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Abstract

This paper is concerned with a study of the classical isoperimetric problem mod-
ified by an addition of a nonlocal repulsive term. We characterize existence,
nonexistence, and radial symmetry of the minimizers as a function of mass in
the situation where the nonlocal term is generated by a kernel given by an in-
verse power of the distance. We prove that minimizers of this problem exist for
sufficiently small masses and are given by disks with prescribed mass below a
certain threshold when the interfacial term in the energy is dominant. At the
same time, we prove that minimizers fail to exist for sufficiently large masses
due to the tendency of the low-energy configuration to split into smaller pieces
when the nonlocal term in the energy is dominant. In the latter regime, we also
establish linear scaling of energy with mass, suggesting that for large masses
low-energy configurations consist of many roughly equal-size pieces far apart.
In the case of slowly decaying kernels, we give a complete characterization of
the minimizers. © 2012 Wiley Periodicals, Inc.

1 Introduction
The isoperimetric problem is a classical problem in the calculus of variations,

one formulation of which seeks to find a set of the smallest perimeter enclosing
a prescribed volume. By the famous result of De Giorgi, among all sets of finite
perimeter in the euclidean space Rn, the solution of this problem is well-known
to be a ball [15]. In this paper we are interested in the question how the solution
of the isoperimetric problem is affected by an addition of a repulsive long-range
force. Specifically, for n � 2 we wish to study the variational problem associated
with the energy functional

EŒu� WD

Z
Rn

jrujdx C

Z
Rn

Z
Rn

u.x/u.y/

jx � yj˛
dx dy;(1.1)
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where u is the characteristic function of a subset of Rn with finite perimeter and
massm > 0, and ˛ 2 .0; n/ is a parameter. More precisely, we look for minimizers
of the energy EŒu� over all u 2 A, where

A WD
�
u 2 BV.RnI f0; 1g/ W

Z
Rn

udx D m

�
:(1.2)

The choice of the nonlocal term in (1.1) is motivated by the form appearing
in a number of physical problems. In particular, the nonlocal term with ˛ D 1

in either two or three space dimensions arises naturally due to Coulombic forces
(electrostatic repulsion in the three-dimensional ambient space), in which case the
characteristic function u may be associated with the uniform charge density over
a subset of either the three-dimensional space or the two-dimensional plane. The
underlying physical models can be found, e.g., in [6, 10, 11, 16, 24, 35, 36, 44]. The
case ˛ D 1 in three dimensions also arises in the studies of models of diblock
copolymer melts and related polymer, as well as other systems (see, e.g., [14, 20,
25, 28, 30, 32, 37, 43]).

More generally, the nonlocal term is chosen in this form to have the following
four properties [31]:

� the nonlocal term is invariant with respect to translations and rotations,
� the nonlocal term is repulsive,
� the nonlocal term is scale-free, and
� the nonlocal term scales with length faster than volume.

Indeed, the kernel in the nonlocal term depends only on the distance between two
points. The repulsive nature of the nonlocal term is due to the fact that for ˛ > 0 the
kernel is positive and monotonically decreasing with distance. It is also important
to note that the quadratic form in L2.Rn/ generated by the kernel is positive defi-
nite. We point out that when the nonlocal term has opposite sign (attractive long-
range forces), the minimizers of the considered variational problem are still balls,
since the nonlocal term in (2.1) increases with respect to Schwarz symmetriza-
tion [29]. Furthermore, the nonlocal term is scale-free in the sense that dilations
only result in the appearance of a multiplicative factor in front of the nonlocal term.
The scale-free nature of the nonlocal term allows one to reduce the number of free
parameters of the problem to a single one, which we choose to be the mass m. In-
deed, in this case a coefficient in front of the nonlocal term may be eliminated via
a rescaling in space (the coefficient in front of the interfacial term in the energy can
be eliminated by rescaling the energy). Finally, the scaling property is ensured by
the condition ˛ < n. Notice that the nonlocal term is always infinite when ˛ � n
and if the interior of the support of u is nonempty.

We note that a related energy functional

P˛Œu� WD

Z
Rn

Z
Rn

.u.x/ � u.y//2

jx � yj˛
dx dy;(1.3)
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where u is the characteristic function of a set � � Rn and the exponent ˛ 2
.n; n C 1/ leads to a nonlocal isoperimetric problem in which P˛ gives a gener-
alized notion of the perimeter of � [8]. In fact, when ˛ ! n C 1 from below,
the latter �-converges, after a suitable rescaling, to the usual perimeter [3] (see
also [9]). In our problem, on the other hand, the nonlocal term has a very different
effect. It acts as the square of the negative Sobolev norm of u and therefore favors
rapid oscillations of u. This leads to a competition between the perimeter and the
nonlocal term that can give rise to the appearance of nontrivial energy-minimizing
patterns in bounded domains (for overviews, see [27, 31, 32, 41]; for recent studies
of multidroplet patterns in systems with Coulombic repulsion, see [12,13,33,39]).
Our whole space problem, in turn, appears as a limit problem in the studies of
�-convergence of the functional in (2.1) in the presence of a small coefficient mul-
tiplying the perimeter term [12] (see also [13, 21, 22, 33] for a related problem).

Despite the apparent simplicity of the model, for the problem under considera-
tion even the basic question of existence of minimizers is not completely straight-
forward. While in the surface energy-dominated regime (small masses, m � 1)
one would naturally expect the minimizers to exist and be in some sense approxi-
mations to balls, for the nonlocal energy-dominated regime (large masses,m� 1)
the energy may be lowered by splitting a given configuration into several pieces
and moving them far apart. In this situation the minimizers may fail to exist. Our
goal is to address these questions analytically.

In this paper, we present a detailed analysis of existence versus nonexistence
of minimizers of the considered variational problem in the particular case of two
space dimensions. We chose to treat the n D 2 case separately, because in two
space dimensions many technicalities simplify substantially, allowing one to con-
centrate on the issues associated with nonlocality and making the analysis more
transparent (the general case will be treated elsewhere [26]). Furthermore, in two
dimensions the obtained results appear to be optimal in the sense that they cover
the whole range of ˛ 2 .0; n/ and in view of the fact that we are able to solve
the variational problem completely for sufficiently small ˛. In addition, for n D 2
the estimates are readily made explicit, and the obtained results are applicable to a
number of physical systems, including high-Tc superconductors, magnetic bubble
materials, and ferroelectrics [16, 24, 35, 44]. What we prove in the following sec-
tions is that for n D 2 and 0 < ˛ < 2 the basic picture presented above is correct:
the minimizer of the considered problem exists for small enough m and does not
exist for large enough m. Note that the considered problem is different from the
one studied in [40], where the nonlocal term has a compactly supported kernel and
minimizers exist for all masses. Moreover, we prove that for m sufficiently small,
the minimizer is precisely a single disk.

The main ideas of the proofs are as follows. Existence of minimizers for small
masses is proved by showing that the members of a minimizing sequence can be
chosen to be connected. Nonexistence is proved by showing that for large masses
the minimizers must be long and slender, so it is always possible to reduce the
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energy by cutting the set in two and moving the pieces far apart. The fact that
the minimizer at small masses is a ball is proved by exploiting the good stability
properties of the minimizers of the usual isoperimetric problem.

We note that the intricate case of intermediate masses remains largely open. In
particular, an interesting open question is whether the minimizer of the considered
problem is, in fact, a ball whenever it exists. We prove that this is indeed the
case for ˛ sufficiently small. Whether this result also holds for the whole range of
˛ 2 .0; 2/ does not seem to be clear. Another interesting open question is about
the structure of the set of values of m for which the minimizer exists, in particular
whether it is an interval. Again, in the case of small ˛ we prove the latter to be
the case and compute the precise threshold value ofm separating the existence and
nonexistence regimes. In the full generality, however, these questions are currently
out of reach for the methods of the present paper, since in our analysis we mainly
employ the properties of the problem in the regimes dominated by either of the
two terms in the energy. New tools that deal with the joint effect of the local and
the nonlocal terms need to be developed to further address the finer properties of
the minimizers in the considered problem in the regime of intermediate masses.
One step in that direction is the precise scaling of minimal energy obtained by us
for large masses, using an interpolation inequality relating the interfacial and the
nonlocal parts of the energy.

Our paper is organized as follows. In Section 2, we collect all the main results
of our paper. In Section 3, we present some background results and the results of
explicit computations for several configurations. In Section 4, we prove existence
of minimizers for sufficiently small masses. In Section 5, we prove the optimal
scaling of the minimal energy for large masses. In Section 6, we prove nonexis-
tence of minimizers for large masses. In Section 7, we prove that minimizers for
sufficiently small masses are disks. Finally, in Section 8, we prove that for suffi-
ciently small ˛, minimizers exist if and only if they are disks and if and only if
their mass is less than or equal to an explicit threshold value.

