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Abstract

We investigate the scaling of the ground state energy and optimal domain pat-
terns in thin ferromagnetic films with strong uniaxial anisotropy and the easy axis
perpendicular to the film plane. Starting from the full three-dimensional micromag-
netic model, we identify the critical scaling for which the transition from single
domain to multidomain ground states such as bubble or maze patterns occurs as the
film thickness goes to zero and the lateral extent goes to infinity. Furthermore, we
analyze the asymptotic behavior of the energy in these two asymptotic regimes. In
the single domain regime, the energy Γ -converges towards a much simpler two-
dimensional and local model. In the multidomain regime, we derive the scaling of
the minimal energy and deduce a scaling law for the typical domain size.

1. Introduction

Ferromagnetic materials are an important class of solids which have played an
indispensable role in data storage technologies of the digital age [22,51,65]. Their
utility for technological applications stems from the basic physical property of ferro-
magnets to exhibit spatially ordered magnetization patterns—magnetic domains—
under a variety of conditions [32]. The mechanisms behind the magnetic domain
formation can be quite complex, but usually domain patterns may be understood
from the energetic considerations based on themicromagneticmodeling framework
[9,20,32]. Starting with the early works of Landau and Lifshitz [46] andKittel
[39], ground states of various ferromagnetic systems have been the subject of exten-
sive studies in the physics community (see [32] and references therein), and more
recently in the mathematical literature (for a review, see [20]). In particular, within
themicromagnetic framework the ground state domain structure ofmacroscopically
thick uniaxial ferromagnetic films is by now fairly well understood mathematically
in terms of the energy and length scales, as well as some of the qualitative properties
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of the domains [14,15,17,40,59]. In contrast, apart from only a handful of stud-
ies [16,28,50,54], the vast majority of mathematical treatments of microscopically
thin ferromagnetic films deal with the situation in which the magnetization prefers
to lie in the film plane (see, for example, [12,13,18,19,26,33–35,41,44,52]; this
list is certainly not complete). Thus, one of the fundamental open problems in the
theory of uniaxial ferromagnets is to rigorously characterize their ground states in
the case of films of vanishing thickness when the magnetization prefers to align
normally to the film plane (for various ansatz-based computations in the physics
literature, see [21,38,42,57]). This problem is themain subject of the present paper.

Recent advances in nanofabrication allow an unprecedented degree of spa-
tial resolution, with features of only a few atomic layers in thickness and tens of
nanometers laterally for planar structures [66], enabling synthesis of ultrathin fer-
romagnetic films and multilayer structures with novel material properties. Over the
last decade, there has been a major focus on films with thickness of only a few
atomic layers, primarily due to their promising applications in spintronics [2]. One
of the important features of these films is the emergence of perpendicular magne-
tocrystalline anisotropy due to the increased importance of surface effects [30,36],
which favor the magnetization vector to lie along the normal to the film plane.
As a result, the magnetization may exhibit either stripe or bubble domain phases
depending on the applied external field and other factors [31,56,61,64,68]. We
note that studies of magnetic bubble domains in relatively thick films have a long
history in the context of magnetic memory devices (see, for example, [42] and the
book [48]). However, the occurrence of additional physical effects in ultrathin films,
such as spin transfer torque [7,24,37], Dzyaloshinskii-Moriya interaction [5,60]
and electric field-controlled perpendicular magnetic anisotropy [23,49] allow for
much greater manipulation of the domain patterns, resulting in a renewed attention
to bubble domains from experimentalists [37,43,62,63,67]. In particular, the topo-
logical characteristics of the bubble domain patterns in these materials are of great
current interest [8,24,55]. These considerations further motivate the present study
of the basic problem noted at the end of the preceding paragraph.

In this paper, we are interested in deriving a reduced two-dimensional model
for ultrathin ferromagnetic films with perpendicular anisotropy and using it to
asymptotically characterize the observed ground states and, more generally, all
low energy states in films of large spatial extent. Our starting point is the three-
dimensional micromagnetic energy functional, coming from the continuum theory
of uniaxial bulk ferromagnets [45]. In a periodic setting and after a suitable non-
dimensionalization, the micromagnetic energy is

E [m] =
∫
T
2
�×(0,t)

(
|∇m|2 + Q

(
m2

1 + m2
2

))
dx +

∫
T
2
�×R

|h|2 dx . (1.1)

Here, T2
� × (0, t) denotes the space occupied by a ferromagnetic sample in the

form of a film of thickness t , period � and whose magnetocrystalline easy axis is
normal to the film plane, m ∈ H1(T2

� × (0, t);S2) is the magnetization vector and
h : T2

� × R → R
3 is the stray field, which is uniquely determined by m via the

distributional solution of the static Maxwell’s equations
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∇ · (h + m) = 0 and ∇ × h = 0 in T2
� × R, (1.2)

where m has been extended by zero outside T
2
� × (0, t). Up to a sign, h equals

the Helmholtz projection of m onto the space of gradients. Note that the energy
depends on m in a nonlocal way. To emphasize this fact, we sometimes use the
notationH [m] := h to denote the solution of (1.2). Finally, Q > 0 is the material
quality factor. For an introduction to micromagnetic modeling we refer to, for
example, [20,32]. Note that additional physical effects due to the external applied
magnetic field and the film surfaces may be easily incorporated and would lead to
the same type of a reduced two-dimensional model [54]. Also note that it is well
known that the infimum of E is attained (see, for example, [20]).

Since our focus is on materials with perpendicular magnetic anisotropy, we
assume that Q > 1 (for a detailed explanation, see the following section). The
high magnetocrystalline anisotropy leads to magnetizations that are predominantly
perpendicular to the film plane. It is well-known that such materials feature mag-
netizations that consist of one or many regions of nearly constant magnetization,
called magnetic domains, separated by interfaces, called domain walls. Note that
the energy in (1.1) depends on the three dimensionless parameters �, t and Q. To
describe such magnetic domains, we investigate the asymptotic behavior of the
energy in (1.1) for thin films (that is t � 1) with large extension in the film plane
(that is � � 1). In this work, we identify the critical scaling for the size of the
sample where a transition from single domain states to multidomain states occurs.
Moreover, we analyze the asymptotic behavior of the energy in the two regimes
separated by this transition.

In the subcritical regime, the global minimizers are the single domain states
m = ±e3. We derive the asymptotic behavior of the energy in this regime in the
framework of Γ -convergence. The reduced energy turns out to be much simpler
than the full energy, in particular, it is two-dimensional and local. In the supercritical
regime, which lies beyond the transition towards multidomain configurations, we
establish the scaling of the energy (up to a multiplicative constant) and characterize
sequences that achieve this scaling. Our analysis shows that the magnetization
in this regime consists of several domains and suggests that the typical distance
s between domain walls (with all lengths in the units of the so called exchange
length, a material parameter [32]) scales as

s ∼ e2π t−1√Q−1

√
Q − 1

.

Wewill show that in the regimeswe consider the leading order of themicromag-
netic energy, upon rescaling and subtracting a constant, is given by the following
two-dimensional functional defined for m ∈ H1(T2;S2):

Fε,λ[m] =
∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx − λ

| ln ε|
∫
T2

|∇1/2m3|2 dx . (1.3)

In (1.3), T2 = R
2/Z2 denotes the square flat torus of unit side length representing

a rescaling of the two-dimensional footprint of the ferromagnetic film, ε is the
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renormalized Bloch wall width and λ is the renormalized film thickness (see the
following section for the precise definitions). We note that a similar result for a
closely related problem of a Ginzburg-Landau energy with dipolar interactions has
been obtained in [53], where the meaning of the asymptotic equivalence between
the full energy of three-dimensional configurations and the reduced energy of their
e3-averages is discussed in more detail. Also, for ε and λ fixed the infimum of Fε,λ

is clearly attained.
The main part of our analysis is concerned with the asymptotic behavior of

(1.3) as ε → 0 for different values of λ > 0. Note that the last term in (1.3) occurs
with a negative sign and hence prefers oscillations of m3. As it turns out, the value
of the parameter λ is crucial—in fact, we will show that the asymptotic behavior
changes at λ = λc, where

λc = π

2
, (1.4)

which is a singular point in the terminology of [6]. For λ < λc the Γ -limit F∗,λ :=
Γ (L1)-limε→0 Fε,λ measures the length of the interface separating regions with
m = e3 and m = −e3 (see Theorem 2.5)

F∗,λ[m] =
{(

1 − λ
λc

) ∫
T2 |∇m3| dx, for m ∈ L1(T2; {±e3}),

+∞, otherwise.
(1.5)

Note that the last term in (1.3) leads to a reduction of the interfacial cost by λ
λc

compared to the classical result [1] for λ = 0. On the other hand, for λ > λc, the
scaling of the minimal energy changes (see Theorem 2.6)

min
m∈H1(T2;S2)

Fε,λ[m] ∼ −λε
λc−λ

λ

| ln ε|
ε→0−→ −∞,

and sequences (mε) which achieve the optimal scaling Fε,λ[mε] ∼ min Fε,λ are
highly oscillatory in the sense that

∫
T2

|∇mε,3| dx ∼ ε
λc−λ

λ
ε→0−→ +∞.

Furthermore, for λ � λc, the leading order contributions of all three terms in
(1.3) cancel out. The main difficulty in the proof is to find asymptotically optimal
estimates for the non-local term.

A reduction of the full three-dimensional micromagnetic energy to a local two-
dimensional model in the thin film limit was first established rigorously in [28].
Subsequently, several thin film regimes for magnetically soft materials have been
identified and analyzed, see for example [10–12,19,34,41,44,52]. However, since
we consider materials with high perpendicular anisotropy, our setting is consider-
ably different.

To conclude our introductory remarks, we note that the behavior of the material
changes markedly when the film can no longer be considered to be thin. In [14] the
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scaling of the ground state energy was identified for the two-dimensional micro-
magnetic model and in [15] for the three-dimensional model. Magnetizations with
optimal energy involve the so-called branching domain patternswhich becomefiner
and finer as they approach the boundary of the sample. When the ferromagnetic
sample is exposed to a critical external field, a transition between a uniform and
a branching domain pattern occurs. The critical field strength and the scaling of
the micromagnetic energy for this regime were derived in [40]. In our regime, the
thickness of the film is so small that this does not only exclude the branching pat-
terns that occur in bulk samples, but actually forces the magnetization to become
constant in the direction normal to the film plane.
Notation: For x = (x1, x2, x3) ∈ R

3 we write x = (x ′, x3), where x ′ = (x1, x2)
is the projection of x onto the film plane. Similarly, in R

3 we write ∇ = (∇′, ∂3),
where ∇′ = (∂1, ∂2) is the in-plane part of the gradient. The square flat torus with
side length � > 0 is denoted by T

2
� := (R2/�Z2), and we abbreviate T

2 := T
2
1.

