (−ε, ε), the function ut
is a smooth curve of minimizers of FS2 with u0 = idS2 , then

d
dt |t=0ut ∈ J . To use

this idea, we recall the representation

ut = 	 ◦ ft ◦ 	−1 (4.11)
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for ft (z) = at z+bt
ct z+1 and at , bt , ct ∈ C with at − btct 
= 0 and a0 = 1, b0 = c0 = 0,

see equation (2.46). Differentiating in t , we see that j ∈ J , where by the chain rule
we have

j (y) :=
(
∇	 ◦ 	−1(y)

)
g ◦ 	−1(y) y ∈ S

2, (4.12)

for the complex polynomial g(z) := − d
dt |t=0ct z2 + d

dt |t=0at z + d
dt |t=0bt . In

particular, we know that dim J ≥ 6.
In the next Proposition (4.2), we prove that all Jacobi fields arise in such a

manner and we compute the spectral gap. To this end, we use to the notion of vector
spherical harmonics [35, Chapter 5.2], as they turn out to diagonalize H. They are
related to the spherical harmonics Yn, j : S2 → R for n ≥ 0 and j = −n, . . . n,
which are eigenfunctions of the Laplace–Beltrami operator � with eigenvalues
−n(n+ 1). Here, we take them to be normalized such that they form a real-valued,
orthonormal system for L2(S2). Their definition is well-known and we do not need
their explicit expressions in the following (an interested reader may refer to [35,
Chapter 3.4]). The vector spherical harmonics, see [35, equation (5.36)] are defined
for y ∈ S

2 as

Y(1)
0,0(y) := 1√

4π
y, (4.13)

and for n ≥ 1 and j = −n, . . . , n as

Y(1)
n, j (y) := Yn, j (y) y, (4.14)

Y(2)
n, j (y) := 1√

n(n + 1)
∇Yn, j (y), (4.15)

Y(3)
n, j (y) := 1√

n(n + 1)
y × ∇Yn, j (y). (4.16)

Similarly to their scalar counterparts, they are eigenfunctions with eigenvalues
−n(n+1) for a suitably defined vectorial Laplace–Beltrami operator [35, Theorem
5.28 andDefinition 5.26]: For ξ ∈ C2(S2;R3), using the projections πt and πn onto
tangential and normal components, we set

�vξ := πn(� + 2)(πnξ) + πt�(πtξ), (4.17)

where � is to be understood as the component-wise Laplace–Beltrami operator.
Furthermore, they form an orthonormal system for L2(S2;R3), see [35, Theorem
5.9].

Turning to tangential vector fields, we note that by the above results the set
{Y(2)

n, j ,Y(3)
n, j : n ≥ 1, j = −n, . . . , n} of tangential vector spherical harmonics

forms an orthonormal system for

L2(S2; TS2) :=
{
ξ ∈ L2(R2;R3) : ξ(y) · y = 0 for almost all y ∈ S

2
}

. (4.18)
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Additionally, we can use the fact that the vector spherical harmonics are eigenfunc-
tions of �v to integrate by parts, see equation (A.7) below, to obtain

ˆ
S2

∇Y(k)
n, j : ∇Y(o)

p,i dH2 = n(n + 1)δn,pδ j,iδk,o (4.19)

for n, p ≥ 1, j = −n, . . . n, i = −p, . . . p and k, o ∈ {2, 3}, where the δ symbols
denote the corresponding Kronecker deltas.

With this information, we are finally able to characterize both the space of
Jacobi functions J and the spectral gap of the Hessian H with respect to the H̊1-
scalar product. To this end, we define the space of tangent vector fields which are
H̊1-orthogonal to the space J of Jacobi fields

H
1 :=

{
ξ ∈ H1(S2; TS2) :

ˆ
S2

(∇ξ : ∇ζ ) dH2 = 0 for all ζ ∈ J

}
. (4.20)

The choice of the H̊1-scalar product is motivated by Theorem 2.4 requiring us to
estimate the H̊1-distance of any given m ∈ C to B.

Proposition 4.2. We have J = span
{
Y(2)
1, j ,Y(3)

1, j ; j = −1, 0, 1
}
. In particular, all

Jacobi fields are smooth and it holds that dim J = 6. Furthermore, we have the
spectral gap property

H(ξ, ξ) ≥ 2

3

ˆ
S2

|∇ξ |2 dH2 (4.21)

for all ξ ∈ H
1. Finally, the L2-orthogonal projection πJ : L2(S2; TS2) →

L2(S2; TS2) onto J is well-defined and orthogonal with respect to the inner product
in H̊1(S2).

Thus all Jacobi fields arise from variations of the form (4.11).
Having presented all statements of this subsection, we provide their proofs

below.

Proof of Lemma 4.1. Step 1: We have ζ ∈ J if and only if the condition
ˆ
S2

(∇ζ : ∇ξ − 2ζ · ξ) dH2 = 0 (4.22)

holds for all ξ ∈ H1(S2; TS2).
Let ζ ∈ J , meaning we have ζ ∈ H1(S2; TS2) with H(ζ, ζ ) = 0. As H is a
non-negative bilinear form, the Cauchy–Schwarz inequality implies for all ξ ∈
H1(S2; TS2) that

0 ≤ |H(ζ, ξ)| ≤ H
1
2 (ζ, ζ )H

1
2 (ξ, ξ) = 0, (4.23)

which yields (4.22). Furthermore, by choosing ξ = ζ weget that (4.22) is equivalent
to H (ζ, ζ ) = 0.

Step 2: Prove equation (4.10).
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If ξ ∈ H̊1(R2;R3) ∩ L∞(R2;R3) ⊂ H1
w(R2;R3) satisfies ξ(x) · φ(x) = 0

for almost all x ∈ R
2, then the statement immediately follows from (4.22)

and Lemma A.2. Consequently, it is sufficient to consider ξ ∈ H̊1(R2;R3) ∩
L∞(R2;R3)with ξ = (ξ ·φ)φ. In this case, by virtue of ζφ ·ξ = (ξ ·φ)(ζφ ·φ) = 0
almost everywhere we can write
ˆ
R2

(
∇ζφ : ∇ξ − ζφ · ξ |∇φ|2 − 2(∇φ : ∇ζφ)(φ · ξ)

)
dx

=
ˆ
R2

(
∇ζφ : ∇[(φ · ξ)φ] − 2(∇φ : ∇ζφ)(φ · ξ)

)
dx

=
⎛

⎝
2∑

i=1

3∑

j=1

ˆ
R2

φ j∂i (ξ · φ)∂iζφ, j dx

⎞

⎠−
ˆ
R2

(∇φ : ∇ζφ)(φ · ξ) dx .

(4.24)

For i = 1, 2 using the identity 0 = ∂i (ζφ · φ) = ∑3
j=1

(
ζφ, j∂iφ j + φ j∂iζφ, j

)
we

obtain

2∑

i=1

3∑

j=1

ˆ
R2

φ j∂i (ξ · φ)∂iζφ, j dx = −
2∑

i=1

3∑

j=1

ˆ
R2

ζφ, j∂i (ξ · φ)∂iφ j dx .

(4.25)

As ξ , φ and ζφ are bounded by assumption and |∇φ| decays quadratically at
infinity, we can integrate by parts on the right-hand side of equation (4.25) without
incurring additional boundary terms at infinity. Thus we get

−
2∑

i=1

3∑

j=1

ˆ
R2

ζφ, j∂i (ξ · φ)∂iφ j dx =
ˆ
R2

(ξ · φ)
(
ζφ · �φ + ∇ζφ : ∇φ

)
dx .

(4.26)

Thefirst termdrops out due toφ solving the harmonicmap equation�φ+|∇φ|2φ =
0 and ζφ being a tangent field. The remaining term cancels with the other term on
the right-hand side of equation (4.24), yielding (4.10). ��
Proof of Proposition 4.2. As the tangential vector spherical harmonics form an
orthonormal basis for L2(S2; TS2), for each ξ ∈ H1(S2; TS2) we have the
Plancherel identity

ˆ
S2

|ξ |2 dH2 =
∑

n≥1

n∑

j=−n

∑

k=2,3

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
. (4.27)

For N ∈ N let

HN := span
{
Y(k)
n, j : 0 ≤ n ≤ N ; j = −n, . . . , n; k = 2, 3

}
. (4.28)

In view of inequality (4.5) the expression
´
S2

∇ζ : ∇ξ dH2 defines a scalar product

on H1(S2; TS2), whichwe call the H̊1-scalar product. LetπN be the H̊1-orthogonal
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projection onto HN and let ξ ∈ H1(S2; TS2). Then for 1 ≤ n ≤ N , j = −n, . . . , n
and k = 2, 3, we can integrate by parts, see identity (A.7), and use the fact that
Y(k)
n, j is an eigenvector of �v with eigenvalue −n(n + 1) to get

0 =
ˆ
S2

∇(ξ − πN ξ) : ∇Y(k)
n, j dH2 = n(n + 1)

ˆ
S2

(ξ − πN ξ) · Y(k)
n, j dH2.

(4.29)

As a result, we have ˆ
S2

πN ξ · Y(k)
n, j dH2 =

ˆ
S2

ξ · Y(k)
n, j dH2 (4.30)

for all 1 ≤ n ≤ N , j = −n, . . . , n and k = 2, 3, so that we get

πN ξ =
N∑

n=1

n∑

j=−n

∑

k=2,3

(ˆ
S2

ξ · Y(k)
n, j dH2

)
Y(k)
n, j . (4.31)

Therefore, from identity (4.19) we obtain

N∑

n=1

n∑

j=−n

∑

k=2,3

n(n + 1)

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
=

ˆ
S2

|∇πN ξ |2 dH2

≤
ˆ
S2

|∇ξ |2 dH2. (4.32)

In the limit N → ∞, we consequently deduce

∑

n≥1

n∑

j=−n

∑

k=2,3

n(n + 1)

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
≤

ˆ
S2

|∇ξ |2 dH2. (4.33)

By the identities (4.31) and (4.27) we have πN ξ → ξ in L2(S2; TS2), which
implies that ∇πN ξ ⇀ ∇ξ in L2(S2;R9). As a result, from the equality in (4.32)
and lower semicontinuity of the L2(S2;R9) norm we get

∑

n≥1

n∑

j=−n

∑

k=2,3

n(n + 1)

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
= lim

N→∞

ˆ
S2

|∇πN ξ |2 dH2

≥
ˆ
S2

|∇ξ |2 dH2. (4.34)

Combining the two inequalities (4.33) and (4.34), we obtain

∑

n≥1

n∑

j=−n

∑

k=2,3

n(n + 1)

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
=

ˆ
S2

|∇ξ |2 dH2. (4.35)

By the two equalities (4.27) and (4.35) we obtain the representation

H(ξ, ξ) =
∑

n≥1

n∑

j=−n

∑

k=2,3

(
n(n + 1) − 2

) (ˆ
S2

ξ · Y(k)
n, j dH2

)2
, (4.36)
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fromwhich the representation J = H1 immediately follows by virtue of n(n+1) ≥
6 for n ≥ 2. To deduce the spectral gap property, note that by the same token we
have the sharp estimate n(n + 1) − 2 ≥ 2

3n(n + 1). If ξ ∈ H
1 we therefore have

H(ξ, ξ) ≥ 2

3

∑

n≥1

n∑

j=−n

∑

k=2,3

n(n + 1)

(ˆ
S2

ξ · Y(k)
n, j dH2

)2
= 2

3

ˆ
S2

|∇ξ |2 dH2,

(4.37)

which concludes the proof of estimate (4.21).
Finally, in view of the fact that the tangential vector spherical harmonics are an

orthonormal system for L2(S2; TS2) we see that

πJ (ξ) :=
∑

j=−1,0,1

[(ˆ
S2

ξ · Y(2)
1, j dH2

)
Y(2)
1, j +

(ˆ
S2

ξ · Y(3)
1, j dH2

)
Y(3)
1, j

]

(4.38)

is the L2-orthogonal projection onto J , which by identity (4.31) coincides with the
H̊1-orthogonal projection. ��

4.2. From Linear Stability to Rigidity

In order to make use of the spectral gap property of Proposition 4.2, we first
have to find a degree one harmonic map to which to apply it. It turns out that it
is advantageous to take φ ∈ B minimizing the Dirichlet distance D(m;B), see
definition (2.38), between B and m ∈ C, which is possible due to the following
Lemma 4.3. As in its proof it is more convenient to deal with Belavin–Polyakov
profiles rather than Möbius transformations, we formulate it in the R2-setting.

Lemma 4.3. For any m ∈ C there exists φ ∈ B such that

D(m;B) =
(ˆ

R2
|∇(m − φ)|2 dx

) 1
2

. (4.39)

With this statements, we are in a position to prove a local version of Theorem2.4
by projectingm−φ onto a vector field tangent to φ and using Lemma 2.5 to control
the resulting higher order terms.

Lemma 4.4. Let η̃ > 0 be as in Lemma 2.5. For m ∈ C with D2(m;B) < η̃ we
have
(
2

3
− 2

3
C2
4D(m;B) − 19

12
C4
4D

2(m;B)

)
D2(m;B) ≤ F(m) − 8π, (4.40)

where C4 is the constant from Lemma 2.5.
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Proof of Lemma 4.3. Towards a contradiction,we assume that infφ∈B
´
R2 |∇(m−

φ)|2 dx is not attained. Throughout the proof, we ignore the relabeling of subse-
quences without further comment.

Step 1: If the infimum is not attained, then
´
R2 |∇(m−φ)|2 dx >

´
R2 |∇m|2 dx+

8π for all φ ∈ B.
For n ∈ N, let Rn ∈ SO(3), 0 < ρn < ∞ and xn ∈ R

2 be such that φn :=
Rn	

(
ρ−1
n (• − xn)

) ∈ B satisfies

lim
n→∞

ˆ
R2

|∇(m − φn)|2 dx = inf
φ∈B

ˆ
R2

|∇(m − φ)|2 dx . (4.41)

As SO(3) is compact, there exists a subsequence and R ∈ SO(3) such that
limn→∞ Rn = R. By direct computation, we have uniformly for all φ̃ ∈ B

lim
n→∞

ˆ
R2

∣∣∣∇
(
Rnφ̃

)
− ∇

(
Rφ̃
)∣∣∣

2
dx = 0. (4.42)

We may thus suppose that Rn = R for all n ∈ N. Due to the fact that there does not
exist an optimal approximatingBelavin–Polyakov profilewe have limn→∞ ρn = 0,
limn→∞ ρn = ∞, or limn→∞ xn = ∞.

Let us first deal with the case limn→∞ ρn = 0, which implies ∇φn ⇀ 0 in L2.
Consequently, by expanding the square we get

inf
φ∈B

ˆ
R2

|∇(m − φ)|2 dx = lim
n→∞

ˆ
R2

|∇(m − φn)|2 dx =
ˆ
R2

|∇m|2 dx + 8π.

(4.43)

As the infimum is not achieved, we obtainˆ
R2

|∇(m − φ)|2 dx >

ˆ
R2

|∇m|2 dx + 8π (4.44)

for all φ ∈ B.
In the case limn→∞ ρn = ∞, we rescale mn := m(ρnx + xn) and observe

∇mn ⇀ 0 in L2. Similarly as in the previous case we thus get for all φ ∈ B:ˆ
R2

|∇(m − φ)|2 dx > lim
n→∞

ˆ
R2

|∇(mn − R	)|2 dx =
ˆ
R2

|∇m|2 dx + 8π.

(4.45)

In dealing with the case limn→∞ xn = ∞ we may consequently assume that
limn→∞ ρn = ρ ∈ (0,∞). Once again we then get ∇φn ⇀ 0 in L2, and we
conclude as in the first case.

Step 2: Derive the contradiction.
Expanding the square in the result of Step 1 yieldsˆ

R2
∇m : ∇φ dx < 0 (4.46)

for every φ ∈ B. Now, for x ∈ R
2 we define the four Belavin–Polyakov profiles:

φ+,+(x) := (	1(x),	2(x),	3(x)), (4.47)
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φ−,+(x) := (	2(x),	1(x),−	3(x)), (4.48)

φ+,−(x) := (−	1(x),−	2(x),	3(x)), (4.49)

φ−,−(x) := (−	2(x),−	1(x),−	3(x)). (4.50)

It is straightforward to see thatˆ
R2

∇m3 · ∇φ+,+;3 dx = −
ˆ
R2

∇m3 · ∇φ−,−;3 dx, (4.51)
ˆ
R2

∇m3 · ∇φ+,−;3 dx = −
ˆ
R2

∇m3 · ∇φ−,+;3 dx, (4.52)
ˆ
R2

∇m′ : ∇φ′±,+ dx = −
ˆ
R2

∇m′ : ∇φ′±,− dx . (4.53)

Therefore, by (4.46) and (4.51)–(4.53) we get

0 >

ˆ
R2

∇m : (∇φ+,+ + ∇φ+,− + ∇φ−,+ + ∇φ−,−
)
dx

=
ˆ
R2

∇m3 · (∇φ+,+;3 + ∇φ+,−;3 + ∇φ−,+;3 + ∇φ−,−;3
)
dx

+
ˆ
R2

∇m′ : (∇φ′+,+ + ∇φ′+,− + ∇φ′−,+ + ∇φ′−,−
)
dx = 0,

(4.54)

which is a contradiction. ��
Proof of Lemma 4.4. Lemma 4.3 ensures the existence of φ ∈ B such thatˆ

R2
|∇(m − φ)|2 dx = D2(m;B). (4.55)

As φ arises from 	 purely by invariances of the energy, we may without loss of
generality suppose φ = 	 by re-defining m. Throughout the proof, we abbreviate
J̃ := {ξ ◦ 	 : ξ ∈ J }.