2 Statement of Results
Throughout the rest of this paper we always assume that n D 2 and ˛ 2 .0; 2/.

The considered variational problem is then equivalent to minimizing

(2.1) E.�/ WD j@�j C

Z
�

Z
�

1

jx � yj˛
dx dy; j�j D m;

where � is a set of finite perimeter in the plane, j�j denotes the Lebesgue mea-
sure of �, i.e., j�j D H2.�/, and j@�j denotes the perimeter of �, i.e., j@�j D
H1.@�/ (for definitions, see, e.g., [4]). We note that, when dealing with minimiz-
ers of E in (2.1), we can always assume that @� is a collection of C 2;ˇ curves for
some ˇ 2 .0; 1/. This is due to the fact that minimizers of E are quasi-minimizers
of the perimeter, and therefore the standard regularity theory of minimal surfaces
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applies to them (see, e.g., [5, 45]). By a straightforward cutting argument, we also
show that minimizers are connected (but not necessarily simply connected). The
proposition below collects some basic properties of minimizers:

PROPOSITION 2.1. Let � be a minimizer of E. Then
(i) The boundary @� of � is of class C 2;ˇ for some ˇ 2 .0; 1/, with the

regularity constants depending only on m and ˛.
(ii) � is bounded and connected. Moreover, � contains at most finitely many

holes.
(iii) The Euler-Lagrange equation for (2.1) is

�.x/C 2v.x/ � � D 0; v.x/ WD

Z
�

1

jx � yj˛
dy;(2.2)

where �.x/ and v.x/ are the curvature and the nonlocal potential at the
point x 2 @�, respectively, and � 2 R is the Lagrange multiplier due to
the mass constraint (the sign of the curvature is chosen to be positive for
convex sets).

Note that further C 3;ˇ regularity can be inferred when ˛ < 1, since v 2 C 1;ˇ .R2/
for some ˇ 2 .0; 1/ in that case. The proof of Proposition 2.1 follows from Lem-
mas 3.1–3.3.

We now state our main results. Concerning the existence of minimizers, as
already noted in the introduction, the question is not straightforward, since the
minimizing sequences for (2.1) may consist of disconnected pieces moving off
to infinity away from each other. What we can establish, however, is that in the
regime of small masses, i.e., when the perimeter is the dominant term in the energy,
minimizers of E do indeed exist.

THEOREM 2.2 (Existence of Minimizers). There is m1 D m1.˛/ > 0 such that
for all m � m1 there exists a minimizer of E.

The proof of this theorem is obtained by using the direct method of calculus of vari-
ations by establishing that for small masses minimizing sequences can be localized
to a sufficiently large ball. The proof is given in Section 4.

Our next result gives a complete characterization of the minimizers for suffi-
ciently small masses.

THEOREM 2.3 (Disk as the Unique Minimizer). There is m0 D m0.˛/ > 0 such
that for all m � m0 the unique, up to translations, minimizer of E is � D BR.0/

with R D .m=�/1=2.

Since in the case of small masses the energy is dominated by the perimeter, it
is expected that the minimizer should be close to a disk. However, our result is
stronger, stating that even for small (but positive) masses the minimizer is precisely
a disk with mass m. In the proof we proceed by establishing two-sided estimates
for the difference of the energy of the minimizer and that of a disk in terms of the
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isoperimetric deficit. Note that the proof is particularly intricate in the case of the
near-field-dominated regime ˛ 2 Œ1; 2/, where the self-interaction of the symmetric
difference of the two sets yields a relevant contribution to the energy and has to be
estimated carefully. The proof of Theorem 2.3 is given in Section 7.

Our next result shows that in fact the minimizer (global or local) cannot be a
disk ifm is sufficiently large. Note that these kinds of results have been derived for
a number of related problems [13, 23, 24, 32, 34, 41, 46].

PROPOSITION 2.4 (Global and Local Instability of a Disk). Let � D BR.0/ with
R D .m=�/1=2. There are two constants mc1 < mc2 given in (3.13) and (3.23)
such that the following holds:

(i) � is not a global minimizer if m > mc1 D mc1.˛/ > 0.
(ii) � is not a local minimizer (with respect to arbitrarily small perturbations

of the boundary) if m > mc2 D mc2.˛/ > 0.

Note that by Proposition 2.4 disks cease to be global minimizers before they un-
dergo shape instability. The proof of this proposition is by direct computation and
follows from Lemmas 3.6 and 3.7.

While Proposition 2.4 only shows that a minimizer cannot be given by a disk
with mass m if m is sufficiently large, the next theorem encompasses a more gen-
eral result: For sufficiently large masses the energy (2.1) does not have a minimizer.
This point was conjectured in [12, remark 4.2] for the case n D 3 and ˛ D 1. In
fact, a more general nonexistence result holds for all ˛ < 2 in dimensions n > 2

as well [26].

THEOREM 2.5 (Nonexistence). There exists m2 D m2.˛/ > 0 such that there is
no minimizer of E for all m > m2.

The nonattainability of the minimal energy for large masses established by The-
orem 2.5 is related to the fact that for m � 1 it is advantageous for the mass to
escape to infinity. The proof of this theorem is given in Section 5 via matching
upper and lower bounds for the energy and a cutting argument.

The proof of Theorem 2.5 suggests that for m � 1 the minimizing sequence
may consist asymptotically of disconnected sets of approximately equal masses
mi � 1 (for a related result in two dimensions, see [12, 21, 33]). In particular,
the minimal energy should scale linearly with the mass m for large m. The next
theorem supports this picture.

THEOREM 2.6 (Scaling and Equipartition of Energy). Let m0 D m0.˛/ > 0 be as
in Theorem 2.3. Then there exist two constants C; c > 0 depending only on ˛ such
that for all m > m0 we have

cm � infE.�/ � Cm:(2.3)

Furthermore, we have equipartition of energy in the sense that for every m � m0
and every configuration � with E.�/ � Cm, both terms in the energy obey the
same bounds as in (2.3) separately.
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Note that Theorem 2.6 shows in particular that for large m the minimal scaling of
the energy can only be reached if the interfacial and the nonlocal part of the energy
are of the same order. The proof of Theorem 2.6 is given in Section 5. At the core
of the proof lies a multiplicative interpolation inequality (5.3), which is derived in
the course of the proof of Lemma 5.2.

Theorems 2.2, 2.3, and 2.5 cover the two extremes of the range of values of m
but say nothing about what happens at intermediate values of m. Thus, the global
structure of minimizers for all masses is currently not available. Nevertheless,
when ˛ is sufficiently small, i.e., when the nonlocal interaction is slowly decaying
with distance, we have a complete characterization of minimizers:

THEOREM 2.7 (Complete Characterization of Minimizers for Slowly Decaying
Kernels). Let mc1 D mc1.˛/ > 0 be given by (3.13). There exists a universal
constant ˛0 > 0 such that for all ˛ � ˛0 we have:

(i) For all m � mc1 there exists a minimizer of E; this minimizer, up to trans-
lations, is given by BR.0/ with R D .m=�/1=2.

(ii) For all m > mc1 there is no minimizer of E.

In other words, for sufficiently small values of ˛ the constants in Theorems 2.2,
2.3, and 2.5 obey m0 D m1 D m2 D mc1. The proof is presented in Section 8
and relies on the fact that for ˛ � 1 the nonlocal term in the energy is only weakly
sensitive to the shape of the connected components of sets of finite perimeter, al-
lowing us to push the validity of Theorems 2.2 and 2.3 up to m� 1. At the same
time, for ˛ � 1 the contribution of the nonlocal term to the energy is essentially
proportional to m2 due to nearly equal coupling of different points in connected
components of sets of finite perimeter obeying the optimal energy upper bound.
Thus Theorem 2.5 remains valid uniformly for all m & 1. Together, these results
imply that the minimizers are disks whenever they exist. To conclude the proof, it
then remains to establish that disks are indeed minimizers for all masses up to and
including mc1 given by Proposition 2.4. The latter relies on the global result of
Lemma 3.6(ii) concerning minimizers of E among sets consisting of two arbitrary
disks. We note that the arguments in the proof of Theorem 2.7 also imply that as
soon as it is known that for a given value of ˛ the minimizers of E can only be
disks, we havem0 D m1 D m2 D mc1 without the need to assume that ˛ is small.
As was already mentioned, however, it is not clear if minimizers are always disks
whenever they exist for the whole range of ˛.

3 Preliminaries
In this section, we present the necessary background for the proofs of the main

theorems, as well as the results of some precise ansatz-based calculations. We first
outline the proof of the regularity of @� for minimizers:

LEMMA 3.1. Let � be a minimizer of E. Then @� is of class C 2;ˇ for some
ˇ 2 .0; 1/, with the regularity constants depending only on m and ˛.
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PROOF. Regularity of @� follows from the fact that every minimizer of E is a
quasi-minimizer of the interfacial energy. More precisely, we claim that for any set
of finite perimeter �0 � R2 with j�0j D m, we have

j@�j � j@�0j C c.2 � ˛/�
˛
2m

2�˛
2 j���0j(3.1)

for some universal c > 0.1 Indeed, assuming that (3.1) holds, we can immediately
apply [40, theorem 1.4.9] to conclude the uniform C 1;ˇ regularity of @� for any
minimizer� ofE. Furthermore, the boundary satisfies the weak form of the Euler-
Lagrange equation (2.2). Noting that clearly v 2 C 0;ˇ .R2/ for some ˇ 2 .0; 1/
and since @� is locally a graph of a C 1;ˇ function, the regularity assertion of the
lemma follows by further application of the regularity theory for graphs [19] (for
details of the argument, see, e.g., the last paragraph of section 2 in [42], as well
as [18]).

