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Abstract

We demonstrate existence of topologically nontrivial energy minimizing maps of a given
positive degree from bounded domains in the plane to 𝕊2 in a variational model describing
magnetizations in ultrathin ferromagnetic films with Dzyaloshinskii-Moriya interaction. Our
strategy is to insert tiny truncated Belavin-Polyakov profiles in carefully chosen locations of
lower degree objects such that the total energy increase lies strictly below the expected Dirich-
let energy contribution, ruling out loss of degree in the limits of minimizing sequences. The
argument requires that the domain be either sufficiently large or sufficiently slender to accom-
modate a prescribed degree. We also show that these higher degree minimizers concentrate on
point-like skyrmionic configurations in a suitable parameter regime.
Keywords: topological solitons, skyrmions, concentration phenomena, nanomagnetism
MSC 2020: 58E15, 49S05, 35J57, 35Q99

1 Introduction
Topological solitons are a central notion for a number of nonlinear field theories arising as
mathematical models of systems of very different physical nature [53]. Broadly speaking, they
are certain special solutions of nonlinear partial differential equations of a field theory in the
whole space that, on one hand, are in a certain sense localized and, on the other hand, exhibit
a certain degree of persistence among more general classes of solutions. Topological solitons
constitute the backbone of topological defects, which, in turn, are stable localized nonlinear
excitations of the topologically trivial background state in a nonlinear system. The stability
of these defects is closely related to the topological character of topological solitons through
the fact that they cannot be smoothly deformed to the background state due to topological
obstruction.
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A prime example of topological defects are Abrikosov vortices in type-II superconductors,
which may be described by the Ginzburg-Landau theory [76]. Mathematically the vortex so-
lution can already be captured by the single Ginzburg-Landau equation for a complex-valued
field in the plane, with the individual vortex solution in ℝ2 providing an example of a topo-
logical soliton. Starting with the studies in the applied mathematics literature [32,34,63] (this
and the subsequent lists of references are not intended to be exhaustive), existence and unique-
ness of equivariant solutions (“radial” solutions with prescribed degree 𝑑 ∈ ℤ) was established
in [19, 36]. Furthermore, these solutions with 𝑑 = ±1 were shown to be the only non-trivial
locally minimizing solutions in the sense of De Giorgi for the associated energy [56, 70].

As for the topological defects within the Ginzburg-Landau theory, the Dirichlet boundary
data of non-trivial topological degree force the existence of minimizers (of the same degree) ex-
hibiting point-like vortices in the domain interior, where the energy concentrates as a coherence
length parameter goes to zero [9]. One can obtain a lot of information about minimizing so-
lutions of the Ginzburg-Landau energy, including locations and degrees of vortices, expansion
of the energy with respect to the coherence length parameter and fine properties of minimiz-
ers [9, 40, 55, 64]. The connection between the vortex solutions with degree 𝑑 = ±1 in the
whole plane and the blowup limits of topological defects was established in [73]. There is a
vast literature on the subject and many questions are still unresolved, for further references and
some open problems see [15, 64, 71].

We note that the whole space Ginzburg-Landau vortex solutions do not actually represent
global energy minimizers with prescribed topological degree, as the Dirichlet energy contri-
bution of these solutions diverges logarithmically at infinity (however, compare with [1]). In
search of the genuine global energy minimizing topological solitons for field theories, various
stabilization mechanisms have been considered, starting with the model proposed by Skyrme
[74]. For that model, existence of 𝕊3 valued topologically nontrivial energy minimizers in ℝ3,
termed skyrmions, was established for degrees 𝑑 = ±1 [24–27, 51]. Another variant of the
Skyrme model in ℝ3 was investigated in [3, 29, 51], where minimizers were found to exist for
an infinite subset of degrees 𝑑 ∈ ℤ. In ℝ2, Skyrme model with additional energy terms yields
the so-called baby skyrmions as maps from the plane to 𝕊2 with degree 𝑑 = ±1 [48,52]. More
recently, strong numerical evidence was provided for the existence of hopfions as locally en-
ergy minimizing maps from ℝ3 to 𝕊2 [69], following the early work in [14], for the energy
containing higher derivative penalty terms in addition to the Dirichlet energy.

Recently, a growing body of work has emerged with the studies of chiral magnetic skyrmions,
or simply magnetic skyrmions for shorthand, motivated by the experimental discovery of these
configurations in chiral magnets and ultrathin ferromagnetic heterostructures [35, 59, 66, 79].
In these systems, the skyrmion solutions are typically stabilized by a chiral energy term called
the Dzyaloshinskii-Moriya interaction (DMI), which promotes rotations of the magnetization
vector with values in 𝕊2. Studies in the physics literature identified skyrmion configurations as
locally minimizing solutions of the micromagnetic energy [10–13, 47, 65], which makes them
attractive candidates for information technology applications [30, 41, 62, 80].

Mathematical studies of chiral magnetic skyrmions go back to [54], which treated a model
similar to the one in [52] and in which the original Skyrme term is replaced by a DMI term
appropriate for non-centrosymmetric cubic materials.1 This paper established the existence of
degree 𝑑 = 1 (in our convention) global energy minimizers in the whole plane. Further studies

1In bulk chiral materials, the simplest form of the DMI energy density is given by a term proportional to 𝑚 ⋅ (∇ ×𝑚),
where 𝑚 = (𝑚1, 𝑚2, 𝑚3) and ∇ = (𝜕1, 𝜕2, 𝜕3) [62]. Although this is different from the form appropriate for ultra-
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FIG. 1. Morphology of stable chiral skyrmions with topological charges Q = −3, −2, . . . , 2. Top row of images (a) corresponds to zero
magnetocrystalline anisotropy (u = 0) in external magnetic field applied perpendicular to the plane h = 0.65. Bottom row of images (b)
corresponds to the case of uniaxial anisotropy u = 1.3 and zero external field h = 0. All images are given in the same scale. Colors encode the
direction of the n vectors according to a standard scheme [54]: black and white denote up and down spins, respectively, and red-green-blue
reflect the azimuthal angle with respect to x axis.

from 6402 to 51202 nodes (see Appendix A). The values of the
variables A and D have been chosen such that the parameter
LD equals 52 internode distances.

Supplementary movies [72] illustrate the process of craft-
ing the initial states for different anticipated morphologies of
skyrmion solutions and the energy minimization process (see
Appendix B for details).

To obtain a Q < −1 skyrmion, we put Ncores = |Q| number
of π skyrmions inside a “sack” representing a closed 2π
domain wall, i.e., skyrmionium which has topological charge
Q = 0 (see Fig. 1). This closed domain wall plays the role of
the shell of the skyrmion and has a tendency to shrink down
to the equilibrium size of skyrmionium. Interparticle repulsion
of π skyrmions in turn prevent such shrinking. Similar to the
effect of surface tension, the balance of external and internal
pressures results in the stability of this spin texture. For a
skyrmion with Q > 0 the role of a sack or a shell is played by
a closed π domain wall which possesses a nonzero topological
charge Q = −1 as a π skyrmion. The domain within the
closed loop has magnetization opposite to the surrounding
ferromagnetic background. Due to the opposite polarity, each
π vortex inside such a sack has a self-topological charge
Q = 1. In Fig. 1 see Q = 1 and 2, they look like “holes” inside
the white domains. As a result, the total topological charge (2)
gives Q = (Ncores − 1), where the amount of cores is equal
to the number of holes. We found solutions with absolute
values of Q equal to units, tens, hundreds, and even thousands
(see Appendix C for details). Thereby there is every reason
to expect that Q can be equal to any arbitrary large integer
number.

The dependence of the skyrmion energy as a function on
its topological charge is found to be well approximated by
a piecewise linear function for small |Q|, while some points
slightly deviate from the linear law (Figs. 2 and 3). Note,
the linear law dependence E (Q) is known to be a good
approximation in the baby Skyrme model [2,3], while for
an isotropic ferromagnet model [26] the relation is strictly
linear. Our analysis shows (see Appendix C) that the curves
Easpt = E0 (α(±)Ncores + β(±)

√
Ncores) are good candidates for

the true asymptotics when Q → ±∞. Moreover, a detailed

numerical analysis with a high precision confirm the equality
α(−) = EQ=−1/E0 (for details see Appendix C).

Let us first consider the case where u = 0 (Fig. 2) and
some arbitrary chosen h above the field of the elliptical
instability [73] and below the field of the thermodynamic
stability of π skyrmion, EQ=−1 < 0 [74]. The right branch of
the “spectrum” for Q ! −1, Fig. 2, increases monotonically
with Q. In contrast to that the left branch of the spectrum (Q <
−1) displays the opposite behavior and the energy decreases
with |Q|. This feature reflects the fact that the global energy
minimum corresponds to a hexagonal lattice of π skyrmions
[74], and the big skyrmions Q ≪ −1 on the left branch of
the spectrum form a kind of lattice inside their shells (see
Appendix C).

Significantly, the set of the solutions contains also states
with higher energies. In Fig. 2 we have shown only the

FIG. 2. The energy of skyrmions E as function of topological
charge Q for the case of a magnet without magnetocrystalline
anisotropy u = 0. Open circles are the lowest energy solutions for
each particular Q, and solid squares are solutions with higher ener-
gies but nearest to the lowest energy state. The dotted lines are linear
fits for corresponding sets of points.