Step 1: We decompose m − 	 into a vector field parallel to 	, a Jacobi field
and a tangent vector field normal to Jacobi fields. Furthermore, we state a few
preliminary estimates and identities.
For ξ ∈ H1

w(R2; T	S
2), let π J̃ (ξ) := πJ (ξ ◦ 	−1) ◦ 	, where πJ is defined in

(4.38), which makes sense in view of Lemma A.2. We decompose ζ := m − 	

pointwise into the three parts:

ζ‖ := (ζ · 	)	 = −1

2
|m − 	|2	, (4.56)

ζ J̃ := π J̃ (ζ − ζ‖), (4.57)

ζ ∗ := ζ − ζ‖ − ζ J̃ , (4.58)

where we noted that ζ −ζ‖ ∈ H̊1(R2;R3)∩L∞(R2;R3) ⊂ H1
w(R2;R3). Since by

Proposition4.2 themapπJ is both an L2(S2; TS2)-orthogonal and an H̊1(S2; TS2)-
orthogonal projection, Lemma A.2 implies thatˆ

R2
ζ J̃ · ζ ∗|∇	|2 dx = 0, (4.59)
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ˆ
R2

∇ζ J̃ : ∇ζ ∗ dx = 0. (4.60)

Lemma 2.5, which we may apply due to our smallness assumption D2(m;B) < η̃,
together with Lemma A.2 tells us that

ˆ
R2

|ζ‖|2|∇	|2 dx = 1

4

ˆ
R2

|m − 	|4|∇	|2 dx ≤ C4
4

4
D4(m;B). (4.61)

Step 2: We claim that

ˆ
R2

|ζ |2|∇	|2 dx ≤
ˆ
R2

|ζ ∗|2|∇	|2 dx + 5

4
C4
4D

4(m;B). (4.62)

Indeed, by construction we have (ζ J̃ + ζ ∗) · ζ‖ = 0 almost everywhere. Therefore,
by (4.59) we obtain

ˆ
R2

|ζ |2|∇	|2 dx

=
ˆ
R2

(
|ζ‖|2 + 2ζ‖ · (ζ J̃ + ζ ∗) + |ζ J̃ |2 + 2ζ J̃ · ζ ∗ + |ζ ∗|2

)
|∇	|2 dx

=
ˆ
R2

(
|ζ‖|2 + |ζ J̃ |2 + |ζ ∗|2

)
|∇	|2 dx .

(4.63)

The ζ‖-term in (4.63) is controlled by (4.61), so that we only have to estimate
the ζ J̃ -term. Furthermore, since ζ J̃ is a Jacobi field, Proposition 4.2 implies that
we can find ε > 0 and a smooth map φ : (−ε, ε) → B such that φ(0) = 	 and
∂tφ(t)|t=0 = ζ J̃ . Differentiating the expression

´
R2 |∇(m − φ(t))|2 dx in t and

using the fact that t = 0 is its minimum, we obtain

ˆ
R2

∇ζ : ∇ζ J̃ dx = 0. (4.64)

Thus we have together with ζ J̃ = ζ − ζ‖ − ζ ∗ and the identity (4.60) that

ˆ
R2

|∇ζ J̃ |2 dx =
ˆ
R2

∇(ζ − ζ‖ − ζ ∗) : ∇ζ J̃ dx = −
ˆ
R2

∇ζ‖ : ∇ζ J̃ dx .

(4.65)

ByProposition 4.2, ζ J̃ is smooth, andwemayuseLemma4.1, the fact that ζ‖·ζ J̃ = 0
almost everywhere, as well as (4.56) to obtain

−
ˆ
R2

∇ζ‖ : ∇ζ J̃ dx = −
ˆ
R2

2(ζ‖ · 	)(∇	 : ∇ζ J̃ ) dx

=
ˆ
R2

|m − 	|2(∇	 : ∇ζ J̃ ) dx .
(4.66)
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The two identities (4.65) and (4.66) allow us to obtain from the Cauchy–Schwarz
inequality and the estimate (4.61) thatˆ

R2
|∇ζ J̃ |2 dx ≤ C4

4D
4(m;B). (4.67)

This and the Poincaré type inequality (4.6) furthermore impliesˆ
R2

|ζ J̃ |2|∇	|2 dx ≤ C4
4D

4(m;B), (4.68)

which together with (4.61) yields the claim.
Step 3: We also claim thatˆ
R2

|∇ζ |2 dx =
ˆ
R2

(
|∇ζ‖|2 + 2∇ζ‖ : ∇(ζ − ζ‖) + |∇ζ J̃ |2 + |∇ζ ∗|2

)
dx

(4.69)

andˆ
R2

2∇ζ‖ : ∇(ζ − ζ‖) dx +
ˆ
R2

|∇ζ‖|2 dx ≥ −2C2
4D

3(m;B) − C4
4D

4(m;B).

(4.70)

The first equality follows directly from (4.60). With the help of the identities ∂k[	 ·
(ζ −ζ‖)] = 0 and ∂kζ‖,l = − 1

2 |m−	|2∂k	l − 1
2	l∂k |m−	|2 a.e. for k = 1, 2 and

l = 1, 2, 3 obtained from (4.56), the second term in the right-hand side of (4.69) isˆ
R2

2∇ζ‖ : ∇(ζ − ζ‖) dx

=
ˆ
R2

2∑

k=1

3∑

l=1

(
−|ζ |2 ∂k	l ∂k(ζ − ζ‖)l − 	l ∂k |ζ |2 ∂k(ζ − ζ‖)l

)
dx

=
ˆ
R2

2∑

k=1

3∑

l=1

(
(ζ − ζ‖)l ∂k |ζ |2 ∂k	l − |ζ |2 ∂k	l ∂k(ζ − ζ‖)l

)
dx .

(4.71)

As |∇	(x)| = O(|x |−2) for |x | → ∞, we may integrate by parts in the first term
to get

ˆ
R2

2∑

k=1

3∑

l=1

(ζ − ζ‖)l ∂k |ζ |2 ∂k	l dx

= −
ˆ
R2

(

|ζ |2(ζ − ζ‖) · �	 +
2∑

k=1

3∑

l=1

|ζ |2 ∂k(ζ − ζ‖)l ∂k	l

)

dx .

(4.72)

The first term drops out by the harmonic map equation �	 + |∇	|2	 = 0 and
the fact that 	 · (ζ − ζ‖) = 0 almost everywhere, while the second one combines
with the second term on the right-hand side of identity (4.71) to giveˆ

R2
2∇ζ‖ : ∇(ζ − ζ‖) dx = −

ˆ
R2

2|ζ |2 ∇	 : ∇ζ dx +
ˆ
R2

2|ζ |2 ∇	 : ∇ζ‖ dx .

(4.73)
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The Cauchy–Schwarz inequality and the equality in (2.38) applied to the first term
on the right-hand side, as well as Young’s inequality applied to the second term
imply

−
ˆ
R2

2∇ζ‖ : ∇(ζ − ζ‖) dx ≤ 2

(ˆ
R2

|ζ |4|∇	|2 dx
) 1

2

D(m;B)

+
ˆ
R2

|ζ |4|∇	|2 dx +
ˆ
R2

|∇ζ‖|2 dx,
(4.74)

By estimate (4.61), this gives the second part of the claim.
Step 4: Conclusion.

We now use Steps 2 and 3 to decompose the conclusion of Lemma A.4 in terms of
ζ ∗, ζ‖ and ζ J̃ , taking care to not estimate

´
R2 |∇ζ ∗|2 dx in the identity (4.69) and

only to estimate one third of the remaining terms, by which we obtain

F(m) − 8π =
ˆ
R2

|∇(m − 	)|2 − (m − 	)2|∇	|2 dx

≥ H	(ζ ∗, ζ ∗) + 2

3

ˆ
R2

(
|∇ζ‖|2 + 2∇ζ‖ : ∇(ζ − ζ‖) + |∇ζ J̃ |2

)
dx

− 2

3
C2
4D

3(m;B) − 19

12
C4
4D

4(m;B).

(4.75)

As we have ζ ∗ ◦ 	−1 ∈ H
1 by construction, see definition (4.58), the spectral gap

proved in Proposition 4.2 along with Lemma A.2 gives

H	(ζ ∗, ζ ∗) = H(ζ ∗ ◦ 	−1, ζ ∗ ◦ 	−1) ≥ 2

3

ˆ
S2

∣∣∣∇
(
ζ ∗ ◦ 	−1

)∣∣∣
2
dH2

= 2

3

ˆ
R2

|∇ζ ∗|2 dx . (4.76)

As a result, the estimate (4.75) and Step 3 imply

F(m) − 8π ≥ 2

3

ˆ
R2

|∇(m − 	)|2 dx − 2

3
C2
4D

3(m;B) − 19

12
C4
4D

4(m;B),

(4.77)

concluding the proof. ��

4.3. Proofs of Theorem 2.4, Lemma 2.5 and Corollary 2.6

Having collected all the necessary intermediate statements in the two previous
subsections, we now proceed with proving our main results, starting with Theo-
rem 2.4.
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Proof of Theorem 2.4. Step 1: For all α > 0 there exists β > 0 such that for all
m ∈ C with F(m) − 8π ≤ β we have D(m;B) < α.

Towards a contradiction, we assume that there exists α > 0 and a sequence
of mn ∈ C for n ∈ N such that F(mn) − 8π ≤ 1

n and D(mn;B) ≥ α. Then, for
r > 0 we introduce the Lévy concentration function Qn(r) := supx∈R2 μn(Br (x))
associated with the measure μn such that dμn := |∇mn|2 dx . Observe that Qn(r)
is a non-decreasing continuous function of r and satisfies limr→0 Qn(r) = 0 and
limr→∞ Qn(r) = F(mn) ≥ 8π . Using translation and scale invariance of F , we
can thus assume the sequence (mn) to satisfyˆ

B1(0)
|∇mn|2 dx = Qn(1) = 4π (4.78)

for all n ∈ N. Lemma A.2 implies that the sequence of m̃n(y) := mn ◦ 	−1(y) for
y ∈ S

2 and n ∈ N is a minimizing sequence for FS2 . Consequently, [56, Theorem
1”] implies that there exists a harmonic map m̃ : S2 → S

2 and a defect measure
ν on S

2 supported on an at most countable set such that m̃n ⇀ m̃ in H1(S2;R3)

and |∇m̃n|2 dy ∗
⇀ |∇m̃|2 dy + ν as Radon measures. Furthermore, [56, Theorem

5.8] implies that for ν 
= 0 there exist P ∈ N points {yp}Pp=1 ∈ S
2 such that

ν =∑P
p=1 8πNpδyp for some Np ∈ N.

If we had ν 
= 0, then on account of limn→∞ FS2(m̃n) = 8π there can be at
most a single defect y1 ∈ S

2 such that ν = 8πδy1 , and we must have ∇m̃ = 0
almost everywhere. We must consequently have y1 ∈ 	(B1 (0)), which, however,
implies

lim
n→∞

ˆ
B1(	−1(y1))

|∇mn|2 dx = 8π, (4.79)

contradicting the second equality in (4.78).

Therefore, we must have ν = 0, in which case the convergence |∇m̃n|2 dy ∗
⇀

|∇m̃|2 dy gives ˆ
S2

|∇m̃|2 dy = 8π, (4.80)

which, in turn, implies that mn → m in H̊1(R2;R3). However, this contradicts the
assumption D(mn;B) ≥ α for all n ∈ N.

Step 2: Conclusion.
By Step 1 we can choose β > 0 such that for all m ∈ C with F(m) − 8π ≤ β we
have D2(m;B) ≤ η̃, where η̃ is as in Lemma 2.5. If we additionally choose β > 0
small enough, Lemma 4.4 thus implies that there exists η̂ > 0 such that

η̂D2(m;B) ≤ F(m) − 8π (4.81)

for all m ∈ C with F(m) − 8π ≤ β. For m ∈ C with F(m) − 8π ≥ β we use
Lemma A.4 together with

´
R2(m − φ)2|∇φ|2 dx ≤ 32π for all φ ∈ B to get

D2(m;B) ≤ F(m) + 24π ≤
(
1 + 32π

β

)
(F(m) − 8π) . (4.82)
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Given m ∈ C, existence of φ such thatˆ
R2

|∇ (m − φ)|2 dx = D2(m;B) (4.83)

was proved inLemma4.3. Thus the theoremholds forη := min

{
η̂,
(
1 + 32π

β

)−1
}
.

��
Proof of Lemma 2.5. By Jensen’s inequality, it is sufficient to prove the estimate
for p ≥ 2. The Sobolev inequality applied to the map u(y) := m(y) − y −
−́
S2

(m(ỹ) − ỹ) dH2(ỹ) for y ∈ S
2 implies (see, for example, [5, Theorem 4])

(
−
ˆ
S2

∣∣∣∣m(y) − y − −
ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

∣∣∣∣

p

dH2(y)

) 2
p

≤ p − 2

2
−
ˆ
S2

|∇ (m(y) − y)|2 dH2(y)

+ −
ˆ
S2

∣∣
∣∣m(y) − y − −

ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

∣∣
∣∣

2

dH2(y).

(4.84)

The sharp Poincaré type inequality, following from the first nontrivial eigenvalue
of the negative Laplace–Beltrami operator −� on S

2, see for example [35, Theo-
rem 3.67], implies

−
ˆ
S2

∣∣∣∣m(y) − y − −
ˆ
S2

(m(z̃) − ỹ) dH2(ỹ)

∣∣∣∣

2

dH2(y)

≤ 1

2
−
ˆ
S2

|∇ (m(y) − y)|2 dH2(y), (4.85)

so that we obtain the Sobolev–Poincaré inequality

(
−
ˆ
S2

∣∣
∣∣m(y) − y − −

ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

∣∣
∣∣

p

dH2(y)

) 2
p

≤ p − 1

2
−
ˆ
S2

|∇ (m(y) − y)|2 dH2(y).

(4.86)

As the right-hand side of this estimate is part of the desired Sobolev inequality,
we only have to control the average. To this end, for the moment we only consider
the case that m is smooth. By symmetry of S2, we obviously have

−
ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ) = −
ˆ
S2
m(ỹ) dH2(ỹ). (4.87)

With the goal of finding a similar cancellation for the remaining term, we work
towards writing it on the image of m.

Setting m̃ := m ◦ 	 and using Lemma A.2, we have

−
ˆ
S2
m dH2 = 1

8π

ˆ
R2

m̃|∇	|2 dx . (4.88)
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The identity |∇	|2 − |∇m̃|2 = 2∇	 : ∇(	 − m̃) + |∇(	 − m̃)|2 and Cauchy–
Schwarz inequality imply

∣∣∣
∣
1

8π

ˆ
R2

m̃
(
|∇m̃|2 − |∇	|2

)
dx

∣∣∣
∣

≤ 1√
2π

(ˆ
R2

|∇(m̃ − 	)|2 dx
) 1

2 + 1

8π

ˆ
R2

|∇(m̃ − 	)|2 dx .
(4.89)

With the goal of further rewriting 1
8π

´
R2 m̃|∇m̃|2 dx , we use the estimate (A.23)

to get

|∇m̃|2 ≥ 2|m̃ · (∂1m̃ × ∂2m̃)|, (4.90)

and thus we obtain
∣
∣∣∣
1

8π

ˆ
R2

m̃
(
2|m̃ · (∂1m̃ × ∂2m̃)| − |∇m̃|2

)
dx

∣
∣∣∣

≤ 1

8π

ˆ
R2

(
|∇m̃|2 − 2|m̃ · (∂1m̃ × ∂2m̃)|

)
dx

≤ 1

8π

ˆ
R2

(
|∇m̃|2 − 2m̃ · (∂1m̃ × ∂2m̃)

)
dx

= 1

8π

ˆ
R2

|∇m̃|2 dx − N (m̃) .

(4.91)

By choosing η̃ > 0 small enough, we get N (m̃) = 1 due to H̊1-continuity of N ,
so that the above turns into
∣
∣∣∣
1

8π

ˆ
R2

m̃
(
2|m̃ · (∂1m̃ × ∂2m̃)| − |∇m̃|2

)
dx

∣
∣∣∣ ≤ 1

8π

(ˆ
R2

|∇m̃|2 dx − 8π

)
.

(4.92)

By Lemma A.4, we get

1

8π

(ˆ
R2

|∇m̃|2 dx − 8π

)
≤ 1

8π

ˆ
R2

|∇(m̃ − 	)|2 dx, (4.93)

so that the above gives
∣∣∣∣
1

8π

ˆ
R2

m̃
(
2|m̃ · (∂1m̃ × ∂2m̃)| − |∇m̃|2

)
dx

∣∣∣∣ ≤ 1

8π

ˆ
R2

|∇(m̃ − 	)|2 dx .
(4.94)

We now aim to use the area formula [3, Theorem 2.71] to rewrite the first term
on the left-hand side as an integral over the image of m̃. As we have m̃ · ∂1m̃ =
m̃ · ∂2m̃ = 0 everywhere, the two vectors m̃ and ∂1m̃× ∂2m̃ are parallel. Therefore,
we have

|m̃ · (∂1m̃ × ∂2m̃)|2 = |∂1m̃ × ∂2m̃|2 = ∂1m̃ · (∂2m̃ × (∂1m̃ × ∂2m̃)))

= |∂1m̃|2|∂2m̃|2 − (∂1m̃ · ∂2m̃)2,
(4.95)
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so that |m̃ · (∂1m̃ × ∂2m̃)| is the modulus of the Jacobian of m̃. Consequently, the
area formula gives

1

4π

ˆ
R2

m̃ |m̃ · (∂1m̃ × ∂2m̃)| dx = −
ˆ
S2

zH0({m̃−1(z)}) dH2(z)

= −
ˆ
S2

zH0({m−1(z)}) dH2(z).
(4.96)

For all z ∈ S
2 there exists at least one y ∈ S

2 such that m(y) = z since m has non-
zero degree, see [18, Property 1]. On account of H0 being the counting measure,
this means that we haveH0({m−1(z)}) ≥ 1 for almost all z ∈ S

2. By symmetry of
the sphere we get

∣∣
∣∣−
ˆ
S2

zH0({m−1(z)}) dH2(z)

∣∣
∣∣ =

∣∣
∣∣−
ˆ
S2

z
(
H0({m−1(z)}) − 1

)
dH2(z)

∣∣
∣∣

≤ −
ˆ
S2

(
H0({m−1(z)}) − 1

)
dH2(z).

(4.97)

Going back toR2 and exploiting that averaging leaves constant functions invariant,
by (4.90) we obtain

−
ˆ
S2

(
H0({m−1(z)}) − 1

)
dH2(z) = 1

4π

ˆ
R2

|m̃ · (∂1m̃ × ∂2m̃)| dx − 1

≤ 1

8π

ˆ
R2

|∇m̃|2 dx − 1.
(4.98)

Straightforwardly concatenating the estimates (4.96), (4.97), (4.98) and (4.93), we
then obtain

∣
∣∣∣
1

4π

ˆ
R2

m̃ |m̃ · (∂1m̃ × ∂2m̃)| dx
∣
∣∣∣ ≤

1

8π

ˆ
R2

|∇(m̃ − 	)|2 dx . (4.99)

Adding the estimates (4.89), (4.94), and (4.99) we get

∣∣
∣∣
1

8π

ˆ
R2

m̃|∇	|2 dx
∣∣
∣∣ ≤

1√
2π

(ˆ
R2

|∇(m̃ − 	)|2 dx
) 1

2

+ 3

8π

ˆ
R2

|∇(m̃ − 	)|2 dx .
(4.100)

Concatenating the identities (4.87) and (4.88), and again applying Lemma A.2, we
thus obtain

∣∣
∣∣−
ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

∣∣
∣∣ ≤

1√
2π

(ˆ
S2

|∇(m(y) − y)|2 dH2(y)

) 1
2

+ 3

8π

ˆ
S2

|∇(m(y) − y)|2 dH2(y).

