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HANS KNÜPFER, CYRILL B. MURATOV AND MATTEO NOVAGA

This paper is concerned with the diffuse interface Ohta–Kawasaki energy in three space dimensions, in a
periodic setting, in the parameter regime corresponding to the onset of nontrivial minimizers. We identify
the scaling in which a sharp transition from asymptotically trivial to nontrivial minimizers takes place as
the small parameter characterizing the width of the interfaces between the two phases goes to zero, while
the volume fraction of the minority phases vanishes at an appropriate rate. The value of the threshold is
shown to be related to the optimal binding energy solution of Gamow’s liquid drop model of the atomic
nucleus. Beyond the threshold the average volume fraction of the minority phase is demonstrated to grow
linearly with the distance to the threshold. In addition to these results, we establish a number of properties
of the minimizers of the sharp interface screened Ohta–Kawasaki energy in the considered parameter
regime. We also establish rather tight upper and lower bounds on the value of the transition threshold.

1. Introduction and main results

The Ohta–Kawasaki energy is a prototypical energy functional in the studies of spatially modulated
phases that appear as a result of the competition of short-range attractive and long-range repulsive forces
in physical systems of very different nature. Although it was originally introduced in the context of
microphase separation in diblock copolymer melts [Ohta and Kawasaki 1986], Ohta–Kawasaki energy is
relevant to a wide range of both soft and hard condensed matter systems (for a discussion of the specific
physical systems see, e.g., [Muratov 2002]), as well as to dense nuclear matter at the other extreme of
energy and spatial scales [Lattimer et al. 1985; Maruyama et al. 2005]. From the mathematical point
of view, the Ohta–Kawasaki energy functional, together with the closely related Thomas–Fermi–Dirac–
von Weizsäcker energy [Heisenberg 1934; von Weizsäcker 1935; Lieb 1981; Le Bris and Lions 2005],
serves as a paradigm for energy-driven pattern-forming systems with competing interactions [Choksi et al.
2017], which is why the associated variational problem has received an increasing amount of attention in
recent years [Choksi 2001; Choksi et al. 2009; Spadaro 2009; Muratov 2010; Choksi and Peletier 2011;
Goldman et al. 2013; Goldman et al. 2014; Lu and Otto 2014].

In the macroscopic setting, one considers the Ohta–Kawasaki energy functional for configurations
defined on a sufficiently large box with periodic boundary conditions; i.e., for u ∈ H 1(T`) one sets

Eε(u) :=
∫

T`

( 1
2ε

2
|∇u|2+ 1

4(1− u2)2+ 1
2(u− ūε)(−1)−1(u− ūε)

)
dx, (1-1)
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where T` is the flat d-dimensional torus with side length ` > 0. Furthermore, ε > 0 is the parameter
characterizing interfacial thickness and assumed to be sufficiently small. Also, the parameter ūε ∈ (−1, 1)
denotes the constant background charge density. In the sequel, we will investigate the limit ε → 0,
assuming that uε depends on ε suitably. We note that the physically most relevant dimension is d = 3. In
order for the last term in (1-1) to be well-defined, the definition in (1-1) needs to be supplemented with
the “charge neutrality” constraint:

1
`d

∫
T`

u dx = ūε. (1-2)

One then wishes to characterize global energy minimizers of the energy in (2-1) for all ` sufficiently
large. These global energy minimizers are expected to determine the ground states of the corresponding
physical system in a macroscopically large sample.

It is widely believed that as the value of ` is increased with all other parameters fixed, the global
energy minimizer of Eε should be either constant or spatially periodic, with period approaching a constant
independent of ` as `→∞. Proving such a crystallization result would be one of the main challenges
in the theory of energy-driven pattern formation and is currently out of reach (for a recent review, see
[Blanc and Lewin 2015]), except for the case d = 1, ūε ∈ (−1, 1) fixed and ε > 0 sufficiently small
[Müller 1993; Ren and Wei 2003; Chen and Oshita 2005] (for some results in that direction in higher
dimensions, see [Shirokoff et al. 2015; Morini and Sternberg 2014; Daneri and Runa 2018]). On the
other hand, it is known that for ūε ∈ (−1, 1) fixed, global energy minimizers are not constant as soon
as ε� 1 and ` & 1 [Choksi 2001; Muratov 2010]. This is in contrast with the case ūε 6∈ (−1, 1), for
which by direct inspection u = ūε is the unique global minimizer of the energy. Thus, a transition from
the trivial minimizer u = ūε to a nontrivial, spatially nonuniform minimizer of Eε must occur for ε� 1
and ` & 1 fixed as the value of ūε increases from ūε = −1 towards ūε = 0 (in view of the symmetry
exhibited by the energy when changing u→−u, it is sufficient to consider only the case ūε ≤ 0). In fact,
for d ≥ 2 nontrivial minimizers emerge at some ūε =−1+ δε with ε . δε . ε2/3

| ln ε|1/3 [Choksi et al.
2009; Muratov 2010], while for d = 1 they emerge for some ε . δε . ε1/2 [Choksi et al. 2009; Muratov
2002]. The nature of the transition towards nontrivial minimizers is quite delicate and at present not well
understood.

In the absence of general results for nontrivial minimizers of Eε for ε . 1, ūε ∈ (−1, 1) and `� 1
in d ≥ 2, one can consider different asymptotic regimes that admit further analytical characterization.
One such regime was analyzed in [Goldman et al. 2013], where the behavior of the minimizers of Eε
was studied in the limit ε→ 0 for ūε = −1+ λε2/3

| ln ε|1/3, with λ > 0 and ` > 0 fixed, in the case
d = 2. In this regime, nontrivial minimizers are expected to consist of well-separated “droplets” of the
minority phase, i.e., regions where u '+1 surrounded by the sea of the majority phase where u '−1,
separated by narrow domain walls of thickness ∼ ε. It was found that there exists an explicit critical
value of λ = λc > 0 such that the minimizers of Eε are nontrivial for all λ > λc, while for λ ≤ λc the
minimizers are “asymptotically trivial”, namely, that the energy of the minimizers converges to that of
u = ūε, and the minimizer converges to u = ūε in a certain sense as ε→ 0. Moreover, the threshold
value λc corresponding to the onset of nontrivial minimizers was found to be independent of `, suggesting
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that the transition should persist to the macroscopic limit `→∞ with ε� 1 and ūε fixed (i.e., when
commuting the order of the ε→ 0 and `→∞ limits). The obtained nontrivial minimizers exhibit a
kind of a homogenization limit, with mass distributing uniformly on average throughout the domain.
Furthermore, by performing a two-scale expansion of the energy, one can make more precise conclusions
about the detailed properties of the minimizers and, in particular, formulate a variational problem in the
whole space that determines the placement of the connected components of the minimizers in terms of
the so-called renormalized energy, whose minimizers are conjectured to concentrate on the vertices of a
hexagonal lattice [Goldman et al. 2014].