We frequently identify functions defined on T
2
� with doubly �-periodic functions

defined on R
2. For u ∈ L1(T2

� × (0, t)) we write u ∈ L1(T2
�) to denote the e3-

average

u(x ′) := 1

t

∫ t

0
u(x ′, x3)dx3.

Moreover, for every v ∈ L1(T2
�) we write χ(0,t)v ∈ L1(T2

� × (0, t)) to denote the
function (χ(0,t)v)(x ′, x3) = χ(0,t)(x3)v(x ′). By

∫
T
2
�
|∇u| dx we denote the total

variation of u.
The expression f (x) � g(x)means that there exists a universal constantC > 0

such that the inequality f (x) � Cg(x) holds for every x . The symbol � is defined
analogously and we write ∼ if both � and � hold.

For future reference, we now fix the constants in the definition of the Fourier
series. For f ∈ L2(T2

�), we write

f̂k :=
∫
T
2
�

eik·x f (x) dx, where k ∈ 2π

�
Z
2.

The inverse Fourier transform is then given by

f (x) = 1

�2

∑
k∈ 2π

�
Z2

e−ik·x f̂k for x ∈ T
2
� .

Parseval’s theorem then states that∫
T
2
�

f ∗(x)g(x) dx = 1

�2

∑
k∈ 2π

�
Z2

f̂ ∗
k ĝk for f, g ∈ L2(T2

�),

where f ∗ is the complex conjugate of f . Furthermore, for s ∈ (0, 1), we write∫
T
2
�

|∇su|2 dx := 1

�2

∑
k∈ 2π

�
Z2

|k|2s |̂uk |2.
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For s = 1/2 we will also use the following well-known real space representation
of the (square of the) homogeneous H1/2(T2

�)-norm:

∫
T
2
�

|∇1/2u|2 dx = 1

4π

∫
T
2
�

∫
R2

|u(x + y) − u(x)|2
|y|3 dy dx . (1.6)

Lastly, with the usual abuse of notation, for ε → 0 we will refer to (mε) ∈
H1(T2

�;S2) as a sequence, implying the sequence of mεk ∈ H1(T2
�;S2) for some

sequence of εk → 0 as k → ∞. Similarly,whenwe refer to the family of functionals
(Fε,λ) we are always dealing with sequences Fεk ,λ.

2. Main Results

Our main result is the identification of two thin-film regimes and the derivation
of the asymptotic behavior of the energy in these regimes. We will state the results
for a suitably rescaled version of E (m) − E (e3), the energy relative to that of the
monodomain state.

For Q > 1 and �
√

Q − 1 > 2, which is assumed throughout the rest of the
paper, it is convenient to introduce the new parameters ε, λ (replacing �, t):

ε := 1

�
√

Q − 1
and λ := t ln

(
�
√

Q − 1
)

4
√

Q − 1
. (2.1)

We rescale the domain of the ferromagnetic film to a fixed domain by means of
the anisotropic transformation T

2
� × (0, t) → T

2 × (0, 1) with (x1, x2, x3) �→( x1
�
, x2

�
, x3

t

)
and study the energy Eε,λ : L1(T2×(0, 1);S2) → R∪{+∞}, defined

by

Eε,λ[m] :=
⎧⎨
⎩
E [m(�·, �·, t ·)] − �2t

2�t
√

Q − 1
for m ∈ H1(T2 × (0, 1);S2),

+∞ otherwise,
(2.2)

noting that E (e3) = �2t , as can be verified by an explicit computation. We will
show that the energy Eε,λ in (2.2) may be well approximated, in a certain sense, by
the reduced two-dimensional energy Fε,λ introduced in (1.3). For both functionals,
we study the limit ε → 0 for fixed λ > 0, corresponding to the limit of vanishing
thickness with suitable rescaling in lateral direction, while keeping Q as a fixed
material parameter. For both functionals, we will identify two regimes (recall that
λc was introduced in (1.4)):

• the subcritical regime: 0 < λ < λc,
• the supercritical regime: λc < λ.

We will show that in the subcritical regime, single domain states appear. Physically
this corresponds to relatively small samples where there is not sufficient space
to accommodate multidomain states (as imposed by the periodicity). On the other
hand, low energy states in the supercritical regime are characterized by the presence
of multidomain states. We also give some results about the transition at λ = λc.
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The asymptotic behavior of Eε,λ in the subcritical regime is characterized in
the following theorem:

Theorem 2.1. (Subcritical regime) Let Q > 1 and λ ∈ (0, λc). Then as ε → 0 the
following holds:

(i) Compactness: For every sequence (mε) ∈ L1(T2 × (0, 1);S2) with

lim sup
ε→0

Eε,λ[mε] < +∞,

there exists a sub-sequence and m ∈ BV (T2; {±e3}) such that

mε → mχ(0,1) in L1
(
T
2 × (0, 1);R3

)
;

(ii) Γ -Convergence: The sequence of functionals (Eε,λ) Γ -converges towards F∗,λ,
in the following sense:
– Every sequence (mε) ∈ L1(T2 × (0, 1);S2) with mε → mχ(0,1) in L1(T2 ×

(0, 1);R3) for some m ∈ L1(T2; {±e3}) satisfies

lim inf
ε→0

Eε,λ[mε] � F∗,λ[m]. (liminf inequality)

– For every m ∈ L1(T2, {±e3}) there exists a sequence (mε) ∈ L1(T2 ×
(0, 1);S2) with mε → mχ(0,1) in L1(T2 × (0, 1);R3) such that

lim sup
ε→0

Eε,λ[mε] � F∗,λ[m]. (recovery sequence)

Theorem 2.1 shows in particular that single domain states are preferred asymptot-
ically in the subcritical regime, since the limit energy is local and prefers constant
magnetizations. We note that a related model has been studied in a subcritical
regime in the context of lipid bilayer membranes, in which the nonlocal energy
vanishes in the Γ -limit, but affects the leading order constant of the limit energy
[25].

On the other hand, the next theorem shows that the energy leads to pattern
formation in the supercritical regime.

Theorem 2.2. (Supercritical regime) Let Q > 1 and λ > λc. Then there is ε0 =
ε0(λ, Q) > 0 such that the minimal energy in (2.2) satisfies the bounds

−Cλε
λc−λ

λ

| ln ε| � min Eε,λ � −cλε
λc−λ

λ

| ln ε| (2.3)

for some universal constants 0 < c < C and for any ε ∈ (0, ε0).

We note that by the direct method of the calculus of variations the minimum energy
in the above theorem is indeed attained. Configurations achieving the minimal
scaling of energy, including minimizers, can be characterized as follows:
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Theorem 2.3. Let Q > 1 and λ > λc. Then there is ε0 = ε0(λ, Q) > 0 such that
for any ε ∈ (0, ε0), any γ > 0 and all m ∈ H1(T2 × (0, 1);S2) which satisfy

Eε,λ[m] � −γ λε
λc−λ

λ

| ln ε| , (2.4)

we have

(i)
∫
T2×(0,1)

|m − mχ(0,1)|2 dx ≤ Cγ λ3(Q − 1)2
ε

λc
λ

| ln ε|3 , (2.5)

(ii)
∫
T2×(0,1)

(
m2

1 + m2
2

)
dx � Cγ ε

λc
λ , (2.6)

(iii) cγ ε
λc−λ

λ �
∫
T2

|∇m3| dx � Cγ ε
λc−λ

λ , (2.7)

(iv)
∫
T2×(0,1)

(
ε|∇m|2

2
+ 1 − m2

3

2ε

)
dx �

(
1 + Cγ λ

| ln ε|
)∫

T2
|∇m3| dx (2.8)

for some constants 0 < cγ < Cγ depending only on γ .

We take a moment to interpret the statements (i)–(iv) in Theorem 2.3 above. Item
(i) shows that for configurations with the scaling of the minimal energy the mag-
netization is approximately two-dimensional, that is independent of the thickness
variable. Item (ii) implies that the magnetization is mostly perpendicular to the
film (that is m ≈ ±e3). Item (iii) is an estimate for the total length of the domain
walls which confirms the conjecture from the physics community (see also Remark
2.4). Item (iv) in Theorem 2.3 indicates that domain walls approximate Bloch walls
of thickness (in the original, physical variables) proportional to ε� = 1/

√
Q − 1

for which the left hand side of estimate (iv) is exactly
∫
T2 |∇m3| dx . Indeed, (iv)

implies that m approximates the optimal Bloch wall profile in an L2-sense:

∫
T2×(0,1)

⎛
⎝

√
ε|∇m3|√
1 − m2

3

−
√
1 − m2

3√
ε

⎞
⎠

2

dx � 2Cγ λ

| ln ε|
∫
T2

|∇m3| dx,

with the convention |∇m3|√
1−m2

3

= 0 if |m3| = 1.

Remark 2.4. (Scaling of domain size) The estimate (2.7), written in terms of the
original physical variables, confirms the exponential dependence of the typical
distance s between neighboring walls on the inverse thickness t−1, as was already
observed in ansatz-based computations in [38] for a two-dimensional sharp interface
model. Indeed, in view of Theorem 2.3(iii), the total length of the domain walls w

satisfies (for fixed γ )

w := �

2

∫
T2

|∇m3| dx
(2.7)∼ �ε

λc−λ
λ

(2.1)= �2
√

Q − 1 e− 2π
√

Q−1
t . (2.9)
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In particular, we have the estimate

s := �2

w

(2.9)∼ e2π t−1√Q−1

√
Q − 1

,

where s can be interpreted as the typical domain size. In fact, we expect that the
stray field energy induces a repulsive interaction of (nearest) neighboring domain
walls and leads to an approximately equidistant spacing of the walls.