064437-3

Figure 1: A series of numerical solutions of (1.2) with 𝑑 = 3, 2, 1, 0,−1,−2, from left to right,
obtained in [68]. Black and white regions show the domains where 𝑚 is mostly down or up, re-
spectively; the color indicates the direction of the 𝑚′ component for intermediate values of 𝑚3. For
𝑑 = 1, the direction of 𝑚′ is parallel to that of the gradient of 𝑚3, which is the characteristic of the
radial skyrmion solution.

of these and related minimizers can be found in [8,22,33,42,43,49]. In a model that is appro-
priate for ultrathin multilayer materials with interfacial DMI existence results were obtained
in [5–7], which also incorporated the non-local stabilizing effects of the stray field (see also
the ansatz-based and numerical studies in [18]). Degree 𝑑 = 1 minimizers were constructed
in bounded domains in the plane under confinement in [57]. Also, precise asymptotic charac-
terizations of the degree 𝑑 = 1 energy minimizing solutions in the conformal limit, in which
the energy is asymptotically dominated by the Dirichlet energy, have been obtained, showing
that the energy minimizers approach some particular shrinking Belavin-Polyakov (BP) pro-
files [7, 22, 33, 57].

In its simplest form, the model describing the magnetization configurations 𝑚 ∶ ℝ2 → 𝕊2

in ultrathin ferromagnetic layers with perpendicular magnetic anisotropy and the interfacial
DMI starts with the energy functional in the form of the sum of the exchange (Dirichlet), DMI
and the anisotropy energy terms:

𝐸(𝑚) = ∫ℝ2

(

|∇𝑚|2 + 𝜅(𝑚3∇ ⋅ 𝑚 − 𝑚′ ⋅ ∇𝑚3) + (𝑄 − 1)|𝑚′
|

2) d𝑥, (1.1)

where for 𝑚 = (𝑚1, 𝑚2, 𝑚3) we use the convention 𝑚 = (𝑚′, 𝑚3), with 𝑚′ = (𝑚1, 𝑚2). Here
𝜅 ∈ ℝ and 𝑄 ≥ 1 are dimensionless material parameters (the DMI constant and the material’s
quality factor respectively, see [6, 65] for the explanation). The associated Euler-Lagrange
equation can be easily shown to be (see Proposition 2.2)

Δ𝑚 + 𝑚|∇𝑚|2 + (𝑄 − 1)(𝑚3𝑒3 − 𝑚2
3𝑚)

− 𝜅[(𝑒3 − 𝑚3𝑚)∇ ⋅ 𝑚′ − ∇𝑚3 + (𝑚′ ⋅ ∇𝑚3)𝑚] = 0, (1.2)
distributionally, where the pure gradient term is understood as ∇𝑚3 = (𝜕1𝑚3, 𝜕2𝑚3, 0). As this
equation is an 𝐿2

loc(ℝ
2) perturbation of the harmonic map equation from ℝ2 to 𝕊2, its solutions

are known to be smooth [58, Chapter 4]. We remark that in the simplest case of the parameters
thin ferromagnetic heterostructures in which the DMI is of interfacial origin and its energy density is proportional to
𝑚3∇′ ⋅ 𝑚′ − 𝑚′ ⋅ ∇′𝑚3, where 𝑚 = (𝑚′, 𝑚3), 𝑚′ = (𝑚1, 𝑚2) and ∇′ = (𝜕1, 𝜕2) [65], when 𝑚 = 𝑚(𝑥1, 𝑥2) these two terms
are equivalent up to a 90◦ rotation around the 𝑥3-axis, since 𝑚 ⋅ (∇ ×𝑚) = 𝑚̃3∇′ ⋅ 𝑚̃′ − 𝑚̃′ ⋅∇′𝑚̃3 for 𝑚̃1 = 𝑚2, 𝑚̃2 = −𝑚1and 𝑚̃3 = 𝑚3. For this reason, we can interpret the results of the studies of bulk chiral materials in two dimensions in
terms of models of ultrathin ferromagnetic heterostructures.
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𝑄 = 1 and 𝜅 = 0 equation (1.2) is just the harmonic map equation, whose solutions with
bounded energy on the whole of ℝ2 had been completely characterized [23, 46, 78]. They are
minimizers of the energy in their respective homotopy classes determined by the topological
degree [16, 17]

𝑑 = 1
4𝜋 ∫ℝ2

𝑚 ⋅ (𝜕1𝑚 × 𝜕2𝑚) d𝑥 ∈ ℤ, (1.3)

which were first constructed in [4]. However, these solutions do not qualify as topological
solitons due to the conformal invariance of the Dirichlet energy in ℝ2 and hence the absence of
a common characteristic length scale. We also note that for 𝜅 = 0 and 𝑄 > 1 equation (1.2) has
no non-trivial solutions by the Derrick-Pohozaev argument [20], while for 𝑄 ≥ 1 and 𝜅 ≠ 0
sufficiently large (1.2) exhibits solutions in the form of spin spirals whose energy diverges to
−∞ [61,65]. In contrast, for 𝑄 > 1 and 𝜅 ≠ 0 sufficiently small there is always a solution with
degree 𝑑 = 1 that converges to 𝑚 = −𝑒3 at infinity and for whose existence the DMI term is
indispensable [6, 7, 33]. We remark, however, that at the same time the interplay between the
DMI energy and the topological degree 𝑑 ≠ 1 appears to be far from straightforward for this
type of profiles.

Numerical studies of (1.2) reveal a wealth of locally energy minimizing solutions in ℝ2 for
various values of the topological degree [11,31,44,45,68]. For a sample of the observed numer-
ical solutions, see Fig. 1. In particular, the problem turns out to be considerably richer than its
Ginzburg-Landau counterpart, exhibiting a plethora of solutions beyond a simple equivariant
“radial” form first studied in [10,12]. Furthermore, much less is known about the topologically
nontrivial globally minimizing configurations. For example, uniqueness and radial symmetry
of the 𝑑 = 1 minimizers for 𝑄 > 1 are not known and are only asymptotically obtained in the
conformal limit 𝜅 → 0 [7]. Furthermore, with the exception of some very special choices of
models yielding explicit solutions via the Bogomolnyi trick [2] (see also [37,39]), no existence
for any other degree 𝑑 ≠ 1 has been known up to now, not even under confinement. This
may be contrasted, for example, with the available results in [51] in which an infinite subset
of degrees (possibly all of ℤ) yields existence, and all degrees 𝑑 ∈ ℤ yield minimizers under
confinement. This is because in the Skyrme mechanisms the higher-order term in the energy
prevents concentration and collapse of the minimizing sequences and a subsequent loss of the
degree in the limit. In contrast, even under confinement the energy in (1.1) generally allows
for concentration [50], and the question of existence of minimizers with prescribed degree is
genuinely non-trivial.

In this paper, we investigate existence of energy minimizing solutions of (1.2) with pre-
scribed degree 𝑑 ≥ 1 under confinement in a bounded domain Ω ⊂ ℝ2 subject to the Dirichlet
boundary condition𝑚 = −𝑒3 on 𝜕Ω. This formulation was used in our earlier work [57] to study
degree 𝑑 = 1 single skyrmion solutions and is relevant to ultrathin film ferromagnetic mate-
rials in suitable parameter regimes [21]. It is well suited for the study of multiple skyrmions,
similarly to the Dirichlet problem for Ginzburg-Landau vortices [9]. In terms of the energy
minimizing configurations for (1.1), our paper is the first to establish existence of higher de-
gree magnetizations in the context of multiple magnetic skyrmions on large, bounded domains
for 𝑄 > 1. We also establish existence of minimizers with higher degrees for 𝑄 = 1 for
sufficiently slender domains characterized in terms of the domain’s optimal Poincaré constant.

Our existence results open up the question of how skyrmions interact. At this point, it is
not even clear whether multiple degree-one skyrmions or single high-degree skyrmions could
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develop. We do not address this issue here, which would require an analysis of the splitting
alternative in the concentration compactness on the whole of ℝ2. Our proof focuses instead on
ruling out the vanishing alternative in the concentration compactness on bounded domains. It
relies on a careful construction, inductively inserting a tiny, truncated BP profile in a location
where the degree 𝑑 −1 minimizer is almost constant and making sure that the energy increases
by strictly less than the additional contribution in the exchange energy. This estimate then
allows us to rule out loss of degree in weak limits of minimizing sequences.

A surprising amount of care needs to be taken in choosing the location for insertion as a
result of the rigidity of the harmonic map problem: The error terms in the exchange energy
when pasting together the lower degree minimizer and the BP profile need to be dominated by
the gain in the DMI energy, which is of lower order. Ideally, one would thus choose a location
where the local exchange contribution is small at lower order. We show this to be possible
when our domain Ω is sufficiently large or sufficiently slender, using an appropriate covering
argument to handle the problem. Our existence result is presented in Theorem 2.1. We note
that numerical evidence suggests that a given domain can only support minimizers with the
degree bounded above depending on the domain geometry.