Here, we would like to understand how the transition to nontrivial minimizers happens when ε→ 0
and `& 1 in the physical three-dimensional case. Therefore, from now on we fix d = 3 throughout the
rest of the paper. Once again, in this regime the minimizers are expected to exhibit a two-phase character,
with the minority phase occupying a small fraction of space. To this end, we define

ūε := −1+ λε2/3, (1-3)

where λ > 0 is fixed. Our main result is the following theorem.

Theorem 1.1. Let ` > 0 and λ > 0, and let Eε be defined in (1-1) with ūε given by (1-3). Then, there
exists a universal constant λc > 0 such that if uε is a minimizer of Eε(u) among all u ∈ H 1(T`) satisfying
(1-2), and µε ∈M+(T`) is such that dµε(x)= 1

2ε
−2/3(1+ sgn uε(x)) dx , we have as ε→ 0:

(i) µε⇀ 0 in M(T`) if λ≤ λc.

(ii) µε⇀ µ̄ in M(T`), where dµ̄= 1
2(λ− λc) dx if λ > λc.

(iii) ε−4/3Eε(uε)→min{λ2`3, λc(2λ− λc)`
3
}.

Thus, the onset of nontrivial minimizers in three space dimensions occurs sooner in terms of 0 <
1+ ūε� 1 than the corresponding transition in two dimensions. In particular, cylindrical morphologies
obtained by trivially extending the two-dimensional minimizers into the third dimension are no longer
global energy minimizers. One would, therefore, expect that the emergent nontrivial minimizers consist of
a collection of well-separated small droplets of the minority phase surrounded by the sea of the majority
phase. Furthermore, the size and the distance between the droplets should scale differently (see [Knüpfer
et al. 2016]) from those in two dimensions. Furthermore, in contrast to the latter [Goldman et al. 2013;
Goldman et al. 2014] we may no longer conclude that the droplets are nearly spherical.

Concerning the threshold λc, its precise value may be expressed in terms of several characteristics of
the double-well potential appearing in (1-1) and the solution of the nonlocal isoperimetric problem in the
whole space that goes back to [Gamow 1930]; see also [Choksi et al. 2017]. Namely, defining

σ :=
2
√

2
3
, κ :=

1
√

2
, (1-4)

which are the interfacial energy and the screening parameter, respectively, we have (for details, see the
following sections)

λc = 2−1/3σ 2/3κ2 f ∗, (1-5)
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where f ∗ > 0 is the minimum energy per unit volume for Gamow’s liquid drop model:

f ∗ := inf
u∈BV(R3;{0,1})

∫
R3 |∇u| dx + 1

8π

∫
R3

∫
R3 u(x)u(y)/|x − y| dx dy∫

R3 u dx
. (1-6)

Note that the minimization in (1-6) is equivalent to minimizing the perimeter plus the Coulombic self-
energy over all Borel sets, per unit volume.

Although the precise value of f ∗ is currently unknown, the characterization in (1-5) allows us to
obtain a quantitative estimate for the threshold λc in Theorem 1.1, using balls as competitors and a recent
quantitative nonexistence result for the Gamow’s liquid drop model [Frank et al. 2016].

Theorem 1.2. With the notation of Theorem 1.1, we have

3

4 3
√

2
≤ λc ≤

3

2 3
√

5
. (1-7)

Numerically, the bound in (1-7) appears to be fairly tight: 0.5952<λc < 0.8773, with the lower bound
to within 33% of the value of the upper bound. Note that if the conjecture that the minimizers of Gamow’s
liquid drop model are balls is true, then the upper bound in (1-7) should in fact yield equality.

Our proof relies on our previous results obtained for the three-dimensional sharp interface version
of the Ohta–Kawasaki energy [Knüpfer et al. 2016]. Together with the approach from [Muratov 2010,
Section 4], the result in Theorem 1.1 is obtained along the lines of the arguments in [Goldman et al. 2013],
suitably adapted from the two-dimensional to the three-dimensional case. Note, however, that since the
sharp interface energy studied by Knüpfer et al. does not include the effect of charge screening, their
results cannot be directly combined with those of [Muratov 2010]. In fact, there is no transition from
trivial to nontrivial minimizers in the unscreened sharp interface energy. Therefore, as a first step towards
the proof one needs to adapt the results of Knüpfer et al. to the case of screened sharp interface energy
and obtain an asymptotic characterization of its minimizers as ε→ 0.

As in [Knüpfer et al. 2016], we separate the nonlocal energy into the near-field and far-field contributions,
with screening appearing explicitly in the latter. At the same time, the self-interaction energy of the
droplets turns out to be still well-approximated by that of Gamow’s liquid drop model. Combining the
far-field with the near-field contributions to the energy then allows us to establish a 0-convergence result
for the screened sharp interface energy to an energy functional which is quadratic in the limit charge
density, with the notion of convergence being the weak* convergence of measures (see, for instance,
[Knüpfer et al. 2016, Appendix A]). Along the way, we establish uniform estimates for the connected
components of the minimizers similar to those in [Knüpfer et al. 2016], which, in turn, allows us to
characterize nonexistence of nontrivial minimizers of the screened sharp interface energy for λ < λc and
ε sufficiently small.

Once the 0-convergence result is established for the screened sharp interface energy, we proceed as in
[Goldman et al. 2013] by introducing a piecewise-constant charge density associated with the admissible
configurations for the diffuse interface energy that eliminates the small deviations of the charge density
from their equilibrium values±1 for the double-well potential (for a more detailed explanation of the need
of such a step, see the beginning of Section 2.2 in [Goldman et al. 2013]). We then adapt the arguments of
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[loc. cit., Section 6] to obtain the corresponding 0-convergence result for the diffuse interface energy to
the same quadratic functional in the limit charge density as for the screened sharp interface energy. Finally,
explicitly minimizing the limit energy we obtain the main result of our paper contained in Theorem 1.1.
Furthermore, we relate the value of the threshold λc with the optimal energy per unit mass for Gamow’s
liquid drop model. In addition, we use recent results in [Frank and Lieb 2015; Frank et al. 2016] character-
izing the minimizers of the latter problem to obtain sharp quantitative bounds on the value of the threshold.