(4.101)
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Under the assumption
´
R2 |∇(m̃ − 	)|2 dx ≤ η̃ for η̃ > 0 small enough, we then

get

∣∣∣
∣−
ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

∣∣∣
∣ ≤

1√
π

(ˆ
S2

|∇(m(y) − y)|2 dy
) 1

2

, (4.102)

which by a density result of Schoen and Uhlenbeck [75] even holds for all
m ∈ H1(S2;S2)with ´

S2
|∇m|2 dx−8π ≤ η̃. Together with inequality (4.86), this

proves the desired Sobolev inequality.
In order to obtain exponential integrability, we exploit the Moser–Trudinger

inequality, [66, Theorem 2], which saysˆ
S2
e4π |u|2 dH2 ≤ C (4.103)

for a universal constant C > 0 and u : S2 → R satisfying
´
S2

|∇u|2 dH2 ≤ 1 and
−́
S2
u dH2 = 0. To this end, for i = 1, 2, 3 and y ∈ S

2 we define, assuming without
loss of generality that m 
= idS2 :

ui (y) :=
(ˆ

S2
|∇(m(ỹ) − ỹ)|2 dH2(ỹ)

)− 1
2

×
(

(m(y) − y) − −
ˆ
S2

(m(ỹ) − ỹ) dH2(ỹ)

)

i
. (4.104)

By Hölder’s inequality and the Moser–Trudinger inequality we have

ˆ
S2
e
4π
3 |u|2 dH2 =

ˆ
S2

3∏

i=1

e
4π
3 |ui |2 dH2 ≤

3∏

i=1

(ˆ
S2
e4π |ui |2 dH2

)1/3
≤ C.

(4.105)

At the same time, as a result of the inequality (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R,
we have for all y ∈ S

2 that

2|ui (y)|2 ≥
(ˆ

S2
|∇(m(y) − y)|2 dH2(y)

)−1

×
(

|mi (y) − yi |2 − 2

∣∣∣∣−
ˆ
S2

(m(ỹ) − ỹ)i dH2(ỹ)

∣∣∣∣

2
)

, (4.106)

which by the estimate (4.102) gives

2|ui (y)|2 ≥ |mi (y) − yi |2
‖∇(m − idS2)‖22

− C. (4.107)

The two estimates (4.106) and (4.107) together imply

ˆ
S2
e
2π
3

|m(y)−y|2
‖∇(m−id

S2
)‖22 dH2(y) ≤ C, (4.108)

concluding the proof. ��
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Proof of Corollary 2.6. The statement for degree 1 maps immediately follows
from Theorem 2.4 and Lemma A.2. The estimate for degree −1 maps is a simple
consequence of the fact that m ∈ H1(S2;S2) has degree −1 if and only if −m has
degree 1. ��

5. Existence of Minimizers

The goal of this section is to show that minimizers of the energy Eσ,λ over A
exist in an appropriate range of parameters by proving Theorem 2.1.

5.1. First Lower Bounds

Here, we describe the basic coercivity properties of Eσ,λ. To do so, we
ensure that exchange and anisotropy energies being finite forces either m − e3 ∈
L2(R2;R3) or m + e3 ∈ L2(R2;R3), justifying our choice of the latter as an
assumption in the definition ofA. Recall thatm = (m′,m3), wherem′ = (m1,m2)

is the in-plane component of the magnetization vector.

Lemma 5.1. Let m ∈ H̊1(R2;S2) be such that m′ ∈ L2(R2;R2). Then we have
m − e3 ∈ L2(R2;R3) or m + e3 ∈ L2(R2;R3) with the estimate

min

{ˆ
R2

|m3 − 1|2 dx,
ˆ
R2

|m3 + 1|2 dx
}

≤ 1

4π

ˆ
R2

|∇m|2 dx
ˆ
R2

(1 − m2
3) dx .

(5.1)

In particular, for m ∈ A we have

ˆ
R2

|m3 + 1|2 dx ≤ 4
ˆ
R2

(1 − m2
3) dx . (5.2)

Using this estimate, we are in a position to prove that Eσ,λ is bounded from
below and controls both the Dirichlet and the anisotropy energies.

Lemma 5.2. Let σ > 0 and λ ∈ [0, 1]. Let m ∈ H̊1(R2;S2) with m + e3 ∈
L2(R2;R3) and

´
R2 |∇m|2 dx < 16π . Then Eσ,λ(m) < ∞, and we have the lower

bounds

(
1 − σ 2 (1 + λ)2

4

)ˆ
R2

|∇m|2 dx ≤ Eσ,λ(m), (5.3)

(
1 − σ 2 (1 + λ)2

2

) ˆ
R2

|∇m|2 dx + σ 2

2

ˆ
R2

|m′|2 dx ≤ Eσ,λ(m). (5.4)

In particular, in the regime σ(1 + λ) ≤ 2 we have Eσ,λ(m) ≥ 0 for all m ∈ A.
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Proof of Lemma 5.1. Step 1: We have either m3 − 1 ∈ L2(R2;R3) or m3 + 1 ∈
L2(R2;R3).

For almost all x ∈ R
2 with m3(x) < 1 we have the inequality |∇m3|2

1−m2
3

≤ |∇m|2,
see for example [69, (3.17)] for the argument, which together with the fact that
|∇m3|(x) = 0 for almost all x ∈ R

2 with |m3(x)| = 1 and together with Hölder’s
inequality gives

ˆ
R2

|∇m3| dx =
ˆ

{m3<1}
|∇m3| dx

≤
(ˆ

R2
|∇m|2 dx

) 1
2
(ˆ

R2
(1 − m2

3) dx

) 1
2

< ∞.

(5.5)

The co-area formula, see for example [3, Theorem 3.40], reads

ˆ
R2

|∇m3| dx =
ˆ 1

−1
P({m3 > t}) dt. (5.6)

Therefore, there exists t ∈ (− 1
2 ,

1
2 ) such that

P({m3 > t}) ≤
ˆ
R2

|∇m3| dx < ∞. (5.7)

The isoperimetric inequality [3, Theorem 3.46] then implies

min {|{m3 > t}|, |{m3 ≤ t}|} ≤ 1

4π
P2({m3 > t}) < ∞. (5.8)

In the following we only deal with the case |{m3 ≤ t}| < ∞, as the other
case can be treated similarly. Using 0 ≤ 1 − m3(x) ≤ 2 for all x ∈ R

2, and
1 + m3(x) > 1 + t ≥ 1

2 for all x ∈ {m3 > t}, we have
ˆ
R2

|m3 − 1|2 dx ≤ 2
ˆ

{m3>t}
(1 − m3) dx + 4|{m3 ≤ t}|

≤ 4
ˆ

{m3>t}
(1 + m3)(1 − m3) dx + 4|{m3 ≤ t}|

≤ 4
ˆ
R2

(1 − m2
3) dx + 4|{m3 ≤ t}| < ∞.

(5.9)

Step 2: Prove the quantitative estimates.
By [34, Theorem 2] the optimal Gagliardo–Nirenberg–Sobolev inequality is

‖u‖2 ≤ 1

2
√

π
‖Du‖1 (5.10)
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for any u ∈ Lr (R2)with r ∈ [1,∞). Combining this inequality with estimate (5.5)
yields

min

{ˆ
R2

|m3 − 1|2 dx,
ˆ
R2

|m3 + 1|2 dx
}

≤ 1

4π

(ˆ
R2

|∇m3| dx
)2

≤ 1

4π

ˆ
R2

|∇m|2 dx
ˆ
R2

(1 − m2
3) dx,

(5.11)

which concludes the proof of estimate (5.1). Finally, inequality (5.2) for m ∈ A
follows from m + e3 ∈ L2(R2;R3) and

´
R2 |∇m|2 dx < 16π . ��

Proof of Lemma 5.2. By Lemma 3.1, we have 0 ≤ Fvol(m′) < ∞. Furthermore,
the estimate (3.7) gives

Fsurf(m3) ≤ 1

2
‖m3 + 1‖2‖∇m3‖2. (5.12)

Lemma 5.1 and the assumption ‖∇m‖2 < 4
√

π for all m ∈ A then imply

Fsurf(m3) ≤ 1

4
√

π
‖m′‖2‖∇m‖22 ≤ ‖m′‖2‖∇m‖2. (5.13)

To handle the DMI term, note that the Cauchy–Schwarz inequality gives

2
ˆ
R2

m′ · ∇m3 dx ≤ 2‖m′‖2‖∇m3‖2. (5.14)

Combining these insights and applying Young’s inequality we obtain

Eσ,λ(m) ≥
ˆ
R2

(
|∇m|2 + σ 2|m′|2

)
dx − σ 2(1 + λ)‖m′‖2‖∇m‖2

≥
(
1 − σ 2 (1 + λ)2

4

)ˆ
R2

|∇m|2 dx
(5.15)

and

Eσ,λ(m) ≥
ˆ
R2

((
1 − σ 2 (1 + λ)2

2

)
|∇m|2 + σ 2

2
|m′|2

)
dx, (5.16)

which gives the desired statements. ��
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5.2. Upper Bounds via Minimization of a Reduced Energy

We now turn to defining a simplified energy that reduces the minimization
to finding the best Belavin–Polyakov profile taking the correct value at infinity.
As these profiles have logarithmically divergent anisotropy energy, a truncation is
necessary to make sense of the energy.

Let

f (r) := 2r

1 + r2
(5.17)

be the in-plane modulus of the Néel-type Belavin–Polyakov profile

	(x) =
(

− 2x

1 + |x |2 ,
1 − |x |2
1 + |x |2

)
. (5.18)

We consider the truncation at scale L > 1 defined as

	L(x) :=
(

− fL(|x |) x

|x | , sign(1 − |x |)
√
1 − f 2L (|x |)

)
, (5.19)

where

fL(r) :=

⎧
⎪⎨

⎪⎩

f (r) if r ≤ L
1
2 ,

f
(
L

1
2

)
K1
(
r L−1

)

K1

(
L− 1

2

) if r > L
1
2 . (5.20)

Here, K1 is the modified Bessel function of the second kind of order 1, for a more
detailed discussion see Sect. A.3. The ansätze are then given by

φρ,θ,L(x) := Sθ	L(ρ−1x) (5.21)

for ρ > 0, θ ∈ [−π, π), L > 1 and where Sθ is given by (2.24). For convenience,
we also define φρ,θ,∞(x) := Sθ	(ρ−1x).

For later computations, it turns out to be convenient to not quite use the variables
ρ and L in the definition of the reduced energy, but to make the substitutions

ρ̃ = | log σ |ρ, L̃ = L

2
√

π
. (5.22)

We furthermore divide the energy by σ 2

| log σ | . As we will show below, for σ > 0,
λ ∈ [0, 1] and a constant K > 0 the rescaled energy of φρ,θ,L is then given to the
leading order in σ � 1 by

Eσ,λ;K
(
ρ̃, θ, L̃

) := | log σ | (σ L̃
)−2 + 4π log

(
K L̃2

)

| log σ | ρ̃2 − g(λ, θ)ρ̃, (5.23)

on the domain

Vσ :=
{(

ρ̃, θ, L̃
) : ρ̃ > 0, θ ∈ [−π, π), L̃ ≥ 1

4σ
√

π

}
, (5.24)
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where

g(λ, θ) := 8πλ cos θ + π3

8
(1 − λ)

(
1 − 3 cos2 θ

)
. (5.25)

The first term on the right-hand side of definition (5.23) represents the Dirichlet
excess. The constant 4

√
π in the bound for L̃ in the definition of Vσ is the result

of the a priori estimate (6.5) for the Dirichlet excess arising in the proof of the
lower bound in Sect. 6. The second term captures the logarithmic blowup of the
anisotropy energy as the profile approaches a Belavin–Polyakov profile. Finally,
the third term combines the contributions of the DMI and stray field terms.

The details of the truncation (5.20) will only enter through the constant K > 0,
with our construction giving K = K ∗, where

K ∗ := 16π

e2(1+γ )
, (5.26)

in which γ ≈ 0.5772 is the Euler–Mascheroni constant. As this constant matches
the one obtained in Lemma 6.4 below, we do expect our ansatz to be optimal.
However, we will lose a constant factor of 2

3 − ε for ε > 0 sufficiently small
in the application of the rigidity Theorem 2.4, so that we get different energies
Eσ,λ;K ∗ and Eσ,λ;( 32+ε)−1K ∗ appearing in the upper and lower bounds for min Eσ,λ.
Nevertheless, we will see that the stability properties of the two reduced energies
are strong enough to prove Theorem 2.2.

The next lemma contains an estimate comparing Eσ,λ(φρ,θ,L) with Eσ,λ;K(
ρ̃, θ, L̃

)
. The rate σ

1
2 | log σ | is likely not optimal, but it is sufficient for our argu-

ment. Additionally, we keep track of a number of identities which will be useful
later.

Lemma 5.3. There exist universal constants C > 0 and σ0 > 0 such that for
all σ ∈ (0, σ0) and for all λ ∈ [0, 1] we have the following: For ρ ∈ (0, 1],
θ ∈ [−π, π) and L ≥ 1

2σ we have φρ,θ,L ∈ A and
(
| log σ |ρ, θ, L

2
√

π

)
∈ Vσ .

Furthermore, it holds that
∣
∣∣∣
| log σ |

σ 2

(
Eσ,λ(φρ,θ,L) − 8π

)− Eσ,λ;K ∗
(

| log σ |ρ, θ,
L

2
√

π

)∣∣∣∣ ≤ Cσ
1
4 | log σ |,

(5.27)

where K ∗ is defined in Eq. (5.26). Additionally, for any ρ > 0 we have
ˆ
R2

|∇φρ,θ,L |2 dx − 8π ≤ 4π

L2 + C log2 L

L3 , (5.28)
ˆ
R2

∣∣∇ (φρ,θ,∞ − φρ,θ,L
)∣∣2 dx ≤ CL−2, (5.29)

ˆ
R2

|φ′
ρ,θ,L |2 dx ≤ 4πρ2 log

(
4L2

e2(1+γ )

)
+ Cρ2 log2 L

L
, (5.30)

ˆ
R2

|φρ,θ,∞;3 − φρ,θ,L;3|2 dx ≤ Cρ2

L
, (5.31)
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ˆ
R2

2φ′
ρ,θ,∞ · ∇φρ,θ,∞;3 dx = 8πρ cos θ, (5.32)

ˆ
R2

2φ′
ρ,θ,L · ∇φρ,θ,L;3 dx = 8πρ cos θ + O

(
ρL− 1

2

)
, (5.33)

Fvol
(
φ′

ρ,θ,L

)
− Fsurf

(
φρ,θ,L;3

) =
(
3π3

8
cos2 θ − π3

8

)
ρ + O

(
ρL− 1

4

)
.

(5.34)

Having thus established the correspondence between Eσ,λ and Eσ,λ;K , we can
carry it out explicitly for the first part of the following statement. The stability
properties of Eσ,λ;K are collected in the second part, which will yield convergence
of the skyrmion radius and angle in Sect. 6.

Proposition 5.4. There exists a universal constant σ0 > 0 such that for all σ ∈
(0, σ0), λ ∈ [0, 1] and K ∈ [ 12K ∗, 2K ∗] we have the following:
(i) The function Eσ,λ;K has at most two global minimizers (ρ0, θ

±
0 , L0) over Vσ

and no further critical points in Vσ . Recalling the definitions (2.26) and (2.27),
the minimizers are given by

ρ0 = ḡ(λ)

16π
+ O

(
log | log σ |

| log σ |
)

, (5.35)

θ±
0 =

{
0 if λ ≥ λc,

± arccos
(

32λ
3π2(1−λ)

)
else,

(5.36)

L0 =
(
8
√

π

ḡ(λ)
+ O

(
log | log σ |

| log σ |
)) | log σ |

σ
. (5.37)

Furthermore, we have

min
Vσ

Eσ,λ;K = − ḡ2(λ)

32π
+ ḡ2(λ)

32π

log | log σ |
| log σ | − ḡ2(λ)

64π

log
(

ḡ2(λ)
64πeK

)

| log σ |
+ O

(
log2 | log σ |

| log σ |2
)

(5.38)

and

g(λ, θ±
0 ) = ḡ(λ). (5.39)

(ii) Let (ρσ , θσ , Lσ ) ∈ Vσ be such that

Eσ,λ;K (ρσ , θσ , Lσ ) ≤ min
Vσ

Eσ,λ;K + ḡ2(λ)

64π | log σ | . (5.40)

lim
σ→0

ρσ = ḡ(λ)

16π
, lim

σ→0
|θσ | = θ+

0 , (5.41)

and there exists a universal constant C > 0 such that

1

C

| log σ |
σ

≤ Lσ ≤ C
| log σ |

σ
. (5.42)
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Remark 5.5. We point out that it is possible to show the rates
(

ρσ − ḡ(λ)

16π

)2
≤ C

| log σ | ,
∣∣|θσ | − θ+

0

∣∣4 + |λ − λc|
∣∣|θσ | − θ+

0

∣∣2 ≤ C

| log σ |
(5.43)

for some C > 0 universal in the setting of the second part of Proposition 5.4.
However, as we do not attempt to capture the sharp rates and as the proof is a
somewhat lengthy calculus exercise, we will not reproduce it here.

Finally, we present two corollaries to these bounds. The first simply translates
the minimal energy for Eσ,λ;K into an upper bound for the minimal value of Eσ,λ.

Corollary 5.6. There exist universal constants σ0 > 0 and C > 0 such that for all
σ ∈ (0, σ0) and λ ∈ [0, 1] we have

| log σ |
σ 2

(
inf
A

Eσ,λ − 8π

)
≤ min

Vσ

Eσ,λ;K ∗ + Cσ
1
4 | log σ |. (5.44)

While Corollary 5.6 is concerned with asymptotically precise minimization,
the existence of minimizers relies on an upper bound by 8π for general σ > 0 (see
also [64]).

Lemma 5.7. For σ > 0 and λ ∈ [0, 1] we have
inf
A

Eσ,λ < 8π. (5.45)

Proof of Lemma 5.3. The computations for 	L can be found in Lemma A.6, so
that we only have to translate them to φρ,θ,L here. By assumption, we have L ≥ 1

2σ ,
so that we can indeed apply Lemma A.6 for σ ∈ (0, σ0)with σ0 > 0 small enough.

Scale invariance of the Dirichlet energy allows to translate the bounds (A.51)
and (A.56) into the bounds (5.28) and (5.29), as well as to obtain the boundˆ

R2
|∇φρ,σ,L |2 dx < 16π. (5.46)

The fact that N (φρ,σ,L) = 1 follows from N (	L) = 1 and scale and rotation
invariance of N .