As it stands, our existence result so far yields very little information on the structure of
the obtained solutions. As was already noted, it would be natural to ask whether these mini-
mizers may indeed be interpreted as topological defects consisting of multiple well-separated
skyrmions. In analogy with the Ginzburg-Landau problem, we therefore consider the limit be-
havior of the minimizers in which the anisotropy term in the energy forces the magnetization
to converge to 𝑚 = −𝑒3 almost everywhere, which is achieved by sending the parameter 𝑄 to
infinity. In this limit, we can prove that the Dirichlet energy density of the minimizers concen-
trates on a quantized atomic defect measure, see Theorem 2.5. However, our convergence result
gives no further information on either the location of the limit measure support or its quantized
amplitudes, which correspond to multiples of the degrees of the associated shrinking bubbles.
At the heart of this issue lies the question of interaction between multiple skyrmions: Do they
repel and settle in distinct locations, or do they coalesce into a genuinely higher degree object?
Mathematically, this requires a better understanding of the rigidity properties of higher degree
harmonic maps expected to arise as the blowup limits above and their interplay with the lower
order terms in our energy, as the higher degree situation [67] is significantly more complex than
in the degree one case [7, 38, 77].

The remainder of our paper is organized as follows. In Section 2, we give the precise mathe-
matical formulation of the problem, state our main theorems and discuss how their conclusions
depend on various ingredients of the problem. In this section we also give an outline of the ar-
guments used in the proofs. In Section 3, we establish several technical results that provide key
ingredients in the proofs of the main theorems. Finally, in Section 4 we conclude the proofs.

Acknowledgements. C. B. Muratov was supported by MUR via PRIN 2022 PNRR project
P2022WJW9H and acknowledges the MUR Excellence Department Project awarded to the De-
partment of Mathematics, University of Pisa, CUP I57G22000700001. The work of TMS was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics–
Geometry–Structure. C. B. Muratov is a member of INdAM-GNAMPA.

5



2 Statement of results
We now give the precise mathematical statements of our results and outline our strategy of their
proof.

2.1 Mathematical setup
Following the setup of our paper [57] on single skyrmions on a bounded domain Ω ⊂ ℝ2 with
Lipschitz boundary, we wish to minimize the energy in (1.1) restricted to Ω under Dirichlet
boundary condition𝑚 = −𝑒3 on 𝜕Ω [21], which after an integration by parts can be equivalently
defined as [7]

(𝑚) ∶= ∫Ω

(

|∇𝑚|2 − 2𝜅𝑚′ ⋅ ∇𝑚3 + (𝑄 − 1)|𝑚′
|

2) d𝑥. (2.1)

Passing from 𝑚 = (𝑚′, 𝑚3) to 𝑚̃ ∶= (−𝑚′, 𝑚3) and noting that the energy remains unchanged
when replacing 𝑚 by 𝑚̃ and changing the sign of 𝜅, throughout the rest of the paper we may
assume without loss of generality that 𝜅 > 0.

For the energy in (2.1) and a given 𝑑 ∈ ℤ we consider the set of admissible functions
𝑑 ∶=

{

𝑚 ∈ 𝐻1(Ω;𝕊2) ∶ 𝑚 = −𝑒3 on 𝜕Ω,  (𝑚) = 𝑑
}

, (2.2)
which satisfy a specific Dirichlet boundary condition and whose topological degree  (𝑚) is
equal to 𝑑. The degree of a function 𝑚 ∈ 𝐻̊1(ℝ2;𝕊2), where, as usual,

𝐻̊1(ℝ2,𝕊2) ∶=
{

𝑚 ∈ 𝐻1
loc(ℝ

2;ℝ3) ∶ ∫ℝ2
|∇𝑚|2 d𝑥 < ∞, |𝑚| = 1 a.e. in ℝ2

}

, (2.3)

can be defined as [16, 17]

 (𝑚) = 1
4𝜋 ∫Ω

𝑚 ⋅ (𝜕1𝑚 × 𝜕2𝑚) d𝑥. (2.4)

It is well known that  (𝑚) ∈ ℤ for any 𝑚 ∈ 𝐻̊1(ℝ2;𝕊2), see [16]. To apply this definition to
our case of the bounded domain Ω, we extend 𝑚 ∈ 𝑑 to the whole of ℝ2 by setting 𝑚 = −𝑒3outside Ω. Indeed, in the rest of this paper we will not distinguish between 𝑚 ∈ 𝑑 and its
extension to the whole of ℝ2.

We furthermore denote the smallest Dirichlet eigenvalue of the domain Ω associated with
the optimal Poincaré constant of Ω by 𝜆0 > 0. Hence for all 𝑓 ∈ 𝑊 1,2

0 (Ω), we have

∫Ω
|𝑓 |2 d𝑥 ≤ 𝜆−10 ∫Ω

|∇𝑓 |2 d𝑥. (2.5)

Throughout the rest of the paper, 𝐶 > 0 denotes a generic, universal constant which may
change from line to line, unless specified otherwise. For simplicity, we also use the notation
𝐵𝑟 to denote the open ball of radius 𝑟 centered at the origin.
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2.2 Main results
Our main result is formulated in the following theorem, giving a condition for existence of
higher degree minimizers in terms of the quantity

𝛼(𝑄, 𝜅) ∶= 2𝜅2
√

(𝑄 − 1)2 + 4𝜆0𝜅2 + (𝑄 − 1)
(2.6)

being small enough and the area of Ω being large enough compared to 𝑑
𝜅2 , see Theorem 2.1.

Note that in both cases 𝑄 = 1 and 𝑄 > 1 we need 𝜅 to be small compared, respectively, to
√

𝜆0 and √

𝑄 − 1. This can be seen from the lower bounds on 𝛼(𝑄, 𝜅) in Lemma 3.2. Notice
also that the quantity 𝛼(𝑄, 𝜅) implicitly depends on Ω via the value of 𝜆0.
Theorem 2.1. Let Ω ⊂ ℝ2 be a bounded domain with Lipschitz boundary. There exists a
universal constant 𝐶 > 0 with the following property: Let 𝜅 > 0, 𝑄 ≥ 1, and 𝑑 ∈ ℕ with

𝛼(𝑄, 𝜅) ≤ min
{ 2
𝑑 + 1

, 1
2

}

. (2.7)
If

|Ω| ≥ 𝐶𝑑
𝜅2

, (2.8)
then there exists a minimizer of  over 𝑑 .

A standard consequence of the minimality of  is that the minimizer solves the Euler-
Lagrange equation in (1.2). More precisely, we have the following result.
Proposition 2.2. Under the assumptions of Theorem 2.1, let 𝑚 be a minimizer of  over 𝑑 .
Then 𝑚 ∈ 𝐶∞(Ω;ℝ3), |𝑚| = 1 in Ω, and 𝑚 satisfies (1.2) classically in Ω. If, furthermore,
Ω is a simply connected, bounded, open set with boundary of class 𝐶1,𝛼 for some 𝛼 > 0, then
𝑚 ∈ 𝐶∞(Ω;ℝ3) ∩ 𝐶(Ω;ℝ3).

We also note that the above proposition applies to every critical point of  in 𝑑 regardless
of the choice of parameters. In fact, just stationarity with respect to smooth outer variations
is sufficient, as in two-dimensional domains equation (1.2) has a good regularity theory [58,
Chapter 4].

The statement of Theorem 2.1 may be simplified in two extreme cases to yield a more
explicit dependence on the domain Ω. The first case corresponds to the value of 𝑄 > 1 fixed
and the domain being sufficiently large, so that the value of 𝜆0 is negligible in the definition of
𝛼(𝑄, 𝜅). Since

𝛼(𝑄, 𝜅) ≤ 𝜅2

𝑄 − 1
(2.9)

for all 𝑄 > 1 and 𝜅 > 0, Theorem 2.1 immediately yields the following result.

Corollary 2.3. Let 𝑑 ∈ ℕ, 𝑄 > 1 and 0 < 𝜅 <
√

(𝑄 − 1)min
{

2
𝑑+1 ,

1
2

}

. Then there exists a

minimizer of  over 𝑑 for all |Ω| ≥ 𝐶𝑑
𝜅2 , for some 𝐶 > 0 universal.
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This corollary implies, in particular, that given 𝑑 ∈ ℕ and 𝑄 > 1 fixed, given 𝜅 > 0
sufficiently small depending on 𝑑 and 𝑄, and given a bounded domain Ω0 ⊂ ℝ2, there exists
a scale factor 𝑠0 > 0 sufficiently large depending on 𝑑, 𝜅 and Ω0 such that for all 𝑠 > 𝑠0 and
all Ω = 𝑠Ω0 the energy  admits a minimizer in the admissible class 𝑑 . In particular, this is
true for any 𝑑 ∈ ℕ in the simplest case of Ω0 being a disk.

On the other hand, for 𝑑 ≫ 1 the corollary gives existence only for 𝜅 < 𝐶
√

(𝑄 − 1)∕𝑑,
implying that we must have |Ω| ≥ 𝐶 ′𝑑2∕(𝑄 − 1), for some 𝐶,𝐶 ′ > 0 universal. Notice that
this scaling of |Ω| with 𝑑 is consistent with configurations in which the skyrmions line the
domain boundary, one skyrmion per natural length scale 𝑙 = 1∕

√

𝑄 − 1 of a single skyrmion.
Nevertheless, one would rather expect that the skyrmions fill the interior of the domain Ω
uniformly, which would yield a different scaling |Ω| ≥ 𝐶𝑑∕(𝑄−1), for some 𝐶 > 0 universal.
Our methods are too coarse to discriminate between these two possibilities, which would require
to rule out preferential placement of skyrmions close to the domain boundary.