To summarize, our paper provides an extension of various recent results for the diffuse interface
Ohta–Kawasaki energy to the case of a macroscopic three-dimensional domain, establishing a sharp
transition from trivial to nontrivial minimizers in the asymptotic limit of vanishingly thin interfaces. Most
of the techniques used in our proofs are adaptations of those that appeared in the earlier studies of this
problem in different settings. The main novelty of our results, however, is the way these arguments are
combined to yield a nontrivial scaling for the transition to nontrivial minimizers and the limit energy
functional for the three-dimensional Ohta–Kawasaki energy. To our knowledge, this is the first sharp
asymptotic result for this energy in the regime of strong compositional asymmetry and large number
of droplets (for the case of finitely many droplets, see [Choksi and Peletier 2011]). We note that the
present lack of knowledge about the minimizers of Gamow’s liquid drop model prevents us from going to
the next order in a two-scale 0-expansion to describe local interactions of droplets via a “renormalized
energy” [Rougerie and Serfaty 2016]. In particular, it is not known at present whether the minimizer per
unit mass exists only for a unique value of the mass (this would be true if minimizers were balls). Thus,
further insights into the solution of Gamow’s model would be needed to carry out the program realized
for the two-dimensional Ohta–Kawasaki energy in [Goldman et al. 2014].

Our paper is organized as follows. In Section 2, we introduce the different energies appearing in our
study and state a number of results related to each of the associated variational problems. Also in this
section, we prove Theorem 2.2, which gives a quantitative lower bound for the self-interaction energy
per unit mass for Gamow’s liquid drop model. Then, in Section 3 we state the 0-convergence result for
the sharp interface energy in Theorem 3.2, followed by a proof. Also in Section 3, we provide some
further results about the connected components of minimizers of the screened sharp interface energy, see
Theorem 3.4 and Corollary 3.5. Finally, in Section 4 we state and prove the corresponding 0-convergence
result for the diffuse interface energy; see Theorem 4.1. The results in Theorems 1.1 and 1.2 are then
obtained as simple corollaries of the above theorems.

2. Setting

We now introduce the basic notation used throughout the rest of the paper, together with the assumptions
and some technical results.

The diffuse interface energy. We begin by generalizing the diffuse energy functional in (1-1) to one
involving an arbitrary symmetric double-well potential W (u):

Eε(u) :=
∫

T`

( 1
2ε

2
|∇u|2+W (u)+ 1

2(u− ūε)(−1)−1(u− ūε)
)

dx, (2-1)
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with W (u) satisfying [Muratov 2010]

(i) W ∈ C2(R), W (u)=W (−u), and W ≥ 0,

(ii) W (+1)=W (−1)= 0 and W ′′(+1)=W ′′(−1) > 0,

(iii) W ′′(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞W ′′(u)=+∞, and |W ′(u)| ≤C(1+|u|q)
for some C > 0 and 1< q < 5.

The bounds on the exponent q in condition (iii) are the same as in [Muratov 2010]. In particular, the
upper bound q < 5 guarantees that minimizers of Eε are bounded and are therefore classical solutions of
the Euler–Lagrange equation (2-5). Boundedness of minimizers is also needed to establish the estimate
(4-11) in the proof of Theorem 4.1 below.

The energy Eε is well-defined and bounded on the admissible class

Aε :=
{

u ∈ H 1(T`) :
1
`3

∫
T`

u dx = ūε

}
, (2-2)

with the nonlocal term interpreted, as usual, with the help of the Green’s function G0(x) solving

−1G0(x)= δ(x)− `−3 in D′(T`) and
∫

T`

G0(x) dx = 0. (2-3)

Explicitly, the energy takes the form

Eε(u)=
∫

T`

(1
2
ε2
|∇u|2+W (u)

)
dx + 1

2

∫
T`

∫
T`

(u(x)− ūε)G0(x − y)(u(y)− ūε) dx dy, (2-4)

noting that the last term in the right-hand side is well-defined by Young’s inequality.
Under the above assumptions, every critical point u ∈ Aε of Eε weakly solves the Euler–Lagrange

equation, which can be written as (see [Muratov 2010, Section 4])

−ε21u+W ′(u)+ v =3, −1v = u− ūε, (2-5)

where v ∈ H 3(T`) is a zero-average solution of the second equation in (2-5) and 3 ∈ R is the Lagrange
multiplier satisfying

3=
1
`3

∫
T`

W ′(u) dx, (2-6)

as can be seen by integrating the first equation in (2-5) over T`. In particular, we have

v(x)=
∫

T`

G0(x − y)(u(y)− ūε) dy, (2-7)

and u, v ∈ C∞(T`) are classical solutions of (2-5) [Muratov 2010, Section 4]. We note that, by the direct
method of calculus of variations, minimizers of Eε are easily seen to exist for all choices of the parameters.

The sharp interface energy with screening. For ε � 1, minimizers of Eε are expected to consist of
functions which take values close to ±1, except for narrow transition regions of width of order ε [Muratov
2010]. As usual, we define the energy of an optimal one-dimensional transition layer connecting u =±1
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[Modica 1987]:

σ :=

∫ 1

−1

√
2W (s) ds > 0. (2-8)

We also define the so-called screening parameter

κ :=
1

√
W ′′(1)

> 0. (2-9)

This parameter measures the stiffness of the double-well potential near the wells. Physically, it is related
to the effect of charge screening appearing in the sharp interface version of the energy Eε, introduced in
the sequel (as in the Debye–Hückel theory [Landau and Lifshitz 1980; Muratov 2002; Muratov 2010]).
With some obvious modifications, the results of [Muratov 2010, Section 4] apply to Eε defined in (2-1),
with the corresponding sharp interface energy Eε defined as

Eε(u) :=
εσ

2

∫
T`

|∇u| dx + 1
2

∫
T`

(u− ūε)(−1+ κ2)−1(u− ūε) dx, (2-10)

where u belongs to the admissible class

A := BV(T`; {−1, 1}). (2-11)

Specifically, in the considered scaling regime we have the following relation between the two energies
(see the following sections):

minu∈Aε
Eε(u)

minu∈A Eε(u)
→ 1 as ε→ 0. (2-12)

Notice that the neutrality constraint in (1-2) is no longer present in the case of the sharp interface energy.
The energy in (2-10) may be rewritten with the help of the Green’s function as

Eε(u) :=
εσ

2

∫
T`

|∇u| dx + 1
2

∫
T`

∫
T`

(u(x)− ūε)G(x − y)(u(y)− ūε) dx dy, (2-13)

where G solves
−1G(x)+ κ2G(x)= δ(x) in D′(T`). (2-14)

Notice that G has an explicit representation

G(x)= 1
4π

∑
n∈Z3

e−κ|x−n`|

|x − n`|
. (2-15)