The bound (5.30) follows directly from the estimate (A.52) via rescaling. Sim-
ilarly, we get the bound (5.31) from the bound (A.57), as well as φρ,θ,L + e3 ∈
L2(R2;R3) from 	L + e3 ∈ L2(R2;R2) on account of 	L ∈ A. Together with
N (φρ,θ,L) = 1 and the estimate (5.46) we therefore obtain φρ,θ,L ∈ A for all
σ ∈ (0, σ0) with σ0 small enough universal.

For x = (x1, x2) ∈ R
2 we define x⊥ := (−x2, x1). The fact that (	′

L)⊥ ·
∇	L ,3 = 0 everywhere and the identity (A.53) allow us to calculate the DMI term
to be ˆ

R2
2φ′

ρ,θ,L · ∇φρ,θ,L ,3 dx = 2ρ cos θ

ˆ
R2

	′
L · ∇	L ,3 dx

= 8πρ cos θ + O
(
ρL− 1

2

)
,

(5.47)
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taking care of estimate (5.33). The same argument using the identity (A.50) instead
of the identity (A.53) gives the identity (5.32).

Due to ∇ · φ′
ρ,θ,L = cos θ∇ · φ′

ρ,0,L and equation (A.54), the contribution of
the volume charges is

Fvol(φ
′
ρ,θ,L) = ρFvol(	

′
L) cos2 θ = 3π3

8
ρ cos2 θ + O

(
ρL− 1

4

)
. (5.48)

As a result of the identity (A.55), the surface charges are simply given by

Fsurf(φρ,θ,L ,3) = ρFsurf(	L ,3) = π3

8
ρ + O

(
ρL− 1

2

)
. (5.49)

Combined, these two estimates give the identity (5.34).
Taking everything together and recalling (5.23), we obtain

Eσ,λ(φρ,θ,L) = 8π + 4π

L2 + 4πσ 2ρ2 log

(
4L2

e2(1+γ )

)
− σ 2ρ g(λ, θ)

+ O

(
log2 L

L3

)
+ O

(
σ 2ρ2 log2 L

L

)
+ O

(
λσ 2ρL− 1

2

)

+ O
(
(1 − λ)σ 2ρL− 1

4

)
,

(5.50)

which for a given (ρ, θ, L) ∈ Vσ and ρ ≤ 1 translates into the estimate (5.27). ��
Proof of Proposition 5.4. Step 1: Minimization in θ .

We define �(λ, θ) := ḡ(λ) − g(λ, θ) and for λ < λc = 3π2

32+3π2 calculate

�(λ, θ) = 3π3

8
(1 − λ)

(
cos θ − 32λ

3π2(1 − λ)

)2
. (5.51)

For λ ≥ λc we instead have

�(λ, θ) = 3π3

4

(
λ

λc
− 1

)
(1 − cos θ) + 3π3

8
(1 − λ)(1 − cos θ)2. (5.52)

By inspection we have �(λ, θ) ≥ 0 for all λ ∈ [0, 1] and θ ∈ [−π, π), and
�(λ, θ) = 0 if and only if θ = θ±

0 , where θ±
0 is given by (2.29). In particular, we get

the identity (5.39) and the fact that −ḡ(λ) is the minimal value of −g(λ, θ) which
is achieved at the two minima θ = θ±

0 . Therefore, we have for all σ ∈ (0, σ0),
λ ∈ [0, 1], ρ > 0, and L > 1

4σ
√

π
that

Eσ,λ;K (ρ, θ, L) = | log σ | (σ L)−2 + 4π log
(
K L2

)

| log σ | ρ2 − ḡ(λ)ρ + �(λ, θ)ρ.

(5.53)

Step 2: Minimization in ρ.
We observe that
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4π log(K L2)

| log σ |
(

ρ − ḡ(λ)| log σ |
8π log(K L2)

)2
= 4π log

(
K L2

)

| log σ | ρ2 − ḡ(λ)ρ

+ ḡ2(λ)| log σ |
16π log(K L2)

. (5.54)

Consequently, the quantity

ρ0(L) := ḡ(λ)| log σ |
8π log(K L2)

(5.55)

minimizes the map ρ �→ Eσ,λ;K (ρ, θ0, L), and we have the identity

Eσ,λ;K (ρ, θ, L) = | log σ | (σ L)−2 − ḡ2(λ)| log σ |
16π log(K L2)

+ �(λ, θ)ρ + 4π
log(K L2)

| log σ |
(

ρ − ḡ(λ)| log σ |
8π log(K L2)

)2
.

(5.56)

Step 3: Minimization in L .
We make the substitution t = K−1L−2 and minimize

f (t) := K
| log σ |

σ 2 t + ḡ2(λ)| log σ |
16π log t

(5.57)

in 0 < t ≤ 16π
K σ 2 < 1 for σ ∈ (0, σ0) with σ0 > 0 small enough universal, in

view of the assumption on K . Since f (t) ↗ 0 as t ↘ 0, the function attains its
minimum over this interval. We also observe that limσ→0 f

( 16π
K σ 2

) = ∞, so that
the minimum is achieved for 0 < t < 16π

K σ 2 < 1 for σ0 > 0 small enough.
We calculate

f ′(t) = K
| log σ |

σ 2 − ḡ2(λ)| log σ |
16π t log2 t

(5.58)

and note that 0 < t0 < 16π
K σ 2 < 1 solves f ′(t0) = 0 if and only if

−t
1
2
0 log

(
t
1
2
0

)
= ḡ(λ)σ

8π
1
2 K

1
2

(5.59)

for σ0 small enough. In turn, for s0 := log

(
t
1
2
0

)
this equation is equivalent to

s0e
s0 = − ḡ(λ)σ

8π
1
2 K

1
2

. (5.60)

Solutions to this equation only exist provided ḡ(λ)σ

8π
1
2 K

1
2

≤ e−1, which is the case for

σ ∈ (0, σ0) with σ0 > 0 small enough. Under this condition there are precisely
two solutions given by

s0,i = Wi

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
(5.61)
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for i = −1 and i = 0, where Wi are the two real-valued branches of the Lambert
W -function, see Corless et al. [22]. In terms of t0, these are

t0,i := exp

(
2Wi

(
− ḡ(λ)σ

8π
1
2 K

1
2

))
. (5.62)

As W0 is smooth at 0, with W0(0) = 0, we have

t0,0 = 1 + O(σ ) >
16π

K
σ 2 (5.63)

for σ0 sufficiently small, so that this solution is irrelevant to us. The point t0,−1
being the only other critical point of f , we get that it indeed is the minimizer
over 0 < t < 16π

K σ 2 for σ ∈ (0, σ0) with σ0 > 0 small enough. Consequently,
the minimum is taken at t0 := t0,−1, and exploiting the identity f ′(t0)t0 = 0 the
minimal value can be seen to be

min
Vσ

Eσ,θ;K = f (t0)

= ḡ2(λ)| log σ |
64π

(
W−2

−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
+ 2W−1

−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

))
.

(5.64)

In order to determine the behavior of theminimal energy as σ → 0, for−e−1 <

s < 0 with |s| � 1 we refer to the expansion

W−1(s) = log(−s) − log | log(−s)| + O

(
log | log(−s)|

| log(−s)|
)

, (5.65)

see Corless et al. [22, equation (4.19), as well as the discussion following equa-

tion (4.20)]. Combined with log

(
ḡ(λ)σ

8π
1
2 K

1
2

)
= log σ + log

(
ḡ(λ)

8π
1
2 K

1
2

)
and (2.28),

this gives

W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
= log σ + log

(
ḡ(λ)

8π
1
2 K

1
2

)
− log | log σ |

− log

⎛

⎜
⎜
⎝1 +

log

(
ḡ(λ)

8π
1
2 K

1
2

)

log σ

⎞

⎟
⎟
⎠

+ O

(
log | log σ |

| log σ |
)

= −| log σ | − log | log σ | + log

(
ḡ(λ)

8π
1
2 K

1
2

)

+ O

(
log | log σ |

| log σ |
)

(5.66)
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for σ0 sufficiently small. With 1
1+r = 1 − r + O(r2) for r � 1 we obtain

W−1
−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
= − 1

| log σ | + log | log σ |
| log σ |2 −

log

(
ḡ(λ)

8π
1
2 K

1
2

)

| log σ |2

+ O

(
log2 | log σ |

| log σ |3
)

, (5.67)

W−2
−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
= 1

| log σ |2 + O

(
log | log σ |
| log σ |3

)
. (5.68)

As a result, we have

min
Vσ

Eσ,θ;K = − ḡ2(λ)

32π
+ ḡ2(λ)

32π

log | log σ |
| log σ | − ḡ2(λ)

64π

log
(

ḡ2(λ)
64πeK

)

| log σ |
+ O

(
log2 | log σ |

| log σ |2
)

. (5.69)

Recalling the relation t = K−1L−2, the definition (5.62), and using the identity
W−1(s)eW−1(s) = s for s ∈ (−e−1, 0), we also get that the optimal truncation scale
is

L0 := K− 1
2 t

− 1
2

0 = −W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
8π

1
2

ḡ(λ)σ

= 8π
1
2

ḡ(λ)

| log σ |
σ

+ O

(
log | log σ |

σ

)
. (5.70)

Finally, recalling the definition (5.55) the optimal skyrmion radius is given by

ρ0(L0) = ḡ(λ)

16π
+ O

(
log | log σ |

| log σ |
)

. (5.71)

This concludes the proof of the first part of Proposition 5.4.
Step 4: Proof of stability for Lσ .

Let now (ρσ , θσ , Lσ ) ∈ Vσ be such that (5.40) holds. Let tσ := K−1L−2
σ and note

that by (5.24) we have tσ ∈ (0, 16π
K σ 2

)
, so that f (tσ ) is defined. The fact that

minVσ Eσ,λ;K = f (t0), the representation (5.56), and the assumption (5.40) imply
that

f (tσ ) − f (t0) ≤ Eσ,λ;K (ρσ , θσ , Lσ ) − min
Vσ

Eσ,λ;K ≤ ḡ2(λ)

64π | log σ | . (5.72)

For sσ := tσ
t0
and f̃σ (s) := 64π | log σ |

ḡ2(λ)
( f (st0) − f (t0)) with s ∈

(
0, 16πσ 2

Kt0

)
this

translates to

f̃σ (sσ ) ≤ 1. (5.73)
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In order to explicitly compute f̃σ , we use the definitions (5.57) and (5.62) together
with the fact that for all 0 < s̃ < e−1 we have W−1(−s̃)eW−1(−s̃) = −s̃, obtaining

f̃σ (s) = 64πKt0| log σ |2
ḡ2(λ)σ 2 (s − 1) + 4| log σ |2

(
1

log(st0)
− 1

log t0

)

= | log σ |2

W 2−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

) (s − 1)

− 2| log σ |2
(
2W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
+ log s

)
W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

) log s

= | log σ |2

W 2−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)

⎛

⎜⎜
⎝s − 1 −

2

∣
∣∣∣W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)∣∣∣∣ log s

2

∣∣∣∣W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)∣∣∣∣− log s

⎞

⎟⎟
⎠ .

(5.74)

Under the assumption s ∈ (0, 1), this expression can be estimated as

f̃σ (s) ≥ | log σ |2

W 2−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)
(

−1 + 1

2
min

{
2

∣∣∣
∣W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)∣∣∣
∣ , | log(s)|

})
.

(5.75)

Together with (5.65), (2.28) and K ∈ [ K ∗
2 , 2K ∗] we get for σ ∈ (0, σ0) with

σ0 > 0 small enough and some universal constant C > 1 that for s ∈ (0, 1
C

)
we

have f̃σ (s) > 1. As a result of (5.73), we therefore get sσ ≥ 1
C .

To handle the denominator in the second term on the right hand side of (5.74)

in the case s ∈
[
1, 16πσ 2

Kt0

)
, note that for all such s we have s ≤ C | log σ |2 for

C > 0 universal by (5.70), (2.28) and K ∈
[
K ∗
2 , 2K ∗

]
. Again using (2.28) and

K ∈
[
K ∗
2 , 2K ∗

]
, we therefore get for σ ∈ (0, σ0) with σ0 sufficiently small that

log s ≤
∣∣∣
∣W−1

(
− ḡ(λ)σ

8π
1
2 K

1
2

)∣∣∣
∣ . (5.76)

Thus, together with (5.65), (2.28) and K ∈ [ K ∗
2 , 2K ∗] we deduce

f̃σ (s) ≥ 1

C
(s − 1 − 2 log s) (5.77)

for s ∈
[
1, 16πσ 2

Kt0

)
, σ ∈ (0, σ0)with σ0 > 0 sufficiently small andC > 0 universal.

By the assumption (5.73), we thus get sσ ≤ C , and in total 1
C ≤ sσ ≤ C for some

C > 0 universal and σ ∈ (0, σ0) with σ0 > 0 small enough.
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Finally, we can translate the estimate for sσ back to Lσ using the relations
sσ = tσ

t0
, tσ = K−1L−2

σ and t0 = K−1L−2
0 . Therefore, with the help of equation

(5.70) and (2.28), we obtain the desired estimate in (5.42).
Step 5: Proof of stability for ρσ .

Using Eσ,λ;K (ρσ , θσ , Lσ ) ≥ minVσ Eσ,λ;K = min(0, 16πK σ 2] f , the fact that

�(λ, θσ ) ≥ 0, Lσ > 1
4σ

√
π
and K ∈ [ K ∗

2 , 2K ∗] in the identity (5.56) we obtain
(

ρσ − | log σ |
log(K

1
2 Lσ )

ḡ(λ)

16π

)2

≤ C

| log σ | . (5.78)

Again, using Lσ > 1
4σ

√
π
together with σ ∈ (0, σ0) for σ0 > 0 sufficiently small

and K ∈ [ K ∗
2 , 2K ∗] gains us

(
| log σ |

log(K
1
2 Lσ )

− 1

)2

= log2(K
1
2 σ Lσ )

log2(K
1
2 Lσ )

≤ C
log2(σ Lσ ) + 1

log2 σ
, (5.79)

which by the estimate (5.42) can be upgraded to
∣∣∣∣∣

| log σ |
log(K

1
2 Lσ )

− 1

∣∣∣∣∣
≤ C

log | log σ |
log σ

≤ C

| log σ |1/2 (5.80)

for σ ∈ (0, σ0) and σ0 > 0 small enough. In particular, we conclude that

∣∣
∣∣ρσ − ḡ(λ)

16π

∣∣
∣∣ ≤
∣∣∣
∣∣
ρσ − | log σ |

log(K
1
2 Lσ )

ḡ(λ)

16π

∣∣∣
∣∣
+ ḡ(λ)

16π

∣∣∣
∣∣

| log σ |
log(K

1
2 Lσ )

− 1

∣∣∣
∣∣

≤ C

| log σ |1/2 ,

(5.81)

which gives the first limit in (5.41).
Step 6: Proof of stability for θσ .

Turning towards proving an estimate for θσ , as for estimate (5.78) we similarly get
from the representation (5.56), the estimate (5.81) and (2.28) that

�(λ, |θσ |) ≤ C

| log σ | . (5.82)

Therefore, from estimate (5.82) and the form of the function �(λ, θ) computed in
equations (5.51) and (5.52) together with the facts that cos θ+

0 = 32
3π2

λ
1−λ

in the

case λ < λc and 1
2 (1 − cos θσ )2 ≤ (1 − cos θσ ), with θ+

0 = 0, in the case λ ≥ λc,
we obtain

lim
σ→0

cos |θσ | = cos θ+
0 . (5.83)

As z �→ arccos z is a continuous function from [−1, 1] to [0, π ], we obtain the
second limit in (5.41), which concludes the proof. ��
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Proof of Corollary 5.6. For σ ∈ (0, σ0) with σ0 > 0 small enough, we use ρ =
ρ0| log σ | , θ = θ+

0 and L = 2π
1
2 L0 in Lemma 5.3, where ρ0, θ

+
0 and L0 are from the

first part of Proposition 5.4. ��
Proof of Lemma 5.7. As the proof of Proposition 5.4 already contains the full
details of the minimization, and as this proof closely follows that of [64, Lemma
3.1], we only provide a sketch here. The main step is to find truncations of suitable
Belavin–Polyakov profiles such that the sum of the DMI and stray field terms are
negative. In the caseλ = 1,we chooseφρ,0,L , which by equation (5.33) has negative
DMI contribution for sufficiently large L depending on ρ. In the case λ < 1 we
chooseφρ, π

2 ,L , as for this function theDMI and volume charge contributions vanish
and only the stray field terms contribute a negative term. First minimizing in ρ and
then taking L large enough gives the desired statement. ��

5.3. Existence of Minimizers via the Concentration Compactness Principle

We are now in a position to prove existence of minimizers.

Proof of Theorem 2.1. Throughout the proof C(σ, λ) denotes a generic constant
depending on σ and λ that may change from estimate to estimate.

By definition (2.17), there exist mn ∈ D for n ∈ N such that

lim
n→∞ Eσ,λ(mn) = inf

m∈A
Eσ,λ(m). (5.84)

Consider the Borel measures

μn(A) :=
ˆ
A

(
|∇mn|2 + |mn + e3|2

)
dx (5.85)

for all Borel sets A ⊂ R
2. By estimate (5.3), Lemma 5.7 and the assumption

0 < σ 2(1 + λ)2 ≤ 2 we have
ˆ
R2

|∇mn|2 dx < 16π (5.86)

for n large enough. Hence Lemma A.3, Lemma 5.1 and the estimate (5.4) imply

8π ≤ μn(R
2) ≤ C(σ, λ). (5.87)

Consequently, wemay apply the concentration compactness principle [59], see also
[78, Section 4.3], to see that the limiting behavior of the sequence μn , up to taking
subsequences, falls into three alternatives of vanishing, splitting, and compactness.

Case 1: Vanishing.
Here, we have for all R > 0 that

lim
n→∞ sup

x∈R2
μn(BR (x)) = 0. (5.88)
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In this setting, the proof of [64, Lemma 4.2] establishes that mn + e3 → 0 in
L4(R2;R3). The identity |mn(x) + e3|2 = 2(1 + m3,n(x)) implies that

lim
n→∞

ˆ
R2

(1 + mn,3)
2 dx = lim

n→∞

ˆ
R2

1

4
|mn + e3|4 dx = 0. (5.89)

Integrating by parts and applying Cauchy–Schwarz inequality, we thus see that

lim
n→∞

ˆ
R2

m′
n · ∇mn,3 dx = − lim

n→∞

ˆ
R2

(mn,3 + 1)∇ · m′
n dx = 0. (5.90)

Similarly, the interpolation inequality (3.7) implies Fsurf
(
m3,n + 1

) ≤ 1
2‖m3,n +

1‖2‖∇m3,n‖2, which, combined with the convergence (5.89), yields

lim
n→∞ Fsurf(m3,n) = 0. (5.91)

Together with (3.6), the topological bound (A.24) and Lemma 5.7, this then yields
a contradiction:

lim inf
n→∞ Eσ,λ(mn) ≥ 8π > inf

m∈A
Eσ,λ(m) = lim

n→∞ Eσ,λ(mn). (5.92)

This rules out the case of vanishing.
Case 2: Splitting.