We now formulate results analogous to the ones in the previous section, but for
the reduced energy Fε,λ. The relation between the full energy Eε,λ and the reduced
two-dimensional energy Fε,λ will be made rigorous in section 5, and, indeed, most
of the results stated above for the energy Eε,λ are corollaries of those for Fε,λ

presented below. The reason to formulate our results also in terms of Fε,λ is two-
fold: on one hand, themain ideas are easier to understandwhen they are not obscured
by additional difficulties arising from the reduction to a two-dimensional model and
the stray-field energy approximation; on the other hand, the energy Fε,λ itself may
be considered as a good starting point for modeling ultrathin ferromagnetic layers
with perpendicular magnetic anisotropy. The asymptotic behavior of the reduced
energy Fε,λ in the subcritical regime is summarized in the following theorem:

Theorem 2.5. (Subcritical regime) Let λ ∈ (0, λc) and Fε,λ as defined in (1.3).
Then as ε → 0 the following holds:

(i) Compactness: Every sequence (mε) in H1(T2;S2) with lim supε→0 Fε,λ[mε]
< +∞ converges in L1(T2) (up to extracting a subsequence) towards a limit
in BV (T2; {±e3});

(ii) Γ -convergence: The family of functionals (Fε,λ) Γ -converges with respect to
the L1(T2)-topology towards F∗,λ, defined in (1.5).

The next theorem is concerned with the minimal energy and the structure of
low energy states in the supercritical regime.

Theorem 2.6. (Supercritical regime) There are universal constants 0 < δ < 1 <

K such that for

0 < ε < K
λ

λc−λ and λc < λ < δ| ln ε|,
the minimal energy of the family of functionals (Fε,λ) satisfies

−C
λε

λc−λ
λ

| ln ε| � min Fε,λ � −c
λε

λc−λ
λ

| ln ε|
for some universal constants 0 < c < C. Moreover, for all profiles m ∈ H1(T2;S2)
achieving the optimal scaling in the sense that

Fε,λ[m] � −γ
λε

λc−λ
λ

| ln ε|
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for some γ > 0, we have

∫
T2

|∇m3| dx �
∫
T2

(
ε

2
|∇m|2 + 1 − m2

3

2ε

)
dx � λ

| ln ε|
∫
T2

|∇1/2m3|2 dx .

(2.10)

Furthermore, if A and B are any of the three quantities in (2.10), we have

cγ ε
λc−λ

λ � A ≤ Cγ ε
λc−λ

λ and |A − B| � C̃γ

λ

| ln ε| A (2.11)

for some positive constants cγ , Cγ and C̃γ which depend only on γ .

Under the assumptions of Theorem 2.6, statements analogous to (2.6)–(2.8) in
Theorem 2.3 hold as well, they are simple consequences of the stronger statements
in (2.10) and (2.11).

The next theorem addresses the structure of minimizers in a neighborhood of
the transition.

Theorem 2.7. (Critical scaling) We have the following:

(i) Cross-over of global minimizers: There exist ε0 > 0 and two constants 0 <

β1 < 1 < β2 such that the minimal energy min Fε,λ is zero and only attained
by the constant configurations m ≡ ±e3 if ε ∈ (0, ε0) and

λ � λ−(ε) := λc

(
1 + ln β1

| ln ε|
)

. (2.12)

On the other hand, the minimal energy is strictly negative and minimizers
cannot be constant if ε ∈ (0, ε0) and

λ � λ+(ε) := λc

(
1 + ln β2

| ln ε|
)

; (2.13)

(ii) Γ -convergence: The family of functionals (Fε,λc) Γ -converges with respect
to the L1(T2)-topology towards F∗,λc for ε → 0;

(iii) Lack of compactness: There is a sequence (mε) in H1(T2;S2) which is not
precompact in L1(T2) such that limε→0 Fε,λc [mε] = 0;

(iv) Compactness upon rescaling: For every C > 0, any sequence (mε) with

Fε,λc [mε] � C | ln ε|−1

converges in L1(T2) (up to extracting a subsequence) to a limit in
BV (T2; {±e3}).

Theorem 2.7 suggests that | ln ε|Fε,λc is the appropriate rescaling for the critical
case. Unfortunately, it seems not possible to obtain the Γ -limit of | ln ε|Fε,λc with
our H1/2-estimate (3.1) of the following section, because the constant c∗ there is
not optimal.

We illustrate our results in a phase diagram (Fig. 1). It is not difficult to see
that for each 0 < ε < 1

2 there is a sharp threshold value λ = λc(ε) > 0 at
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λ

ε

λc = π
2

0

λ−(ε) λ+(ε)

λc(ε)

minFε,λ = 0,

attained by
m ≡ ±e3

minFε,λ < 0,

minimizers are
spatially
modulated

Fig. 1. Sketch of the phase diagram for minimizers of Fε,λ in terms of λ > 0 and ε � 1

which a transition from monodomain states (m ≡ const) to multidomain states
(m �≡ const) as global energyminimizers occurs,withλc(ε) aLipschitz-continuous
function on [δ, 1 − δ] for every 0 < δ < 1

2 , see [58]. While we do not know
the precise value of λc(ε) for ε > 0, we show in Theorem 2.7 that λ−(ε) �
λc(ε) � λ+(ε) and limε→0 λc(ε) = π

2 , that is the definition above agrees with
λc := λc(0) = π

2 . Furthermore, global minimizersmε,λ of Fε,λ with (ε, λ) between
any two curves of the form λ(ε) = λc +β| ln ε|−1 (the dashed curves in the figure)
satisfy a uniform bound of the form c �

∫
T2 |∇m(ε,λ),3| dx � C , with constants

C > c > 0 depending only on the values of β ∈ R for these curves.

3. A Bound on the Homogeneous H1/2-Norm

Since all three terms in Fε,λ contribute in highest order to the limit, it is important
to estimate the negative term

∫
T2 |∇1/2m3|2 dx with precise leading order constant.

In this section we will establish an upper bound for the homogeneous H1/2-norm
which is the key ingredient for the lower bounds (since the nonlocal term in the
energy has a negative sign). We will prove the following:

Lemma 3.1. There is a universal constant c∗ � 1 such that for every f ∈ C∞(T2)

and every 0 < ε < 1 we have
∫
T2

|∇1/2 f |2 dx ≤ ε

2

∫
T2

|∇ f |2 dx

+ 2

π
ln

(
c∗ max

{
1,min

{ ‖ f ‖∞
ε
∫
T2 |∇ f |dx

,
1

ε

}})
‖ f ‖∞

∫
T2

|∇ f | dx . (3.1)

In Lemma 3.1, we improve an inequality established in [18]. Expressed in our
setting, the inequality proved in [18, Lemma 1] asserts that for every δ > 0 there
exists Mδ > 1 such that for all ε � R and all f ∈ C∞(T2), we have
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∑
k∈2πZ2

min

{
1

ε
, |k|, R|k|2

}
| f̂k |2 ≤ (1 + δ)

2

π
ln

(
2Mδ R

ε

)
‖ f ‖∞

∫
T2

|∇ f | dx .

(3.2)

Note that (3.1) implies for all ε � 1 a similar estimate
∫
T2

|∇1/2 f |2 dx � ε

2

∫
T2

|∇ f |2 dx + 2

π
ln
(c∗

ε

)
‖ f ‖∞

∫
T2

|∇ f | dx, (3.3)

which is weaker than (3.1). Estimate (3.2) is an inequality for a regularized H̊1/2-
norm, whereas (3.3) estimates the full H̊1/2-norm, but needs an additional H̊1-
term. It ceases to be optimal for functions which oscillate significantly. Indeed, let
α ∈ (0, 1) and consider functions fε with∫

T2
|∇ fε| dx � ε−α‖ fε‖∞. (3.4)

Then the second term in (3.1) is smaller than the second term in (3.3) by a factor of
(1 − α) for all fε which satisfy (3.4). Asymptotic optimality in the case of strong
oscillation is crucial to obtain the results on the supercritical regime. The proof of
Lemma 3.1 uses similar ideas as in [18] and is based on a separate treatment of
distinct scales. However, our proof does not involve any Fourier Analysis.

Proof. (Lemma 3.1) We will show that the following estimates hold for all f ∈
C∞(T2) and all 0 < r � R:

∫
T2

∫
Br

| f (x + z) − f (x)|2
|z|3 dz dx � πr

∫
T2

|∇ f |2 dx, (3.5)

∫
T2

∫
BR\Br

| f (x + z) − f (x)|2
|z|3 dz dx � 8 ln

(
R

r

)
‖ f ‖∞

∫
T2

|∇ f | dx, (3.6)

∫
T2

∫
Bc

R

| f (x + z) − f (x)|2
|z|3 dz dx ≤ 2π‖ f ‖∞

R
min

{
4‖ f ‖∞,

∫
T2

|∇ f | dx

}
.

(3.7)

The claim of the lemma will follow by adding (3.5)–(3.7) and a suitable choice of
r and R. Before we start with the proofs of estimates (3.5)–(3.7), we first record
an auxiliary inequality for further use. By the Fundamental Theorem of Calculus,
Jensen’s inequality and Fubini’s Theorem we get

∫
T2

| f (x + z) − f (x)|p dx �
∫
T2

|∇ f (x) · z|p dx (3.8)

for all z ∈ R
2 and all 1 � p < ∞. In order to prove (3.5), we use Fubini’s Theorem

and apply (3.8) with p = 2 to get

∫
T2

∫
Br

| f (x + z) − f (x)|2
|z|3 dz dx

(3.8)≤
∫

Br

∫
T2

|∇ f (x) · z|2
|z|3 dx dz. (3.9)
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We apply Fubini’s Theorem again and evaluate the integral with respect to z in
polar coordinates to get∫

Br

∫
T2

|∇ f (x) · z|2
|z|3 dx dz =

(∫ r

0

∫ 2π

0
cos2 φ dφdρ

)(∫
T2

|∇ f (x)|2 dx

)

= πr
∫
T2

|∇ f |2 dx . (3.10)

Together, (3.9) and (3.10) yield the first estimate (3.5).
For the estimate involving intermediate distances (3.6), we use Fubini’s Theo-

rem (twice) and (3.8) with p = 1 to conclude∫
T2

∫
BR\Br

| f (x + z) − f (x)|2
|z|3 dz dx

(3.8)≤ 2‖ f ‖∞
∫
T2

∫
BR\Br

|∇ f (x) · z|
|z|3 dz dx .

(3.11)

Using polar coordinates, we get∫
BR\Br

|∇ f (x) · z|
|z|3 dz =

∫ R

r

∫ 2π

0

|∇ f (x)| | cosφ|
ρ

dφdρ = 4 ln

(
R

r

)
|∇ f (x)|.