In particular, we have

G(x)'
1

4π |x |
|x | � 1, G(x)≥ c for all x ∈ T`, (2-16)

for some c > 0 depending on κ and `. Also, integrating (2-14) we get∫
T`

G(x) dx = κ−2. (2-17)
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The latter allows us to rewrite the energy Eε in an equivalent form in terms of χ ∈ BV(T`; {0, 1}), where

χ(x) :=
1+ u(x)

2
, x ∈ T`, (2-18)

as

Eε(u)=
ε4/3λ2`3

2κ2 + εσ

∫
T`

|∇χ | dx −
2ε2/3λ

κ2

∫
T`

χ dx + 2
∫

T`

∫
T`

G(x − y)χ(x)χ(y) dx dy, (2-19)

where we also used (1-2).
We now introduce a version of the energy Eε written in terms of the rescaling

χ̃(x) := χ
(
`x
`ε

)
, x ∈ T`ε , `ε :=

(
4
σε

)1/3

`. (2-20)

With this definition we have χ̃ ∈ Ã`ε , where

Ã`ε := BV(T`ε ; {0, 1}), (2-21)

for every χ ∈A, and Eε(χ)= Ẽ`ε(χ̃), with

Ẽ`ε(χ̃) :=
ε4/3λ2`3

2κ2 −
ε5/3σλ

2κ2

∫
T`ε

χ̃ dx

+

(
ε5/3σ 5/3

42/3

)[∫
T`ε

|∇χ̃ | dx + 1
2

∫
T`ε

χ̃(−1+ 4−2/3ε2/3σ 2/3κ2)−1χ̃ dx
]
. (2-22)

Introducing Gε, which solves

−1Gε(x)+ 4−2/3κ2ε2/3σ 2/3Gε(x)= δ(x) in T`ε , (2-23)

we can then express the energy Ẽ`ε as

Ẽ`ε(χ̃) :=
ε4/3λ2`3

2κ2 −
ε5/3σλ

2κ2

∫
T`ε

χ̃ dx

+

(
ε5/3σ 5/3

42/3

)[∫
T`ε

|∇χ̃ | dx + 1
2

∫
T`ε

Gε(x − y)χ̃(x)χ̃(y) dx dy
]
. (2-24)

Note that, as in (2-15), we have the following representation for Gε:

Gε(x)=
1

4π

∑
n∈Z3

e−4−1/3ε1/3σ 1/3κ|x−n`ε|

|x − n`ε|
. (2-25)

The whole space energy. As was shown by us in [Knüpfer et al. 2016], in the absence of screening, i.e.,
with κ = 0 and u ∈ A also satisfying (1-2), the asymptotic behavior of the minimizers of Eε in (2-10)
with ūε satisfying (1-3) can be expressed in terms of those for the energy defined on the whole of R3:

Ẽ∞(χ̃) :=
∫

R3
|∇χ̃ | dx + 1

8π

∫
R3

∫
R3

χ̃(x)χ̃(y)
|x − y|

dx dy, (2-26)
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which is well-defined in the admissible class

Ã∞ := BV(R3
; {0, 1}). (2-27)

In particular, the optimal self-energy per unit volume of the minority phase is

f ∗ := inf
χ̃∈Ã∞

Ẽ∞(χ̃)∫
R3 χ̃ dx

. (2-28)

Note that within the nuclear physics context, this is precisely the dimensionless form of the celebrated
Gamow’s liquid drop model of the atomic nucleus [Gamow 1930] (for a recent mathematical overview,
see [Choksi et al. 2017]). In particular, the value of f ∗ corresponds to the energy per nucleon in the
tightest bound nucleus.

The relationship between Eε and Ẽ∞ can be seen formally by passing to the limit ε→ 0 in (2-24)
with χ̃ taken to be the characteristic function of a fixed bounded set restricted to T`ε . Then we have(

42/3

ε5/3σ 5/3

)(
Ẽ`ε(χ̃)−

ε4/3λ2`3

2κ2

)
→−

λ f ∗

λc

∫
R3
χ̃ dx + Ẽ∞(χ̃), (2-29)

where χ̃ was extended by zero to the whole of R3 and λc is defined in (1-5).
The following result was recently established about minimizers of the problem in the whole space

[Knüpfer et al. 2016; Frank et al. 2016].

Theorem 2.1. There exists a bounded, connected open set F∗ ⊂ R3 with smooth boundary such that

f ∗ =
Ẽ∞(χ̃F∗)

|F∗|
, (2-30)

where χF∗ is the characteristic function of the set F∗.

It has been conjectured that the minimizer of Ẽ∞ with fixed mass is given by a ball whenever such a
minimizer exists [Choksi and Peletier 2011]. Therefore, taking a ball of radius R as a test function in
(2-28) and optimizing in R, one obtains an estimate

f ∗ ≤ 35/3
· 2−2/3

· 5−1/3. (2-31)

The conjecture above would imply that the inequality in (2-31) is in fact an equality. Proving such a
result is a difficult hard analysis problem that currently appears to be out of reach. Nevertheless, we
can establish a first quantitative lower bound for the value of f ∗, using equipartition of energy of F∗

established in [Frank and Lieb 2015] and a quantitative upper bound on |F∗| obtained in [Frank et al.
2016]. Note that the resulting lower bound equals about 67% of the upper bound in (2-31). This is one of
the main results of the present paper.

Theorem 2.2. We have

f ∗ ≥ 35/3

4
. (2-32)
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Proof. Let F∗ be a minimizer from Theorem 2.1, and write

f ∗ =
P(F∗)+ V (F∗)

|F∗|
, (2-33)

where P(F∗) is the perimeter of F∗ and V (F∗) is the Coulombic self-energy of F∗. By the result from
[Frank and Lieb 2015], the energy exhibits equipartition of energy in the sense that

V (F∗)= 1
2 P(F∗), (2-34)

which can be easily seen by considering the sets λF∗ as competitors for f ∗ and taking advantage of the
homogeneity of P and V with respect to dilations. Thus, we have

f ∗ =
3P(F∗)
2|F∗|

. (2-35)

Therefore, applying the isoperimetric inequality yields

f ∗ ≥
(

243π
2|F∗|

)1/3

. (2-36)

The proof is then concluded by recalling the quantitative upper bound |F∗| ≤ 32π from [Frank et al.
2016]. �

The limit energy. For µ ∈M+(T`)∩ H−1(T`), define

E0(µ) :=
λ2`3

2κ2 −
2
κ2 (λ− λc)

∫
T`

dµ+ 2
∫

T`

∫
T`

G(x − y) dµ(x) dµ(y). (2-37)

Note thatµ∈M+(T`)∩H−1(T`) implies thatµ is a nonnegative Radon measure with bounded Coulombic
energy: ∫

T`

∫
T`

G(x − y) dµ(x) dµ(y) <∞, (2-38)

where G is the screened Coulombic kernel from (2-15). The converse is also true; i.e., a positive Radon
measure with bounded Coulombic energy defines a bounded linear functional on H 1(T`). This fact
is a consequence of the following lemma, whose proof is a straightforward adaptation of the proof
of [Goldman et al. 2013, Lemma 3.2] in two dimensions (see [Knüpfer et al. 2016, Appendix A]). In
particular, it allows us to extend the definition of E0 to arbitrary positive Radon measures on T`, with
E0(µ) <+∞ if and only if µ ∈ H−1(T`).