In this case, there exists 0 < η < 1 with the following property: For all ε > 0, after
a suitable translation depending on ε, there exists R > 0 such that for all R̃ > R
we have

lim sup
n→∞

(∣∣∣μn(BR (0)) − η μn(R
2)

∣
∣∣+
∣
∣∣μn

(
Bc
R̃
(0)
)

− (1 − η)μn(R
2)

∣
∣∣
)

≤ ε.

(5.93)

Without loss of generality, we may assume R ≥ 1. Let R̃ > 32R. Then the proof

of [28, Lemma 8] establishes the existence of Rn ∈ (R, 2R), R̃n ∈
(
R̃
4 , R̃

2

)
and

smooth m(1)
n ,m(1)

n : R2 → S
2 such that

m(1)
n (x) = mn(x) for x ∈ BRn (0), (5.94)

m(1)
n (x) = −e3 for x ∈ Bc

2Rn
(0), (5.95)

m(2)
n (x) = mn(x) for x ∈ Bc

2R̃n
(0), (5.96)

m(2)
n (x) = −e3 for x ∈ BR̃n

(0) (5.97)

and
ˆ
Bc
Rn

(0)

(∣∣∣∇m(1)
n

∣∣∣
2 +

∣∣∣m(1)
n + e3

∣∣∣
2
)

dx ≤ C(σ, λ)ε, (5.98)

ˆ
B2R̃n (0)

(∣∣∣∇m(2)
n

∣∣∣
2 +

∣∣∣m(2)
n + e3

∣∣∣
2
)

dx ≤ C(σ, λ)ε. (5.99)
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By the pointwise almost everywhere estimate |m ·(∂1m×∂2m)| ≤ C |∇m|2 and
the estimates (5.93), (5.98) and (5.99) we get that |N (mn)−N (m(1)

n )−N (m(2)
n )| ≤

C(σ, λ)ε. Discreteness of the degree then implies for ε > 0 small enough that

1 = N (mn) = N (m(1)
n ) + N (m(2)

n ). (5.100)

Next, combining the estimates (5.98), (5.99) and (5.86), gives
ˆ
R2

(∣
∣∣∇m(1)

n

∣
∣∣
2 +
∣
∣∣∇m(2)

n

∣
∣∣
2
)

dx ≤
ˆ
R2

|∇mn|2 dx + C(σ, λ)ε < 16π + C(σ, λ)ε.

(5.101)

Therefore, for ε > 0 small enough we get, applying the topological bound (A.24)
along the way, that

8π
(∣∣∣N (m(1)

n )

∣∣∣+
∣∣∣N (m(2)

n )

∣∣∣
)

≤
ˆ
R2

(∣∣∣∇m(1)
n

∣∣∣
2 +

∣∣∣∇m(2)
n

∣∣∣
2
)

dx < 24π.

(5.102)

Elementary combinatorics using the identity (5.100) consequently give

N
(
m(1)

n

)
= 1 and N

(
m(2)

n

)
= 0 (5.103)

or

N
(
m(1)

n

)
= 0 and N

(
m(2)

n

)
= 1. (5.104)

In the followingwewill only deal with the first case, as the other one can be handled
similarly.

By the estimate (5.87) and the splitting alternative (5.93) for ε > 0 small and
n large enough we obtain

4π(1 − η) ≤ 1 − η

2
μn(R

2) ≤
ˆ
R2

(∣∣
∣∇m(2)

n

∣∣
∣
2 + |m(2)

n + e3|2
)

dx . (5.105)

Lemma 5.1, along with the bound (5.101), further implies that
ˆ
R2

(∣∣∣∇m(2)
n

∣∣∣
2 + |m(2)

n + e3|2
)

dx ≤
ˆ
R2

∣∣∣∇m(2)
n

∣∣∣
2
dx

+ C(σ, λ)

ˆ
R2

∣∣
∣∣
(
m(2)

n

)′∣∣
∣∣

2

dx,

(5.106)

as, by the topological lower bound we have
´
R2 |∇m(1)

n |2 dx ≥ 8π , we obtain from
estimate (5.101) for ε > 0 small enough thatˆ

R2
|∇m(2)

n |2 dx < 16π. (5.107)

Therefore we can apply Lemma 5.2 to get
ˆ
R2

∣∣∣∇m(2)
n

∣∣∣
2
dx +

ˆ
R2

∣∣∣∣
(
m(2)

n

)′∣∣∣∣
2

dx ≤ C(σ, λ)Eσ,λ

(
m(2)

n

)
. (5.108)
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Consequently, concatenating the estimates (5.105), (5.106) and (5.108) we deduce
that there exists δ > 0 such that for all n large enough we have

Eσ,λ

(
m(2)

n

)
≥ δ > 0. (5.109)

As a result, in order to rule out splitting we only have to prove that

lim sup
n→∞

[
Eσ,λ

(
m(1)

n

)
+ Eσ,λ

(
m(2)

n

)
− Eσ,λ (mn)

]
≤ g(ε, R̃) (5.110)

for some function g : (0,∞)2 → (0,∞) with limε→0 lim R̃→∞ g(ε, R̃) = 0.
Indeed, assuming that the bound (5.110) holds, we can test the infimum infA Eσ,λ

with m(1)
n and use the estimates (5.109) and (5.110) to get

inf
m∈A

Eσ,λ(m) ≤ lim inf
n→∞ Eσ,λ

(
m(1)

n

)

≤ lim sup
n→∞

(
Eσ,λ

(
m(1)

n

)
+ Eσ,λ

(
m(2)

n

)
− δ
)

≤ lim
n→∞ Eσ,λ (mn) + g(ε, R̃) − δ.

(5.111)

Then, by first taking R̃ big enough and then ε > 0 small enough we obtain a
contradiction.

We now turn to proving the claim (5.110). The local terms are straightfor-
ward to handle using the Cauchy–Schwarz inequality, see for example the proof of
Lemma 5.2, and give a contribution of C(σ, λ)ε to g(ε, R̃). Of the nonlocal terms,
we first deal with the volume charges by computing

Fvol(m
′
n) = Fvol

((
m(1)

n

)′)+ Fvol

((
m(2)

n

)′)+ Fvol

(
m′

n −
(
m(1)

n

)′ −
(
m(2)

n

)′)

+ 2Fvol

((
m(1)

n

)′ +
(
m(2)

n

)′
,m′

n −
(
m(1)

n

)′ −
(
m(2)

n

)′)

+ 2Fvol

((
m(1)

n

)′
,
(
m(2)

n

)′)
.

(5.112)

By (3.6), we may discard the term Fvol
(
m′

n − m′(1)
n − m′(2)

n

)
≥ 0 right away since

weonly claimanupper bound in estimate (5.110). The usual interpolation inequality
(3.8) for p = 2 implies

Fvol

((
m(1)

n

)′ +
(
m(2)

n

)′
,m′

n −
(
m(1)

n

)′ −
(
m(2)

n

)′)

≤ C

(∥∥∥∥∇
(
m(1)

n

)′∥∥∥∥
2
+
∥∥∥∥∇
(
m(2)

n

)′∥∥∥∥
2

)∥∥∥∥m
′
n −

(
m(1)

n

)′ −
(
m(2)

n

)′∥∥∥∥
2
.

(5.113)
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Using (5.102) we obtain that the H̊1-norms on the left-hand side are uniformly
bounded. The identities (5.94) through (5.97) imply

supp

(
m′

n −
(
m(1)

n

)′ −
(
m(2)

n

)′) ⊂ B2R̃n
(0) \ BRn (0), (5.114)

and on B2R̃n
(0) \ BRn (0) we can estimate each of the terms m′

n ,
(
m(1)

n

)′
, and

(
m(2)

n

)′
separately by virtue of (5.93), (5.98) and (5.99). Therefore (5.113) gives

Fvol

((
m(1)

n

)′ +
(
m(2)

n

)′
,m′

n −
(
m(1)

n

)′ −
(
m(2)

n

)′) ≤ C(σ, λ)ε
1
2 . (5.115)

To estimate the last term in (5.112), we would like to exploit that the sequences(
m(1)

n

)′
and

(
m(2)

n

)′
have disjoint supports. To this end, we use the real space

representation (3.10) and integrate by parts once in each of the two integrals:

Fvol

((
m(1)

n

)′
,
(
m(2)

n

)′)

= 1

4π

ˆ
R2

ˆ
R2

∇ ·
(
m(1)

n (x)
)′ ∇ ·

(
m(2)

n (x̃)
)′

|x − x̃ | dx̃ dx

= 1

4π

ˆ
R2

ˆ
R2

⎛

⎜
⎝

(
m(1)

n (x)
)′ ·
(
m(2)

n (x̃)
)′

|x − x̃ |3

− 3

(
m(1)

n (x)
)′ · (x̃ − x)

(
m(2)

n (x)
)′ · (x̃ − x)

|x − x̃ |5

⎞

⎟
⎠ dx̃ dx . (5.116)

To extract a quantitative estimate, note that we have

inf
{
|x − x̃ | : x ∈ supp

(
m(1)

n,3 + 1
)

, x̃ ∈ supp
(
m(2)

n,3 + 1
)}

≥ R̃

4
− 4R.

(5.117)

With Kvol(z) := χ
(
|z| ≥ R̃

4 − 4R
) (

1
|z|3 id−3 z⊗z

|z|5
)
for z ∈ R

2, Young’s inequal-

ity for convolutions implies for R̃ > 32R that

ˆ
R2

ˆ
R2

(
m(1)

n (x)
)′ · Kvol(x̃ − x)

(
m(2)

n (x̃)
)′

dx̃ dx

≤ C

∥∥∥∥
(
m(1)

n

)′∥∥∥∥
2

∥∥∥∥
(
m(2)

n

)′∥∥∥∥
2
‖Kvol‖1

≤ C(σ, λ)R̃−1.

(5.118)
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For the surface charges we similarly compute

Fsurf(mn,3) = Fsurf
(
m(1)

n,3

)
+ Fsurf

(
m(2)

n,3

)

+ Fsurf
(
mn,3 + m(1)

n,3 + m(2)
n,3,mn,3 − m(1)

n,3 − m(2)
n,3

)

+ 2Fsurf
(
m(1)

n,3,m
(2)
n,3

)
.

(5.119)

As in the proof of estimate (5.115), the interpolation inequality (3.7) together with
the fact that Fsurf is invariant under the addition of constant functions gives

Fsurf
(
mn,3 + m(1)

n,3 + m(2)
n,3,mn,3 − m(1)

n,3 − m(2)
n,3

)
≤ C(σ, λ)ε

1
2 . (5.120)

The real-space representation (3.2) allows us to write the last term in the identity
(5.119) as

Fsurf
(
m(1)

n,3,m
(2)
n,3

)

= 1

8π

ˆ
R2

ˆ
R2

(
m(1)

n,3(x) − m(1)
n,3(x̃)

) (
m(2)

n,3(x) − m(2)
n,3(x̃)

)

|x − x̃ |3 dx̃ dx . (5.121)

We may now exploit the fact that m(1)
n,3 + 1 and m(2)

n,3 + 1 have disjoint supports to
get

Fsurf
(
m(1)

n,3,m
(2)
n,3

)
= 1

4π

ˆ
R2

ˆ
R2

(
m(1)

n,3(x) + 1
) (

m(2)
n,3(x̃) + 1

)

|x − x̃ |3 dx̃ dx,

(5.122)

so that Young’s inequality for convolutions with Ksurf(z) := χ
(
|z|≥ R̃

4 −4R
)

|z|3 for

z ∈ R
2 implies

Fsurf

(
m(1)

n,3,m
(2)
n,3

)
≤ C

∥∥
∥m(1)

n,3 + 1
∥∥
∥
2

∥∥
∥m(2)

n,3 + 1
∥∥
∥
2
‖Ksurf‖1 ≤ C(σ, λ)R̃−1.

(5.123)

All together, we see that estimate (5.110) holds, with

g(ε, R̃) = C(σ, λ)
(
ε

1
2 + R̃−1

)
, (5.124)

which rules out splitting.
Case 3: Compactness

As vanishing and splitting have been ruled out, we obtain that after extraction of a
subsequence and suitable translations, for every ε > 0 there exists R > 0 such that
we have

μn(B
c
R(0)) ≤ ε (5.125)

for all n ∈ N.
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By the Rellich–Kondrachov compactness theorem, [55, Theorem 8.9], there
exists mσ : R2 → S

2 such that mn + e3 → mσ + e3 in L2(BR̃ (0);R3) for all
R̃ > 0 and mn + e3 ⇀ mσ + e3 in H1(R2;R3). We first argue that we even have
mn → mσ in L2(R2;R3). Let ε > 0 and let R > 0 be such that the tightness
estimate (5.125) holds. Then, by lower semi-continuity of the L2-norm and the
Minkowski inequality, we have

lim sup
n→∞

ˆ
R2

|mn − mσ |2 dx ≤ 2ε + lim sup
n→∞

ˆ
BR(0)

|mn − mσ |2 dx = 2ε.

(5.126)

Therefore, we see mn + e3 → mσ + e3 in L2(R2;R3), and in particular we have
mσ + e3 ∈ L2(R2;R3).

Next, we argue that

lim inf
n→∞

(
Eσ,λ(mn) − 8πN (mn)

) ≥ Eσ,λ(mσ ) − 8πN (mσ ). (5.127)

By the identity (A.23), we obtain for any n ∈ N that

Eσ,λ(mn) − 8πN (mn)

=
ˆ
R2

(
|∂1mn + mn × ∂2mn|2 + σ 2|m′

n|2 − 2σ 2λm′
n · ∇mn,3

)
dx

+ σ 2(1 − λ)
(
Fvol(m

′
n) − Fsurf(mn,3)

)
.

(5.128)

We have ∂1mn ⇀ ∂1mσ and mn × ∂2mn ⇀ mσ × ∂2mσ in L2(R2;R3), the latter
by a weak-times-strong convergence argument. In the first term, we can thus use
lower semi-continuity of the L2-norm. The anisotropy term converges strongly by
our previous argument. By (5.126) and weak convergence of the gradients we have

lim
n→∞

ˆ
R2

m′
n · ∇mn,3 dx = lim

n→∞

ˆ
R2

m′
σ · ∇mn,3 dx =

ˆ
R2

m′
σ · ∇mσ,3 dx

(5.129)

so that also the DMI-term converges. Finally, we see Fvol(m′
n) → Fvol(m′

σ )

and Fsurf(m3,n) → Fsurf(mσ,3) as n → ∞ by the interpolation inequalities of
Lemma 3.1. Taking all of these things together, we see

lim inf
n→∞

(
Eσ,λ(mn) − 8πN (mn)

)

≥
ˆ
R2

(
|∂1mσ + mσ × ∂2mσ |2 + σ 2|m′

σ |2 − 2σ 2λ(m′
σ · ∇)mσ,3

)
dx

+ σ 2(1 − λ)
(
Fvol(m

′
σ ) − Fsurf(mσ,3)

)

= Eσ,λ(mσ ) − 8πN (mσ ),

(5.130)

where in the last line we again use the identity (5.128).
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Therefore, together with the upper bound of Lemma 5.7 and the observation that
Eσ,λ(mσ ) ≥ 0, which follows from the assumption of the theorem and Lemma 5.2,
we have

0 > lim inf
n→∞

(
Eσ,λ(mn) − 8π

) ≥ Eσ,λ(mσ ) − 8πN (mσ ) > −8πN (mσ ),

(5.131)

giving N (mσ ) > 0. At the same time, by lower semi-continuity of the Dirichlet
energy and the estimate (5.86) we furthermore have

ˆ
R2

|∇mσ |2 dx ≤ lim
n→∞

ˆ
R2

|∇mn|2 dx < 16π. (5.132)

Thus the topological bound (A.24) impliesN (m) = 1. As we have already shown
mσ + e3 ∈ L2(R2;R3) above, we therefore have mσ ∈ A. Consequently, we have

inf
m̃∈A

Eσ,λ(m̃) = lim inf
n→∞ Eσ,λ(mn) ≥ Eσ,λ(mσ ) ≥ inf

m̃∈A
Eσ,λ(m̃), (5.133)

which concludes the proof. ��

6. The Conformal Limit

In this sectionwe prove Theorem 2.2. In the spirit of a�-convergence argument,
wedo sobyproviding ansatz-free lower boundsmatching theupper boundsobtained
in Corollary 5.6. As the Dirichlet term provides closeness to a Belavin–Polyakov
profile φ = S	(ρ−1x) for S ∈ SO(3) and ρ > 0 via Theorem 2.4, we have to
capture the behavior of the lower order terms as the magnetization approaches φ.

Here the main difficulty is the fact that the limiting Belavin–Polyakov profile φ

from Theorem 2.4 does not necessarily satisfy lim|x |→∞ φ(x) = −e3, which is a
more subtle issue than onemight expect. The fundamental problem is that for r > 0
the embedding of H1(Br (0)) to L∞(Br (0))) fails logarithmically, and we only
have H1(Br (0)) ↪→ BMO(Br (0)) (as a simple result of the Poincaré inequality
and the definition [18, (0.5)] of BMO), which in and of itself is not strong enough
to control the value at infinity. Indeed, at this stage it is entirely possible that the
minimizers exhibit a multi-scale structure: On the scale of the skyrmion radius the
profile might approach a tilted Belavin–Polyakov profile, while only on a larger
truncation scale decaying to−e3, see for example [28, Step2b in the proof ofLemma
8] for a construction. Of course such a profile would have a large anisotropy energy,
which we exploit in the following Lemma 6.1. The idea is to replace the logarithmic
failure of the embedding H1 
↪→ L∞ with the Moser–Trudinger inequality proved
in Lemma 2.5.

Throughout this section we use the abbreviations

L :=
(ˆ

R2
|∇m|2 dx − 8π

)− 1
2

, (6.1)

ν := lim|x |→∞ φ(x) = −Se3, (6.2)
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provided φ = S	(ρ−1(• − x0)) for S ∈ SO(3), ρ > 0 and x0 ∈ R
2. Note that this

choice of L is consistent with its usage in Eσ,λ;K ∗ , see definition (5.23), in view of
estimate (5.28) and the substitution (5.22). In particular, it can also be thought of
as the cut-off length relative to the skyrmion radius.

Lemma 6.1. There exist universal constants L0 > 0 and C > 0 such that for
m ∈ A with L ≥ L0 and the distance-minimizing Belavin–Polyakov profile from
Theorem 2.4 given by φ(x) = S	(ρ−1(x − x0)) with S ∈ SO(3), ρ > 0 and
x0 ∈ R

2 we have
ˆ
R2

∣∣m′∣∣2 dx ≥ C |ν + e3|2ρ2L2. (6.3)

In order to use this bound to rule out ν being too far away from −e3 we also
need a first lower bound for the DMI and the stray field terms.