Inserting this identity into (3.11) yields the claim (3.6).
In order to prove (3.7), we first show∫

T2
| f (x + z) − f (x)| dx ≤ min

{
2‖ f ‖∞,

1

2

∫
T2

|∇ f | dx

}
(3.12)

for all z ∈ R
2. Indeed, the upper bound of 2‖ f ‖∞ in (3.12) is trivial. Furthermore,

since f is periodic, it is sufficient to show the second upper bound in (3.12) only

for z ∈ (− 1
2 ,

1
2

)2
. Thus the second bound in (3.12) follows from (3.8) with p = 1

∫
T2

| f (x + z) − f (x)| dx
(3.8)
�
∫
T2

|∇ f (x) · z| dx � 1

2

∫
T2

|∇ f (x)| dx

so that the proof of (3.12) is complete. With (3.12) at hand, estimate (3.7) now
follows by direct integration.

It remains to prove (3.1), for which we use the real-space representation of the
homogeneous H1/2-norm∫

T2
|∇1/2 f |2 dx = 1

4π

∫
T2

∫
R2

| f (x + z) − f (x)|2
|z|3 dz dx,

see for example [18]. Without loss of generality, we may assume that f is not
constant. Adding (3.5)–(3.7) to estimate the right hand side of (3.1), we get∫

T2
|∇1/2 f |2 dx ≤ r

4

∫
T2

|∇ f |2 dx

+
(
2

π
ln

(
R

r

)
+ 1

2R
min

{
4‖ f ‖∞∫

T2 |∇ f | dx
, 1

})
‖ f ‖∞

∫
T2

|∇ f | dx . (3.13)

For r := 2ε and R := max
{
2ε,min

{
4‖ f ‖∞∫

T2 |∇ f | dx
, 1
}}

the claim (3.1) now follows

from (3.13). ��
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4. Proofs for the Reduced Energy Fε,λ

In this section we give the proofs of the theorems involving the reduced energy
Fε,λ. The proof of Theorem 2.5 is a direct consequence of Lemmas 4.1 and 4.3.
Similarly the proof of Theorem 2.6 follows immediately from Lemmas 4.4 and 4.5.
Finally, the proof of Theorem 2.7 is presented at the end of this section.

4.1. Proof of Theorem 2.5

In this section, we present the proof of Theorem 2.5. The proof of the lower
bound and compactness for theΓ -limit is basedon the interpolation result inLemma
3.1 and is given in Lemma 4.1. The proof of the upper bound follows by explicit
construction and is given in Lemma 4.2.

Lemma 4.1. (Lower bound and compactness) Let λ < λc and Fε,λ as defined in
(1.3). Then any sequence (mε) in H1(T2;S2) with

lim sup
ε→0

Fε,λ[mε] < +∞

converges in L1(T2;R3) (up to extracting a subsequence) towards a limit in
BV (T2; {±e3}). Furthermore, for every sequence (mε) in L1(T2;S2) with mε →
m for some m in L1(T2;R3) we have

lim inf
ε→0

Fε,λ[mε] �

⎧⎨
⎩
(
1 − λ

λc

) ∫
T2

|∇m3| dx, if m ∈ BV (T2; {±e3}),
+∞ otherwise.

(4.1)

Proof. We first show that for all λ > 0 and all sufficiently small ε > 0 we have

Fε,λ[m] �
(
1 − λ| ln cε|

λc| ln ε|
) ∫

T2
|∇m3| dx, for all m ∈ H1

(
T
2;S2

)
, (4.2)

for some universal constant c > 0. For this, it is sufficient to use Lemma 3.1 for
m3 in the form (3.3). Recalling that ‖m3‖∞ � 1 and λc = π

2 , we get

λ

| ln ε|
∫
T2

|∇1/2m3|2 dx
(3.3)
� λ

| ln ε|
∫
T2

ε

2
|∇m3|2 dx + λ

λc

ln (c∗/ε)
| ln ε|

∫
T2

|∇m3| dx .

(4.3)

We also use the well-known estimate

|∇m3| � ε

2
|∇m|2 + 1

2ε

(
1 − m2

3

)
, (4.4)

which is obtained by differentiating |m|2 = 1 and applying Young’s inequality. The
claimed lower bound in (4.2) then follows from (4.3) and (4.4), since
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Fε,λ[m]
(4.3)
�
(
1 − λ

| ln ε|
) ∫

T2

(ε

2
|∇m|2 + 1

2ε
(1 − m2

3)
)
dx

− λ

λc

ln c∗
ε

| ln ε|
∫
T2

|∇m3| dx

(4.4)
�
(
1 − λ

λc

ln eλc c∗
ε

| ln ε|
) ∫

T2
|∇m3| dx . (4.5)

Now, let (mε) be a sequence in H1(T2;S2) with lim supε→0 Fε,λ[mε] < +∞.
From the argument in (4.5), |mε| = 1 and λ < λc we obtain

0 = lim sup
ε→0

εFε,λ[mε] � 1

2

(
1 − λ′

λc

)
lim sup

ε→0

∫
T2

(
m2

ε,1 + m2
ε,2

)
dx

for any λ′ ∈ (λ, λc) and ε � 1, implying that the first two components mε,1 and
mε,2 of mε converge to zero in L2(T2) as ε → 0. Again, as a consequence of
|mε| = 1 this further implies that mε → m in L2(T2;R3) and, upon extraction
of a subsequence, we have mε(x) → m(x) for almost everywhere x ∈ T

2, with
m(x) = ±e3.Moreover, (4.2) yields a uniformbound formε,3 in BV , which implies
that m ∈ BV (T2; {±e3}). Finally, (4.1) follows directly from (4.2), the fact that
limε→0

λ| ln cε|
λc| ln ε| = λ

λc
< 1 and lower semi-continuity of the BV -seminorm. ��

Before we begin with the construction of the upper bound, we define a family of
asymptotically optimal profiles and record some of their properties.

Lemma 4.2. (Family of asymptotically optimal profiles) For R ∈ (0,∞] and 0 <

ε < R, let ξε,R ∈ C1(R) be given by ξε,R(x) = sign(x) for |x | � R and

ξε,R(x) := sin

(
π

2

arcsin(tanh(x/ε))

arcsin(tanh(R/ε))

)
|x | < R. (4.6)

Then for some universal C, c, a > 0 we have

1

2

∫ R

−R

( ε|ξ ′
ε,R |2

1 − ξ2ε,R

+ 1 − ξ2ε,R

ε

)
dx � 2 + Ce−a R/ε, (4.7)

∫ X

−X

∫ X

−X

|ξε,R(x) − ξε,R(y)|2
|x − y|2 dx dy � 8 ln

(
cX

ε

)
for X � 2ε. (4.8)

Proof. We begin by observing that ξε,R(x) tends to the optimal one-dimensional
Modica-Mortola profile ξε,∞(x) = tanh(x/ε) associated with the left-hand side of
(4.7) when R → ∞. Introducing θε,R := arcsin ξε,R , we have for all |x | < R that

ε|ξ ′
ε,R(x)|2

1 − ξ2ε,R(x)
+ 1 − ξ2ε,R(x)

ε

(4.6)= ε|θ ′
ε,R(x)|2 + cos2 θε,R(x)

ε

� 2ξ ′
ε,∞(x) + Cε−1e−a R/ε (4.9)

for some universal a > 0 and C > 0, and thus (4.7) follows from integrating (4.9),
possibly modifying the values of a and C .
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It remains to prove (4.8). By symmetry of ξε,R we have

∫ X

−X

∫ X

−X

|ξε,R(x) − ξε,R(y)|2
|x − y|2 dy dx = 2

∫ 0

−X

∫ X

−X

|ξε,R(x) − ξε,R(y)|2
|x − y|2 dy dx

� 2
∫ −ε

−X

∫ X

0

|ξε,R(x) − ξε,R(y)|2
|x − y|2 dy dx

= 2
∫ −ε

−X

∫ X

0

4

|x − y|2 dy dx − 2
∫ −ε

−X

∫ X

0

4 − |ξε,R(x) − ξε,R(y)|2
|x − y|2 dy dx .

(4.10)

The first term on the right-hand side yields

∫ −ε

−X

∫ X

0

1

|x − y|2 dy dx = ln

(
ε + X

2ε

)
� ln

(
X

2ε

)
.

Thus, the argument is concluded by showing that the second term on the right hand
side of (4.10) is bounded independently of ε, X or R. Indeed, using the fact that
|sign(x) − ξε,R(x)| � Ce−a|x |/ε for all x ∈ R, we get

∫ −ε

−X

∫ X

0

4 − |ξε,R(x) − ξε,R(y)|2
|x − y|2 dy dx �

∫ ∞

1

∫ ∞

0

e−ax + e−ay

|x + y|2 dx dy � 1,

which yields the desired result. ��
For the special case λ = 0, theΓ -convergence and in particular the construction

of a recovery sequence is a classical result, relying on the optimal one-dimensional
transition profiles to smooth out the jump discontinuity in the limit configuration
[1]. As it turns out, this construction also works for λ > 0, where Fε,λ is nonlocal.
We will use a construction based on the nearly optimal profile ξε,R from Lemma
4.2. As the calculations for the local part of the energy are well-known, our focus is
on the contribution of the homogeneous H1/2-norm. Recall that we need to prove
a lower bound for the H1/2-norm in order to obtain an upper bound for Fε,λ.

Lemma 4.3. (Recovery sequence) Let λ � λc and m ∈ L1(T2;S2). Then there is
a sequence (mε) in H1(T2;S2) with

lim sup
ε→0

Fε,λ[mε] � F∗,λ[m],

where Fε,λ is given by (1.3), and F∗,λ is given by (1.5).