Lemma 2.3. Let µ ∈M+(T`) and let (2-38) hold. Then:

(i) µ ∈ H−1(T`), in the sense that it can be extended to a bounded linear functional over H 1(T`).

(ii) If

v(x) :=
∫

T`

G(x − y) dµ(y), (2-39)
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then v ∈ H 1(T`). Furthermore, v solves

−1v+ κ2v = µ (2-40)

weakly in H 1(T`), and

∇v(x)=
∫

T`

∇G(x − y) dµ(y), (2-41)

in the sense of distributions.

(ii) If v is as in (ii), we have κ2
∫

T`
v dx =

∫
T`

dµ and∫
T`

∫
T`

G(x − y) dµ(x) dµ(y)=
∫

T`

(|∇v|2+ κ2v2) dx . (2-42)

According to Lemma 2.3, the energy E0 may be equivalently rewritten in terms of the associated
potential v in (2-39) as

E0(µ)=
λ2`3

2κ2 − 2(λ− λc)

∫
T`

v dx + 2
∫

T`

(|∇v|2+ κ2v2) dx, (2-43)

and minimizing E0(µ) over µ ∈M+(T`)∩ H−1(T`) is the same as minimizing the right-hand side of
(2-43) with respect to all v ∈ H 1(T`) such that v ≥ 0 in T` and −1v+ κ2v ∈M+(T`). By inspection,
the latter is minimized by v = v̄, where

v̄ =

{
0, λ≤ λc,

(1/(2κ2))(λ− λc), λ > λc.
(2-44)

In terms of the measures, we can state this result as follows:

Proposition 2.4. The energy E0(µ) is minimized by a unique measure µ̄ among all µ ∈M+(T`) ∩

H−1(T`), with µ̄= 0 for all λ≤ λc, and dµ̄= 1
2(λ− λc)dx for λ > λc, respectively. Moreover, we have

E0(µ̄)=

{
λ2`3/(2κ2), λ≤ λc,

λc(2λ− λc)`
3/(2κ2), λ > λc,

(2-45)

and (2-40) is solved by v(x)= v̄.

3. Sharp interface energy Eε

We now consider the sharp-interface functional Eε defined in (2-10) in the limit ε→ 0 with ūε given
by (1-3) and positive σ , λ, κ , ` fixed. For a given sequence (uε) ∈A, we introduce a measure µε that is
continuous with respect to the Lebesgue measure on T` and whose density is an appropriately rescaled
characteristic function of the minority phase:

dµε(x) := 1
2ε
−2/3(1+ uε(x))dx . (3-1)

Note that by definition the measure µε is nonnegative. We also introduce the potential vε via

−1vε + κ
2vε = µε in T`. (3-2)

Our first result establishes compactness of sequences with bounded energy after a suitable rescaling.
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Theorem 3.1 (equicoercivity). Let (uε) ∈A be such that

lim sup
ε→0

ε−4/3 Eε(uε) <+∞, (3-3)

and let µε and vε be defined in (3-1) and (3-2), respectively. Then, up to extraction of a subsequence, we
have

µε⇀µ in M(T`), vε⇀v in H 1(T`), (3-4)

as ε→ 0, for some µ ∈M+(T`)∩ H−1(T`) and v ∈ H 1(T`) satisfying

−1v+ κ2v = µ in T`. (3-5)

Proof. Inserting (3-1) into (2-10) and dropping the perimeter term, following the argument of [Muratov
2010] we arrive at (see also (2-19))

Eε(uε)≥
λ2`3

2κ2 −
2λ
κ2

∫
T`

dµε(x)+ 2
∫

T`

∫
T`

G(x − y) dµε(x) dµε(y), (3-6)

where we used (2-17) and (1-3) and took into account the translational invariance of the problem in T`.
By (2-16) we get

Eε(uε)≥−
2λ
κ2µε(T`)+ 2cµ2

ε(T`), (3-7)

where we again recall that µε is nonnegative by definition. It then follows that

µε(T`) < C (3-8)

for some constant C > 0 independent of ε, which implies that µε ⇀ µ up to a subsequence by the
Banach–Alaoglu theorem (see [Brezis 2011, Theorem 3.16]). The considerations above together with
Lemma 2.3(iii) and (3-3) show that∫

T`

(|∇vε|
2
+ κ2v2

ε ) dx =
∫

T`

∫
T`

G(x − y) dµε(x) dµε(y) < C, (3-9)

and upon extraction of a further subsequence by the Banach–Alaoglu theorem we get vε⇀v in H 1(T`).
Finally, (3-5) follows by passing to the limit in (3-2). �

We now proceed to the main result of this section which establishes the 0-limit of the screened sharp
interface energy, similar to its two-dimensional analog in [Goldman et al. 2013, Theorem 1] (see also
[Knüpfer et al. 2016, Theorem 3.3] for the unscreened case).

Theorem 3.2 (0-convergence of Eε). As ε→ 0 we have

ε−4/3 Eε 0
−→ E0, (3-10)

with respect to the weak convergence of measures. More precisely, we have:
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(i) Lower bound: Suppose that (uε) ∈A and let µε be defined as in (3-1), and suppose that

µε⇀µ in M(T`), (3-11)

as ε→ 0, for some µ ∈M`
+(T`). Then

lim inf
ε→0

ε−4/3 Eε(uε)≥ E0(µ). (3-12)

(ii) Upper bound: Given µ ∈M+(T`), there exists (uε) ∈ A such that for the corresponding µε as in
(3-1) we have

µε⇀µ in M(T`), (3-13)

as ε→ 0, and
lim sup
ε→0

ε−4/3 Eε(uε)≤ E0(µ). (3-14)

Proof. Assume first that µ∈M+(T`)∩H−1(T`), so that E0(µ)<+∞. As in the proof of Propositions 5.1
and 5.2 in [Knüpfer et al. 2016], we separate the contributions of the near-field and far-field interaction;
i.e., for 0< ρ ≤ 1

4 we write

Gρ(x)= ηρ(x)G(x), Hρ(x) := G(x)−Gρ(x), (3-15)

where ηρ(x) is a smooth cutoff function depending on |x | which is monotonically increasing from 0 to 1
as |x | goes from 0 to ρ, with ηρ(x)= 0 for all |x |< 1