It hence remains to show (3.1). By a direct computation, for any R > 0 we have

(3.2)

ˇ̌̌̌Z
�0

Z
�0

1

jx � yj˛
dx dy �

Z
�

Z
�

1

jx � yj˛
dx dy

ˇ̌̌̌

� 2

Z
���0

Z
�[�0

1

jx � yj˛
dx dy

� 2j���0j sup
x2R2

� Z
BR.x/

1

jx � yj˛
dy C

Z
.�[�0/nBR.x/

1

jx � yj˛
dy

�

� 2j���0j

�
2�R2�˛

2 � ˛
CmR�˛

�
:

The statement then follows from the minimizing property of � by choosing R D
.2 � ˛/1=2m1=2 in (3.2). �

LEMMA 3.2. Let � be a minimizer of E. Then � is connected.

PROOF. By uniform Hölder estimates of Lemma 3.1, we have � � BR0.0/ for
some R0 > 0 (where R0 depends on the configuration). Therefore, if �.1/ is a
connected component and � n �.1/ 6D ¿, then for any R > 0 we can consider a
set�0 obtained by translating�.1/ outside BR0CR.0/. The energy of the obtained

1 Here and throughout the rest of the paper A�B WD .A n B/ [ .B n A/ denotes the symmetric
difference of the sets A and B .
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set is then

(3.3)

E.�0/ � E.�/ � 2

Z
�.1/

Z
�n�.1/

1

jx � yj˛
dx dy

C 2R�˛j�.1/j.m � j�.1/j/

� E.�/C 2
�
R�˛ � .2R0/

�˛
�
j�.1/j.m � j�.1/j/:

But for R sufficiently large, this inequality contradicts the minimizing property
of �. �

LEMMA 3.3. Let � be a minimizer of E. Then � contains at most finitely many
holes.

PROOF. By Lemma 3.1 we can cover @� by finitely many balls of equal radius,
with the radius depending only on ˛ andm, and such that in each ball @� is a graph
of a C 1 function. Therefore, since the perimeter of � is bounded, @� breaks into
a finite collection of simple closed curves. �

We now turn to the exact computations related to sets enclosed by ellipses (all
algebraic computations below are performed using Mathematica 8 software). In
the lemma below, we obtain an expression for the energy of such a set.

LEMMA 3.4. Let �e be a set enclosed by an ellipse of eccentricity e. Then

(3.4)

E.�e/ D
4R

4
p
1 � e2

E.e2/C
�2.1 � e2/�

˛C2
4 �.2 � ˛/R4�˛

�
�
2 � ˛

2

�
�
�
3 � ˛

2

�
�

�
.1 � e2/2F1

�
1

2
; 1 � ˛2I 1I e2

�
C .1 � e2/˛=22F1

�
1

2
; 1 �

˛

2
I 1I

e2

e2 � 1

��
;

where E.x/ is the complete elliptic integral of the second kind, 2F1.a; bI cI ´/ is
the hypergeometric function, and R D .m=�/1=2.

PROOF. We consider the region �e enclosed by an ellipse whose semi-axes are

a and b. Since the area of the ellipse is �ab D �R2, we have a D R=
4
p
1 � e2

and b D R 4
p
1 � e2. We also recall that the perimeter of an ellipse is given by the

well-known expression

j@�ej D
4R

4
p
1 � e2

E.e2/;(3.5)

where E.x/ is the complete elliptic integral of the second kind [1]. To compute
the nonlocal part Enl of the energy, we pass to the Fourier space. In terms of the
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Fourier transform

(3.6) yuq D

Z
R2

eiq�xu.x/dx

of u D ��e , the characteristic function of �e, the nonlocal part of the energy is
given by (see, e.g., [29])

(3.7) Enl.�e/ WD

Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dxdy D

1

.2�/2

Z
R2

jyuqj
2Gq dq;

where

(3.8) Gq D
22�˛��

�
1 � ˛

2

�
�
�
˛
2

� jqj˛�2

is the Fourier transform of the kernel in the nonlocal term and �.x/ is the Gamma-
function [1]. To proceed, we note that if x D .x1; x2/, the rescaling x1 ! x1=a
and x2 ! x2=b transforms u.x/, after a suitable translation, into the characteristic
function of B1.0/. Therefore, with q D .q1; q2/ one can write explicitly upon
integration

(3.9) yuq D 2�R

�
q21

p
1 � e2 C

q22p
1 � e2

��1=2
J1

�
R

p
q21

p
1 � e2 C

q22p
1 � e2

�
;

where J1.x/ is the Bessel function of the first kind [1]. Performing another change

of variables: zq1 D q1
4
p
1 � e2 and zq2 D q2=

4
p
1 � e2, and then introducing polar

coordinates zq1 D s cos t , zq2 D s sin t , upon integration in s we obtain

(3.10) Enl .�e/ D
2
2�˛
2 �.1 � e2/

2�˛
4 �.2 � ˛/R4�˛

�
�
2 � ˛

2

�
�
�
3 � ˛

2

� Z 2�

0

.2 � e2 C e2 cos 2t/
˛�2
2 dt:

Finally, performing the integration in t , we obtain

(3.11)

Enl.�e/ D
�2.1 � e2/�

˛C2
4 �.2 � ˛/R4�˛

�
�
2 � ˛

2

�
�
�
3 � ˛

2

�
�

�
.1 � e2/2F1

�
1

2
; 1 �

˛

2
I 1I e2

�
C .1 � e2/

˛=2
2 F1

�
1

2
; 1 �

˛

2
I 1I

e2

e2 � 1

��
;

where 2F1.a; bI cI ´/ is the hypergeometric function [1]. Combining this formula
with (3.5), we obtain the result. �

Setting e D 0, we also obtain the precise formula for the energy of a single ball
of mass m D �R2.
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COROLLARY 3.5. We have

(3.12) E.BR.0// D 2�RC
2�2�.2 � ˛/

�.2 � ˛
2
/�.3 � ˛

2
/
R4�˛:

The result in Lemma 3.4 enables us to give the proof of Proposition 2.4 con-
cerning the failure of minimality (either global or local) of � D BR.0/ for R D
.m=�/1=2 large enough. The proof relies on the explicit formula for the energy of
elliptical domains (balls, in particular) obtained in Lemma 3.4 and Corollary 3.5.
The proof of Proposition 2.4 follows directly from the next two lemmas. Note that
it is easy to see that mc1 < mc2 where mc1 and mc2 are defined in (3.13) and
(3.23).

LEMMA 3.6. Let

(3.13) mc1.˛/ D �

�
.
p
2 � 1/�.2 � ˛

2
/�.3 � ˛

2
/

�.1 � 2
˛�2
2 /�.2 � ˛/

� 2
3�˛

:

Then

(i) the disk of area m is not a global minimizer of E if m > mc1;
(ii) the disk of area m has lower energy than any two nonoverlapping disks of

the same total area if m � mc1.

PROOF. We first compare the energy of � D BR.0/ with that of

�0 D B
R=

p
2
.re1/ [ B

R=

p
2
.�re1/;

where R D .m=�/1=2, r > 2R, and e1 is the unit vector along the x1-axis. It is
easy to see from (3.12) that

(3.14)

E.�0/ �E.�/ � 2�.
p
2 � 1/RC

2�1�˛m2

.r �R/˛

C
�2�.2 � ˛/

�
�
2 � ˛

2

�
�.3 � ˛

2
/
.2˛=2 � 2/R4�˛

< 0;

ifm > mc1, wheremc1 is defined in (3.13) and r is sufficiently large, contradicting
minimality of �.

We now show that it is energetically advantageous to replace a set � consisting
of two nonoverlapping disks of mass tm and .1�t /m, with arbitrary t 2 .0; 1/, by a
single disk of massmwheneverm � mc1. Indeed, by positivity of the kernel in the
nonlocal part of the energy and (3.12) we have E.�/ > 2

p
� m1=2 zF .t;m=mc1/,

where

(3.15) zF .t; �/ WD t1=2 C .1 � t /1=2 C
.
p
2 � 1/

1 � 2
˛�2
2

�
3�˛
2

�
t
4�˛
2 C .1 � t /

4�˛
2

�
:
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The statement of the lemma is equivalent to showing that F.t; �/ WD zF .t; �/ �
zF .0; �/ � 0 for all � � 1 and, by symmetry, for all t 2 Œ0; 1

2
�. We claim that

for fixed t the minimum of F as a function of � is attained when � D 1. Indeed,
differentiating this expression with respect to �, we find that

(3.16)
@F

@�
D

p
2 � 1

2 � 2˛=2
.3 � ˛/�

1�˛
2 F1.t/; F1.t/ WD t

4�˛
2 C .1 � t /

4�˛
2 � 1:

Clearly, F1.t/ is strictly convex and in view of the fact that F1.0/ D 0, we have
F1.t/ < 0, and hence @F=@� < 0 for all t 2 .0; 1

2
�. Therefore, it is sufficient to

show that F.t/ � 0 for � D 1.
We now write

(3.17) F.t; 1/ D
2.
p
2 � 1/

2 � 2˛=2
F1.t/C F2.t/; F2.t/ WD t

1=2
C .1 � t /1=2 � 1:

To prove that F.t; 1/ is nonnegative for all ˛ 2 .0; 2/ and t 2 Œ0; 1
2
� is a tedious ex-

ercise in calculus (the reader can readily verify this fact by plotting F as a function
of two variables, ˛ and t ). Below we sketch the analytical argument. Introducing
a cutoff parameter t0 D 1

8
, it is not difficult to see that for all t 2 Œt0; 12 � we have

F1.t/ � 2
˛�2
2 � 1C 2

˛�6
2 .2˛7�˛=2 C 1/.1 � ˛

2
/.2 � ˛

2
/.1 � 2t/2;(3.18)

F2.t/ �
p
2 � 1 �

4
p
2

25
.1 � 2t/2:(3.19)

Then, by inspection we find that F.t; 1/ � 0 for all t 2 Œt0; 12 � and all ˛ 2 .0; 2/.
We now turn to the interval t 2 .0; t0/. Here we have the following estimates:

(3.20) F1.t/ � 2
˛�2
2 � 1 � .2 � ˛

2
/t; F2.t/ �

p
2 � 1C

p
2.2
p
7 � 1/
p
7

t:

Again, by inspection these estimates imply that F.t; 1/ � 0 for all t 2 .0; t0/ and
all ˛ � 1. To cover the range ˛ > 1, we use a different estimate for F1:

(3.21) F1.t/ �
1

2
.2 � ˛/.t ln t C .1 � t / ln.1 � t //:

After some further manipulations, one can obtain the lower bound

(3.22) F.t; 1/ �

�
2
p
2 �

.
p
2 � 1/.2 � ˛/.1C ln 7/

2 � 2˛=2
�

r
2

7

�
t;

which implies that F.t; 1/ � 0 for all t 2 .0; t0/, when ˛ > 1. �

LEMMA 3.7. Let

(3.23) mc2.˛/ D �

 
3�
�
2 � ˛

2

�
�
�
3 � ˛

2

�
�˛�.3 � ˛/

! 2
3�˛

:

Then the disk of area m is not a local minimizer of E (with respect to arbitrarily
small perturbations of the boundary) if m > mc2.
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PROOF. We expand the expression in (3.4) for the energy of �e as in Lemma
3.4 in the power series in e at e D 0:

E.�e/ �E.BR.0// D

�
3�R

32
�

�2˛�.3 � ˛/R4�˛

32�.2 � ˛
2
/�.3 � ˛

2
/

�
e4

CO.e6/ < 0;

(3.24)

for sufficiently small e if m > mc2, where mc2 is defined in (3.23). Under this
condition the energy decreases upon arbitrarily small distortion of a disk into an
ellipse. �

Lastly, we also need to characterize the nonlocal potential generated by a unit
ball and, specifically, its behavior near the boundary, in order to prove Theorem
2.3.

LEMMA 3.8. Let

(3.25) vB.x/ WD

Z
B1.0/

1

jx � yj˛
dy:

Then

(3.26) vB.x/ D

8<:
�
�
jxj˛

�
2F1

�
˛
2
; ˛
2
I 2I 1
jxj2

�
; jxj � 1;�

2�
2�˛

�
2F1

�
˛�2
2
; ˛
2
I 1I jxj2

�
; jxj < 1:

where 2F1.a; bI cI ´/ is the hypergeometric function. In particular, if r D jxj � 1,
we have

(3.27) vB.x/ � v0 D

8̂̂̂<̂
ˆ̂:
�
�˛.2�˛/�.1�˛/

2�2.2�˛2 /
r CO.jr j2�˛/; ˛ < 1;

�r.2 ln jr j�1 � 2C 3 ln 4/CO.r2 ln jr j�1/; ˛ D 1;

�

p
� �

�
˛�1
2

�
.2�˛/�.˛2 /

jr j1�˛r CO.r/; ˛ > 1;

where �.x/ is the Gamma-function and

(3.28) v0 WD
��.2 � a/

�2
�
2 � a

2

� :
PROOF. The proof is by an explicit computation. Introducing the Fourier trans-

form yvBq of vB :

(3.29) yvBq D

Z
R2

eiq�xvB.x/dx;

and using (3.8) and (3.9) with e D 0, we obtain

(3.30) yvBq D Gqyuq D
23�˛�2�

�
1 � ˛

2

�
�
�
˛
2

� jqj˛�3J1.jqj/;
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where yuq is the Fourier transform of the characteristic function of the unit ball
centered at the origin.

Inverting the Fourier transform and integrating over the directions of q with
´ D jqj, we arrive at

vB.x/ D
1

.2�/2

Z
R2

e�iq�xyvBq dq

D
22�˛��

�
1 � ˛

2

�
�
�
˛
2

� Z 1
0

´˛�2J1.´/J0.´jxj/d´;

(3.31)

where Jn.x/ are the Bessel functions of the first kind. But the right-hand side of
(3.31) coincides with the right-hand side of (3.26). Finally, the expansion in (3.27)
is an immediate consequence of (3.26). �

4 Existence of Minimizers for Small Masses
We now prove the existence result in Theorem 2.2. The strategy of the proof

is to suitably localize the minimizing sequence for E in (2.1). Existence of mini-
mizers then follows by the usual compactness and lower semicontinuity results for
functions of bounded variation [4].

PROOF OF THEOREM 2.2. Let f�kg1kD1, with �k � R2 and j�kj D m, be a
minimizing sequence for E. Without loss of generality, we may assume that each
�k consists ofNk <1 disjoint, open, connected components�.i/

k
ordered so that

j�
.1/

k
j � : : : � j�

.Nk/

k
j and that the interfaces @�k are smooth. As a first step,

we use a ball of radius R D .m=�/1=2 as a test function to obtain an upper bound
for the minimal energy. By comparing the energy of � with the energy of the ball
BR.0/, we may assume that

(4.1) E.�k/ � E.BR.0// D 2
p
� m1=2.1C Cm

3�˛
2 /

for some C > 0 depending only on ˛ (for the precise constant; see (3.12)).
Suppose now that Nk > 1, and hence j�.i/

k
j � m=2 for all 2 � i � Nk . By the

isoperimetric inequality and by positivity of the nonlocal term in the energy, we
have

(4.2) 2
p
�
�
j�
.i/

k
j
1=2
C
�
m �

ˇ̌
�
.i/

k

ˇ̌�1=2�
� E.�k/ for all 2 � i � Nk :

Squaring both sides of (4.2) and combining it with (4.1), after some algebraic ma-
nipulations we obtain

(4.3)
ˇ̌
�
.i/

k

ˇ̌
� Cm4�˛ if 2 � i � Nk and m � 1;

for some C > 0 depending only on ˛.
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On the other hand, consider a set �0
k

obtained by erasing �.Nk/
k

from �k and
then dilating the resulting set by

�k D

q
m
ı�
m �

ˇ̌
�
.Nk/

k

ˇ̌�
2 .1;

p
2�;

so that j�0
k
j D m once again. If E.�0

k
/ < E.�k/, we replace the set�k by�0

k
in

the minimizing sequence and repeat the above process. Then, after finitely many
steps either the set �k is connected or E.�0

k
/ � E.�k/. In the latter case we can

write

(4.4)
E.�0k/ D �k

�
j@�kj �

ˇ̌
@�

.Nk/

k

ˇ̌�
C �4�˛n

Z
�kn�

..Nk/

k

Z
�kn�

.Nk/

k

1

jx � yj˛
dx dy

� �4kE.�k/ �
ˇ̌
@�

.Nk/

k

ˇ̌
;

and therefore

(4.5)
ˇ̌
@�

.Nk/

k

ˇ̌
�
�
�4k � 1

�
E.�k/ �

6
ˇ̌
�
.Nk/

k

ˇ̌
m

E.�k/:

Applying again the isoperimetric inequality on the left-hand side of (4.5) and using
the fact that by (4.1) we have E.�k/ � Cm1=2 for some C > 0 depending only
on ˛ and m � 1, we then conclude that in this case

(4.6)
ˇ̌
�
.i/

k

ˇ̌
� cm if 1 � i � Nk and m � 1

for some c > 0 depending only on ˛.
It is easy to see that for sufficiently smallm the two inequalities in (4.3) and (4.6)

are incompatible. Thus, given a minimizing sequence f�kg1kD1, for sufficiently
small m it is always possible to construct another minimizing sequence f�0

k
g1
kD1

in which each set �0
k

is connected.
By a suitable translation, one can further assume that the origin belongs to each

of �0
k

. In turn, since the perimeters of �0
k

are uniformly bounded above, we have
�0
k

b BR.0/ for some large enough R > 0. Therefore, introducing the charac-
teristic functions uk 2 BV.BR.0/I f0; 1g/ of �0

k
, we get that the functions uk are

equibounded in BV.BR.0/I f0; 1g/. So up to extraction of a subsequence uk !
u 2 BV.BR.0/I f0; 1g/ strongly in L1.BR.0// and uk * u in BV.BR.0/I f0; 1g/,
with the limit independent ofR. In particular,

R
BR.0/

udx D m. Since the perime-
ter is lower-semicontinuous and the nonlocal term is continuous with respect to the
above convergence (the latter follows immediately from (3.2)), we conclude that
the set � D fu D 1g is a minimizer. �

5 Scaling of the Minimal Energy
We now consider the opposite extreme, in which the nonlocal term favors split-

ting the set � into smaller disconnected sets. The corresponding scaling of the
minimal energy is described by Theorem 2.6, whose proof is an immediate con-
sequence of the following three lemmas. We note that the main point of Theorem
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2.6 is the ansatz-free lower bound for large m that matches the upper bound from
an ansatz consisting of a collection of equal-size balls far apart. We also note that
we only need to prove the bounds in Theorem 2.6 for sufficiently large masses.
Indeed, by the isoperimetric inequality and by the positivity of the nonlocal term
we have E.�/ � j@�j � 2

p
� m1=2, so E.�/ is uniformly bounded away from

zero whenever m � c for any c > 0.
We begin with an ansatz-based upper bound.