Proof. It is sufficient to prove the limsup inequality under the additional assumption
that m = (χA − χT2\A)e3 for a set A ⊂ T

2 with smooth boundary. By standard
density results (see for example [47, Prop. 12.20]) and a diagonal argument, the
limsup inequality then extends to arbitrary A ⊂ T

2 with finite perimeter for λ < λc

or to measurable A ⊂ T
2 for the λ = λc case. Since F∗,λ[m] = +∞ for m /∈

BV (T2, {±e3}) when λ < λc or for m /∈ L1(T2, {±e3})) when λ = λc, this yields
the claim.
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Our strategy is to adapt the optimal profiles ξε,R from Lemma 4.2 to the two-
dimensional setting by means of the signed distance function d, given by d(x) :=
dist(x, Ac) − dist(x, A). Without loss of generality, we may assume 0 < |A| < 1
(otherwise takemε ≡ ±e3). To fix the notation, let ν : ∂ A → R

2 denote the smooth
inward normal to A and τ : ∂ A → R

2, τ = ν⊥ denote a smooth tangent vector field
to ∂ A obtained by a counter-clockwise 90◦ rotation of ν. As ∂ A is assumed to be
smooth, there exists a tubular neighborhood (∂ A)R =⋃x∈∂ A BR(x) ⊂ T

2 for some
R > 0 such that the projection p : (∂ A)R → ∂ A, p(x) := argminy∈∂ A |x − y| is
single-valued and hence well-defined. Furthermore, the projection p and the signed
distance function d are smooth on (∂ A)R and the identity x = p(x)+d(x)ν(p(x))

holds for all x ∈ (∂ A)R , see for example [27, Lemma 14.16].
With the necessary notation at hand, we define the recovery sequence by

mε(x) := ξε,R(d(x))e3 +
√
1 − ξ2ε,R(d(x)) τ (p(x)), (4.11)

which is Lipschitz continuous and piecewise smooth. It is easy to see that mε → m
in L1(T2),

and by the co-area formula we have for all ε � 1,∫
T2

(
ε

2
|∇mε|2 + 1

2ε
(1 − m2

ε,3)

)
dx

=
∫

(∂ A)R

(
ε|ξ ′

ε,R(d)|2
2(1 − ξ2ε,R(d))

+ 1

2ε
(1 − ξ2ε,R(d))

)
dx

=
∫ R

−R

(
ε|ξ ′

ε,R(s)|2
2(1 − ξ2ε,R(s))

+ 1

2ε
(1 − ξ2ε,R(s))

)
H 1({d(x) = s}) ds.

(4.12)

Inserting the estimate for the 1-d profile from Lemma 4.2, we obtain
∫ R

−R

(
ε|ξ ′

ε,R(s)|2
2(1 − ξ2ε,R(s))

+ 1

2ε
(1 − ξ2ε,R(s))

)
H 1({d(x) = s}) ds

(4.7)
� 2H 1({d(x) = 0}) + C R

(
1 + e−a R/ε

)
,

(4.13)

where C > 0 is a constant depending only on A, and a > 0 is universal. Thus

lim sup
R→0

lim sup
ε→0

∫
T2

(ε

2
|∇mε|2 + 1

2ε

(
1 − m2

ε,3

) )
dx � 2H 1(∂ A). (4.14)

We now turn to the estimate of the nonlocal term in the energy F . As for the
local terms, our strategy is to use the one-dimensional estimates from Lemma 4.2.
Invoking the co-area formula twice and inserting (4.11), we get
∫
T2

∫
R2

|mε,3(x) − mε,3(y)|2
|x − y|3 d2x d2y

�
∫ R

−R

∫
{x : d(x)=ρ′}

∫ R

−R

∫
{y: d(y)=ρ}

|ξε,R(ρ′) − ξε,R(ρ)|2
|x − y|3 dH 1(y)dρdH 1(x) dρ′.

(4.15)
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We claim that the integrals over curves tangential to the boundary may be estimated
as follows: for every δ > 0, there is an Rδ,A such that

∫
{x : d(x)=ρ′}

∫
{y: d(y)=ρ}

1

|x − y|3 dH 1(y)dH 1(x) � (1 − δ)
2H 1(∂ A)

(ρ − ρ′)2
(4.16)

for all R � Rδ,A and all ρ �= ρ′ ∈ (−R, R). Assuming for a moment that (4.16)
holds, we conclude by inserting (4.16) into (4.15) and applying the one-dimensional
estimate (4.8)

λ

| ln ε|
∫
T2

|∇1/2mε,3|2 d2x

(4.15),(4.16)
� (1 − δ)

λH 1(∂ A)

2π | ln ε|
∫ R

−R

∫ R

−R

|ξε,R(ρ) − ξε,R(ρ′)|2
|ρ − ρ′|2 dρ′dρ

(4.8)
� (1 − δ)2H 1(∂ A)

λ

λc

ln(cR/ε)

| ln ε| .

Since δ was arbitrary, we obtain

lim inf
R→0

lim inf
ε→0

λ

| ln ε|
∫
T2

|∇1/2mε,3|2 d2x � 2λ

λc
H 1(∂ A). (4.17)

Together, (4.14) and (4.17) imply the limsup inequality by a standard diagonal
argument.

It remains to prove (4.16), for which we fix x ∈ (∂ A)R with d(x) = ρ′ and
pass to curvilinear coordinates in a neighborhood of x̃ := p(x) ∈ ∂ A. More
precisely, let the curve γ : (−R1/2, R1/2) → ∂ A be a parametrization by arclength
of a neighborhood of x̃ in ∂ A with γ (0) = x̃ . Then, for all R � RA with some
RA > 0 the function �(σ, ρ) := γ (σ ) + ν(γ (σ ))ρ is a diffeomorphism from
(−R1/2, R1/2) × (−R, R) onto its image, which we denote by Γx̃ . The choice of
R1/2 will become clear later. Note that due to compactness of ∂ A, we may choose
RA independent of x̃ . A transformation of variables then yields

∫
{y: d(y)=ρ}∩Γp(x)

1

|x − y|3 dH 1(y) =
∫ R1/2

−R1/2

(1 + κ(γ (σ ))ρ)

|�(0, ρ′) − �(σ, ρ)|3 dσ, (4.18)

where κ(ỹ) denotes the signed curvature of ∂ A at ỹ (negative if A is convex). Since
the curvature of ∂ A is bounded, there is, for any δ > 0, an Rδ,A > 0 such that for
all R � Rδ,A we have

|κ|R � δ and |�(0, ρ′) − �(σ, ρ)| ≤ (1 + δ)
√

σ 2 + (ρ − ρ′)2. (4.19)

We conclude that, for any δ̃ > 0, there is an R̃δ̃,A > 0 such that for all R � R̃δ̃,A
and all ρ, ρ′ ∈ (−R, R) we have
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∫
{y: d(y)=ρ}∩Γp(x)

1

|x − y|3 dH 1(y)

(4.18),(4.19)
� (1 − δ̃)

∫ R1/2

−R1/2

1(
σ 2 + (ρ − ρ′)2

)3/2 dσ

= 2R1/2(1 − δ̃)

(ρ − ρ′)2
√

R + (ρ − ρ′)2
� 2(1 − 2δ̃)

(ρ − ρ′)2
.

Integrating this estimate over x and again invoking smoothness of ∂ A, we obtain
(4.16). ��

4.2. Proof of Theorem 2.6

Webegin with the proof of the lower bound in Theorem 2.6, which is the subject
of Lemma 4.4. The proof of Theorem 2.6 is completed with the construction of the
upper bound, carried out in Lemma 4.5.

Lemma 4.4. (Lower bound) Let Fε,λ be defined in (1.3). Then there is a universal
constant δ > 0 such that for all ε < 1

2 and all

λc � λ < δ| ln ε|, (4.20)

the family of functionals (Fε,λ) is bounded below by

min Fε,λ � −λε
λc−λ

λ

| ln ε| . (4.21)

Moreover, the profiles achieving the optimal scaling can be characterized as fol-
lows: For any γ > 0 and all m ∈ H1(T2;S2) which satisfy

Fε,λ[m] � −λε
λc−λ

λ

| ln ε| γ, (4.22)

there holds∫
T2

|∇m3| dx �
∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx � λ

| ln ε|
∫
T2

|∇1/2m3|2 dx .

(4.23)

Furthermore, if there is cγ > 0, depending only on γ , such that for any

A, B ∈
{∫

T2
|∇m3| dx,

∫
T2

(
ε

2
|∇m|2 + 1 − m2

ε,3

2ε

)
dx,

λ

| ln ε|
∫
T2

|∇1/2m3|2 dx

}
,

we have

A ∼ cγ ε
λc−λ

λ and |A − B| � cγ λ

| ln ε| A. (4.24)
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Proof. By (3.1), we may bound the energy from below by

Fε,λ[m] (3.1)≥
(
1 − λ

| ln ε|
)∫

T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx

− λ

λc| ln ε| ln
(

c∗ max

{
1,min

{
1

ε
∫
T2 |∇m3| dx

,
1

ε

}})∫
T2

|∇m3| dx .

(4.25)

Without loss of generality, wemay assume that
∫
T2 |∇m3| dx > 0.We first consider

the case min
{

1
ε
∫
T2 |∇m3| dx

, 1
ε

}
� 1, for which, with the help of (4.4), the estimate

in (4.25) turns into

Fε,λ[m] �
(
1 − Cλ

| ln ε|
) ∫

T2
|∇m3| dx

(4.20)
� (1 − Cδ)

∫
T2

|∇m3| dx (4.26)

for some universal C > 0. For δ < 1/C , the right hand side of (4.26) is positive

and the lower bound follows. Hence, we may assume min
{

1
ε
∫
T2 |∇m3| dx

, 1
ε

}
> 1,

so that (4.25) implies

Fε,λ[m] �
(
1 − λ

| ln ε|
)∫

T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx

− λ

λc| ln ε| ln
(

c∗
ε
∫
T2 |∇m3| dx

)∫
T2

|∇m3| dx . (4.27)

With the abbreviation

Dε[m] :=
∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx −

∫
T2

|∇m3| dx,

and inserting μ := ε
λ−λc

λ

∫
T2 |∇m3| dx and c∗∗ := c∗eλc into the lower bound in

(4.27), we get

Fε,λ[m] �
(
1 − λ

| ln ε|
)

Dε[m] − λ

λc

ln
( c∗∗

μ

)
| ln ε| με

λc−λ
λ . (4.28)

Since supμ>0 μ ln(c∗∗/μ) = c∗∗/e, and since Dε[m] � 0 by (4.4), the lower bound
in (4.21) follows.

In order to prove (4.24), we first note that (4.4) and Fε,λ[m] � 0 yield (4.23).
Furthermore, combining the lower bound (4.28) with the upper bound (4.22) yields
μ ln(c∗∗/μ) � 1, which in turn implies μ ∼ 1. Hence,∫

T2
|∇m3| dx = με

λc−λ
λ ∼ ε

λc−λ
λ .