2ρ and ηρ(x)= 1 for all |x |> ρ. With the help of
(2-19), for any uε ∈A we decompose the energy as Eε = E (1)ε + E (2)ε , where

ε−4/3 E (1)ε (uε)=
λ2`3

2κ2 −
2λ
κ2

∫
T`

dµε(x)+ 2
∫

T`

∫
T`

Gρ(x − y) dµε(x) dµε(y),

ε−4/3 E (2)ε (uε)= ε
−1/3σ

∫
T`

|∇χε| dx + 2ε−4/3
∫

T`

∫
T`

Hρ(x − y)χε(x)χε(y) dx dy,
(3-16)

where χε is as in (2-18) with u replaced with uε. The term E (1)ε is continuous with respect to the weak
convergence of measures; hence∫

T`

∫
T`

Gρ(x − y) dµε(x) dµε(y)→
∫

T`

∫
T`

Gρ(x − y) dµ(x) dµ(y) as ε→ 0. (3-17)

The proof of the lower bound for E (2)ε follows with similar arguments as in the proof of [Knüpfer et al.
2016, Theorem 3.3]. After the rescaling in (2-20), one can write

ε−4/3 E (2)ε (uε)=
(
ε1/3σ 5/3

42/3

)[∫
T`ε

|∇χ̃ε| dx + 1
2

∫
T`ε

∫
T`ε

H̃ ε
ρ (x − y)χ̃ε(x)χ̃ε(y) dx dy

]
, (3-18)

where χ̃ε(x) := χε(x`/`ε) and

H̃ ε
ρ (x) := (1− ηρ(x`/`ε))Gε(x). (3-19)

Observe that by (2-25) and monotonicity of ηρ(x) in |x | we have

H̃ ε
ρ (x)≥ (1− ρ)0

#
ρ0
(x),
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where 0#
ρ0
(x) := (1− ηρ0(x))0

#(x) and 0#(x) := 1/(4π |x |) is the restriction of the Newton potential on
the torus, for any ρ0 > 0 and all ε small enough depending only on κ , σ and ρ0. The rest of the proof of
the lower bound, as well as the proof of the upper bound, follows exactly as in [Knüpfer et al. 2016].

Finally, if µ 6∈ H−1(T`), then E0(µ) = +∞ and the upper bound is trivial, while the lower bound
follows via a contradiction argument from the compactness result established in Theorem 3.1. �

As a direct consequence of Theorems 3.1 and 3.2, we have the following characterization of the
minimizers of the sharp interface energy in the limit ε→ 0.

Corollary 3.3. Let (uε) ∈A be minimizers of Eε. Let µε be defined in (3-1) and let vε be the solution of
(3-2). Then as ε→ 0, we have

µε⇀ µ̄ in M(T`), vε⇀ v̄ in H 1(T`), (3-20)

where µ̄ and v̄ are as in Proposition 2.4.

We note that for λ�λc the minimum energy per unit volume for minimizers in Corollary 3.3 approaches
asymptotically that of the unscreened sharp interface energy studied in [Knüpfer et al. 2016], indicating
that the presence of an additional screening does not affect the limit behavior of the energy at higher
densities than those appearing in (1-3). We would thus expect that the same result would still hold for the
sharp interface energy even for 1+ ūε = o(1) as ε→ 0, consistently with a recent result for the sharp
interface energy without screening [Emmert et al. 2018].

We conclude by proving an analog of [Knüpfer et al. 2016, Theorem 3.6] that provides uniform bounds
on the diameter of the connected components of minimizers of Eε as ε→ 0, and convergence of most of
the connected components to minimizers of Gamow’s model per unit mass.

Theorem 3.4 (minimizers: droplet structure). For λ > 0, let (uε) ∈ A be regular representatives of
minimizers of Eε, and assume that the sets {uε = +1} are nonempty for ε sufficiently small. Let Nε be
the number of connected components of the set {uε =+1}, let χε,k ∈ BV(R3

; {0, 1}) be the characteristic
function of the k-th connected component of the support of the periodic extension of {uε = +1} to the
whole of R3 modulo translations in Z3, and let xε,k ∈ supp(χε,k). Then there exists ε0 > 0 such that the
following properties hold:

(i) There exist constants C, c > 0 depending only on σ , κ , λ and ` such that for all ε ≤ ε0 we have

0< vε ≤ C and
∫

R3
χε,k dx ≥ cε, (3-21)

where vε solves (3-2). Moreover we have

supp(χε,k)⊆ BCε1/3(xε,k). (3-22)

(ii) If λ > λc, where λc is given by (1-5), there exist constants C, c > 0 as above such that for all ε ≤ ε0

we have

c(λ− λc)ε
−1/3
≤ Nε ≤ C(λ− λc)ε

−1/3. (3-23)
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Moreover, there exists Ñε ≤ Nε with Ñε/Nε→ 1 as ε→ 0 and a subsequence εn→ 0 such that for every
kn ≤ Ñεn the following holds: after possibly relabeling the connected components, we have

χ̃n→ χ̃ in L1(R3), (3-24)

where χ̃n(x) := χεn,kn (ε
1/3
n (x + xεn,kn )), and χ̃ ∈ Ã∞ is a minimizer of the right-hand side of (2-28).

Proof. The proof can be obtained as in [Knüpfer et al. 2016, Theorem 3.6], with some simplifications due
to the absence of a volume constraint. We outline the necessary modifications below. As stated above,
the constants in the estimates below depend on σ , κ , λ and `, and may change from line to line.

For ũε(x) := uε(`x/`ε), we define F ⊂ T`ε to be the set {ũε = +1}, which by our assumption is
nonempty for ε sufficiently small. Then we can write vε(x) = (σ/4)2/3vF (`x/`ε), where vF (x) :=∫

T`ε
Gε(x− y)χF (y) dy, and Gε is defined in (2-25). The first step in the proof is to obtain an L∞-bound

on the potential vF analogous to the one in [Knüpfer et al. 2016, Lemma 6.3]:

0< vF ≤ Cε−2/9. (3-25)

Observe that by strict positivity of Gε we clearly have vF > 0. On the other hand, the upper bound
follows exactly as in [Knüpfer et al. 2016, Lemma 6.3], due to the fact that Gε(x) ≤ C/|x | for some
C > 0, since in view of (2-15) we have

Gε(x)=
`

`ε
G
(
`x
`ε

)
=

1
4π

∑
n∈Z3

e−κ`|(x/`ε)−n`|

|x − n`|
. (3-26)