In the opposite extreme of 𝑄 = 1 we have instead the following corollary of Theorem 2.1.
Corollary 2.4. Let 𝑑 ∈ ℕ, 𝑄 = 1 and 0 < 𝜅 <

√

𝜆0min
{

2
𝑑+1 ,

1
2

}

. Then there exists a

minimizer of  over 𝑑 for all |Ω| ≥ 𝐶𝑑
𝜅2 , for some 𝐶 > 0 universal.

We note that in the case 𝑄 = 1 we cannot ensure existence of minimizers by rescaling
𝑠Ω with some large scale factor 𝑠 > 0 since doing so decreases 𝜆0, which feeds back into the
smallness condition for 𝜅. In particular, existence of minimizers depends on the shape of Ω,
not only on its area as in Corollary 2.3. This point may be illustrated by considering Ω to be a
strip of width 1 and varying length 𝐿 ≥ 1, i.e. Ω = (0, 𝐿)× (0, 1). Clearly in this case the value
of 𝜆0 may be bounded below by a universal constant uniformly in 𝐿. Thus, we have existence
for all 0 < 𝜅 < 𝐶∕𝑑 for some 𝐶 > 0 universal and 𝐿 ≥ 𝐿0 with 𝐿0 = 𝐶𝑑∕𝜅2. However, our
methods do not allow to conclude whether there is a minimizer of  over 𝑑 for any 𝑑 > 1 in
the case 𝑄 = 1 and 𝐿 = 1, no matter what the value of 𝜅 is, as there is currently no reasonable
quantitative information on the value of the universal constant 𝐶 in the statement of Theorem
2.1. Similarly, contrary to the case 𝑄 > 1 we do not know if Corollary 2.4 ever applies with
𝑑 > 1 and 𝑄 = 1 when Ω is a disk of any given radius. This should be contrasted with the result
in [57] for 𝑑 = 1, which yields existence of minimizers in this case for an arbitrary domain Ω,
provided 𝜅 is sufficiently small. Also notice that for 𝑑 ≫ 1 and Ω in the form of the strip as
above, Corollary 2.4 only yields existence for 𝐿 ≥ 𝐶𝑑3 with some 𝐶 > 0 universal, while we
expect that existence may hold as soon as 𝐿 ≥ 𝐶𝑑.

We now let 𝑑 ∈ ℕ, 𝜅 > 0 and the domain Ω satisfying condition (2.8) be fixed and consider
the limit 𝑄 → ∞, in which minimizers of  over 𝑑 are expected to concentrate. In view of
(2.9), we have existence for any 𝑄 > 1 sufficiently big. We may thus analyze the asymptotic
behaviour of the minimizers in this regime. For technical reasons, we additionally assume Ω
to be simply connected and have a 𝐶1,𝛼 boundary.
Theorem 2.5. Let 𝑑 ∈ ℕ and 𝜅 > 0, and let Ω ⊂ ℝ2 be a bounded, open, simply connected
domain with a 𝐶1,𝛼 boundary for some 𝛼 > 0, satisfying

|Ω| ≥ 𝐶𝑑
𝜅2

, (2.10)
where 𝐶 is as in Theorem 2.1. Then for each 𝑄 > 1 large enough there exists a minimizer of
 over 𝑑 . Furthermore, if (𝑄𝑛) is a sequence such that 𝑄𝑛 → ∞ as 𝑛 → ∞, and 𝑚𝑛 is a
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minimizer of  with 𝑄 = 𝑄𝑛 over 𝑑 , there exist 𝑘 ∈ ℕ with 𝑘 ≤ 𝑑, 𝑥1,… , 𝑥𝑘 ∈ Ω distinct
and 𝑑1,… , 𝑑𝑘 ∈ ℕ with

∑𝑘
𝑗=1 𝑑𝑗 = 𝑑 such that as 𝑛 → ∞ we have

𝑚𝑛 ⇀ −𝑒3 in 𝑊 1,2(Ω;ℝ3), (2.11)
and for 𝑑𝜇𝑛 ∶=

(

|∇𝑚𝑛|
2 − 2𝜅𝑚′ ⋅ ∇𝑚3 + (𝑄 − 1)|𝑚′

|

2) d𝑥 there holds

𝜇𝑛
∗
⇀

𝑘
∑

𝑗=1
8𝜋𝑑𝑗𝛿𝑥𝑗 (2.12)

in the sense of measures, possibly up to extraction of a subsequence.

In other words, this theorem says that for 𝑑 ∈ ℕ, 𝜅 > 0 and the domain Ω all fixed, as
𝑄 → ∞ the energy density of minimizers over 𝑑 concentrates on a sum of 𝑘 ∈ ℕ quantized
delta-measures supported at points 𝑥𝑗 in the closure of Ω. Their amplitudes 8𝜋𝑑𝑗 correspond
to the energies of the harmonic maps with degrees 1 ≤ 𝑑𝑗 ≤ 𝑑 in the whole of ℝ2, indicating a
bubbling phenomenon. In that sense one can interpret the minimizers for 𝑄 ≫ 1 as collections
of 𝑘 well-separated skyrmionic configurations. However, unless 𝑑 = 1 we cannot conclude
that 𝑘 = 𝑑 or, equivalently, that all 𝑑𝑗 = 1 for all 1 ≤ 𝑗 ≤ 𝑘, as is suggested by the results
of numerical simulations in this regime. In other words, based on the above result we cannot
conclude that minimizers with degree 𝑑 > 1 and 𝑄 ≫ 1 resemble a collection of 𝑑 well-
separated skyrmions (i.e., minimizers with degree 𝑑 = 1 in ℝ2). The latter would require
a much finer analysis of the interaction of skyrmions that goes well beyond the scope of the
present paper.

2.3 Strategy of the proof
We apply the direct method of calculus of variations to establish existence of minimizers of
 over 𝑑 for a given value of 𝑑 ∈ ℕ in Theorem 2.1. As we work on a bounded domain
with Dirichlet boundary conditions, lower-semicontinuity and coercivity of the energy func-
tional easily follow by the Sobolev embedding and the Cauchy-Schwarz inequality, respectively.
Therefore, the only issue in the proof of existence of minimizers is to ensure that the degree 𝑑
is preserved when passing to the weak limit of minimizing sequences. This can be achieved by
establishing a sort of strict subadditivity of the energy with respect to the degree, which is the
subject of the lemmas in Section 3.

More precisely, the main point in our existence argument is proving that for each incre-
mental increase in degree the infimal energy is increased by strictly less than 8𝜋, which is the
energy contribution of a shrinking BP profile (a harmonic bubble of degree 1). This is the
content of Lemma 3.4. In analogy to the existence of a single skyrmion [54], we can then rule
out loss of degree in weak limits of minimizing sequences. For 𝜅 sufficiently small depending
on 𝑑, an increase in degree is prevented by the coercivity properties of the energy presented in
Lemma 3.1. We note that in the considered regime the energy is qualitatively dominated by the
exchange energy term.

We prove the required upper bound on the infimal energies by constructing a competitor, in
which we insert a tiny, truncated BP profile at a point around which the lower degree minimizer
is very close to−𝑒3 in the𝐻1-topology. As we already mentioned, this is a surprisingly delicate
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issue as the exchange energy incurred by pasting in the BP profile needs to be dominated by
the gain in the DMI energy, which is of order 𝜅2 (at least for 𝑄 = 1, this is sharp). Therefore,
we need to insert the skyrmion in a location where the exchange energy is small at order 𝜅2.
Surprisingly, this only seems to be possible with further assumptions on Ω and the parameters
appearing in the energy, including the value of the degree. Lemma 3.5 finally guarantees the
existence of such a location in sufficiently large domains by a standard covering argument using
the Hardy-Littlewood maximal operator.

Lastly, to prove our concentration result in Theorem 2.5 we use a characterization of weak
limits of minimizing sequences of the Dirichlet energy due to Lin [50]: Such limits are har-
monic maps which are smooth away from finitely many points at which a suitable defect mea-
sure indicates concentration of Dirichlet energy. Due to our boundary data, the harmonic map
component is constant, leaving concentration as the only non-trivial effect.

3 Auxiliary results
We start by formulating several key technical results used in the proof of Theorem 2.1. We
recall that the quantity 𝛼(𝑄, 𝜅) appearing in all the lemmas below was defined in (2.6).