LEMMA 5.1. For every m � 1 there exists � such that E.�/ � Cm for some
C > 0 depending only on ˛.

PROOF. The proof is by an explicit construction. We take

(5.1) � D
�N�1[
nD0

B1.nRe1/
�
[ Br.NRe1/;

whereN D b.m=�/c, e1 is the unit vector along the x1-direction, r D ��1=2.m�
�N/1=2, and R > 2; i.e., we take � to be a linear chain of nonoverlapping unit
balls (except for the last one, whose radius is chosen to accommodate the mass
constraint). Then by (3.12) we have

(5.2) E.�/ � .N C 1/E.B1.0//C
2�2N.N C 1/

.R � 2/˛
� CmC

4m2

.R � 2/˛
:

So the assertion of the lemma follows by choosing R D m1=˛ C 2. �

We now turn to the ansatz-free lower bound.

LEMMA 5.2. For every admissible � we have E.�/ � cm for some universal
c > 0.

PROOF. The proof of the lower bound can be obtained by retracing the steps in
the proof of [33, lemma B.1]. Here we present a simpler proof, which does not
rely on Fourier techniques and the properties of special functions. The result is
obtained from the following interpolation inequality:

(5.3)
Z

R2

u2 dx � C

�
kukL1.R2/

Z
R2

jrujdx

� 2�˛
3�˛

�Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy

� 1
3�˛

for some universal C > 0, which is valid for any u 2 BV.R2/\L1.R2/. Indeed,
for any admissible set �, let u be the characteristic function of �. Applying (5.3),
we then have

(5.4)
m � C

�Z
R2

jrujdx

� 2�˛
3�˛

�Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy

� 1
3�˛

� CE
2�˛
3�˛ .�/E

1
3�˛ .�/ D CE.�/:
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For the proof of (5.3), we only need to take into account the nonlocal interaction
on intermediate-length scales of orderR > 0, which will be determined later. With
the change of variables ´ D y � x, we have

(5.5)

Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy

�

Z
R2

Z
B2R.0/nBR.0/

u.x/u.x C ´/

j´j˛
d´ dx

D

Z
R2

Z
B2R.0/nBR.0/

ju.x/j2

j´j˛
d´ dx

C

Z
R2

Z
B2R.0/nBR.0/

u.x/.u.x C ´/ � u.x//

j´j˛
d´ dx:

Using the fact that R � j´j � 2R and that jB2R.0/nBR.0/j D 3�R2, we hence
get

(5.6)

Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy

� CR2�˛
Z

R2

u2 dx

�R�˛
Z

R2

Z
B2R.0/nBR.0/

Z 1

0

j´jju.x/jjru.x C t´/jdt d´ dx

� CR2�˛
Z

R2

u2 dx � C 0R3�˛kukL1.R2/

Z
R2

jru.x/jdx

for some universal C;C 0 > 0 (recall that ˛ 2 .0; 2/), where we argued by approxi-
mating uwith smooth functions, noting that by an argument similar to the one used
in (3.2) the nonlocal term is continuous in the L1-topology. Therefore

(5.7)
Z

R2

u2 dx � CRkukL1

Z
R2

jrujdx C CR˛�2
Z

R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy;

for some universal C > 0. Estimate (5.3) then follows by minimizing the right-
hand side of (5.7) in R; i.e., we choose

(5.8) R D

�
kukL1.R2/

Z
R2

jrujdx

�� 1
3�˛

�Z
R2

Z
R2

u.x/u.y/

jx � yj˛
dx dy

� 1
3�˛

:

This concludes the proof of (5.3). �
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The following lemma strengthens the lower bound for configurations that satisfy
the linear scaling of the energy:

LEMMA 5.3. Let m � 1 and suppose that � satisfies E.�/ � Cm for some
C > 0. Then there is another constant c > 0 depending only on C such that

(5.9) j@�j � cm and
Z
�

Z
�

1

jx � yj˛
dx dy � cm:

PROOF. The proof follows directly from E � Cm and (5.3). �

6 Nonexistence of Minimizers for Large Masses
We now present the proof of Theorem 2.5. We begin with a basic estimate (from

above and below) of the diameter of a minimizer � of E.

LEMMA 6.1. Let m � 1, let � be a minimizer of E, and let d WD diam.�/. Then

(6.1) cm1=˛ � d � Cm

for some c; C > 0 depending only on ˛.

PROOF. We first recall that by Proposition 2.1 the set � is regular and con-
nected. Therefore, we have 2d � j@�j � E.�/ � Cm for someC > 0 depending
only on ˛, in view of Lemma 5.1.

On the other hand,

(6.2)
m2

d˛
�

Z
�

Z
�

1

jx � yj˛
dx dy � E.�/ � Cm;

which yields the second inequality. �

Let us note that as an immediate consequence of Lemma 6.1 we get nonexis-
tence of minimizers for large masses when ˛ < 1. We call this regime far-field
dominated, as opposed to the opposite regime (˛ � 1), which we call near-field
dominated. We will see again in Section 7 that this distinction also plays a role for
minimizers at small masses.

COROLLARY 6.2 (Nonexistence in the Far-Field-Dominated Case). Let ˛ < 1.
Then there exists m2 D m2.˛/ > 0 such that there are no minimizers of E for all
m > m2.

PROOF. By Lemma 5.1 and 6.1 every minimizer � has to satisfy E � Cm and
E � diam.�/ � cm1=˛. For ˛ < 1 and sufficiently large m, both inequalities
cannot be satisfied at the same time. �

We now turn to completing the proof of Theorem 2.5, which in view of Corollary
6.2 amounts to the proof of the following proposition.
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PROPOSITION 6.3 (Nonexistence in the Near-Field-Dominated Case). Let ˛ � 1.
Then there exists m2 D m2.˛/ > 0 such that there are no minimizers of E for all
m > m2.

PROOF. We argue by contradiction. Let� be a minimizer ofE for somem � 1.
Introducing d WD diam.�/, let x1; x2 2 @� be such that jx1 � x2j D d . For every
s 2 .0; d/, define T .s/ to be the line perpendicular to x1 � x2 and located at
distance s from x1. The line T .s/ cuts the set � into two nonempty parts. We
define the part of � that is closer to x1 as �s . We also define V.s/ WD j�sj and
A.s/ WD j�\T .s/j. Note thatA 2 L1.0; d/ (since the diameter of� is bounded),
and by Cavalieri’s principle we have

(6.3) V.s/ D

Z s

0

A.s0/ds0 8s 2 .0; d/:

Also, without loss of generality we may assume that V.d=2/ � m=2. In particular,
this implies that for all s 2 .0; d=2/,

E.�/ � j@�j C

Z
�s

Z
�s

1

jx � yj˛
dx dy(6.4)

C

Z
�n�s

Z
�n�s

1

jx � yj˛
dx dy C

mV.s/

d˛
:

Now, consider a new set �0 D .TR�s/ [ .� n�s/, where TR denotes a trans-
lation by distance R > 0 along the vector ���!x2x1; i.e., the set �0 is obtained by
cutting � with T .s/ and moving the resulting pieces distance R apart. We have

E.�0/ � j@�j C 2A.s/C

Z
�s

Z
�s

1

jx � yj˛
dx dy

C

Z
�n�s

Z
�n�s

1

jx � yj˛
dx dy C

2mV.s/

R˛
:

Therefore, from the minimizing property of � we obtain

(6.5) 2A.s/ �
mV.s/

2d˛
8s 2 .0; d=2/

for large enough R, or, equivalently,

(6.6)
dV

ds
�
mV

4d˛
for a.e. s 2 .0; d=2/:

Integrating this expression from s 2 .0; d=2/ to d=2, we then conclude that

(6.7) V.s/ �
m

2
exp

�
�
m.d � 2s/

8d˛

�
8s 2 .0; d=2/:
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In particular, by Lemma 6.1

(6.8) V.s/ �
m

2
exp

�
�
1

16
md1�˛

�
� m exp .�cm2�˛/ 8s 2 .0; d=4�

for some c > 0 depending only on ˛; i.e., V.s/ becomes uniformly small for
s 2 .0; d=4� and m� 1.