The proof of (4.24) is then completed by noting that for δ > 0 sufficiently small
universal, μ ∼ 1 and in view of (4.28), we have

λ

| ln ε|
∫
T2

|∇1/2m3| dx −
∫
T2

|∇m3| dx = −Fε,λ[m] + Dε[m]
(4.28)
� λε

λc−λ
λ

| ln ε| .

��
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Lemma 4.5. (Upper bound) There is a universal constant K > 1 such that for any
ε, λ with

λc < λ and 0 < ε < K
λ

λc−λ , (4.29)

there is mε ∈ H1(T2;S2) which satisfies

Fε,λ[mε] � −λε
λc−λ

λ

| ln ε| .

Proof. We make an ansatz with Nε transitions equally separated by 1/Nε-sized
regions of approximately constant magnetization. More precisely, we take the tran-
sitions as solutions of the optimal Modica-Mortola profile ξε,∞, given in Lemma
4.2, and define

mε(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξε,∞
( x1− 1

2Nε

ε

)
e3 +

√
1 − ξ2ε,∞

( x1− 1
2Nε

ε

)
e2, x1 ∈ [0, 1

Nε

]
,

ξε,∞
( 3

2Nε
−x1

ε

)
e3 +

√
1 − ξ2ε,∞

( 3
2Nε

−x1
ε

)
e2, x1 ∈ [ 1

Nε
, 2

Nε

]
,

extended periodically to T
2 for Nε to be fixed later. Applying Lemma 4.2 with

X = 1
2Nε

and using symmetries of mε, we get

lim sup
ε→0

∫
T2

(
ε

2
|∇mε|2 + 1

2ε

(
1 − m2

ε,3

))
dx � 2Nε, (4.30)

and, for all ε < 1
4Nε

, we have

∫
T2

|∇1/2mε,3|2 dx
(1.6)= 1

4π

∫ 1

0

∫
R

∫
R

|mε,3(x1, 0) − mε,3(y1, 0)|2
(|x1 − y1|2 + s2)3/2

ds dx1 dy1

� 1

2π

Nε∑
k=1

∫ k
Nε

k−1
Nε

∫ k
Nε

k−1
Nε

|mε,3(x1, 0) − mε,3(y1, 0)|2
|x1 − y1|2 dx1 dy1

= Nε

4λc

∫ 1
2Nε

− 1
2Nε

∫ 1
2Nε

− 1
2Nε

|ξε,∞(x) − ξε,∞(y)|2
|x − y|2 dx dy

(4.8)≥ 2Nε

ln( c
2εNε

)

λc
(4.31)

for some universal c > 0. To obtain the upper bound, we combine estimates (4.30)
and (4.31) and optimize in Nε ∈ N. With K −1 := 1

8 min{1, c}, the choice Nε :=
2
⌊

K −1ε
λc−λ

λ

⌋
is admissible because Nε � 2 by (4.29) and εNε � 2K −1 � 1

4 .
Since 0 < ε < 1, we get

Fε,λ[mε] � 2Nε

⎛
⎝1 −

λ ln
(

c
2εNε

)

λc| ln ε|

⎞
⎠ � −Cλε

λc−λ
λ

| ln ε| (4.32)

for some universal C > 0, which is the desired estimate. ��



748 Hans Knüpfer, Cyrill B. Muratov & Florian Nolte

4.3. Proof of Theorem 2.7

We begin with the proof of (i). Inserting (2.12) into the lower bound (4.2), we
get, for sufficiently small ε > 0,

Fε,λ[m] �
( | ln ε| ln(c/β1) + ln(c) ln(β1)

| ln ε|2
)∫

T2
|∇m3| dx .

For β1 < c and ε � 1, the bracket above is positive, so that the minimal value

Fε,λ = 0 is only attained for m ≡ ±e3. On the other hand, since ε
λ+(ε)−λc

λ+(ε) ≤ 2
β2

for
sufficiently small ε > 0, m = ±e3 is not a minimizer by Lemma 4.5.

We turn to the proof of (ii): We first note that the construction of the recovery
sequence was already carried out in Lemma 4.3. For the proof of the lower bound,
we claim that ∫

T2
|∇m3| dx � max

{
1, | ln ε|Fε,λc [m]} . (4.33)

For the proof of (4.33), it is enough to show that there are constants C, ε0 > 0 such
that for all ε ∈ (0, ε0) we have∫

T2
|∇m3| dx � C �⇒ Fε,λc [m] � 1

| ln ε|
∫
T2

|∇m3| dx . (4.34)

Indeed, by (3.1), we may bound the energy from below by

Fε,λc [mε]
(3.1)≥
(
1 − λc

| ln ε|
)∫

T2

(
ε

2
|∇mε|2 + 1

2ε
(1 − m2

ε,3)

)
dx

−
ln
(

c∗ max
{
1,min

{
1

ε
∫
T2 |∇mε,3| dx

, 1
ε

}})

| ln ε|
∫
T2

|∇mε,3| dx .

(4.35)

We first consider the case min{ 1
ε
∫
T2 |∇mε,3| dx

, 1
ε
} � 1, when (4.35) turns into

Fε,λc [mε] �
(
1 − λc + ln(c∗)

| ln ε|
)∫

T2
|∇mε,3| dx �

∫
T2

|∇m3| dx .

For the remaining case, we have min{ 1
ε
∫
T2 |∇m3| dx

, 1
ε
} � 1, and (4.35) implies

Fε,λc [mε] �
(
1 − λc

| ln ε|
)∫

T2

(
ε

2
|∇mε|2 + 1

2ε
(1 − m2

ε,3)

)
dx

− 1

| ln ε| ln
(

c∗
ε
∫
T2 |∇mε,3| dx

)∫
T2

|∇mε,3| dx

(4.4)
� − 1

| ln ε| ln
(

c∗∗∫
T2 |∇m3| dx

)∫
T2

|∇m3| dx,

inserting c∗∗ := c∗eλc . The estimate (4.34) follows with the choice C = 2c∗∗.
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Let now mε → m in L1(T2) for some m ∈ L1(T2;R3). Lemma 4.4 yields

lim inf
ε→0

Fε,λc [mε] � 0,

which proves the lower bound if m ∈ L1(T2; {±e3}). Otherwise, we may assume∫
T2(1−m2

ε,3) dx � 1. For sufficiently small ε, estimates (3.1) and (4.33) then yield

1 �
∫
T2

(1 − m2
ε,3) dx � ε

(
Fε,λ[mε] + λc

| ln ε|
∫
T2

|∇1/2mε,3|2 dx

)

(3.1)
� ε

(
Fε,λ[mε] +

∫
T2

|∇mε,3| dx
) (4.33)

� ε
(
1 + | ln ε|Fε,λc [mε]

)
,

(4.36)

which implies lim infε→0 Fε,λc [mε] = +∞, concluding the proof of Γ -
convergence.

To prove item (iii), we use the construction in Lemma 4.5; however choosing
Nε := �ln(| ln ε|)� this time. Analogous to (4.32), we get for ε � 1 that

Fε,λ[mε] � 2Nε

(
1 − ln( c

2εNε
)

| ln ε|
)

� Nε ln Nε

| ln ε| −→ 0 for ε → 0.

It hence remains to show that mε is not compact in the strong L1-topology. Since∫
T2 |mε|2 dx = 1, any possible limit m̃ of (a subsequence of) mε then would need
to satisfy

∫
T2 |m̃|2 dx = 1. However, since εNε → 0 as ε → 0, clearly mε ⇀ 0 in

L2(T2), leading to a contradiction.
Finally, item (iv) follows directly from (4.36), (4.33) and the compact embed-

ding BV (T2) ↪→ L1(T2).

5. Stray Field Estimates and Reduction of the Full Energy

In this section, we establish a basic lower bound for the full micromagnetic
energy E by an expression in which the stray field energy is represented, up to an
additive constant, by an effective anisotropy term minus a multiple of the square
of the H̊1/2(T2

�)-norm of the average of the out-of-plane component of the mag-
netization, provided the exchange stiffness is slightly reduced. Importantly, this
lower bound becomes asymptotically sharp in the limit of vanishing film thickness.
We note that in the context of ferromagnetic films in which the magnetization lies
mostly in the film plane, related results have been obtained in [10–12,41].

Proposition 5.1. (Reduction of the energy) Let t > 0, � > 0 and Q > 1, and let
m ∈ H1(T2

� × (0, t);R3). Then there is a universal constant C > 0 such that E
may be bounded below as follows:

E [m] � �2t +
(
1 − Ct2

) ∫
T
2
�×(0,t)

|∇m|2 dx + (Q − 1)
∫
T
2
�×(0,t)

(1 − m2
3) dx

− t2

2

∫
T
2
�

|∇1/2m3|2 dx, (5.1)

where m(x ′) = 1
t

∫ t
0 m(x ′, x3) dx3.
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Also note that for two-dimensional magnetizations, that is, for configurations of the
form m = mχ(0,t), the estimate in (5.1) also holds in the reversed direction if −C
is replaced by C . We remark that a similar sharp estimate for the three-dimensional
dipolar energy holds for thin three-dimensional domains in the whole space [53].
For the proof of Proposition 5.1, which is deferred until the end of this section, we
need several estimates presented in the sequel.

We begin with an observation that since the thickness t of the film is small, the
exchange energy strongly penalizes oscillations of the magnetization in the normal
direction of the film. Hence the averaged magnetization m is a good approximation
of m, which can be made rigorous by the following Poincaré-type inequality which
holds for all m ∈ H1(T2

� × (0, t);R3):
∫
T
2
�×(0,t)

|m − χ(0,t)m|2 dx � t2
∫
T
2
�×(0,t)

|∂3m|2 dx . (5.2)

We next show that for thin films the difference between the stray field energy
Es[m] := ∫

T
2
�×R

|H [m]|2 dx and

E 0
s [m] :=

∫
T
2
�×(0,t)

m2
3 dx − t2

2

∫
T
2
�

|∇1/2m3|2 dx + t2

2

∫
T
2
�

|∇−1/2∇ · m′|2 dx

(5.3)

may be estimated by the exchange energy at lower order. We state the result in the
form of a theorem, as it is of independent interest. In fact, our result provides a
universal stray field energy expansion for thin films in a periodic setting and thus
contains all previously obtained asymptotic estimates for specific thin film regimes
[10–12,19,41]. Note that our result is slightly stronger than what is necessary to
prove Proposition 5.1.