At the core of the proof of existence of minimizers of  are simple lower bounds for the
energy that control the 𝐿2-norm of ∇𝑚 for sufficiently small 𝜅, together with a construction
showing that the infimum energy is strictly below the topological lower bound

∫Ω
|∇𝑚|2 d𝑥 ≥ 8𝜋𝑑 ∀𝑚 ∈ 𝑑 , (3.1)

for the case of the pure Dirichlet energy and 𝑑 ∈ ℕ (see, e.g., [54, (3.3)] or [7, Lemma A.3]).
Lemma 3.1. Let 𝜅 > 0 and 𝑄 ≥ 1. For 𝑚 ∈ 𝐻1(Ω;𝕊2) satisfying 𝑚 = −𝑒3 on 𝜕Ω we have

i) the following lower bounds on the energy:

(𝑚) ≥ (1 − 𝛼(𝑄, 𝜅))∫Ω
|∇𝑚|2 d𝑥, (3.2)

(𝑚) ≥ (1 − 2𝛼(𝑄, 𝜅))∫Ω
|∇𝑚|2 d𝑥 + 1

2
(𝑄 − 1)∫Ω

(

1 − 𝑚2
3
)

d𝑥, (3.3)

ii) the following upper bound on the energy:

inf
𝑑

 < 8𝜋𝑑. (3.4)

As can be seen from estimates (3.2) and (3.3), the energy  may be used to control simul-
taneously the exchange and the anisotropy energy when

𝛼(𝑄, 𝜅) ≤ 1
2
. (3.5)

We also need some basic properties of the function 𝛼(𝑄, 𝜅).
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Lemma 3.2. Let 𝜅 > 0 and 𝑄 ≥ 1 satisfy inequality (3.5). If 𝜆0 ≥ 𝑄 − 1, we have

2𝜅2

3𝜆0
≤ 𝛼(𝑄, 𝜅), (3.6)

while for 𝜆0 < 𝑄 − 1, we have

2𝜅2

3(𝑄 − 1)
≤ 𝛼(𝑄, 𝜅). (3.7)

Note that the first estimate (3.6) is non-optimal if 𝑄 = 1, as then one would have 𝛼(𝑄, 𝜅) =

𝜆
− 1

2
0 𝜅, but for our purposes this estimate is sufficient.

We now come to the result that is at the heart of our existence proof. We begin with a basic
observation that the minimal energy cannot go up by more that 8𝜋, the Dirichlet energy of the
degree 1 harmonic map from ℝ2 to 𝕊2, when the value of the degree in the admissible class is
increased by 1. This fact is completely independent of the parameters of the model and simply
reflects the leading order role of the Dirichlet energy.
Proposition 3.3. Let 𝜅 ∈ ℝ, 𝑄 ∈ ℝ, and 𝑑 ∈ ℕ. Then inf𝑑+1

 ≤ inf𝑑
 + 8𝜋.

The conclusion of this proposition reflects a possible bubbling phenomenon: assuming a min-
imizer over 𝑑 exists, a minimizing sequence from 𝑑+1 could converge to that minimizer
everywhere except at one point, around which the profile approaches a sequence of vanishing
BP profiles that disappear in the limit. In this situation the degree of the minimizing sequence
would not be preserved in the limit, failing to yield existence of a minimizer over 𝑑+1. Fur-
thermore, in this case we would have inf𝑑+1

 = inf𝑑
 + 8𝜋.

Lemma 3.4 below, which will allow us to rule out loss of degree in weak limits of mini-
mizing sequences, expresses the following deeper result: Given enough control on the energy
density, it is possible to insert a carefully chosen, truncated BP profile in such a way that the
energy increases by strictly less than 8𝜋. The proof requires a careful construction ensuring
that the energy gain in the DMI term of the inserted BP profile wins out over the error terms
incurred in the insertion procedure.
Lemma 3.4. There exists a universal constant 𝜀 > 0 with the following property: Let 𝜅 > 0
and 𝑄 ≥ 1 satisfy inequality (3.5), and let 𝑑 ∈ ℕ ∪ {0}. If 𝑚 ∈ 𝑑 satisfies

1
𝜋𝑟2 ∫𝐵𝑟(𝑥)

(

|∇𝑚|2 + max{𝜆0, 𝑄 − 1}|𝑚 + 𝑒3|
2) d𝑦 ≤ 𝜀𝜅2 (3.8)

for some 𝑥 ∈ Ω and all 𝑟 > 0 such that 𝐵𝑟(𝑥) ⊂ Ω, then there exists 𝑚̄ ∈ 𝑑+1 with

(𝑚̄) < (𝑚) + 8𝜋. (3.9)
We observe that the above lemma works under an assumption of smallness of the energy

density in a subdomain of Ω. In the following lemma we show that this assumption is true in
sufficiently large or sufficiently slender domains.
Lemma 3.5. There exists a universal constant 𝐶0 > 0 such that for all 𝜀 > 0, Ω ⊂ ℝ2 open,
bounded, and Lipschitz, 𝑑 ∈ ℕ, and 𝜅 > 0 and 𝑄 ≥ 1 satisfying inequality (3.5) the following
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holds: Let

𝛽(𝜅,𝑄, 𝑑) ∶=

{

1 if 𝜆0 ≥ 𝑄 − 1,
𝑑𝜅2

𝑄−1 if 𝜆0 < 𝑄 − 1.
(3.10)

If |Ω| ≥ 𝐶0 (𝛽(𝜅,𝑄, 𝑑) + 1) 𝑑
𝜀𝜅2 , 𝑚 ∈ 𝑑 and (𝑚) ≤ 8𝜋𝑑, then there exists 𝑥 ∈ Ω such that

for all 𝑟 > 0 with 𝐵𝑟(𝑥) ⊂ Ω, we have

1
𝜋𝑟2 ∫𝐵𝑟(𝑥)

(

|∇𝑚|2 + max{𝜆0, 𝑄 − 1}|𝑚 + 𝑒3|
2) d𝑦 ≤ 𝜀𝜅2. (3.11)

We now proceed to the proofs of the above lemmas.
Proof of Lemma 3.1. The construction in part ii) of the statement can be done in the same way
as in [57, Lemma 3.2], inserting 𝑑 small, truncated BP profiles into the domain.

In order to prove the statement in part i), we consider 𝛼 > 0 to be determined and estimate
using the Poincaré, Cauchy-Schwarz, and Young inequalities

∫Ω

(

𝛼|∇𝑚|2 − 2𝜅𝑚′ ⋅ ∇𝑚3 + (𝑄 − 1)|𝑚′
|

2) d𝑥

≥ 𝛼‖∇𝑚3‖
2
2 +

(

𝛼𝜆0 +𝑄 − 1
)

‖𝑚′
‖

2
2 − 2𝜅‖𝑚′

‖2‖∇𝑚3‖2

≥ 2
(

√

𝛼
(

𝛼𝜆0 +𝑄 − 1
)

− 𝜅
)

‖𝑚′
‖2‖∇𝑚3‖.

(3.12)

The smallest 𝛼 > 0 ensuring that the right hand side is non-negative is given by the positive
solution of the quadratic equation

𝜆0𝛼
2 + (𝑄 − 1)𝛼 − 𝜅2 = 0, (3.13)

which is given by 𝛼 = 𝛼(𝑄, 𝜅), where 𝛼(𝑄, 𝜅) is defined in (2.6). This proves the estimate
(3.2). For 𝛼̃ = 2𝛼(𝑄, 𝜅) we furthermore have

𝜆0𝛼̃
2 + 𝑄 − 1

2
𝛼̃ − 𝜅2 > 𝜆0𝛼

2 + (𝑄 − 1)𝛼 − 𝜅2 = 0, (3.14)
similarly giving estimate (3.3).
Proof of Lemma 3.2. If 𝜆0 ≥ 𝑄 − 1, we use definition (2.6) to note that

𝛼(𝑄, 𝜅) ≥
2𝜅2

𝜆0
√

1 + 4 𝜅2
𝜆0

+ 1
= 1

2

(

−1 +

√

1 + 4𝜅2

𝜆0

)

, (3.15)

which implies that from 𝛼(𝑄, 𝜅) ≤ 1
2 it follows that 𝜅2

𝜆0
≤ 3

4 and hence 2𝜅2
3𝜆0

≤ 𝛼(𝑄, 𝜅). If on the
other hand we have 𝜆0 ≤ 𝑄−1, we note that the same type of algebra as above for 𝛼(𝑄, 𝜅) ≤ 1

2

gives 𝜅2

𝑄−1 ≤ 3
4 and 2𝜅2

3(𝑄−1) ≤ 𝛼(𝑄, 𝜅), concluding the proof.
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We defer the proof of Proposition 3.3 to the end of this section, as it is independent of the
proofs of the remaining lemmas, and we can also take advantage of the construction in the proof
of Lemma 3.4.
Proof of Lemma 3.4. The strategy is to insert a truncated BP profile in some ball 𝐵𝛿(𝑥) in order
to increase the degree while controlling the energy.