Let us now show that the latter is impossible. We consider a different set �00

obtained by erasing �s from � and dilating the resulting set � n �s by a factor
�s D

p
m=.m � V.s// > 1 to make �00 admissible. By the minimizing property

of � and positivity of the kernel in the nonlocal term, we have

(6.9) E.�/ � E.�00/ � �4�˛s E.� n�s/ � �
4
s .E.�/ � j@�sj C 2A.s//;

where we argued as in (4.4). Therefore, by the isoperimetric inequality and Lemma
5.1 we have

(6.10) 2
p
� V 1=2.s/ � j@�sj � C.V.s/C A.s//

for some C > 0 depending only on ˛. In view of (6.8), there exists m2 � 1 such
that CV �

p
� V 1=2 for all s 2 .0; d=4� and all m > m2. Therefore, for these

values of m (6.10) implies

(6.11)
dV

ds
� cV 1=2 for a.e. s 2 .0; d=4/;

with some c > 0 depending only on ˛. Integrating this inequality from 0 to s 2
.0; d=4�, we then find that

(6.12) V.s/ � cs2 8s 2 .0; d=4�

for some c > 0 depending only on ˛. But by Lemma 6.1 this contradicts (6.8) at
s D d=4. �

7 Shape of Minimizers for Small Masses
We now turn to the proof of Theorem 2.3. Here it is convenient first to rescale

length in such a way that the rescaled set � has a fixed mass. Let us define a
positive parameter

(7.1) " WD

�
m

�

� 3�˛
2

:

Then the renormalized energy

(7.2) E".�/ WD j@�j C "

Z
�

Z
�

1

jx � yj˛
dx dy; j�j D �;

is related to the original energy as

(7.3) E.�/ D .m=�/1=2E".�"/;
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where�" is obtained by dilating the set � by a factor of .m=�/�1=2. We note that
by virtue of Theorem 2.2, the minimizers of E" exist for all " � "1.˛/, where "1 is
related to m1 via (7.1). Furthermore, the regularity result in Proposition 2.1, with
constants depending on " and ˛, holds for the minimizers of E".

Expressed in terms of the rescaled problem, Theorem 2.3 takes the following
form:

PROPOSITION 7.1. There exists "0 D "0.˛/ > 0 such that for all " � "0 the
minimizer of E" is a unit disk.

The proof proceeds differently for the far-field-dominated (˛ < 1) and near-field-
dominated (˛ � 1) regimes. But before we turn to the proof, let us establish
a number of basic properties of the minimizers of E" that we will need in our
analysis. Recall that for any set of finite perimeter in R2, the isoperimetric deficit
is given by

(7.4) D.�/ WD
j@�j

2�
� 1:

We begin with a basic estimate of the isoperimetric deficit of minimizers.

LEMMA 7.2. Let� be a minimizer ofE", and letD.�/ be the isoperimetric deficit
of �. Then for some C > 0 depending only on ˛ we have

(7.5) D.�/ � C":

PROOF. The proof is obtained by testing E" with a unit disk. The assertion
follows immediately from the minimizing property of�, positivity of the nonlocal
term, and the fact that by (3.12),

�(7.6) j@�j � E".�/ � E".B1.0// D 2� C C":

We next establish that for small values of " the minimizers are necessarily con-
vex and hence simply connected.

LEMMA 7.3. Let � be a minimizer of E". Then there exists "2 D "2.˛/ > 0 such
that � is convex for all " � "2.

PROOF. The Euler-Lagrange equation for the minimizers of E" is given by

(7.7) �.x/C 2"v.x/ � � D 0; v.x/ WD

Z
�

1

jx � yj˛
dy;

where, as in (2.2), �.x/ and v.x/ denote the curvature and potential at x 2 @�,
respectively, and � 2 R is the Lagrange multiplier. To estimate �, let us integrate
(7.7) over the outer boundary @�o of�, which is justified by Proposition 2.1. After
dividing by j@�oj > 0, we obtain

(7.8) � D
2�

j@�oj
C 2"xv; xv WD

1

j@�oj

Z
@�o

v.x/dH1.x/:
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Now, let �o be the set enclosed by @�o, so that � � �o and @�o � @�.
In particular, we have � D j�j � j�oj, and by the isoperimetric inequality
2
p
� j�oj

1=2 � j@�oj � j@�j. Lemma 7.2 thus implies

(7.9) 2� � j@�oj � 2� C C"

for some C > 0 depending only on ˛. Similarly, we have for every x 2 �

(7.10)
0 � v.x/ �

Z
B1.x/

1

jx � yj˛
dy C

Z
�nB1.x/

1

jx � yj˛
dy � C

and 0 � xv � C

for some C > 0 depending only on ˛. Inserting (7.9) and (7.10) into (7.8), we
obtain that j� � 1j � C" for some C > 0. Substituting this estimate, together
with (7.10), into (7.7), we then conclude that j�.x/ � 1j � C". Thus, for all small
enough " we have �.x/ � 0 for all x 2 @�, which proves the statement. �

The next lemma is key to the analysis of the small-" regime and is based on a
Bonnesen-type inequality for convex sets with small isoperimetric deficit [7] (for a
review, see [38]). In view of Lemma 7.2, the latter is the case for the minimizers of
E" when " is sufficiently small. We will use a version of the result that was proved
by Fuglede [17], which connects the isoperimetric deficit to the spherical deviation
of the set � from a unit ball centered at the barycenter of � to prove this lemma.

LEMMA 7.4. Let� be a minimizer of E", and let x0 2 R2 be the barycenter of�.
Then there exists "3 D "3.˛/ > 0 such that for all " � "3

(i) There exists ı > 0 satisfying

(7.11) ı � C
p
D.�/;

with some universal C > 0 such that B1�ı.x0/ � � � B1Cı.x0/.
(ii) Let � W R! .�ı; ı/ be such that r D 1C �.�/ defines the graph of @� in

polar coordinates .r; �/ centered at x0. Then

(7.12) D.�/ � Ck�k2
H1.0;2�/

for some universal C > 0.

PROOF. When " is sufficiently small, the minimizer � of E exists, has small
isoperimetric deficit by Lemma 7.2, and is convex by Lemma 7.3. The result then
follows from [17, theorem 1.3 and footnote 4]. �

We can now proceed to the conclusion of the proof of Theorem 2.3. We start
with the far-field-dominated case.

PROPOSITION 7.5 (Minimizer Is a Disk, Far-Field-Dominated Regime). Let ˛ < 1.
Then there exists "0 D "0.˛/ > 0 such that for all " � "0, the unique, up to trans-
lations, minimizer of E" is � D B1.0/.
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PROOF. If " is sufficiently small, there exists a minimizer� ofE. Furthermore,
the set � satisfies the conclusions of Lemma 7.4. Since � is a minimizer, we have
E.�/ � E.B1.x0//, where x0 is the barycenter of �, which is equivalent to

(7.13) D.�/ �
"

2�

� Z
B1.x0/

Z
B1.x0/

1

jx � yj˛
dx dy �

Z
�

Z
�

1

jx � yj˛
dx dy

�
:

Let u and uB be the characteristic functions of� and B1.x0/, respectively, and let
vB be as in (3.25). Then, since the nonlocal kernel is positive definite (as can be
seen from (3.7) and (3.8)), and since

R
R2.u

B � u/dx D 0, we have

(7.14)

Z
B1.x0/

Z
B1.x0/

1

jx � yj˛
dx dy �

Z
�

Z
�

1

jx � yj˛
dx dy

D 2

Z
R2

vB.x � x0/.u
B.x/ � u.x//dx

�

Z
R2

Z
R2

.uB.x/ � u.x//.uB.y/ � u.y//

jx � yj˛
dx dy

� 2

Z
R2

.vB.x � x0/ � v0/.u
B.x/ � u.x//dx;

where v0 is given by (3.28). Thus

(7.15)

Z
B1.x0/

Z
B1.x0/

1

jx � yj˛
dx dy �

Z
�

Z
�

1

jx � yj˛
dx dy

� 2

Z
��B1.x0/

jvB.x � x0/ � v0jdx

� 2kvB. � � x0/ � v0kL1.��B1.x0//j��B1.x0/j

� CıkvB � v0kL1.B1Cı.0/nB1�ı.0//

for some universal C > 0. On the other hand, by Lemma 3.8, we have jvB �v0j �
Cı in B1Cı.0/ n B1�ı.0/ for some C > 0 depending only on ˛. Combining this
inequality with the estimates (7.11), (7.13), and (7.15), we get

(7.16) cı2 � D.�/ � C"ı2

for some universal c > 0 and some C > 0 depending only ˛. Therefore, as long
as " is small enough, we have D.�/ D 0, which implies that � D B1.x0/. �

We note that the above proof fails in the near-field-dominated regime, ˛ � 1,
since in this case vB fails to be in C 1.R2/, as can be seen from (3.27) (in fact, the
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radial derivative of vB gets singular at @B1.0/). Therefore, a more delicate analysis
of the contribution of the deviation of � from a ball to the nonlocal part of the
energy is necessary. In fact, we need to prove some cancellations in the difference
of the two nonlocal energies (related to the minimizer and the corresponding ball
of the same area) to obtain an analogue of (7.16). For this, we will make a more
detailed use of the Euler-Lagrange equation.

It remains to prove the following proposition:

PROPOSITION 7.6 (Minimizer Is a Disk, Near-Field-Dominated Regime). Let ˛
� 1. Then there exists "0 D "0.˛/ > 0 such that for all " � "0, the unique, up to
translations, minimizer of E" is � D B1.0/.