Next, we need to estimate the gradient of vF pointwise in terms vF itself, as in [Knüpfer et al. 2016,
Lemma 6.5], which relies on [Knüpfer et al. 2016, equation (6.15)]. It is easy to see that the latter estimate
still holds in the present setting, with the constants depending on κ and `. The proof then follows as in
[Knüpfer et al. 2016], with a few simplifications due to positivity of G. Also, since vF satisfies

−1vF +
( 1

4εσ
)2/3

κ2vF =
( 1

4σ
)2/3

χF in T`ε , (3-27)

by the positivity of vF we have that vF is subharmonic outside F. Thus, vF attains its global maximum
in T`ε for some x̄ ∈ F, and the analog of [Knüpfer et al. 2016, equation (6.19)] holds true:

vF (x)≥ 3
4vF (x̄)−C for all x ∈ Br (x̄), (3-28)

for some C > 0 and r > 0.
Proceeding as in [Knüpfer et al. 2016, Lemma 6.7 and Proposition 6.2], we establish a lower density

estimate for F : given x0 ∈ F and letting F0 be the connected component of F containing x0, we have

|F0 ∩ Br (x0)| ≥ cr3 for all r ≤ C min(1, ‖vF‖
−1
∞
)≤ Cε2/9, (3-29)

for some c,C > 0, where the last inequality follows from (3-25). The assertion in (3-21) then follows as in
[Knüpfer et al. 2016, Theorem 6.9] from (3-25), (3-28) and (3-29). The idea of the proof in [Knüpfer et al.
2016] is to find a suitable competitor F ′ which is obtained by cutting from F a ball of radius independent
of ε, centered at the point where the potential vF attains its maximum. Compared to [Knüpfer et al. 2016],
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the proof here is simpler since we don’t have a volume constraint, so that we can allow competitors
with smaller volume than F. Arguing by contradiction, if the maximum of vF is large, then necessarily
the density of F in the ball has to be small, otherwise the energy of F ′ would be less than the energy
of F. However, this contradicts the density estimate in (3-29). Finally, exactly as in [Knüpfer et al. 2016,
Lemma 6.11], the bound on the potential and the density estimate (3-29) also imply the diameter bound

diam(F0)≤ C (3-30)

for some constant C > 0, which gives (3-22). This concludes the proof of part (i).
The proof of part (ii) follows as in the proof of [Knüpfer et al. 2016, Theorem 3.6], with the exception

that the estimate on Nε in (3-23) now follows from (3-21) and the fact that, recalling Corollary 3.3,

lim
ε→0

∫
T`

dµε = µ̄(T`)= 1
2(λ− λc), (3-31)

where µ̄ is as in Proposition 2.4. �

The results obtained in Theorem 3.4 allow us to establish a sharp transition from trivial to nontrivial
minimizers at the level of the sharp interface energy near λ= λc for all ε� 1.

Corollary 3.5. There exists ε0 = ε0(σ, κ, λ, `) > 0 such that if λc is given by (1-5), then:

(i) For any λ < λc and ε < ε0 we have that u =−1 is the unique minimizer of Eε in A.

(ii) For λ > λc and ε < ε0 we have that u =−1 is not a minimizer of Eε in A.

Proof. Since the statement in (ii) follows immediately from Corollary 3.3, we only need to demonstrate (i).
The strategy is analogous to the one used in the proof of [Muratov 2010, Proposition 3.2]. For λ < λc, let
uε be a minimizer of Eε over A, and assume, by contradiction, that uε 6= −1 for a sequence of ε→ 0.
Let χε,k be as in Theorem 3.4. By (2-15) we have

Eε(uε)≥
ε4/3λ2`3

2κ2 +

Nε∑
k=1

(
εσ

∫
R3
|∇χε,k | dx −

2ε2/3λ

κ2

∫
R3
χε,k dx

+
1

2π

∫
R3

∫
R3

e−κ|x−y|

|x − y|
χε,k(x)χε,k(y) dx dy

)
. (3-32)

At the same time, since by Theorem 3.4 the diameter of the support of χε,k is bounded above by Cε1/3,
for every δ > 0 we have e−κ|x−y|

≥ 1− δ for all ε sufficiently small and all x, y ∈ supp(χε,k). Introducing
χ̃ε,k(x) := χε,k(`εx/`) as in (2-20), we can then write

Eε(uε)≥
ε4/3λ2`3

2κ2 −
ε5/3σλ

2κ2

Nε∑
k=1

∫
R3
χ̃ε,k dx

+
ε5/3σ 5/3

42/3

Nε∑
k=1

(∫
R3
|∇χ̃ε,k | dx +

1− δ
8π

∫
R3

∫
R3

χ̃ε,k(x)χ̃ε,k(y)
|x − y|

dx dy
)

≥
ε4/3λ2`3

2κ2 −
ε5/3σλ

2κ2

Nε∑
k=1

∫
R3
χ̃ε,k dx +

ε5/3σ 5/3(1− δ)
42/3

Nε∑
k=1

Ẽ∞(χ̃ε,k).

(3-33)
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Now we substitute the definitions of f ∗ and λc in (2-28) and (1-5), respectively, into (3-33). This
yields

Eε(uε)≥
ε4/3λ2`3

2κ2 +
ε5/3σ((1− δ)λc− λ)

2κ2

Nε∑
k=1

∫
R3
χ̃ε,k dx . (3-34)

In particular, for λ < λc one can choose δ small enough so that Eε(uε) > ε4/3λ2`3/(2κ2)= Eε(−1) for
all ε sufficiently small, contradicting minimality of uε. �

4. Diffuse interface energy Eε

We now consider the diffuse-interface functional Eε defined in (1-1) in the limit ε→ 0 with, as before, ūε
given by (1-3) and positive σ , λ, κ , ` fixed.

Let

dµ0
ε(x) :=

1
2ε
−2/3(1+ u0

ε(x)) dx, (4-1)

where

u0
ε(x) :=

{
+1 if uε(x) > 0,
−1 if uε(x)≤ 0,

(4-2)

and let v0
ε satisfy

−1v0
ε + κ

2v0
ε = µ

0
ε in T`. (4-3)

With this notation, we are now in the position to state the main technical result of this paper.