Lemma 6.2. There exist universal constants L0 > 0 and C > 0 such that for
m ∈ A with L ≥ L0 and the distance-minimizing Belavin–Polyakov profile from
Theorem 2.4 given by φ(x) = S	(ρ−1(x − x0)) with S ∈ SO(3), ρ > 0 and
x0 ∈ R

2 we have

− 2λ
ˆ
R2

m′ · ∇m3 dx + (1 − λ)
(
Fvol(m

′) − Fsurf(m3)
)

≥ −1

2

ˆ
R2

|m′|2 dx − Cρ (log L)
1
2 − CL−2.

(6.4)

Armed with these estimates, we obtain that ν does indeed converge to e3 as
σ → 0.

Lemma 6.3. There exist universal constants C > 0 and σ0 > 0 such that for
σ ∈ (0, σ0) the following holds: Let mσ be a minimizer of Eσ,λ overA. Let ρ > 0,
S ∈ SO(3) and x0 ∈ R

2 be such that S	(ρ−1(x − x0)) is the distance-minimizing
Belavin–Polyakov profile from Theorem 2.4 for m = mσ . Then we have

L−2 ≤ 16πσ 2, (6.5)

|ν + e3|2 ≤ C
log2 L

L2 . (6.6)

Now that we know that we essentially have pinning of the value at infinity, we
turn to proving a more precise lower bound for the anisotropy energy which almost
matches the expression (5.30) obtained in Lemma 5.3.

Lemma 6.4. There exist universal constants C > 0 and L0 > 0 such that for L ≥
L0 the following holds: Let m ∈ A be such that there exist φ(x) := S	(ρ−1(x −
x0)) for x ∈ R

2 with S ∈ SO(3), ρ > 0 and x0 ∈ R
2 satisfying

ˆ
R2

|∇(m − φ)|2 dx ≤ L
−2

, (6.7)
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and

|Se3 − e3|2 < L
−1

. (6.8)

Then we have the estimateˆ
R2

|m′|2 dx ≥ 4πρ2 log
(
K ∗L2

)
− Cρ2L

− 2
3 , (6.9)

where K ∗ is the constant defined in Eq. (5.26).

We also have another look at the DMI and stray field terms in order to obtain
sharper estimates matching those of Lemma 5.3. As therein the expressions depend
on the rotation angle θ , we have to replace the profile φ obtained in Theorem 2.4
by a rotated one having the correct value at infinity.

Lemma 6.5. There exist universal constants C > 0 and σ0 > 0 such that for
σ ∈ (0, σ0) and λ ∈ [0, 1] the following holds: Let mσ be a minimizer of Eσ,λ

over A. Let S ∈ SO(3), ρ > 0 and x0 ∈ R
2 be such that S	(ρ−1(x − x0)) is

the distance-minimizing Belavin–Polyakov profile from Theorem 2.4 for m = mσ .
Then there exists θ ∈ [−π, π) such that with the rotation Sθ of angle θ around the
x3-axis defined in (2.24) we have
ˆ
R2

∣∣∣∇
(
mσ (x) − Sθ	(ρ−1(x − x0))

)∣∣∣
2
dx ≤ C log2 L

L2 , (6.10)
ˆ
R2

2m′
σ · ∇mσ,3 dx ≤ 8πρ cos θ + Cσ | log σ |, (6.11)

Fvol(m
′
σ ) − Fsurf(mσ,3) ≥

(
3π3

8
cos2 θ − π3

8

)
ρ

− Cσ
1
4 | log σ |− 1

2 . (6.12)

Furthermore, we have

ρ2 ≤ C

| log σ | . (6.13)

Proof of Lemma 6.1. The known scaling properties of the L2- and H̊1-norms
allow us, without loss of generality, to set ρ = 1. Additionally, we may suppose
x0 = 0 by translation invariance. By Lemma 5.1 we notice that

ˆ
R2

|m′|2 dx ≥ 1

C

ˆ
R2

|m + e3|2 dx (6.14)

for some universal constant C > 0. It is thus sufficient to estimate the right-hand
side from below.

For R > 0, by the inequality |a + b|2 ≤ 2(|a|2 + |b|2) for a, b ∈ R
3 we have

ˆ
BR(0)

|m + e3|2 dx ≥
ˆ
BR(0)

1

2
|φ + e3|2 dx −

ˆ
BR(0)

|m − φ|2 dx . (6.15)
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As the in-plane components of 	 average to 0 on radially symmetric sets and the
out-of-plane component is radial (recall the definition in (2.21)), the first term in
the above estimate can be computed explicitly to give

ˆ
BR(0)

|φ + e3|2 dx = 2
ˆ
BR(0)

(1 + φ · e3) dx

= 2πR2
(
1 + e3 · Se3 −

ˆ
BR(0)

1 − |x |2
1 + |x |2 dx

)
.

(6.16)

In view of ν = −Se3, see definition (6.2), we have

ˆ
BR(0)

|φ + e3|2 dx = πR2|ν + e3|2 − 2ν · e3
ˆ
BR(0)

2

|x |2 + 1
dx

= πR2|ν + e3|2 − 4π log(1 + R2) ν · e3
=
(
πR2 − 2π log(1 + R2)

)
|ν + e3|2 + 4π log(1 + R2).

(6.17)

For R ≥ R0 with R0 > 0 big enough we therefore have

ˆ
BR(0)

|φ + e3|2 dx ≥ π

2
R2|ν + e3|2 + 4π log(R2). (6.18)

In order to control the second term on the right-hand side of estimate (6.15), we
make use of the fact that y(log(y)−1) for y > 0 is the Legendre transformation of
the exponential map ex , i.e., we have the sharp inequality xy ≤ ex + y(log(y)− 1)
for x ∈ R and y > 0, see for example [12, Chapter 3.3 and Table 3.1]. For
L := ‖∇(m − φ)‖−1

2 we consequently get

ˆ
BR(0)

|m − φ|2 dx =
ˆ
BR(0)

|m − φ|2|∇φ|−2|∇φ|2 dx

≤
ˆ
BR(0)

e
2π
3 L

2|m−φ|2 |∇φ|2 dx

+
ˆ
BR(0)

3

2πL
2

[
log

(
3|∇φ|−2

2πL
2

)
− 1

]
dx .

(6.19)

Applying Lemma 2.5, specifically our version of the Moser–Trudinger inequality
(2.41), where Theorem 2.4 and Lemma A.2 ensure its applicability for L ≥ L0
with L0 > 0 sufficiently big, we see that the first term on the right-hand side is
universally bounded. For R ≥ R0 for R0 > 0 big enough, there furthermore exists
a universal constant C ′ > 0 such that |∇φ(x)| ≥ 1

C ′ |R|−2 for x ∈ BR (0). We can
therefore also estimate the second term on the right-hand side to see

ˆ
BR(0)

|m − φ|2 dx ≤ C

[
1 + R2

L
2 + R2

L
2 log

(
R4

L
2

)]
. (6.20)
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Theorem 2.4 allows us to write this in the form
ˆ
BR(0)

|m − φ|2 dx ≤ C

[
1 + R2

L2 + R2

L2 log

(
R4

L2

)]
. (6.21)

Choosing R = ηL for a suitable η > 0 and requiring L ≥ L0 for some L0 > 0
sufficiently big we combine the two bounds (6.18) and (6.21) with the one in (6.15)
to obtain ˆ

BR(0)
|m + e3|2 ≥ C |ν + e3|2L2 (6.22)

for C > 0 universal. ��
Proof of Lemma 6.2. Step 1: Estimate the DMI term.
Without loss of generality, we may take x0 = 0. Let φL(x) := S	L(ρ−1x), where
	L was defined in equation (5.19). Estimate (5.29) and the fact that φ was chosen
according to Theorem 2.4 give
ˆ
R2

|∇(φL − m)|2 dx ≤ 2
ˆ
R2

|∇(φL − φ)|2 dx + 2
ˆ
R2

|∇(φ − m)|2 dx ≤ CL−2.

(6.23)

We calculateˆ
R2

m′ · ∇m3 dx =
ˆ
R2

m′ · ∇(m3 − φL ,3) dx +
ˆ
R2

m′ · ∇φL ,3 dx . (6.24)

By Young’s inequality and the estimate (6.23), the first term is bounded from above
by

ˆ
R2

m′ · ∇(m3 − φL ,3) dx ≤ 1

8

ˆ
R2

|m′|2 dx + CL−2. (6.25)

To estimate the second term, note that φL ,3(x) − ν3 = (
S(	L(ρ−1x) + e3)

)
3

for all x ∈ R
2 by definition (6.2). Using estimate (5.30) to control the in-plane

contributions and (5.31) together with 	3 + 1 ∈ L2(R2;R3) to control the out-of-
plane contributions, we have

ˆ
R2

|φL ,3 − ν3|2 dx ≤ Cρ2 log L (6.26)

for L ≥ L0 with L0 > 0 big enough. Therefore, the function x �→ (φL ,3(x) −
ν3)m′(x) is integrable, and we can integrate by parts to obtain

ˆ
R2

m′ · ∇φL ,3 dx = −
ˆ
R2

(φL ,3 − ν3)∇ · m′ dx ≤ Cρ(log L)
1
2 . (6.27)

In total, we obtain

2
ˆ
R2

m′ · ∇m3 dx ≤ 1

4

ˆ
R2

|m′|2 dx + Cρ(log L)
1
2 + CL−2 (6.28)
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for all L ≥ L0 with L0 > 0 sufficiently big universal.
Step 2: Estimate the nonlocal terms.

The volume charges are simply estimated by Fvol(m′) ≥ 0, see Lemma 3.1. For the
surface charges, we exploit bilinearity of Fsurf and the fact that Fsurf is invariant
under addition of constants, see (3.2), to get

Fsurf(m3) − Fsurf(φL ,3) = Fsurf(m3 + φL ,3 + 1 − ν3,m3 − φL ,3). (6.29)

The inequality (3.7) together with (6.23) then implies
∣∣Fsurf(m3) − Fsurf(φL ,3)

∣∣ ≤ C
(‖φL ,3 − ν3‖2 + ‖m3 + 1‖2

)
L−1. (6.30)

By (3.7) and (5.28) we furthermore get

Fsurf(φL ,3) = Fsurf(φL ,3 − ν3) ≤ C‖φL ,3 − ν3‖2. (6.31)

Thus we can combine (6.30) and (6.31), estimating the ‖φL ,3−ν3‖2 and ‖m3+1‖2
contributions by (6.26) and (5.2), respectively, and applying Young’s inequality, to
get

Fsurf(m3) ≤ 1

4

ˆ
R2

|m′|2 dx + Cρ(log L)
1
2 + CL−2, (6.32)

provided L ≥ L0 for L0 > 0 sufficiently big. ��
Proof of Lemma 6.3. Combining the a priori bound (5.3) with the upper bound of
Lemma 5.7 we see that

L−2 =
ˆ
R2

|∇mσ |2 dx − 8π ≤ 16πσ 2 (6.33)

for all σ > 0, which is the desired estimate (6.5). Therefore, for all σ < σ0 small
enough universal we may apply Lemmas 6.1 and 6.2, the latter together with the
bound (6.33) to control the CL−2-term, to get

| log σ |
σ 2

(
Eσ,λ(mσ ) − 8π

)

≥ | log σ |(σ L)−2 + | log σ |
(
C1|ν + e3|2L2ρ2 − C2

(
ρ(log L)

1
2 + σ 2

))

(6.34)

for two universal constants C1,C2 > 0. By (2.28), we may define ρ̃ :=
C2| log σ |(log L)

1
2

ḡ(λ)
ρ. Recalling the definition (5.24), observe that for θ+

0 as in the

first part of Proposition 5.4 we have (ρ̃, θ+
0 , L) ∈ Vσ by estimate (6.33). We thus

get from Corollary 5.6, (2.28) and (5.39) that

| log σ |(σ L)−2 + C̃1
|ν + e3|2L2

| log σ | log L ρ̃2 − g(λ, θ+
0 )ρ̃ ≤ min

Vσ

Eσ,λ;K ∗ + C̃2σ
1
4 | log σ |,

(6.35)
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for some C̃1, C̃2 > 0 universal.
Towards a contradiction, assume that

C̃1|ν + e3|2L2 ≥ 16π log2 L . (6.36)

Then we have, for all σ < σ0 small enough, the universal

C̃1
|ν + e3|2L2

| log σ | log L ρ̃2 ≥ 4π log
(
2K ∗L2

)

| log σ | ρ̃2, (6.37)

by estimate (6.33). Recalling the definition (5.23) and that (ρ̃, θ+
0 , L) ∈ Vσ , we

therefore obtain from (5.39) and the bound (6.35) that

min
Vσ

Eσ,λ;2K ∗ ≤ Eσ,λ;2K ∗(ρ̃, θ+
0 , L) ≤ min

Vσ

Eσ,λ;K ∗ + C̃2σ
1
4 | log σ |. (6.38)

This evidently contradicts the identity

min
Vσ

Eσ,λ;2K ∗ − min
Vσ

Eσ,λ;K ∗ = ḡ2(λ) log 2

64π | log σ | + O

(
log2 | log σ |

| log σ |2
)

, (6.39)

resulting from the expansion (5.38). ��
Proof of Lemma 6.4. Step 1: Write the problem in Fourier space.
The strategy is, essentially, to relax the unit length constraint on m and carry out
the resulting quadratic minimization in Fourier space. Without loss of generality,
we may assume ρ = 1 and x0 = 0.

By assumption, we have m′ ∈ L2(R2;R2), together with

ˆ
R2

|∇(m′ − (S	)′)|2 dx ≤ L
−2

(6.40)

with |Se3 − e3|2 ≤ L
−1

for S ∈ SO(3). Letting h := Im
(Fm′) ∈ L2(R2;R2),

where F denotes the Fourier transform defined via (3.1), Plancherel’s identity
implies

ˆ
R2

|m′|2 dx ≥
ˆ
R2

|h|2 dk

(2π)2
. (6.41)

In order to express the constraint (6.40) in Fourier space, let S′ ∈ R
2×2 be defined

by S′
i j := Si j for i, j = 1, 2. Notice that by Lemma A.5 we have that F(∇	3)

is purely imaginary, while F(∇	′) is purely real. Therefore, in view of (A.46)
we have Re

(F(∂i (S	) j (k)
) = F(∂i (S′	′) j )(k) = ki (S′g) j for i, j = 1, 2 and

almost all k ∈ R
2, where g : R2 → R

2 is defined as

g(k) := −4πK1(|k|) k

|k| . (6.42)
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Furthermore, we have F(∂im′
j )(k) = ikiF(m′

j ) for all i, j = 1, 2 and almost all

k ∈ R
2, so that we obtain Re

(
F(∂im′

j )(k)
)

= −ki h j . Only keeping the real parts,

Plancherel’s identity and the assumption (6.40) then give
ˆ
R2

|k|2 ∣∣h + S′g
∣
∣2 dk

(2π)2
≤

ˆ
R2

∣
∣F (∇ (m′ − (S	)′

))∣∣2 dk

(2π)2
≤ L

−2
. (6.43)

Step 2: Introduce the expected minimizer into the quadratic expressions.
Let μ > 0 be a proxy for the Lagrange multiplier associated to the minimization of
the right-hand side of (6.41) under the constraint (6.43). By (A.44) and (A.43) we

have μ|k|2
1+μ|k|2 S

′g ∈ L2(R2;R2) and |k|
1+μ|k|2 S

′g ∈ L2(R2;R2). Therefore, we may
calculate

ˆ
R2

|h|2 dk

(2π)2
=

ˆ
R2

∣
∣∣∣h + μ|k|2

1 + μ|k|2 S
′g
∣
∣∣∣

2
dk

(2π)2

− 2
ˆ
R2

μ|k|2
1 + μ|k|2 S

′g ·
(
h + μ|k|2

1 + μ|k|2 S
′g
)

dk

(2π)2

+
ˆ
R2

μ2|k|4
(1 + μ|k|2)2

∣∣S′g
∣∣2 dk

(2π)2
,

(6.44)

and

ˆ
R2

|k|2 ∣∣h + S′g
∣∣2 dk

(2π)2
=

ˆ
R2

|k|2
∣∣∣∣h + μ|k|2

1 + μ|k|2 S
′g
∣∣∣∣

2
dk

(2π)2

+ 2
ˆ
R2

|k|2
1 + μ|k|2 S

′g ·
(
h + μ|k|2

1 + μ|k|2 S
′g
)

dk

(2π)2

+
ˆ
R2

|k|2
(1 + μ|k|2)2 |S′g|2 dk

(2π)2
.

(6.45)

Multiplying (6.45) by μ > 0 and rearranging the terms we get by estimate (6.43)
that

− 2
ˆ
R2

μ|k|2
1 + μ|k|2 S

′g ·
(
h + μ|k|2

1 + μ|k|2 S
′g
)

dk

(2π)2

≥
ˆ
R2

μ|k|2
(1 + μ|k|2)2 |S′g|2 dk

(2π)2
− μL

−2
. (6.46)

Plugging this into the first identity (6.44), we obtain

ˆ
R2

|h|2 dk

(2π)2
≥

ˆ
R2

μ|k|2
1 + μ|k|2

∣∣S′g
∣∣2 dk

(2π)2
− μL

−2
. (6.47)

Step 3: Conclusion.
Since S ∈ SO(3), we have (S′T S′ − id)i j = −S3,i S3, j for i, j = 1, 2. Therefore,
with vi := S3,i for i = 1, 2 we obtain that the symmetric 2×2matrix S′T S′−id has
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the eigenvalues λ1 := −|v|2 and λ2 := 0 with eigenvectors v and v⊥, respectively.
By (6.8) we have |v|2 ≤ |Se3 − e3|2 < L

−1
, so that we can calculate

|S′g′|2 = |g′|2 + g′ · (S′T S′ − id)g′ ≥ |g′|2 (1 − |λ1|) ≥ |g′|2
(
1 − L

−1
)

.

(6.48)

Recalling the definition (6.42), we can thus upgrade the estimate (6.47) to
ˆ
R2

|h|2 dk

(2π)2
≥ 16π2

(
1 − L

−1
) ˆ

R2

μ|k|2
1 + μ|k|2 K

2
1 (|k|) dk

(2π)2
− μL

−2
.