PROOF. The main point here is to obtain the inequality in the right-hand side of
(7.16) from (7.13). The conclusion then follows as in the proof of Proposition 7.5.
We begin by writingZ

B1.x0/

Z
B1.x0/

1

jx � yj˛
dx dy �

Z
�

Z
�

1

jx � yj˛
dx dy

D

Z
B1.x0/n�

.vB.x � x0/C v.x/ � 2v0/dx

�

Z
�nB1.x0/

.vB.x � x0/C v.x/ � 2v0/dx

D IC II;

(7.17)

where

(7.18)

I D
Z

B1.x0/n�

�
v.x/ � vB.x � x1.x//

�
dx

�

Z
�nB1.x0/

�
v.x/ � vB.x � x1.x//

�
dx;

II D
Z

B1.x0/n�

�
vB.x � x1.x//C v

B.x � x0/ � 2v0
�
dx

�

Z
�nB1.x0/

�
vB.x � x1.x//C v

B.x � x0/ � 2v0
�
dx;

and

(7.19) x1.x/ WD x0 C .jxj � 1/
x � x0

jx � x0j
I

i.e., x1.x/ is the center of a ball whose center is shifted from x0 in the direction of x
in such a way that x 2 @B1.x1.x//. Introducing polar coordinates as in Lemma
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7.4(ii), we have (with a slight abuse of notation)

I D
Z 2�

0

Z 1C�.�/

1

�
vB.r � �.�// � v.r; �/

�
r dr d�;(7.20)

II D
Z 2�

0

Z 1C�.�/

1

�
2v0 � v

B.r/ � vB.r � �.�//
�
r dr d�:(7.21)

Let us estimate the term in (7.21) first. In the following we will only explicitly
consider the case ˛ > 1; the case ˛ D 1 is treated analogously. In view of (3.27),
with s D r � 1 we have

(7.22)
II D

Z 2�

0

Z �.�/

0

�
2v0 � v

B.1C s/ � vB.1C s � �.�//
�
.1C s/ds d�

D C

Z 2�

0

Z �.�/

0

.jsj1�˛s � j�.�/ � sj1�˛.�.�/ � s//ds d� CO.ı2/;

for some C > 0 depending only on ˛, where

(7.23) ı WD k�kL1.R/:

However, the integral in the second line of (7.22) is identically 0, so we have II D
O.ı2/.

We now turn to estimating (7.20), which can be written as

(7.24) I D
Z 2�

0

Z �.�/

0

Z �C�

���

Z �B .�;�
0/

�.� 0/

d�˛.s; s0; �; � 0/.1C s/.1C s0/ds0 d� 0 ds d�;

where d.s; s0; �; � 0/ is the distance between the points with polar coordinates .1C
s; �/ and .1C s0; � 0/, and �B.�; � 0/ solves

(7.25) 1 D .1C �B/
2
C �2 � 2�.1C �B/ cos.� � � 0/;

and for each � simply describes the polar graph r.� 0/ D 1C �B. � ; �
0/ of a circle

shifted by �.�/ in the direction of � from the origin. Clearly, �B.�; � / 2 C1.R/
for sufficiently small ı, and furthermore for all �; � 0 2 R we have

(7.26) j�B.�; �
0/j � ı; j�B.�; �

0/ � �.�/j � Cıj� � � 0j2;

for some universal C > 0. In addition, for small enough ı we have

(7.27) d.s; s0; �; � 0/ � cj� � � 0j
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for some universal c > 0. Combining estimates (7.26) and (7.27), we obtain

(7.28)

jIj � C
ˇ̌̌̌Z 2�

0

Z �.�/

0

Z �C�

���

Z �B.�;�
0/

�.� 0/

j� � � 0j�˛ ds0 d� 0 ds d�

ˇ̌̌̌
� C

�ˇ̌̌̌Z 2�

0

Z �.�/

0

Z �C�

���

Z �B.�;�
0/

�.�/

j� � � 0j�˛ ds0 d� 0 ds d�

ˇ̌̌̌
C

ˇ̌̌̌Z 2�

0

Z �.�/

0

Z �C�

���

Z �.�/

�.� 0/

j� � � 0j�˛ ds0 d� 0 ds d�

ˇ̌̌̌�
� C 0ı

�
ı C k��kL1.R/

Z 2�

0

Z �C�

���

j� � � 0j1�˛ d� 0 d�

�
� C 00ı.ı C k��kL1.R//;

for someC;C 0; C 00 > 0 depending only on ˛, where here and below the subscript �
denotes a derivative with respect to � . So, in order to conclude that I D O.ı2/ as
well, it remains to show that

(7.29) k��kL1.R/ � Cı

for some C > 0 depending only on ˛.
To obtain (7.29), we write the Euler-Lagrange equation for �.�/ in polar coor-

dinates. Using the well-known formula for the curvature in polar coordinates, we
can write (7.7) in the form

(7.30)
.1C �/2 C 2�2

�
� .1C �/���

f.1C �/2 C �2
�
g3=2

D
2�

j@�j
� 2".v � xv/;

where v D v.1C �.�/; �/. In fact, by continuity of �.�/ there exists �� such that
xv D v.1C �.��/; ��/. Now, by [17, lemma 2.2], for sufficiently small ı we also
have

(7.31) k��kL1.R/ � Cı
1=2

with some universal C > 0. Therefore, subtracting 1 from both sides of (7.30),
after a straightforward calculation we obtain

(7.32) k���kL1.R/ � C.ı CD.�/C "kv � xvkL1.R//:

On the other hand, arguing as in (7.28), we have

(7.33)

jv.�.�/; �/ � v0j D

ˇ̌̌̌Z �C�

���

Z �B .�;�
0/

�.� 0/

d�˛.�.�/; s0; �; � 0/.1C s0/ds0 d� 0
ˇ̌̌̌

� C

�
ı C k��kL1.R/

Z �C�

���

j� � � 0j1�˛ d� 0
�

� C 0.ı C k��kL1.R//;
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for some C;C 0 > 0 depending only on ˛. In particular, since the same estimate
holds for � D ��, we have

(7.34) kv � xvkL1.R/ � C.ı C k��kL1.R//

for some C > 0 depending only on ˛.
Finally, using Lemma 7.4(ii), (7.32), and (7.34), we conclude that

(7.35) k���kL1.R/ � C.ı C "k��kL1.R//

for some C > 0 depending only on ˛. Observe that �� .�/ D
R �
�0
��� .�

0/d� 0 for
some �0 2 R. Therefore, using the smallness of ", from (7.35) we immediately
obtain (7.29). �

8 Complete Characterization in the Case of Small ˛

In this section, we present the proof of Theorem 2.7. The proof is a slight
modification of the proof of Proposition 7.5, and so we find it more convenient to
work with the energy in (7.2) (but now without the smallness assumption on ").
The proof also requires a refinement of the nonexistence result from Section 6.

In terms of E", the result we wish to obtain is a consequence of the following
proposition.

PROPOSITION 8.1. There exists ˛0 > 0 such that for all ˛ � ˛0 the minimizer of
E", if it exists, is given by � D B1.x0/ for some x0 2 R2.

The proof follows from a sequence of lemmas.

LEMMA 8.2. Let � � R2 be a set of finite perimeter, and let j�j D � . Then

(8.1) E".�/ D j@�j C "�
2
C ˛

Z
�

Z
�

g.x � y/dx dy;

where

(8.2) jg.x � y/j � C"
jln jx � yjj
jx � yj˛

and where the constant C > 0 depends only on d ´ diam.�/.

PROOF. Applying the Taylor formula to the exponential function, we get

(8.3) jx � yj�˛ � 1 D e�˛ ln jx�yj
� 1 D �˛jx � yj�˛� ln jx � yj

for some � D �.x�y/ 2 .0; 1/. The statement then follows withC D maxf1; d2g.
�

Our next lemma establishes nonexistence of minimizers of E" for sufficiently
large " uniformly in ˛ (as long as ˛ � ˛0 < 1 for some fixed ˛0).

LEMMA 8.3. For every ˛0 2 .0; 1/ there exists "2 > 0 (depending only on ˛0)
such that for every ˛ 2 .0; ˛0� there is no minimizer of E" for any " > "2.
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PROOF. We prove the statement for the original energy E, which amounts to
existence of m2 D m2.˛0/ > 0 such that there is no minimizer of E for all
m > m2 and ˛ 2 .0; ˛0�. By Lemma 5.1, for a minimizer � of E we have
E.�/ � Cm for all m � 1, where the dependence of the constant C > 0 on ˛ is
via E.B1.0//. By continuous dependence of E.B1.0// on ˛ 2 Œ0; ˛0� (see (3.12)),
we can, in fact, choose C � 1 to depend only on ˛0. Therefore, arguing as in
the proof of Lemma 6.1, we have m2�˛=C ˛ � m2=d˛ � Cm or, equivalently,
m � C .1C˛/=.1�˛/ � C 2=.1�˛0/. �

We next prove that minimizers of E" must have small isoperimetric deficit for
sufficiently small ˛.

LEMMA 8.4. Let ˛0 2 .0; 1/, let ˛ 2 .0; ˛0�, and let� be a minimizer ofE". Then
D.�/ � C˛ for some C > 0 depending only on ˛0.