Step 1. Construction of a cutoff. Let 𝑚 ∈ 𝑑 satisfy (3.8). Shifting domain if necessary,
we may assume 𝑥 = 0, so that for all 𝛿 > 0 with 𝐵𝛿 ⊂ Ω, we have

∫𝐵𝛿

(

|∇𝑚|2 + max{𝜆0, 𝑄 − 1}|𝑚 + 𝑒3|
2) d𝑥 ≤ 𝐶𝜀𝜅2𝛿2. (3.16)

By [28, Theorems 4.19 and 4.21], up to a redefinition on a set of measure zero we have 𝑚|𝜕𝐵𝑟
∈

𝐻1(𝜕𝐵𝑟;𝕊2) with ∇𝜏 (𝑚|𝜕𝐵𝑟
) = (∇𝜏𝑚)|𝜕𝐵𝑟

, where ∇𝜏 denotes the tangential derivative on the
circle, for almost all 0 < 𝑟 ≤ 𝛿. From estimate (3.16) and an averaging argument we can
therefore conclude that there exists a circle of radius 3

4𝛿 ≤ 𝑟0 ≤ 𝛿 such that

∫𝜕𝐵𝑟0

(

|∇𝜏𝑚|
2 + max{𝜆0, 𝑄 − 1}|𝑚 + 𝑒3|

2) d1 ≤ 𝐶𝜀𝜅2𝛿. (3.17)

In particular, we immediately obtain

∫𝜕𝐵𝑟0

(

|∇𝜏𝑚
′
|

2 + max{𝜆0, 𝑄 − 1}|𝑚′
|

2) d1 ≤ 𝐶𝜀𝜅2𝛿. (3.18)

Let now (𝑚′)𝑟0 ∶=
1

2𝜋𝑟0
∫𝜕𝐵𝑟0

𝑚′ d1. Up to a redefinition on a set of 1 measure zero, we
have 𝑚′

|𝜕𝐵𝑟0
∈ 𝐶(𝜕𝐵𝑟0 ;ℝ

2), and for all 𝑥, 𝑦 ∈ 𝜕𝐵𝑟0 we have by the fundamental theorem of
calculus and the Cauchy-Schwarz inequality:

|𝑚′(𝑥) − 𝑚′(𝑦)|2 ≤ 𝐶|𝑥 − 𝑦|∫𝜕𝐵𝑟0

|∇𝜏𝑚
′
|

2 d1. (3.19)

Choosing 𝑦 such that 𝑚′(𝑦) = (𝑚′)𝑟0 and using estimate (3.18), for all 𝑥 ∈ 𝜕𝐵𝑟0 we obtain
|𝑚′(𝑥) − (𝑚′)𝑟0 |

2 ≤ 𝐶𝜀𝜅2𝛿2, (3.20)
from which for all 𝑥 ∈ 𝜕𝐵𝑟0 we get by Jensen’s inequality and estimate (3.18) that

|𝑚′(𝑥)|2 ≤ 𝐶𝜀𝜅2
(

1
max{𝜆0, 𝑄 − 1}

+ 𝛿2
)

. (3.21)

Choosing

𝛿 ≤ 1
√

max{𝜆0, 𝑄 − 1}
(3.22)
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and using inequality (3.5) and Lemma 3.2, for all 𝑥 ∈ 𝜕𝐵𝑟0 we thus have

|𝑚′(𝑥)|2 ≤ 𝐶𝜀𝜅2

max{𝜆0, 𝑄 − 1}
≤ 𝐶𝜀. (3.23)

Now we want to show that 𝑚3 is close to −1 on 𝜕𝐵𝑟0 . Using the estimate (3.17), we have

∫𝜕𝐵𝑟0

(

|∇𝜏 (𝑚3 + 1)|2 + max{𝜆0, 𝑄 − 1}(1 + 𝑚3)2
)

d1 ≤ 𝐶𝜀𝜅2𝛿. (3.24)

As in the preceding argument, for all 𝑥 ∈ 𝜕𝐵𝑟0 it follows that
|1 + 𝑚3(𝑥)|2 ≤ 𝐶𝜀. (3.25)

Therefore, assuming 𝜀 to be sufficiently small universal and using 1 + 𝑚3 = |𝑚′
|

2

1−𝑚3
, for all

𝑥 ∈ 𝜕𝐵𝑟0 we obtain
|1 + 𝑚3(𝑥)| ≤ 𝐶𝜀. (3.26)

Inside 𝐵𝑟0 we only have integral estimates on 𝑚, but we want to ensure that |𝑚′
| is small

and 𝑚3 is close to −1 pointwise. In order to achieve this, we will extend 𝑚′ from 𝜕𝐵𝑟0 inside
𝐵𝑟0 in a controlled way, keeping it small pointwise and not appreciably increasing its Dirichlet
energy. We then recover 𝑚3 from the length constraint.

For 𝑥 ∈ 𝐷𝑟0 ∶= 𝐵𝑟0 ⧵ 𝐵𝑟0∕2, let

𝑣(𝑥) ∶=
(

2
𝑟0
|𝑥| − 1

)(

𝑚′
(

𝑟0
𝑥
|𝑥|

)

− (𝑚′)𝑟0

)

. (3.27)

An explicit calculation together with estimate (3.20) and assumption (3.22) yields

∫𝐷𝑟0

|𝑣|2 d𝑥 ≤ 𝐶𝑟0 ∫𝜕𝐵𝑟0

|

|

|

𝑚′ − (𝑚′)𝑟0
|

|

|

2
d1 ≤ 𝐶𝜀𝜅2𝛿2

max{𝜆0, 𝑄 − 1}
. (3.28)

Similarly, with the help of estimate (3.18) a decomposition into tangential and normal deriva-
tives together with the Poincaré inequality on 𝜕𝐵𝑟0 gives

∫𝐷𝑟0

|∇𝑣|2 d𝑥 ≤ 𝐶𝑟0 ∫𝜕𝐵𝑟0

(

|

|

∇𝜏𝑚
′
|

|

2 + 1
𝑟20

|

|

|

𝑚′ − (𝑚′)𝑟0
|

|

|

2
)

d1

≤ 𝐶𝑟0 ∫𝜕𝐵𝑟0

|

|

∇𝜏𝑚
′
|

|

2 d1 ≤ 𝐶𝜀𝜅2𝛿2.
(3.29)

We may now define 𝑚̃′(𝑥) ∶= 𝑣(𝑥) + (𝑚′)𝑟0 , which by the first part of estimate (3.23), as
well as estimates (3.28) and (3.29) satisfies

∫𝐷𝑟0

|𝑚̃′
|

2 d𝑥 ≤ 𝐶𝜀𝜅2𝛿2

max{𝜆0, 𝑄 − 1}
, (3.30)

∫𝐷𝑟0

|∇𝑚̃′
|

2 d𝑥 ≤ 𝐶𝜀𝜅2𝛿2. (3.31)
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Using the second part of estimate (3.23) and the definition of 𝑣, we have |𝑣(𝑥)|2 ≤ 𝐶𝜀 for any
𝑥 ∈ 𝐷𝑟0 , as well as |(𝑚′)𝑟0 |

2 ≤ 𝐶𝜀. Therefore, it follows for all 𝑥 ∈ 𝐷𝑟0 that
|𝑚̃′(𝑥)|2 ≤ 𝐶𝜀. (3.32)

Defining 𝑚̃3 = −
√

1 − |𝑚̃′
|

2, for all 𝑥 ∈ 𝐷𝑟0 we also get that
|1 + 𝑚̃3(𝑥)| ≤ 𝐶𝜀. (3.33)

Step 2: Energy estimates for the cutoff. We now want to estimate the energy terms inside
𝐷𝑟0 = 𝐵𝑟0 ⧵ 𝐵𝑟0∕2. By the estimates (3.31) and (3.32), as well as |∇𝑚̃3(𝑥)|2 ≤ |𝑚̃′(𝑥)|2|∇𝑚̃′(𝑥)|2

1−|𝑚̃′(𝑥)|2for a.e. 𝑥 ∈ 𝐷𝑟0 , we obtain for all 𝜀 > 0 universally small that

∫𝐷𝑟0

|∇𝑚̃3|
2 d𝑥 ≤ 2∫𝐷𝑟0

|∇𝑚̃′
|

2
|𝑚̃′

|

2 d𝑥 ≤ 𝐶𝜀2𝜅2𝛿2. (3.34)

Therefore, again by estimate (3.31) we have for 𝜀 < 1:

∫𝐷𝑟0

|∇𝑚̃|2 d𝑥 ≤ 𝐶𝜀𝜅2𝛿2. (3.35)

The anisotropy term is already controlled by estimate (3.30). In order to estimate the DMI
term, we note that by the Cauchy-Schwarz inequality, together with estimates (3.32) and (3.34)
we have

∫𝐷𝑟0

|𝑚̃′ ⋅ ∇𝑚̃3| d𝑥 ≤

(

∫𝐷𝑟0

|∇𝑚̃3|
2 d𝑥

)1∕2(

∫𝐷𝑟0

|𝑚̃′
|

2 d𝑥

)1∕2

≤ 𝐶𝜀
3
2 𝜅𝛿2. (3.36)

Step 3: Inserting a Belavin-Polyakov profile. Into the hole 𝐵𝑟0∕2, we aim to insert a suitably
truncated, rotated Belavin-Polyakov profile 𝜙 of radius 𝜌 satisfying 𝜙(𝑥) = −𝑒3 for 𝑥 ∈ 𝜕𝐵𝑟0∕2.

Let us recall the construction of an appropriate Belavin-Polyakov profile [7]. To this end,
for 𝐿 ≥ 2 and 𝑟 > 0 we truncate the function

𝑓 (𝑟) ∶= 2𝑟
1 + 𝑟2

(3.37)

via defining

𝑓𝐿(𝑟) ∶=

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑟) if 𝑟 ≤ 𝐿
2 ,

2𝑓
(

𝐿
2

)

(

1 − 𝐿−1𝑟
) if 𝐿

2 < 𝑟 ≤ 𝐿,

0 if 𝐿 < 𝑟.