Theorem 5.2. Let t > 0, � > 0 and let m ∈ H1(T2
� × (0, t);R3). With the notation

D :=
∫
T
2
�×(0,t)

|∇m|2 dx,

the stray field energy then satisfies

(i)
∣∣∣
∫
T
2
�×R

(
|H [m]|2 − |H [m3e3]|2 − |H [m − m3e3]|2

)
dx
∣∣∣ � t2D,

(ii)
∣∣∣
∫
T
2
�×R

|H [m]|2 − |H [mχ(0,t)]|2 dx
∣∣∣ � t2D.

Furthermore, the contributions due to m3 and m − m3e3 may be approximated by

(iii)
∣∣∣
∫
T
2
�×R

|H [m3e3]|2 dx −
∫
T
2
�×(0,t)

m2
3 dx + t2

2

∫
T
2
�

|∇1/2m3|2 dx
∣∣∣ � t2D,

(iv)
∣∣∣
∫
T
2
�×R

|H [m − m3e3]|2 dx − t2

2

∫
T
2
�

|∇−1/2∇ · (m − m3e3)|2 dx
∣∣∣ � t2D.

In particular, if E 0
s is defined in (5.3), then |Es[m] − E 0

s [m]| � t2D.



Magnetic Domains in Thin Films 751

Proof. It is sufficient to argue for m ∈ C∞
c (T2

� × R;R3), since the general
case follows by an approximation argument, as we now explain. For every m ∈
H1(T2

� × (0, t);R3), extended by zero to the rest of T2
� × R, there is a sequence

(mn)n∈N with mn ∈ C∞
c (T2

� × R;R3) such that ‖m − mn‖L2(T2
�×R) → 0 and

‖∇m − ∇mn‖L2(T2
�×(0,t)) → 0. It remains to check that all terms in (i)–(iv) are

continuous. By Jensen’s inequality we have ‖mn − m‖L2(T2
�)

→ 0. Moreover,

clearly t‖∇mn‖2L2(T2
�)

� ‖∇mn‖2
L2(T2

�×(0,t))
. Hence the convergence follows from

the elliptic estimate ‖H [mn − m]‖L2(T2
�×R) � ‖mn − m‖L2(T2

�×R) and by inter-
polation for the terms involving fractional derivatives.

We write the stray field energy in terms of the magnetostatic potential φ:
∫
T
2
�×R

|H [m]|2 dx = −
∫
T
2
�×R

φ ∇ · m dx, �φ = ∇ · m in D ′(T2
� × R).

Upon passing to Fourier series with respect to the in-plane variables, we get
∫
T
2
�×R

φ ∇ · m dx = 1

�2

∫
R

∑
k

φ̂∗
k (z)

(
∂zm̂3,k(z) − ik · m̂′

k(z)
)
dz, (5.4)

where the Fourier coefficients φ̂k : R → C, k ∈ 2π
�
Z
2, of φ solve

∂2z φ̂k − |k|2φ̂k = ∂zm̂3,k − ik · m̂′
k .

We introduce the fundamental solution (for a closely related approach, see [10,11])

Hk(z) =
{

1
|k|e

−|k||z| for k �= 0,

−|z| for k = 0,

which, using the notation δ(z) for the Dirac measure at z = 0, satisfies

−∂2z Hk + |k|2Hk = 2δ(z) in D ′(R). (5.5)

The fundamental solution allows us to rewrite φ̂k(z) as

φ̂k(z) = −1

2

∫
R

Hk(z − z′)
(
∂zm̂3,k(z

′) − ik · m̂′
k(z

′)
)
dz′,

which, by (5.4), leads to the following expression for the stray field energy:
∫
T
2
�×R

|H [m]|2 dx = 1

2�2

∫
R

∫
R

∑
k

(∂zm̂3,k(z) − ik · m̂′
k(z))

∗

× Hk(z − z′)(∂zm̂3,k(z
′) − ik · m̂′

k(z
′)) dz dz′. (5.6)

To prove (i), we need to show that the mixed terms in (5.6) of the form

I := 1

�2

∫
R

∫
R

∑
k

∂zm̂∗
3,k(z)Hk(z − z′)(ik · m̂′

k(z
′)) dz dz′ (5.7)
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satisfy |I | � t2D. Integrating by parts in (5.7) and writing m = χ(0,t)m + u with
the usual notation m(x ′) = 1

t

∫ t
0 m(x ′, x3) dx3, we get

I = − 1

�2

∫
R

∫
R

∑
k

m̂∗
3,k(z)∂z Hk(z − z′)(ik · m̂′

k(z
′)) dz dz′

= − 1

�2

∫
R

∫
R

∑
k

(χ(0,t)(z)m̂
∗
3,k + û∗

3,k(z))∂z Hk(z − z′)

× (ik · χ(0,t)(z
′)m̂′

k + ik · û′
k(z

′)
)
dz dz′. (5.8)

Since ∂z Hk(z) = − z
|z|e

−|k||z| is anti-symmetric in z, we have
∫ t
0

∫ t
0 ∂z Hk(z −

z′) dz dz′ = 0 so that upon expanding (5.8), the term involving m̂3,k and m̂
′
k van-

ishes. Using |∂z Hk | � 1, (5.8) then can be estimated by

|I | � 1

�2

∫
R

∫
R

∑
k

(|̂u3,k(z)| |k · m̂′
k(z

′)| + |χ(0,t)(z)m̂3,k | |k · û′
k(z

′)|) dz dz′.

(5.9)

Wenote that passing to Fourier series in the in-plane variables commuteswith taking
e3-averages. Thus û j,k has e3-average zero for all j = 1, 2, 3. By the fundamental
theorem of calculus, we thus get

|̂u j,k(z)| �
∫ t

0
|∂zm̂ j,k(τ )|dτ for all z ∈ (0, t) and j = 1, 2, 3. (5.10)

Inserting (5.10) into (5.9), we get

|I | �
3∑

n, j=1

t

�2

∫ t

0

∫ t

0

∑
k

|∂zm̂ j,k(z)| |k| |m̂n,k(z
′)| dz dz′.

By Young’s inequality and Parseval’s identity, we conclude

|I | �
3∑

n, j=1

t

�2

∫ t

0

∫ t

0

∑
k

(
|∂zm̂ j,k(z)|2 + |k|2|m̂n,k(z

′)|2
)
dz dz′ � t2D,

completing the proof of (i).
Assuming that (iii) and (iv) hold, estimate (ii) is obtained as follows. Applying

(i) to m and χ(0,t)m, we get
∣∣∣∣
∫
T
2
�×R

|H [m]|2 dx −
∫
T
2
�×R

|H [χ(0,t)m]|2 dx

−
∫
T
2
�×R

|H [m3e3]|2 dx +
∫
T
2
�×R

|H [χ(0,t)m3e3]|2 dx

−
∫
T
2
�×R

|H [m − m3e3]|2 dx +
∫
T
2
�×R

|H [χ(0,t)(m − m3e3)]|2 dx

∣∣∣∣ � t2D,

(5.11)
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where we also have used that∫
T
2
�×(0,t)

|∇(mχ(0,t))|2 dx = t
∫
T
2
�

|∇m|2 dx � D.

Applying (iii) and (iv) to (5.11), we get
∣∣∣∣
∫
T
2
�×R

|H [m]|2 dx −
∫
T
2
�×R

|H [χ(0,t)m]|2 dx

−
∫
T
2
�×(0,t)

m2
3 dx +

∫
T
2
�×(0,t)

χ(0,t)m
2
3 dx

∣∣∣∣ � t2D,

which yields the claim with the help of (5.2) and in view of the fact that∫
T
2
�×(0,t)(m

2
3 − χ(0,t)m2

3) dx = ∫
T
2
�×(0,t) |m3 − χ(0,t)m3|2 dx .

We turn to the proof of (iii). Integrating by parts twice and by (5.5), with the
help of Parseval’s identity we get∫

T
2
�×R

|H [m3e3]|2 dx
(5.6)= − 1

2�2

∫
R

∫
R

∑
k

m̂∗
3,k(z)∂

2
z Hk(z − z′)m̂3,k(z

′) dz dz′

(5.5)=
∫
R×(0,t)

m2
3 dx − 1

2�2

∫
R

∫
R

∑
k

m̂∗
3,k(z)|k|e−|k||z−z′|m̂3,k(z

′) dz dz′.

(5.12)

Since |1 − e−|k||z|| � |k|t for z ∈ (−t, t), the last integral above

J := 1

2�2

∫
R

∫
R

∑
k

m̂∗
3,k(z)|k|e−|k||z−z′|m̂3,k(z

′) dz dz′

may be estimated, with the help of Cauchy-Schwarz inequality, as follows:

∣∣∣J − t2

2�2
∑

k

|k||m̂3,k(z)|2
∣∣∣ � t

�2

∫ t

0

∫ t

0

∑
k

|m̂3,k(z)||k|2|m̂3,k(z
′)| dz dz′

� t2

�2

∫ t

0

∑
k

|k|2|m̂3,k(z)|2 dz,

which by Parseval’s identity is equivalent to

∣∣∣J − t2

2

∫
T
2
�

|∇1/2m3|2 dx
∣∣∣ � t2

∫
T
2
�×(0,t)

|∇′m3|2 dx � t2D. (5.13)

Assertion (iii) then follows from (5.12) together with (5.13).
We continue with the proof of (iv). By (5.6) we have∫

T
2
�×R

|H [m − m3e3]|2 dx

(5.6)= 1

2�2

∫
R

∫
R

∑
k

(k · m̂′
k(z))

∗Hk(z − z′)k · m̂′
k(z

′) dz dz′.
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Since |1 − e−|k||z|| � |k|t for z ∈ (0, t), we may insert |Hk(z − z′) − 1
|k| | � t for

k �= 0 above. Using Cauchy-Schwarz inequality, this yields
∣∣∣∣
∫
T
2
�×R

|H [m − m3e3]|2 dx − t2

2�2
∑
k �=0

|k · m̂
′
k |2

|k|
∣∣∣∣ � t2

2�2

∫
R

∑
k

|k · m̂′
k(z)|2 dz

� t2D,

which completes the proof of (iv) and of the theorem. ��
We are now ready to give the proof of Proposition 5.1.