(6.49)

Then by Lemma A.7 we can rewrite the above inequality as
ˆ
R2

|h|2 dk

(2π)2
≥ 4π

(
1 − L

−1
)
log

(
4μ

e2γ+1

)
− μL

−2 − C(1 − L
−1

)μ− 1
3

(6.50)

for some C > 0 and all μ sufficiently large universal. For L ≥ L0 with L0 > 0 big

enough, the right-hand side of (6.50) is maximized by μ = 4πL
2
to the leading

order in L
−1 � 1. Plugging in this value of μ into (6.50) then yields

ˆ
R2

|h|2 dk

(2π)2
≥ 4π log

(
16π

e2γ+1 L
2
)

− 4π − CL
− 2

3 (6.51)

for some C > 0 universal, which is the desired estimate. ��
Proof of Lemma 6.5. Step 1: Preliminary bounds on the radius.
For σ ∈ (0, σ0) and σ0 > 0 small enough, the lower bound (6.9) of Lemma 6.4,
which is applicable due to Lemma 6.3 and Theorem 2.4, gives

2πρ2 log
(
L2
)

≤
ˆ
R2

|m′
σ |2 dx . (6.52)

From the topological bound (A.24) and the estimate (5.4) we get

σ 2

2

ˆ
R2

|m′
σ |2 dx ≤

ˆ
R2

|∇mσ |2 dx − 8π + σ 2

2

ˆ
R2

|m′
σ |2 dx

≤ Eσ,λ(mσ ) − 8π + σ 2 (1 + λ)2

2

ˆ
R2

|∇mσ |2 dx .
(6.53)

Therefore, Lemma 5.7 and the bound
´
R2 |∇mσ |2 dx < 16π resulting from mσ ∈

A, see definition (2.15), imply
ˆ
R2

|m′
σ |2 dx ≤ C (6.54)

for some C > 0 universal. In particular, from the estimates (6.52) and (6.5) we get
the bound (6.13).

Step 2: Estimate the DMI term.
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Without loss of generality, we may assume x0 = 0. By Lemma 6.3 and the fact
that ν = −Se3, see definition (6.2), we obtain |Se3 − e3|2 ≤ CL−2 log2 L for σ0
small enough. On the other hand, by the Euler rotation theorem the matrix S admits
a representation S = RSθ , where Sθ is defined by (2.24) for some θ ∈ [−π, π)

and R ∈ SO(3) is a composition of rotations around the x1- and x2-axes. It is not
difficult to see that

|R − id | ≤ C |Re3 − e3| = C |Se3 − e3| ≤ C ′L−1 log L (6.55)

for some universal C,C ′ > 0. Therefore, by the properties of the Frobenius norm
we get

|S − Sθ |2 = |R − id |2 ≤ CL−2 log2 L (6.56)

for some universal C > 0. Together with Theorem 2.4, Lemma 6.3 and definition
(6.1), we deduce that the function φ(x) := Sθ	(ρ−1x) for x ∈ R

2 satisfies
ˆ
R2

|∇(mσ − φ)|2 dx ≤ C
ˆ
R2

|∇(mσ − S	(ρ−1x))|2 dx + C |S − Sθ |2

≤ C
log2 L

L2 (6.57)

for some C > 0 and σ0 > 0 small enough, both universal, which is estimate (6.10).
By the identity (5.32) we have

ˆ
R2

2φ′ · ∇φ3 dx = 8πρ cos θ. (6.58)

Therefore, the bound (6.11) for the DMI term follows once we controlˆ
R2

(
m′

σ · ∇mσ,3 − φ′ · ∇φ3
)
dx

=
ˆ
R2

m′
σ · ∇(mσ,3 − φ3) dx +

ˆ
R2

(m′
σ − φ′) · ∇(φ3 + 1) dx

=
ˆ
R2

m′
σ · ∇(mσ,3 − φ3) dx −

ˆ
R2

(φ3 + 1)∇ · (m′
σ − φ′) dx,

(6.59)

where the decay of φ3 + 1 at infinity is sufficiently strong to erase the boundary
term in the integration by parts. By explicit calculation and (6.13), we have

ˆ
R2

|φ3 + 1|2 dx ≤ Cρ2 ≤ C

| log σ | . (6.60)

Consequently, the Cauchy–Schwarz inequality applied to the right-hand side of
(6.59) and the estimates (6.54), (6.60), and (6.57) imply

∣
∣∣∣

ˆ
R2

(
φ′ · ∇φ3 − m′

σ · ∇mσ,3
)
dx

∣
∣∣∣ ≤ C

log L

L
. (6.61)

The bound (6.5) then gives the desired estimate (6.11) for the DMI term.
Step 3: Estimate the stray field terms.
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We consider φL := Sθ	L(ρ−1x), with 	L as defined in equation (5.19), and note
that we still have

ˆ
R2

|∇(mσ − φL)|2 dx ≤ C
log2 L

L2 (6.62)

by the bounds (6.57) and (5.29). In Lemma 5.3 we also already computed

Fvol(φ
′
L) − Fsurf(φL ,3) ≥

(
3π3

8
cos2 θ − π3

8

)
ρ − CρL− 1

4

≥
(
3π3

8
cos2 θ − π3

8

)
ρ − Cσ

1
4 | log σ |− 1

2 ,

(6.63)

where in the last step we used estimates (6.5) and (6.13).
As the nonlocal terms are bilinear, we have

Fvol(m
′
σ ) − Fvol(φ

′
L) = Fvol(m

′
σ + φ′

L ,m′
σ − φ′

L) (6.64)

and the interpolation inequality (3.8) for p = 2 together with estimate (6.62) imply

∣∣Fvol(m′
σ ) − Fvol(φ

′
L)
∣∣ ≤ C

(‖φ′
L‖2 + ‖m′

σ ‖2
) log L

L
. (6.65)

The fact that ‖φ′
L‖2 ≤ Cρ(log L)

1
2 , see (5.30), together with the estimates (6.54),

(6.13) and (6.5) thus gives
∣∣Fvol(m′

σ ) − Fvol(φ
′
L)
∣∣ ≤ Cσ | log σ |. (6.66)

A similar argument exploiting the estimates (3.7), and (6.60), as well as Lemma 5.1
gives

∣∣Fsurf(mσ,3) − Fsurf(φL ,3)
∣∣ ≤ Cσ | log σ |. (6.67)

Combining the last two estimates with (6.63) yields (6.12). ��

6.1. Convergence to Shrinking Belavin–Polyakov Profiles via Stability of the
Reduced Energy Eσ,λ;K

Having completed the preparatory work in the form of the previously presented
statements, we now proceed to prove Theorem 2.2.

Proof of Theorem 2.2. By Theorem 2.4 and definition (6.1), there exist S ∈
SO(3), ρσ > 0 and xσ ∈ R

2 such that
ˆ
R2

∣∣∣∇
(
mσ (x) − S	(ρ−1

σ (x − xσ ))
)∣∣∣

2
dx ≤ CL−2. (6.68)

Without loss of generality, we choose xσ = 0. For ε > 0 to be chosen sufficiently
small later and for σ ∈ (0, σ0) for σ0 > 0 small enough depending only on ε, we
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combine the bound (6.5) and the local version of the stability result in Lemma 4.4
to improve the above estimate to

ˆ
R2

∣∣∣∇
(
mσ (x) − S	(ρ−1

σ x)
)∣∣∣

2
dx ≤

(
3

2
+ ε

)
L−2. (6.69)

Existence of θσ ∈ [−π, π) with

ˆ
R2

|∇(mσ (x) − Sθσ 	(ρ−1
σ x))|2 dx ≤ C

log2 L

L2 (6.70)

follows from Lemma 6.5, and (| log σ |ρσ , θσ , L) ∈ Vσ is a result of estimate (6.5).

Recalling the definition (5.23) of Eσ,λ;K , for L := ( 3
2 + ε

)− 1
2 L and K :=

( 3
2 + ε

)−1
K ∗ we have by Lemmas 6.3, 6.4 and 6.5:

Eσ,λ;K (| log σ |ρσ , θσ , L) ≤ | log σ |
σ 2

(
Eσ,λ(mσ ) − 8π

)+ Cσ
1
4 | log σ | 12 . (6.71)

Corollary 5.6 gives

| log σ |
σ 2

(
Eσ,λ(mσ ) − 8π

) ≤ min
Vσ

Eσ,λ;K ∗ + Cσ
1
4 | log σ |. (6.72)

For ε ≤ 1
2 we have K ≥ 1

2K
∗, so that the expansion (5.38) implies

min
Vσ

Eσ,λ;K ∗ ≤ min
Vσ

Eσ,λ;K + ḡ2(λ)

64π

log
(
K ∗
K

)

| log σ | + C
log2 | log σ |

| log σ |2 . (6.73)

Concatenating the estimates (6.71), (6.72) and (6.73), we get for σ ∈ (0, σ0) for
σ0 > 0 sufficiently small that

Eσ,λ;K (| log σ |ρσ , θσ , L) ≤ min
Vσ

(Eσ,λ;K
)+ ḡ2(λ)

64π

log
( 3
2 + ε

)

| log σ |
+ C

log2 | log σ |
| log σ |2 ,

(6.74)

where we also used the definition of K .
Since log 3

2 < 1, for ε > 0 and σ0 > 0 small enough universal we deduce

Eσ,λ;K (| log σ |ρσ , θσ , L) ≤ min
Vσ

(Eσ,λ;K
)+ ḡ2(λ)

64π | log σ | . (6.75)

Consequently, part 2 of Proposition 5.4 then implies the desired convergences for
ρσ and θσ . Furthermore, the bounds (6.70) and (5.42) give

ˆ
R2

|∇(mσ (x) − Sθσ 	(ρ−1
σ x))|2 dx ≤ Cσ 2.
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Finally, the estimate

∣
∣∣∣
| log σ |

σ 2

(
Eσ,λ(mσ ) − 8π

)−
(

− ḡ2(λ)

32π
+ ḡ2(λ)

32π

log | log σ |
| log σ |

)∣∣∣∣ ≤
C

| log σ |
(6.76)

follows from estimates (6.71), (6.72) and the expansion (5.38) of Proposi-
tion 5.4. ��
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A. Appendix

Here, we first provide a concise set-up of the differential geometry necessary
for our argument. In a second section, we prove the topological bound (1.4) and
prove that all extremizers are in fact Belavin–Polyakov profiles. Both sections are
included for the convenience of readers who may be unfamiliar with the presented
material, and we do not claim originality of the definitions and results. Finally, we
will present a number of calculations involving Bessel functions.

A.1. Sobolev Spaces on the Sphere

Let u : S2 → R
n for n ≥ 1 be a smooth map, which wemay extend to a smooth

map on R
3 \ {0} by setting U (x) := u

(
x
|x |
)
. Following [3, Definition 7.25], we

consider its gradient

∇u(y) := (∂τ1U )(y)τ1(y) + (∂τ2U )(y)τ2(y) (A.1)

for y ∈ S
2 and {τ1(y), τ2(y)} an orthonormal basis of the tangent space TyS2 :=

{v ∈ R
3 : v · y = 0}. Due to the chain rule in R

n , we recover the standard notion
of gradient in Riemannian geometry. We will also need the tangential divergence
for smooth functions ξ : S2 → R

3, for y ∈ S
2 defined as

∇ · ξ(y) := (∂τ1�)(y) · τ1(y) + (∂τ2�)(y) · τ2(y), (A.2)

where again�(x) := ξ
(

x
|x |
)
for x ∈ R

3 \ {0} and {τ1(y), τ2(y)} is an orthonormal

basis of TyS2, see [3, Definition 7.27 and Remark 7.28]. The Laplace–Beltrami
operator for a smooth map u : S2 → R then is �u := ∇ · ∇u, see [46, (2.1.16)].
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We define the space H1(S2) as the completion of C∞(S2) with respect to the
norm

‖u‖H1(S2) :=
(ˆ

S2

(
|∇u|2 + |u|2

)
dH2

) 1
2

. (A.3)

Let H1(S2;R3) be defined analogously for R3-valued maps and set

H1(S2;S2) :=
{
m̃ ∈ H1(S2;R3) : m̃(y) ∈ S

2 forH2-a.e. y ∈ S
2
}

, (A.4)

H1(S2; TS2) :=
{
ξ ∈ H1(S2;R3) : ξ(y) ∈ TyS

2 for H2-a.e. y ∈ S
2
}

, (A.5)

where TS2 :=⋃y∈S2{y}×TyS2 is the tangent bundle of S2. The weak gradient∇u

for u ∈ H1(S2) and weak divergence ∇ · ξ for ξ ∈ H1(S2;R3) exist as measurable
maps characterized by the following integration-by-parts formula:

Lemma A.1. Let u ∈ H1(S2) and ξ ∈ H1(S2;R3). Then we have
ˆ
S2

ξ · ∇u dH2(y) =
ˆ
S2

(2u ξ · y − u∇ · ξ) dH2(y), (A.6)

and this identity determines ∇u and ∇ · ξ up to sets ofH2-measure zero. Further-
more, for smooth maps ζ, ξ : S2 → R we have

ˆ
S2

∇ξ · ∇ζ dH2 = −
ˆ
S2

ζ�ξ dH2. (A.7)

We furthermore remark that, following Brezis and Nirenberg [18], we can
define the Brouwer degree for maps m̃ ∈ H1(S2;S2), and even for functions of
vanishing oscillation, in the following way: For y ∈ S

2, let y �→ (τ1(y), τ2(y)) be
an orthonormal frame of TyS2 which is smooth except in a single point. For maps
m̃ ∈ C∞(S2;S2) we use the integral formula (see also definition (2.44))

NS2(m̃) = 1

4π

ˆ
S2
det (∇m̃) dH2, (A.8)

where for y ∈ S
2 we define det(∇m̃(y)) := det M(y) with Mi j (y) := τ j (m̃(y)) ·

[(τi (y) · ∇)m̃(y)] for i, j = 1, 2 to be the determinant of the linear map v �→
(v · ∇)m̃ from TyS2 to Tm̃(y)S

2, expressed in the ordered bases (τ1(y), τ2(y)) and
(τ1(m̃(y)), τ2(m̃(y))). It can be seen that this definition is independent of the frame
(τ1, τ2); in fact, for certain choices of τ1 and τ2 this is part of the proof of the
representation

N (m) = NS2

(
m ◦ φ−1

)
, (A.9)

for any φ ∈ B, found in Lemma A.2. The degree can then be extended as a contin-
uous map to H1(S2;S2) by approximation with smooth maps provided by a result
of Schoen and Uhlenbeck [75]. In particular, the above representation (A.8)
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holds true, as the 2× 2 determinant is a quadratic function, and thus the integral is
continuous in the strong H1-topology, see also [18, Property 4].

Using the above definitions, we describe how the various quantities behave
under reparametrization by φ−1 with φ ∈ B. In particular, we prove that the har-
monic map problem is invariant under this operation.

Lemma A.2. Let φ ∈ B and let u : R
2 → R be measurable. Then the map

x �→ u(x)|∇φ(x)|2 is integrable on R
2 if and only if u ◦ φ−1 is integrable on S

2,
and we have ˆ

R2
u|∇φ|2 dx = 2

ˆ
S2
u ◦ φ−1 dH2. (A.10)

Furthermore, we have u ∈ H1
w(R2), where the space H1

w(R2) is defined in (4.4), if
and only if u ◦ φ−1 ∈ H1(S2), and for every u, v ∈ H1

w(R2) there holds
ˆ
R2

∇u · ∇v dx =
ˆ
S2

∇(u ◦ φ−1) · ∇(v ◦ φ−1) dH2. (A.11)

We also have m ∈ H̊1(R2;S2) if and only if m̃ := m ◦φ−1 ∈ H1(S2;S2), in which
case we additionally have N (m) = NS2 (m̃). In particular, we have that m ∈ C is
a minimizer of F if and only if m̃ ∈ CS2 is a minimizer of FS2 .
Proof of Lemma A.1. The fact that ∇u and ∇ · ξ are determined up to sets of
H2-measure zero is a standard fact in analogy to uniqueness of weak derivatives
of functions defined in the Euclidean space. By approximation, it is sufficient to
prove the formula for smooth functions u and ξ . Using the definitions (A.1) and
(A.2) it is straightforward to check the identity

∇ · (uξ) = ∇u · ξ + u∇ · ξ. (A.12)

We therefore haveˆ
S2

ξ · ∇u dH2 =
ˆ
S2

(∇ · (uξ) − u∇ · ξ) dH2. (A.13)

By the divergence theorem on manifolds [3, Theorem 7.34] we have
ˆ
S2

∇ · (u ξ) dH2 =
ˆ
S2
u ξ · ((∇ · y)y) dH2(y) =

ˆ
S2
2u ξ · y dH2(y), (A.14)

where −(∇ · y)y = −2y has the significance of being the mean curvature vector
at y ∈ S

2, see [3, Definition 7.32]. This proves the identity (A.6), from which the
formula (A.7) easily follows. ��
Proof of Lemma A.2. For all x ∈ R

2 we have the identities

∂iφ(x) · ∂iφ(x) = 1

2
|∇φ(x)|2 > 0, (A.15)

∂1φ(x) · ∂2φ(x) = 0 (A.16)
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for i = 1, 2, and thus the map x �→
( √

2
|∇φ(x)|∂1φ(x),

√
2

|∇φ(x)|∂2φ(x)
)
provides a

smooth orthonormal frame for Tφ(x)S
2 for x ∈ R

2. Equation (A.10) and the corre-
sponding equivalence are straightforward results of the area formula [3, Theorem

2.71] and the fact that 1
2 |∇φ|2 = (det∇φT∇φ)

1
2 is the Jacobian of φ.