(3.38)

For 𝑥 ∈ ℝ2 this translates to a truncated Belavin-Polyakov profile

Φ𝐿(𝑥) ∶=
(

−𝑓𝐿(|𝑥|)
𝑥
|𝑥|

, sign(1 − |𝑥|)
√

1 − 𝑓 2
𝐿(|𝑥|)

)

, (3.39)
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with the original Belavin-Polyakov profile being

Φ(𝑥) ∶=
(

− 2𝑥
1 + |𝑥|2

,
1 − |𝑥|2

1 + |𝑥|2

)

= lim
𝐿→∞

Φ𝐿(𝑥). (3.40)

In the spirit of estimates [7, (A.66) to (A.71)], we obtain

∫ℝ2
|∇Φ𝐿|

2 d𝑥 ≤ 8𝜋𝐿2

4 + 𝐿2
+ 2𝜋 ∫

𝐿

𝐿
2

𝑟

⎛

⎜

⎜

⎜

⎝

4𝑓 2
(

𝐿
2

)

𝐿−2

1 − 𝑓 2
(

𝐿
2

) +
𝑓 2
𝐿(𝑟)

𝑟2

⎞

⎟

⎟

⎟

⎠

d𝑟

≤ 8𝜋 + 𝐶𝐿−2,

(3.41)

where 𝐶 > 0 is some universal constant. In addition, we have  (Φ𝐿) = 1 for all 𝐿 ≥ 2, since
∇Φ𝐿 → ∇Φ in 𝐿2(ℝ2) and Φ𝐿 → Φ pointwise a.e. as 𝐿 → ∞, and  (Φ𝐿) is a continuous
function of 𝐿 ≥ 2 with values in ℕ.

Now let us modify this truncated profile by a suitable rotation to match the boundary con-
ditions 𝜙𝜌 =

(

(𝑚′)𝑟0 ,−
√

1 − (𝑚′)2𝑟0

)

on 𝜕𝐵𝑟0∕2. Let 𝑅 ∈ 𝑆𝑂(3) be such that

−𝑅𝑒3 =
(

(𝑚′)𝑟0 ,−
√

1 − (𝑚′)2𝑟0

)

, (3.42)
which due to the estimate (3.23) for 𝑚′ we may choose to satisfy

|𝑅 − id |2 ≤ 𝐶𝜀𝜅2

max{𝜆0, 𝑄 − 1}
≤ 𝐶𝜀, (3.43)

where |⋅| denotes the usual Frobenius norm. Then for 0 < 𝜌 ≪ 𝛿 and𝜙𝜌(𝑥) ∶= 𝑅Φ 𝑟0
2𝜌
(𝜌−1𝑥)we

have  (𝜙𝜌) = 1 and 𝜙𝜌(𝑥) =
(

(𝑚′)𝑟0 ,−
√

1 − (𝑚′)2𝑟0

)

for all 𝑥 ∈ 𝜕𝐵𝑟0∕2. Due to the estimate
(3.41), the rotation 𝑅 not affecting the Dirichlet energy and recalling that 3

4𝛿 ≤ 𝑟0 ≤ 𝛿, we also
get

∫ℝ2
|∇𝜙𝜌|

2 d𝑥 ≤ 8𝜋 +
𝐶𝜌2

𝛿2
. (3.44)

To estimate the DMI energy of 𝜙𝜌, we use the argument in the proof of estimate [7, (A.53)]
to obtain

∫ℝ2
Φ′

𝐿 ⋅ ∇Φ𝐿,3 d𝑥 > 1
𝐶
, (3.45)

for all 𝐿 sufficiently large universal. Since Φ𝐿(𝑥) + 𝑒3 and Φ(𝑥) + 𝑒3 decay as 1
|𝑥| and ∇Φ𝐿(𝑥)

and ∇Φ(𝑥) decay as 1
|𝑥|2 as |𝑥| → ∞, with the help of estimate (3.43) for 𝐿 sufficiently large

and 𝜀 sufficiently small universal we also observe that

∫ℝ2
(𝑅Φ𝐿)′ ⋅ ∇(𝑅Φ𝐿)3 d𝑥 > 1

𝐶
. (3.46)
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In total, this gives

∫𝐵 𝑟0
2

𝜙′
𝜌 ⋅ ∇𝜙𝜌,3 d𝑥 ≥ 𝜌

𝐶
, (3.47)

for all 𝜀 and 𝜌∕𝛿 sufficiently small universal.
Additionally, due to |𝜙′

𝜌(𝑥)|
2 ≤ 𝐶

(

𝜌2|𝑥|2

(𝜌2+|𝑥|2)2 + |𝑅 − id |2
)

for 𝑥 ∈ 𝐵𝑟0∕2 and estimate
(3.43) we have

∫𝐵 𝑟0
2

|𝜙′
𝜌|
2 d𝑥 ≤ 𝐶

(

𝜌2 log 𝛿
𝜌
+ 𝜀𝜅2𝛿2

max{𝜆0, 𝑄 − 1}

)

, (3.48)

again for all 𝜀 and 𝜌∕𝛿 sufficiently small universal.
Putting together estimates (3.44), (3.47) and (3.48), we arrive at

(𝜙𝜌) ≤ 8𝜋 + 𝐶
(

𝜌2

𝛿2
+ (𝑄 − 1)𝜌2 log 𝛿

𝜌

)

−
𝜅𝜌
𝐶

+ 𝐶𝜀𝜅2𝛿2. (3.49)

Step 4. Construction of a competitor. We now construct a degree 𝑑 + 1 competitor 𝑚̄ by
inserting 𝜙𝜌 into 𝐵𝑟0∕2 via

𝑚̄(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜙𝜌(𝑥) |𝑥| ≤ 𝑟0
2 ,

𝑚̃ (𝑥) 𝑟0
2 < |𝑥| < 𝑟0,

𝑚(𝑥) |𝑥| ≥ 𝑟0,
(3.50)

for 𝑥 ∈ Ω. As on 𝜕𝐵𝑟0∕2 we have

𝜙𝜌 =
(

(𝑚′)𝑟0 ,−
√

1 − (𝑚′)2𝑟0

)

= 𝑚̃, (3.51)

the map 𝑚̄ is well defined in 𝐻1(Ω;𝕊2).
Step 5: Prove 𝑚̄ ∈ 𝑑+1. It is clear due to construction that we have

 (𝑚̄)|𝐵𝑟0∕2
∶= 1

4𝜋 ∫𝐵𝑟0∕2

𝑚̄ ⋅ (𝜕1𝑚̄ × 𝜕2𝑚̄) d𝑥 = 1. (3.52)

Additionally, by estimates (3.16) and (3.35) we have

|

|

|

 (𝑚̄) − (𝑚) − (𝑚̄)|𝐵𝑟0∕2
|

|

|

=
|

|

|

|

|

|

∫𝐷𝑟0

𝑚̄ ⋅ (𝜕1𝑚̄ × 𝜕2𝑚̄) d𝑥 − ∫𝐵𝑟0

𝑚 ⋅ (𝜕1𝑚 × 𝜕2𝑚) d𝑥
|

|

|

|

|

|

≤ 𝐶

(

∫𝐷𝑟0

|∇𝑚̃|2 d𝑥 + ∫𝐵𝑟0

|∇𝑚|2 d𝑥

)

≤ 𝐶𝜀𝜅2𝛿2.
(3.53)
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As we know that  (𝑚) = 𝑑, in view of discreteness of the degree and the assumption (3.5) we
deduce that  (𝑚̄) = 𝑑 + 1 for any choice of 𝛿 satisfying (3.22), with 𝜀 > 0 small universal.

Step 6: Conclusion. We know that outside of 𝐵𝑟0 the maps 𝑚 and 𝑚̄ coincide. Therefore,
we just need to show that when restricted to 𝐵𝑟0 we have

(𝑚̄)|𝐵𝑟0
< (𝑚)|𝐵𝑟0

+ 8𝜋. (3.54)

Using estimates (3.16), (3.5) and Lemma 3.2, we know that inside 𝐵𝑟0 we have ∫𝐵𝑟0
|𝑚′

|

2 d𝑥 ≤

𝐶𝜀𝛿2 and hence by the Cauchy-Schwarz and Young inequalities

(𝑚)|𝐵𝑟0
≥ ∫𝐵𝑟0

|∇𝑚|2 d𝑥 − 2𝜅 ∫𝐵𝑟0

∇𝑚3 ⋅ 𝑚
′ d𝑥 ≥ −𝐶𝜅2

∫𝐵𝑟0

|𝑚′
|

2 d𝑥 ≥ −𝐶𝜀𝜅2𝛿2.