PROOF. By Lemma 8.3, we have " � "2.˛0/, which implies, in particular, that
diam.�/ � 1

2
j@�j � 1

2
E.B1.0// � C for some universal C > 0. The result then

follows immediately from (8.1) and (8.2) by an estimate analogous to the one in
(3.2). �

The result in Lemma 8.4 implies that we can use the same ideas as in Section
7 (in the far-field-dominated case), replacing " with ˛ and taking advantage of the
smallness of ˛ to prove radial symmetry of minimizers. In particular, we have the
analogue of Lemma 7.3:

LEMMA 8.5. There exists ˛0 2 .0; 1/ such that for every ˛ 2 .0; ˛0� any mini-
mizer � of E" is convex.

Similarly, the analogue of Lemma 7.4 is the following:

LEMMA 8.6. There exists ˛0 2 .0; 1/ such that for every ˛ 2 .0; ˛0� any mini-
mizer � of E" satisfies B1�ı.x0/ � � � B1Cı.x0/, where x0 is the barycenter
of � for some ı � C

p
D.�/ with some universal C > 0.

PROOF OF PROPOSITION 8.1. We argue as in the proof of Proposition 7.5. Re-
peating the steps of that proof with the help of Lemmas 8.4, 8.5, and 8.6, we obtain

(8.4) cı2 � D.�/ � C˛ı2

for some universal c; C > 0, where the second inequality in (8.4) follows from the
fact that the potential vB given by (3.25) obeys

(8.5) jrvB.x/j � ˛

Z
B1.0/

1

jx � yj1C˛
dy � C˛ 8x 2 R2

for some universal C > 0, provided that ˛0 is sufficiently small. The proof is then
completed by observing that (8.4) impliesD.�/ D 0 for ˛0 sufficiently small. �



ISOPERIMETRIC PROBLEM WITH NONLOCAL TERM 1157

PROOF OF THEOREM 2.7. Clearly, in view of Proposition 8.1 and Lemma 3.6(i)
there are no minimizers for all m > mc1 and ˛ � ˛0. It hence remains to show
that there exists a minimizer for every m � mc1. The assertion of Theorem 2.7
then follows by Proposition 8.1.

Suppose that m � mc1 and consider a minimizing sequence f�kg1kD1. Then
E.�k/ ! e.m/ WD infj�jDmE.�/ as k ! 1, and by an approximation argu-
ment we may assume that all sets�k consist ofNk <1 disjoint, open, connected
components. In fact, �k can be chosen so that Nk is independent of k. Indeed, by
Theorem 2.3 we can lower the energy by replacing all the connected components
whose mass is less than m0 with balls of the same mass translated sufficiently far
apart (as in the proof of Lemma 3.2). Then, if more than one ball is present in the
resulting set, by Lemma 3.6(ii) we can further lower the energy by merging these
balls, two at a time, and translating the resulting balls further apart.

In view of the above argument we may assume that �k D
SN
jD1�

.j /

k
with

Nk � N for some N � 1 C .m=m0/, and the sets �.j /
k

are connected (some

of �.j /
k

are empty if there are less than N connected components). After taking

a subsequence, we may assume that for each 1 � j � N we have E.�.j /
k
/ !

ej , j�.j /
k
j ! �j for some constants ej � 0, and �j � 0 as k ! 1, and,

furthermore, by compactness each set �.j /
k

“converges” to a set �.j / as k ! 1

after a suitable translation. More precisely, if u.j /
k

are the characteristic functions

of �.j /
k

translated to contain the origin, then u.j /
k

* u.j / in BV.R2/ as k ! 1,

where u.j / is the characteristic function of �.j /. Furthermore, since the sets �.j /
k

are either connected and uniformly bounded or empty, we have j�.j /j D �j .
Observe that since

PN
jD1 �j D m, we have (see also [12, remark 4.1])

(8.6) e.m/ �

NX
jD1

e.�j /:

Indeed, if �j � R2 are such that j�j j D �j and E.�j / < e.�j / C ı for some
ı > 0, we can construct a set �0 with j�0j D m and E.�0/ <

PN
jD1 e.�j /C 2ı

by taking �0 to be a union of �j translated sufficiently far apart. The result then
follows by arbitrariness of ı. At the same time, we have

(8.7)
NX
jD1

E.�.j // � e.m/:

Indeed, by lower semicontinuity of E with respect to the weak BV -convergence
and by positivity of the kernel in the nonlocal term in the energy we have
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(8.8)
NX
jD1

E.�.j // �

NX
jD1

ej D lim
k!1

NX
jD1

E.�
.j /

k
/ � lim

k!1
E.�k/ D e.m/:

We now claim that E.�.j // D e.�j /. Indeed, clearly E.�.j // � e.�j / for all
1 � j � N . On the other hand, by (8.6) and (8.7) we get

(8.9) e.m/ �

NX
jD1

e.�j / �

NX
jD1

E.�.j // � e.m/;

so that all inequalities in (8.9) turn into equalities (compare also with [12, lemma
4.4(3)]). Again, since e.�j / � E.�.j // for each 1 � j � N , we get e.�j / D
E.�.j // as well.

Thus, each set �.j / is a minimizer of E with prescribed mass �j . Therefore,
by Proposition 8.1 for each 1 � j � N , the set �.j / is either a ball or is empty.
Then, repeating the argument at the beginning of the proof, with the help of Lemma
3.6(ii) we conclude that E.BR.0// �

PN
jD1E.�

.j //, where R D .m=�/1=2, and
hence BR.0/ is a minimizer by (8.7). �

Remark 8.7. It is easy to see that to the leading order in ˛ the nonlocal part of the
energy in (8.1) is generated by the kernel g.x�y/ ' " ln jx�yj�1, which appears
in the studies of the sharp interface version of the Ohta-Kawasaki energy in two
dimensions [12, 21, 33, 47]. In this respect the result of Proposition 8.1 is closely
related to the rigidity result obtained in [33, prop. 3.5].

Finally, let us point out that the fact that the minimizers in Theorem 2.7 exist if
and only ifm � mc1, wheremc1 is given by (3.13), does not rely on smallness of ˛
and would remain valid as long as minimizers of E are disks whenever they exist.
This can also be seen from the following general result, which says, essentially, that
any set of finite perimeter can be replaced by a set with lower energy consisting of
a union of finitely many disjoint sets, each of which is a minimizer of E.

PROPOSITION 8.8. Let � � R2 be a set of finite perimeter. Then there exists a set

(8.10) �0 D

N[
iD1

�i ; �i \�j D ¿ 8i 6D j;

withN <1 and j�0j D j�j such thatE.�0/ � E.�/ andE.�i / D infmDj�i jE.

PROOF. If � is a minimizer of E, there is nothing to prove. So assume that it
is not. Then � may be uniquely decomposed into N � 1 connected components
denoted by�i whose boundaries @�i are Jordan curves that are essentially disjoint
(up to negligible sets; see, e.g., [2, cor. 1 and theorem 8]). By positivity and decay
of the kernel in the nonlocal part of the energy, we have

(8.11) E.�/ >
X

�iD�i

inf
mDmi

E C
X

�i 6D�i

inf
mDmi

E; mi WD j�i j;
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where �i are minimizers of E with mass mi whenever such a minimizer exists.
The strict inequality in (8.11) follows from the fact that for N D 1 the set � is not
a minimizer, while for N > 1 the energy can be reduced by spreading different
connected components sufficiently far apart (as, e.g., in the proof of Lemma 5.1).

Suppose that �i 6D �i . If the minimizer of E exists for mass m D mi , we
replace �i with �0i D �i . By the minimizing property of �i , we then have
E.�i / D infmDmi E. Alternatively, if the minimum of E is not attained at m D
mi , there exists ı0 > 0 such that if �0i has mass mi and E.�0i / < infmDmi E C
ı0, then �0i is disconnected. Indeed, if not, there exists a minimizing sequence
consisting of �k � R2 with j�kj D mi and each �k connected. Then by the
argument in the proof of Theorem 2.2, the minimum ofE is attained, contradicting
our assumption.

We can therefore replace all sets �i 6D �i for those values of mi at which the
minimum of E with m D mi is not attained with disconnected sets �0i such that

(8.12) E.�0i / < inf
mDmi

E C ı

for some ı 2 .0; ı0/ to be specified later. Observe that by Theorem 2.2 for all
those we have mi > m1 D m1.˛/ > 0. Therefore, the number of the components
�i 6D �i corresponding to mi at which the minimum of E at m D mi is not
attained is bounded above in terms of j�j. We now apply to each such component
the algorithm in the proof of Theorem 2.2 to lower energy by erasing the smallest
connected component of �0i and rescaling the resulting set back to mass mi . In
view of the fact that ı < ı0, this process must terminate before only one connected
component remains. Then, arguing as in the proof of Theorem 2.2, we conclude
that the mass of each remaining connected component of �0i is bounded below by
some c > 0 depending only on E.�/ and ˛.

We are now able to choose ı > 0 sufficiently small and construct a new set
�0 with j�0j D j�j and E.�0/ < E.�/ by taking the union of all connected
components of the sets �0i constructed above, suitably translated to be sufficiently
far apart. In this process the mass of each connected component of �0 that is
distinct from a minimizer is bounded above by max�i 6D�i j�i j � c. Repeatedly
applying this process, we then find that after finitely many iterations all connected
components are minimizers. �
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