Let u, v : R2 → R be smooth functions and let x ∈ R
2. The chain rule implies

∂i u(x) = ∂iφ(x) ·
(
∇
(
u ◦ φ−1

)
(φ(x))

)
(A.17)

for i = 1, 2. As a result, we obtain

∇u(x) · ∇v(x) = 1

2
|∇φ(x)|2 ∇

(
u ◦ φ−1

)
(φ(x)) · ∇

(
v ◦ φ−1

)
(φ(x)). (A.18)

Since smooth functions are dense with respect to the H̊1-topology in both spaces
H1
w(R2) and H1(S2), as can be easily seen via convolutions, we obtain equation

(A.11). For m ∈ H̊1(R2;S2) we thus have m̃ := m ◦ φ−1 ∈ H1(S2;S2).
In order to show N (m) = NS2(m̃), we first define the orthogonal frame

(τ1(y), τ2(y)) :=
[( √

2

|∇φ|∂1φ,

√
2

|∇φ|∂2φ
)

◦ φ−1

]

(y) (A.19)

for y ∈ S
2, which is smooth except in the single point ν := lim|x |→∞ φ(x). We

may, therefore, calculate

N (m) = 1

4π

ˆ
R2

m · (∂1m × ∂2m) dx (A.20)

= 1

4π

ˆ
S2
m̃ · [(τ1(y) · ∇)m̃ × (τ2(y) · ∇)m̃] dH2(y), (A.21)

due to the chain rule (A.17), the area formula and the fact that 12 |∇φ|2 is the Jacobian
of φ. For almost all y ∈ m̃−1(ν) we have ∇m(y) = 0 by standard statements
about weak derivatives. Therefore, for i = 1, 2 we can almost everywhere express
(τi · ∇)m̃(y) in the basis {τ1(m̃(y)), τ2(m̃(y))} to get

N (m) = 1

4π

ˆ
S2
m̃ · (τ1(m̃) × τ2(m̃)) det (∇m̃) dH2 = NS2(m̃), (A.22)

by virtue of z · (τ1(z) × τ2(z)) = 1 for all z ∈ S
2 \ {ν} according to (A.19). ��

A.2. The Topological Bound and Energy Minimizing Harmonic Maps of Degree 1

In this section, we prove the topological bound (1.4) and characterize the corre-
sponding minimizers for the convenience of the reader. The following statement is
an amalgam of results due toBelavin and Polyakov [6], Lemaire [52] andWood
[80], see the discussion in Sect. 1. Our approach below is to reduce the problem to
that of the solutions of an H-system treated by Brezis and Coron [17].
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Lemma A.3. For all m ∈ H̊1(R2;S2) we have
|∇m|2 ± 2m · (∂1m × ∂2m) = |∂1m ∓ m × ∂2m|2 ≥ 0, (A.23)

almost everywhere, as well asˆ
R2

|∇m|2 dx ≥ 8π |N (m)| . (A.24)

The functions with N = 1 achieving equality, i.e., energy minimizing harmonic
maps of degree 1, are given by the set of Belavin–Polyakov profiles B, see definition
(2.20). We furthermore have the representation

BS2 =
{
	 ◦ f ◦ 	−1 : f (x) := ax + b

cx + d
for a, b, c, d ∈ C with ad − bc 
= 0

}

(A.25)

for the set BS2 of minimizing harmonic maps of degree 1 from S
2 to itself, see

definition (2.45).

We also briefly state a version of [54, Lemma9] in our setting relating the energy
excess to the Hamiltonian, see Sect. 4.1, which will come in handy a number of
times.

Lemma A.4. ([54, Lemma 9]). For m ∈ H̊1(R2;S2) and φ ∈ B we have the
identity

F(m) − 8π =
ˆ
R2

(
|∇(m − φ)|2 − (m − φ)2|∇φ|2

)
dx . (A.26)

Proof of Lemma A.3. The inequality (A.23) is a result of completing the square,
and the topological bound (A.24) then follows by integration.

Let φ ∈ H̊1(R2;S2) be such that N (φ) = 1 andˆ
R2

|∇φ|2 dx = 8π. (A.27)

Then equation (A.23) implies ∂1φ = −φ × ∂2φ almost everywhere. Together
with the fact that φ · ∂iφ = 0 for i = 1, 2 almost everywhere, we also have
φ × ∂1φ = −φ × (φ × ∂2φ) = ∂2φ and

2∂1φ × ∂2φ = ∂1φ × (φ × ∂1φ) − (φ × ∂2φ) × ∂2φ = |∇φ|2φ. (A.28)

Because φ is evidently an energy minimizing harmonic map, it satisfies (2.23)
distributionally, and thus the map φ̃ := −φ satisfies

�φ̃ = 2∂1φ × ∂2φ,

ˆ
R2

∣∣∇φ̃
∣∣2 dx = 8π. (A.29)

Thus [17, Lemma A.1] implies for almost all x ∈ C that

φ̃(x) = 	n

(
P(x)

Q(x)

)
(A.30)
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for complex polynomials P and Q of degree 1 such that P
Q is irreducible, where

	n(x) := −	(x) for x ∈ C and 	n(∞) := e3 is the stereographic projection
with respect to the north pole and division by zero is taken to evaluate to infinity.
Therefore, we get the representation

φ(x) = 	

(
P(x)

Q(x)

)
. (A.31)

for the smooth representative of φ. Let a, b, c, d ∈ C such that P(x) = ax + b
and Q(x) = cx + d for x ∈ C. As P and Q are irreducible, they must be linearly
independent polynomials. Consequently, we have

ad − bc = det

(
a b
c d

)

= 0, (A.32)

and the representation (A.25) follows from Lemma A.2.
Let S ∈ SO(3) be such that lim|x |→∞ Sφ(x) = −e3. Because Sφ also satisfies

N (Sφ) = 1 and
´
R2 |∇Sφ|2 dx = 8π , there exist ã, b̃, c̃, d̃ ∈ C with ãd̃ − b̃c̃ 
= 0

and

Sφ(x) = 	

(
ãx + b̃

c̃x + d̃

)

(A.33)

for all x ∈ C. From lim|x |→∞ Sφ(x) = −e3 it follows that lim|x |→∞
∣∣∣ ãx+b̃
c̃x+d̃

∣∣∣ = ∞,

and thus c̃ = 0. Therefore, ãd̃ − b̃c̃ 
= 0 implies ã 
= 0 and d̃ 
= 0. Without loss of
generality we may assume d̃ = 1, so that for all x ∈ C we have

Sφ(x) = 	
(
ãx + b̃

)
. (A.34)

With ρ := |ã|−1 and x0 := − b̃
ã we get for all x ∈ C that

Sφ(ρx + x0) = 	

(
ã

|ã| x
)

. (A.35)

Since we evidently have
∣∣
∣ ã|ã|
∣∣
∣ = 1, there exists θ ∈ [−π, π) such that

ã

|ã| = (cos θ, sin θ). (A.36)

The symmetry properties of 	, see definition (2.21), immediately imply

Sφ(ρx + x0) = 	

(
ã

|ã| x
)

= Sθ	(x), (A.37)

where Sθ was defined in equation (2.24). Consequently, for all x ∈ C we obtain

φ(x) = S−1Sθ	
(
ρ−1(x − x0)

)
, (A.38)

concluding the proof. ��
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Proof of Lemma A.4. We follow the arguments in the proof of [54, Lemma 9]. A
straightforward algebraic computation givesˆ

R2

(
|∇m|2 − |∇φ|2

)
dx =

ˆ
R2

(
|∇(m − φ)|2 + 2∇φ : ∇(m − φ)

)
dx .

(A.39)

By inspecting the definition (2.21) of 	 we see that |∇	(x)| = O(|x |−2) as x →
∞. Consequently, we may integrate by parts in the second term on the right-hand
side and use the fact that φ solves the harmonic map equation �φ + |∇φ|2φ = 0,
see equation (2.23), to obtainˆ

R2

(
|∇m|2 − |∇φ|2

)
dx =

ˆ
R2

(
|∇(m − φ)|2 + 2φ · (m − φ)|∇φ|2

)
dx .

(A.40)

The fact |m − φ|2 = −2φ · (m − φ) gives the claim. ��

A.3. Integrals Involving Belavin–Polyakov Profiles

Here we collect the results of a number of computations involving the original
and truncated Belavin–Polyakov profiles 	 and 	L , respectively. As they involve
dealing with modified Bessel functions of the second kind, specifically K0 and K1,
we begin by collecting some of the well-known properties of these functions (for
definitions, etc., see [2, Section 9.6]).

Recall that K0(r) and K1(r) are positive, monotonically decreasing functions
of r > 0. They have the following asymptotic expansions as r → 0:

K0(r) = | log r | + log 2 − γ + O(r2| log r |), (A.41)

K1(r) = 1

r
+ O(r | log r |), (A.42)

where γ ≈ 0.5772 is the Euler–Mascheroni constant, while as r → ∞ we have

K0,1(r) =
√

π

2r
e−r
(
1 + O(r−1)

)
. (A.43)

Finally, we will need the following basic upper bound:

K1(r) <
r0K1(r0)

r
∀r > r0 > 0, (A.44)

which easily follows from the strong maximum principle for the differential equa-
tion

r2K ′′
1 + r K ′

1 − (r2 + 1)K1 = 0 (A.45)

satisfied by K1, the asymptotics in (A.43), and the facts that g(r) := r0K1(r0)
r is a

strict supersolution for the above equation.
We next express the Fourier transforms of several quantities involving the

Belavin–Polyakov profile 	 and use them to compute its nonlocal energies. We
also compute the contribution of 	 to the DMI energy.
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Lemma A.5. We have

F(∇	′)(k) = −4πK1(|k|) k

|k| ⊗ k, (A.46)

F(	3 + 1)(k) = 4πK0(|k|). (A.47)

Furthermore, it holds that

Fvol(	
′) = 3

8
π3, (A.48)

Fsurf(	3 + 1) = 1

8
π3, (A.49)ˆ

R2
2	′ · ∇	3 dx = 8π. (A.50)

Having obtained the above formulas, we are in a position to derive the formulas
that are useful in obtaining an upper bound for the energy of a truncated Belavin–
Polyakov profile.

Lemma A.6. There exist universal constants C > 0 and L0 > 0 such that for all
L ≥ L0 the truncation 	L defined in (5.19) satisfies 	L ∈ A and the estimates

ˆ
R2

|∇	L |2 dx − 8π ≤ 4π

L2 + C log2 L

L3 , (A.51)

ˆ
R2

|	′
L |2 dx ≤ 4π log

(
4L2

e2(1+γ )

)
+ C log2 L

L
, (A.52)

ˆ
R2

2	′
L · ∇	L ,3 dx = 8π + O

(
L− 1

2

)
, (A.53)

Fvol(	
′
L) = 3

8
π3 + O

(
L− 1

4

)
, (A.54)

Fsurf(	3,L) = 1

8
π3 + O

(
L− 1

2

)
, (A.55)ˆ

R2
|∇(	L − 	)|2 dx ≤ CL−2, (A.56)

ˆ
R2

∣∣	3,L − 	3
∣∣2 dx ≤ CL−1. (A.57)

Lastly, a direct computation allows to establish an estimate for an integral
appearing in the lower bound of the anisotropy energy in Sect. 6. Here and every-
where below the integrals and the series expansions have been carried out using
Mathematica 11.2.0.0 software.We have also verified these computations explic-
itly by hand, but the details are too tedious to be presented here.

Lemma A.7. As μ → ∞, we have

ˆ ∞

0

μr3

1 + μr2
K 2
1 (r) dr ≥ 1

2
log

(
4μ

e2γ+1

)
+ O

(
log2 μ

μ

)
. (A.58)
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Proof of Lemma A.5. For a radial functionU (x) := u(|x |)withu ∈ L1(R+, rdr)
it is well known that the Fourier transform of U reduces to the Hankel transform

F(U )(k) = 2π
ˆ ∞

0
u(r)J0(|k|r)r dr, (A.59)

see for example [14, p. 336], where J0 is the zeroth order Bessel function of the
first kind. Due to	3(x)+1 = 2

|x |2+1
,∇ ·	′(x) = − 4

(1+|x |2)2 and [14, Table 13.2],
this allows us to compute

F(	3 + 1)(k) = 4πK0(|k|), (A.60)

F(∇ · 	′)(k) = −4π |k|K1(|k|). (A.61)

As 	′(x) = −∇ log(1 + |x |2), there exists a tempered distribution H such that
F(	′) = ikH , and from equation (A.61) we get

|k|2H = 4π |k|K1(|k|). (A.62)

Therefore, we have

F(∇	′)(k) = −k ⊗ k H = −4πK1(|k|) k

|k| ⊗ k. (A.63)

Inserting the expressions (A.61) and (A.60) into the representations (3.3) and
(3.9), respectively, we obtain

Fsurf(	3 + 1) = 4π
ˆ ∞

0
s2K 2

0 (s) ds = 1

8
π3, (A.64)

Fvol(	
′) = 4π

ˆ ∞

0
s2K 2

1 (s) ds = 3

8
π3. (A.65)

Lastly, (A.50) follows by direct computation. ��
Proof of Lemma A.6. Step 1: Proof of estimate (A.51).

For L > 1, we first note that fL is piecewise smooth, so in view of (A.43) we
have 	L + e3 ∈ H1(R2;S2). A direct computation also shows that N (	L) = 1,
as it should. Therefore, admissibility of 	L for large enough L would follow, as
soon as we establish (A.51).

In the following, all estimates and expansions are valid for L ≥ L0 with L0 > 0
sufficiently large. We begin by observing that

|∇	L(x)|2 = ( f ′
L)2(|x |)

1 − f 2L (|x |) + f 2L (|x |)
|x |2 (A.66)

and thus an explicit calculation gives
ˆ
B√

L (0)
|∇	L |2 dx = 8πL

1 + L
. (A.67)
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With the help of (A.44) we then obtain for all r > L
1
2 :

fL(r) <
L

1
2

r
f
(
L

1
2

)
≤ 2

r
. (A.68)

Consequently, we have for r > L
1
2 that

1

1 − f 2L (r)
= 1 + f 2L (r) + f 4L (r)

1 − f 2L (r)
≤ 1 + 4

r2
+ C

r4
≤ 1 +

(
1 + C

L

)
4

r2
.

(A.69)

We can insert this estimate into the identity (A.66) and compute for all x ∈ Bc√
L
(0):

|∇	L(x)|2 ≤
4L2K 2

1

( |x |
L

)
+ (|x |2 + 4(1 + CL−1)

) (
K0

( |x |
L

)
+ K2

( |x |
L

))2

L(L + 1)2K 2
1

(
L− 1

2

)
|x |2

,

(A.70)

where K2 is the modified Bessel function of the second kind. Integrating in radial
coordinates and then expanding in the powers of L−1 yields

ˆ
Bc√

L
(0)

|∇	L |2 dx ≤ 8π

L
− 4π

L2 + O

(
log2 L

L3

)
, (A.71)

which together with equation (A.67) finally implies (A.51). In particular, 	L ∈ A
for all L ≥ L0 with some L0 > 0 sufficiently large.

Step 2: Estimate the rates of convergence of 	L to 	 in several norms.

We start with an L2-estimate for the out-of-plane components. For r ≥ L
1
2 , by the

estimate (A.68) we have

(√
1 − f 2(r) −

√
1 − f 2L (r)

)2
=

(
f 2L (r) − f 2(r)

)2

(√
1 − f 2(r) +

√
1 − f 2L (r)

)2

≤ C

r2
( fL(r) − f (r))2 .

(A.72)

Thus the right-hand side decays as r−4 for r → ∞, and we have
ˆ
R2

∣∣	3 − 	L ,3
∣∣2 dx ≤ CL−1. (A.73)

Similarly, together with (A.68), f (r) ≤ 2
r for r > 0 and the fact that |∇	(x)|2 ≤

C |x |−4 for x ∈ R
2 we obtain

ˆ
R2

|	L − 	|2|∇	|2 dx ≤ CL−2. (A.74)
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Combining this with Lemma A.4 and the estimate (A.51) we get the bound (A.56),
meaning

ˆ
R2

|∇(	L − 	)|2 dx ≤ CL−2. (A.75)

To handle the volume charges, we need L p-estimates for p 
= 2 in view of the fact
that 	′ 
∈ L2(R2;R2). To this end, we can use estimates (A.68) and f (r) ≤ 2

r for
r > 0 to obtain ˆ

R2
|	′

L − 	′|4 dx ≤ CL−1. (A.76)

Additionally, we will need a matching L
4
3 -estimate for ∇	′

L in order to apply
Lemma 3.1 later. For x ∈ Bc√

L
(0) we use (A.66) and (A.68) to calculate

|∇	′
L(x)| ≤ C

(∣∣ f ′
L(|x |)∣∣+ fL(|x |)

|x |
)

. (A.77)

By the identity K ′
1(r) = −K0(r) − K1(r)

r for all r > 0, the estimate (A.68) and the
expansions (A.41) and (A.42) we have for all x ∈ Bc√

L
(0):

|∇	′
L(x)| ≤ C

(
1

L2 + 1

|x |2
)
e− |x |

L . (A.78)

Integrating this bound we arrive at
ˆ
Bc√

L
(0)

∣∣∇	′
L(x)

∣∣
4
3 dx ≤ CL− 2

3 . (A.79)

The remaining integral over B√
L(0) is bounded since |∇	′| ∈ L

4
3 (R2) and we get

ˆ
R2

|∇	′
L | 43 dx ≤ C. (A.80)

Step 3: Estimate the anisotropy, DMI and stray field contributions.
First compute the contribution to the anisotropy energy from the core region:

ˆ
B√

L (0)
|	′

L |2 dx = 4π

(
1

L + 1
+ log(L + 1) − 1

)
. (A.81)

Next, evaluate the contribution of the tail region:

ˆ
Bc√

L
(0)

|	′
L |2 dx =

4πL2
(
K 2
0

(
L− 1

2

)
+ 2L

1
2 K1

(
L− 1

2

)
K0

(
L− 1

2

)
− K 2

1

(
L− 1

2

))

(L + 1)2K 2
1

(
L− 1

2

) .

(A.82)

Combining these two expressions and expanding in L−1 yields (A.52).
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As 	′
L decays exponentially at infinity by virtue of estimate (A.43) and 	3 +1

decays as r−2, we can integrate by parts in the difference of the DMI terms
ˆ
R2

(
	′

L · ∇	L ,3 − 	′ · ∇	3
)
dx

=
ˆ
R2

(
(	3 + 1) ∇ · 	′ − (	L ,3 + 1

)∇ · 	′
L

)
dx

=
ˆ
R2

(
(	3 + 1) ∇ · (	′ − 	′

L

)− (	L ,3 − 	3
)∇ · 	′

L

)
dx .

(A.83)

By the facts that 	3 + 1 ∈ L2(R2), the estimates (A.75) and (A.73), and the
Cauchy–Schwarz inequality we deduce

∣∣∣∣

ˆ
R2

(
	′

L · ∇	L ,3 − 	′ · ∇	3
)
dx

∣∣∣∣ ≤ CL− 1
2 . (A.84)

Together with (A.50), this then yields (A.53).
Similarly, by Lemma A.5 we only need to estimate the error terms in the stray

field contributions to prove estimates (A.54) and (A.55). By bilinearity and the

estimates, (3.8) with p = 4, (A.76), (A.80) and |∇	′| ∈ L
4
3 (R2;R2) we get

∣∣Fvol(	′
L) − Fvol(	

′)
∣∣ ≤ ∣∣Fvol(	′

L + 	′,	′
L − 	′)

∣∣

≤ C‖	′
L − 	′‖4‖∇(	′

L + 	′)‖ 4
3

≤ CL− 1
4 .

(A.85)

A similar calculation for the surface term gives
∣∣Fsurf(	L ,3) − Fsurf(	3)

∣∣ ≤ C‖	L ,3 − 	3‖2‖∇(	L ,3 + 	3)‖2 (A.86)

We can now apply the interpolation inequality (3.7) together with the estimates
(A.51) and (A.73) in order to obtain

∣
∣Fsurf(	L ,3) − Fsurf(	3)

∣
∣ ≤ CL− 1

2 , (A.87)

concluding the proof. ��
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