Proof. (Proposition 5.1) We invoke Theorem 5.2 to obtain a lower bound for the
stray field energy. Combining Theorem 5.2(i) with (iii) and neglecting the non-
negative term

∫
T
2
�×R

|H [m − m3e3]|2 dx , we get

∫
T
2
�×R

|H [m]|2 dx ≥
∫
T
2
�×R

|H [m3e3]|2 dx − Ct2
∫
T
2
�×(0,t)

|∇m|2 dx

�
∫
T
2
�×(0,t)

m2
3 dx − t2

2

∫
T
2
�

|∇1/2m3|2 dx − Ct2
∫
T
2
�×(0,t)

|∇m|2 dx (5.14)

for some universal C > 0. Inserting (5.14) into the energy E yields (5.1). ��

6. Proofs for the Full Energy Eε,λ

The proofs for the full energy Eε,λ are based on the corresponding arguments for
the reduced energy Fε,λ. Under mild assumptions on �, t, Q, weaker than those of
Theorems 2.1 and 2.2, Lemma 3.1, and Theorem 5.2 yield the following estimates
for the full energy Eε,λ (given in (2.2)):

Lemma 6.1. Let Q > 1 and λ > 0. There is ε0 = ε0(λ, Q) > 0 such that for all
ε ∈ (0, ε0) and m ∈ H1(T2 × (0, 1);S2) we have

Eε,λ[m] ≥
(
1 − Cλ2(Q − 1)

| ln ε|2 − λ

| ln ε|
)∫

T2×(0,1)

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx

− λ

λc| ln ε| ln
(

c∗ max

{
1,min

{
1

ε
∫
T2 |∇m3| dx

,
1

ε

}})∫
T2

|∇m3| dx,

+ C | ln ε|2
ελ2(Q − 1)2

∫
T2×(0,1)

|∂3m|2 dx . (6.1)

Furthermore, for any m ∈ H1(T2;S2), we have

Eε,λ[mχ(0,1)] �
(
1 + Cλ2(Q − 1)

| ln ε|2
)∫

T2

(
ε

2
|∇m|2 + 1

2ε
(1 − m2

3)

)
dx

− λ

| ln ε|
∫
T2

|∇1/2m3|2 dx .

(6.2)
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Proof. The lower bound for E in Proposition 5.1 implies

Eε,λ[m] = E [m(�·, �·, t ·)] − �2t

2�t
√

Q − 1

� (1 − Ct2)
∫
T2×(0,1)

( |∇′m|2
2�

√
Q − 1

+ �

2t2
√

Q − 1
|∂3m|2

)
dx

+ �
√

Q − 1

2

∫
T2×(0,1)

(
1 − m2

3

)
dx − t

4
√

Q − 1

∫
T2

|∇1/2m3|2 dx .

In terms of ε, λ (defined in (2.1)), this turns into

Eε,λ[m]

�
(
1 − C1λ

2(Q − 1)

| ln ε|2
)∫

T2×(0,1)

(
ε|∇′m|2

2
+ 1 − m2

3

2ε
+ C2| ln ε|2|∂3m|2

ελ2(Q − 1)2

)
dx

− λ

| ln ε|
∫
T2

|∇1/2m3|2 dx (6.3)

for some universal C1, C2 > 0. Therefore, with the help of Jensen’s inequality and
Lemma 3.1, we obtain

Eε,λ[m] � X + C2| ln ε|2
ελ2(Q − 1)2

(
1 − C1λ

2(Q − 1)

| ln ε|2
) ∫

T2×(0,1)
|∂3m3|2 dx,

where X denotes the first two lines on the right hand side of (6.1). By choosing
ε0(λ, Q) > 0 sufficiently small, (6.1) follows. The proof for the upper bound (6.2)
is simpler and analogous to the arguments that led to (6.3). ��

6.1. Proof of Theorem 2.1

We apply the lower bound of Lemma 6.1 directly and extend the corresponding
arguments to Fε,λ in the proof of Theorem 2.5. Note that it would also be possible
to invoke the lower bound for Fε,λ on slices {x3 = const} to obtain the lower bound
for the full energy Eε,λ. We will not pursue this option, since this approach would
get rather technical in view of the fact that C∞(T2 × (0, 1);S2) is not dense in
H1(T2 × (0, 1);S2), see for example [3,4,29].
Consequences of the lower bound in (6.1): By assumption we have Q > 1 and
0 < λ < λc. We also note that for ε < 1 we have

ln

(
c∗ max

{
1,min

{
1

ε
∫
T2 |∇m3| dx

,
1

ε

}})
� ln

(c∗
ε

)
, (6.4)

where c∗ is as in Lemma 3.1. Inserting (6.4) into the lower bound in (6.1) and using
(4.4) and Jensen’s inequality, we deduce that for any γ > 0 and sufficiently small
ε � ε0(γ, Q), we have

Eε,λ[m] �
(
1 − λ

λc
− γ

) ∫
T2×(0,1)

(ε

2
|∇m|2 + 1

2ε
(1 − m2

3)
)
dx

+ C | ln ε|2
ελ2(Q − 1)2

∫
T2×(0,1)

|∂3m|2 dx . (6.5)
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Applying (4.4) to (6.5) and again using Jensen’s inequality yields

Eε,λ[m] �
(
1 − λ

λc
− γ

) ∫
T2

|∇′m3| dx (6.6)

for sufficiently small ε. With the choice γ := 1
2 (1 − λ

λc
), (6.5) and (5.2) imply

∫
T2×(0,1)

(1 − m2
3) dx � ε

λc − λ
Eε,λ[m],

∫
T2×(0,1)

|m − mχ(0,1)|2 dx
(5.2)
�
∫
T2×(0,1)

|∂3m|2 dx
(6.5)
� ελ2(Q − 1)2

| ln ε|2 Eε,λ[m].
(6.7)

Compactness: In order to prove compactness, we consider a sequence mε ∈
H1(T2 × (0, 1);S2) with Eε,λ[mε] � C . Since λ < λc, (6.6) yields a uniform
bound on mε,3 in BV (T2), which implies that mε,3 → m3 in L1(T2) as ε → 0
for a subsequence and some m3 ∈ BV (T2). In view of (6.7) and by application of
the triangle inequality, we also get mε → χ(0,1)m3e3 in L1(T2 × (0, 1);R3), with
m3(x) taking values ±1 for almost everywhere x ∈ T

2.
Liminf inequality: Let mε ∈ H1(T2 × (0, 1);S2) with mε → m in L1(T2 ×
(0, 1)). By Jensen’s inequality, we also have mε → m in L1(T2;R3). By lower
semicontinuity of the BV seminorm, the liminf inequality follows from (6.6) by
arbitrariness of γ .
Recovery sequence: It remains to prove the upper bound for the Γ -convergence.
As it turns out, we may use the recovery sequence for the reduced energy Fε,λ also
for the full energy Eε,λ (up to thickening). Let λ � λc, m ∈ BV (T2; {±e3}) and
let mε ∈ H1(T2;S2) denote the recovery sequence for Fε,λ from Lemma 4.3. We
set

mε(x ′, x3) := χ(0,1)(x3)mε(x ′) for (x ′, x3) ∈ T
2 × (0, 1).

From the upper bound in (6.2), we obtain

Eε,λ[mε] �
(
1 + Cλ2(Q − 1)

| ln ε|2
)∫

T2

(ε

2
|∇mε|2 + 1

2ε
(1 − m2

ε,3)
)
dx

− λ

| ln ε|
∫
T2

|∇1/2mε,3|2 dx

= Fε,λ[mε] + Cλ2(Q − 1)

| ln ε|2
∫
T2

(
ε

2
|∇mε|2 + 1

2ε

(
1 − m2

ε,3

))
dx .

(6.8)

From (4.12) and (4.13) in the proof of Lemma 4.3, we note that the second term on
the right hand side of (6.8) vanishes in the limit ε → 0. The estimate then follows
upon applying Lemma 4.3 to (6.8).
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6.2. Proof of Theorem 2.2

Lower bound in (2.3): As in the argument that lead from (4.25) to (4.27), we reduce
(6.1) to the estimate

Eε,λ[m] �
(
1 − λ

| ln ε| − Cλ2(Q − 1)

| ln ε|2
)∫

T2×(0,1)

(ε

2
|∇m|2 + 1

2ε
(1 − m2

3)
)
dx

− λ

λc| ln ε| ln
(

c∗
ε
∫
T2 |∇m3| dx

)∫
T2

|∇m3| dx

+ C | ln ε|2
ελ2(Q − 1)2

∫
T2×(0,1)

|∂3m|2 dx . (6.9)

We introduce the notation

Dε[m] :=
∫
T2×(0,1)

(ε

2
|∇m|2 + 1

2ε
(1 − m2

3)
)
dx −

∫
T2

|∇m3| dx,

and set

μ := ε
λ−λc

λ

∫
T2

|∇m3| dx, (6.10)

and c∗∗ := c∗e2λc > 1 (a universal constant, as in the proof of Theorem 2.6). For ε

sufficiently small, as in the argument leading to (4.28), (6.9) then can be written as

Eε,λ[m] �
(
1 − 2λ

| ln ε|
)

Dε[m] − ln

(
c∗∗
μ

)
μλε

λc−λ
λ

λc| ln ε|
+ C | ln ε|2

ελ2(Q − 1)2

∫
T2×(0,1)

|∂3m|2 dx . (6.11)

Minimizing in μ > 0, (6.11) yields μ ∼ 1, and the lower bound in (2.3) follows
by positivity of Dε[m] in view of (4.4).
Upper bound in (2.3): Let mε denote the function constructed in Lemma 4.5 and

let mε(x ′, x3) := χ(0,1)(x3)mε(x ′). We choose Nε = 2�ε λc−λ
λ �, noting that Nε > 0

for ε sufficiently small. We insert (4.30) and (4.31) into (6.2) to deduce that for ε

sufficiently small we have

Eε,λ(mε) � 2Nε

(
1 − λ ln( c

2εNε
)

λc| ln ε|

)
� −Cλε

λc−λ
λ

| ln ε| .

6.3. Proof of Theorem 2.3

Let μ be defined by (6.10). Then (2.4) and (6.11) imply μ ∼ 1 and hence (2.7)
in (iii). In turn, inserting (2.4) and (iii) into (6.11) implies (2.8) in (iv). Poincaré’s
inequality together with (6.11) and (2.4) yield (2.5) in (i). Finally, we deduce (2.6)
in (ii) from (iii) and (iv).
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