Theorem 4.1 (equicoercivity and 0-convergence of Eε). For λ > 0 and ` > 0, let Eε be defined by (2-1)
with W satisfying the assumptions of Section 2, let ūε given by (1-3), and let σ and κ be given by (2-8)
and (2-9), respectively. Then, as ε→ 0 we have

ε−4/3Eε 0
−→ E0(µ), (4-4)

where µ ∈M+(T`)∩ H−1(T`). More precisely, we have:

(i) Compactness and lower bound: Let (uε) ∈Aε be such that lim supε→0 ‖uε‖L∞(T`) ≤ 1 and

lim sup
ε→0

ε−4/3Eε(uε) <+∞. (4-5)

Then, up to extraction of a subsequence, we have

µ0
ε⇀µ in M(T`), v0

ε ⇀v in H 1(T`), (4-6)

as ε→ 0, where µ ∈M+(T`)∩ H−1(T`) and v ∈ H 1(T`) satisfy

−1v+ κ2v = µ in T`. (4-7)

Moreover, we have

lim inf
ε→0

ε−4/3Eε(uε)≥ E0(µ). (4-8)
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(ii) Upper bound: Given µ ∈M+(T`)∩ H−1(T`) and v ∈ H 1(T`) solving (4-7), there exist (uε) ∈ Aε
such that for the corresponding µ0

ε , v
0
ε as in (4-1) and (4-3) we have

µ0
ε⇀µ in M(T`), v0

ε ⇀v in H 1(T`), (4-9)

as ε→ 0, and
lim sup
ε→0

ε−4/3Eε(uε)≤ E0(µ). (4-10)

Proof. As in [Muratov 2010], the basic strategy is to relate the minimization problem for Eε to that for Eε
and apply the results in Theorems 3.1 and 3.2. The proof relies on the fact, first observed in [Muratov
2010], that the energy Eε is asymptotically equivalent to Eε in the following sense: for any δ > 0 and
uε ∈Aε satisfying some mild technical conditions (see below) there is ũε ∈A such that

Eε[ũε] ≤ (1+ δ)Eε(uε) (4-11)

for all ε� 1, and, conversely, for any ũε ∈A, again, satisfying some mild technical conditions, there is
uε ∈Aε such that

Eε[uε] ≤ (1+ δ)Eε(ũε) (4-12)

for all ε� 1. The proof proceeds as in the two-dimensional case [Goldman et al. 2013, Theorem 1], with
modifications appropriate to three space dimensions. We outline the key differences below.

For (4-11) to hold, we need to verify the assumptions of [Muratov 2010, Proposition 4.2], which
are equivalent to checking that ‖uε‖∞ → 1, Eε(uε)→ 0 and ‖vε‖∞ → 0 as ε→ 0, where vε(x) :=∫

T`
G0(x − y)(uε(y)− ūε) dy. The first and second conditions are clearly satisfied by the assumptions of

the theorem. To check the third condition, we note that the nonlocal part of the energy may be written in
terms of vε as

1
2

∫
T`

∫
T`

(uε(x)− ūε)G0(x − y)(uε(y)− ūε) dx dy = 1
2

∫
T`

|∇vε|
2 dx . (4-13)

Since
∫

T`
vε(x) dx = 0 we have by Poincaré’s inequality that the right-hand side of (4-13) is bounded

below by a multiple of ‖vε‖22. In turn, the latter is bounded below by a multiple of ‖vε‖5∞, in view of
the fact that, by elliptic regularity [Gilbarg and Trudinger 1983], we have ‖∇vε‖∞ ≤ C for some C > 0
depending only on `, for all ε� 1. Therefore, from Eε(uε)→ 0 we also obtain that ‖vε‖∞→ 0 as ε→ 0.
Thus, by (4-11) ũε satisfies the assumptions of Theorem 3.1, and so there exists µ ∈M(T`) such that,
upon extraction of subsequences, µε⇀µ in M(T`), where the measure µε is defined by (3-1) with uε
replaced by ũε. For those subsequences, Theorem 3.2 holds true for µε as well.

Now, from the construction of ũε in the proof of [Muratov 2010, Lemma 4.1] we know that ũε(x)=
u0
ε(x) for all x ∈ T` such that |uε(x)|> 1− δ2. Hence from the bound on Eε(uε) and the assumptions on

W we get that ‖ũε−u0
ε‖1 ≤Cε4/3δ−4 for some C > 0 and all ε� 1. This implies that µ0

ε⇀µ in M(T`)

as well ε→ 0. Together with the conclusions of Theorems 3.1 and 3.2, this gives the compactness and
the lower bound statement of Theorem 4.1, in view of the arbitrariness of δ.

For (4-12) to hold, we need to verify the assumptions of [Muratov 2010, Proposition 4.3] on ũε ∈A,
namely, that the connected components of the support of {ũε =+1} are smooth and at least εα apart for
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some α ∈ [0, 1) and have boundaries whose curvature is bounded by ε−α, and that ‖ṽε‖∞→ 0 as ε→ 0,
where ṽε(x) :=

∫
T`

G(x − y)(ũε(y)− ūε) dy. Clearly the first two assumptions hold true for the recovery
sequence in the proof of Theorem 3.2 with any α ∈

( 1
3 , 1

)
, provided that ε� 1. The third assumption

is satisfied for all ε� 1, in view of the fact that the nonlocal part of the sharp interface energy can be
written as

1
2

∫
T`

∫
T`

(ũε(x)− ūε)G0(x − y)(ũε(y)− ūε) dx dy = 1
2

∫
T`

(|∇ṽε|
2
+ κ2ṽ2

ε ) dx, (4-14)

and the desired estimate follows from Eε(ũε)→ 0 just like in the case of the diffuse interface energy.
Thus, the proof of the upper bound is concluded by taking the functions uε appearing in (4-12), associated
with the recovery sequence (ũε) from Theorem 3.2, once again, in view of arbitrariness of δ. �

Similarly to the sharp interface energy, as a direct consequence of Theorem 4.1 we have the following
asymptotic characterization of the minimizers of the diffuse interface energy.

Corollary 4.2. Under the assumptions of Theorem 4.1, let (uε) ∈ Aε be minimizers of Eε. Let µ0
ε be

defined in (4-1) and v0
ε be the solution of (4-3). Then as ε→ 0, we have

µ0
ε⇀ µ̄ in M(T`), v0

ε ⇀ v̄ in H 1(T`), (4-15)

where µ̄ and v̄ are as in Proposition 2.4.

We emphasize that the limit behavior of the minimal energy obtained in Corollary 4.2 differs from that
of the unscreened sharp interface energy one would naively associate with Eε. In particular, the minimal
energy exhibits a threshold behavior, contrary to that of the minimizers of the unscreened sharp interface
energy studied in [Knüpfer et al. 2016; Emmert et al. 2018].

Proof of Theorems 1.1 and 1.2. The statement of Theorem 1.1 is simply the restatement of Theorem 4.1
that does not specify the precise values of the constants appearing there. In turn, the statement of
Theorem 1.2 uses the explicit values of σ and κ given by (1-4) for (1-1), together with the bounds on f ∗

obtained in (2-31) and (2-32). �
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