(3.55)
Moreover, using estimates (3.30), (3.35), (3.36), and (3.49) we obtain

(𝑚̄)|𝐵𝑟0
≤ 8𝜋 + 𝐶

(

𝜌2

𝛿2
+ (𝑄 − 1)𝜌2 log 𝛿

𝜌

)

−
𝜅𝜌
𝐶

+ 𝐶𝜀𝜅2𝛿2. (3.56)

Choosing 𝜌 = 𝜅𝛿2∕(2𝐶2), we arrive at

|𝐵𝑟0
(𝑚̄) ≤ 8𝜋 − 𝜅2𝛿2

4𝐶3
+ 𝐶(𝑄 − 1)𝜅2𝛿4 ln

( 1
𝜅𝛿

)

+ 𝐶𝜀𝜅2𝛿2. (3.57)

Taking 𝜀 > 0 small enough universal, 𝛿 > 0 small enough depending on 𝜆0, 𝑄 and 𝜅 (it is
enough to ensure that in addition to (3.22) the quantities 𝜅𝛿, (𝑄 − 1)𝛿 and 𝛿 ln(1∕(𝜅𝛿)) are all
sufficiently small universal), we arrive at

|𝐵𝑟0
(𝑚̄) − (𝑚)|𝐵𝑟0

≤ 8𝜋 − 𝜅2𝛿2

5𝐶3
+ 𝐶𝜀𝜅2𝛿2 < 8𝜋, (3.58)

which concludes the proof.

Proof of Lemma 3.5. Under our assumptions on 𝜅, 𝑄, and the energy, estimate (3.2) of Lemma
3.1 implies that

∫Ω
|∇𝑚|2 d𝑥 ≤ 16𝜋𝑑, (3.59)

so that by the Poincaré inequality, we have

𝜆0 ∫Ω
|𝑚 + 𝑒3|

2 d𝑥 ≤ 16𝜋𝑑. (3.60)

On the other hand, estimate (3.3) of Lemma 3.1 and the topological lower bound (3.1) give

8𝜋𝑑 (1 − 2𝛼(𝑄, 𝜅)) + 1
2
(𝑄 − 1)∫Ω

(

1 − 𝑚2
3
)

d𝑥 ≤ 8𝜋𝑑, (3.61)
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which by (2.9) then implies

∫Ω

(

1 − 𝑚2
3
)

d𝑥 ≤ 𝐶𝑑𝛼(𝑄, 𝜅)
(𝑄 − 1)

≤ 𝐶𝑑𝜅2

(𝑄 − 1)2
. (3.62)

Thus, in view of the fact that the extension of 𝑚 satisfies 𝑚 = −𝑒3 outside Ω, by [7, Lemma
5.1] we obtain

∫Ω
|𝑚3 + 1|2 d𝑥 ≤ 1

4𝜋 ∫Ω
|∇𝑚|2 d𝑥∫Ω

(

1 − 𝑚2
3
)

d𝑥 ≤ 𝐶𝑑2𝜅2

(𝑄 − 1)2
. (3.63)

In total, we get

max{𝜆0, 𝑄 − 1}∫Ω
|𝑚3 + 1|2 d𝑥 ≤ 𝐶𝛽(𝜅,𝑄, 𝑑)𝑑, (3.64)

where we recall that

𝛽(𝜅,𝑄, 𝑑) =

{

1 if 𝜆0 ≥ 𝑄 − 1,
𝑑𝜅2

𝑄−1 if 𝜆0 < 𝑄 − 1.
(3.65)

For 𝑥 ∈ ℝ2 we consider the Hardy-Littlewood maximal functions

𝑀1(𝑥) ∶= sup
𝑟>0

1
𝜋𝑟2 ∫𝐵𝑟(𝑥)

|𝑚 + 𝑒3|
2 d𝑦, (3.66)

𝑀2(𝑥) ∶= sup
𝑟>0

1
𝜋𝑟2 ∫𝐵𝑟(𝑥)

|∇𝑚|2 d𝑦, (3.67)

which are well known to be bounded in weak 𝐿1 if the original functions are bounded in 𝐿1,
see [75, Chapter 3, Theorem 1.1]. Consequently, for all 𝑡 > 0, there exists a universal constant
𝐶1 > 0 such that

|

|

|

{

𝑀1(𝑥) > 𝑡
}

|

|

|

≤
𝐶1𝛽(𝜅,𝑄, 𝑑)𝑑

𝑡max{𝜆0, 𝑄 − 1}
, (3.68)

|

|

|

{

𝑀2(𝑥) > 𝑡
}

|

|

|

≤
𝐶1𝑑
𝑡

. (3.69)

Choosing 𝑡1 ∶= 3𝐶1
𝛽(𝜅,𝑄,𝑑)𝑑

|Ω|max{𝜆0,𝑄−1} and 𝑡2 ∶= 3𝐶1
𝑑
|Ω| we get that

|

|

|

Ω ∩
{

𝑀1(𝑥) ≤ 𝑡1
}

|

|

|

≥ 2
3
|Ω|, (3.70)

|

|

|

Ω ∩
{

𝑀2(𝑥) ≤ 𝑡2
}

|

|

|

≥ 2
3
|Ω|. (3.71)

Thus, there exists 𝑥 ∈ Ω such that

𝑀1(𝑥) ≤ 3𝐶1
𝛽(𝜅,𝑄, 𝑑)𝑑

|Ω|max{𝜆0, 𝑄 − 1}
(3.72)
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and
𝑀2(𝑥) ≤ 3𝐶1

𝑑
|Ω|

. (3.73)

The statement follows provided 3𝐶1
𝛽(𝜅,𝑄,𝑑)𝑑

|Ω| ≤ 𝜀𝜅2 and 3𝐶1
𝑑
|Ω| ≤ 𝜀𝜅2, which is the case under

our assumption on |Ω| for 𝐶0 = 3𝐶1.
Proof of Proposition 3.3. Letting 𝑚 ∈ 𝑑 and passing to the precise representative if neces-
sary [28, Theorem 4.19], pick 𝑥 ∈ Ω to be a point of continuity of 𝑚 that is also a Lebesgue
point of ∇𝑚. Without loss of generality, we may assume that 𝑥 = 0 and, hence,

∫𝐵𝛿

|∇𝑚|2 d𝑥 ≤ 𝐶𝛿2, 𝑚(0) = lim
|𝑦|→0

𝑚(𝑦), |𝑚(0)| = 1. (3.74)

for some 𝐶 > 0 independent of 𝛿 ≪ 1.
Up to a rigid rotation of 𝑚, we may assume for the moment that 𝑚(0) = −𝑒3. Arguing as

in the proof of Lemma 3.4, we can find 𝑟0 ∈
( 3
4𝛿, 𝛿

) such that 𝑚|𝜕𝐵𝑟0
∈ 𝐻1(𝜕𝐵𝑟0 ;𝕊

2) and
|𝑚′−(𝑚′)𝑟0 | ≤ 𝐶𝛿 for some constant 𝐶 > 0 independent of 𝛿 ≪ 1. Furthermore, by continuity
of 𝑚 at the origin we have 𝑚3(𝑥) < 0 for all 𝑥 ∈ 𝜕𝐵𝑟0 and 𝛿 ≪ 1. Therefore, as in the proof
of Lemma 3.4 we can define a cutoff 𝑚̃𝛿 in 𝐷𝑟0 for every 𝛿 ≪ 1 such that 𝑚̃𝛿 = 𝑚 on 𝜕𝐵𝑟0 ,
𝑚̃𝛿 =

(

(𝑚′)𝑟0 ,−
√

1 − (𝑚′)2𝑟0

)

on 𝜕𝐵𝑟0∕2, and

∫𝐷𝑟0

|∇𝑚̃𝛿|
2 d𝑥 ≤ 𝐶𝛿2, (3.75)

for some 𝐶 > 0 independent of 𝛿 ≪ 1. By the Cauchy-Schwarz inequality, we also have

∫𝐷𝑟0

|𝑚̃′
𝛿 ⋅ ∇𝑚̃𝛿,3| d𝑥 ≤ 𝐶𝛿2, (3.76)

for some 𝐶 > 0 independent of 𝛿 ≪ 1. As the estimates in (3.75) and (3.76) are rotation-
invariant, existence of an 𝑚̃𝛿 satisfying these estimates and interpolating from 𝑚 on 𝜕𝐵𝑟0 to a
constant unit vector on 𝜕𝐵𝑟0∕2 follows for an arbitrary value of 𝑚(0).

We now set 𝜌𝛿 = 𝛿2, and for 𝛿 ≪ 1 and 𝑥 ∈ 𝐵𝑟0∕2 we define a truncated Belavin-Polyakov
profile 𝜙𝜌𝛿 (𝑥) = 𝑅Φ 𝜌

2𝑟0
(𝜌−1𝛿 𝑥), where 𝑅 ∈ 𝑆𝑂(3) is a rotation satisfying 𝑅𝑒3 = −𝑚̃𝛿|𝜕𝐵𝑟0∕2

.
By an explicit calculation we get

∫𝐵𝑟0∕2

|∇𝜙𝜌𝛿 |
2 d𝑥 ≤ 8𝜋 + 𝐶𝛿2, ∫𝐵𝑟0∕2

|𝜙′
𝜌𝛿

⋅ ∇𝜙𝜌𝛿 ,3| d𝑥 ≤ 𝐶𝛿2, (3.77)

for some 𝐶 > 0 independent of 𝛿 ≪ 1.
Finally, we construct a competitor 𝑚̄𝛿 ∈ 𝐻1(Ω;𝕊2) exactly as in Lemma 3.4. Clearly, by

(3.74),(3.75) and the definition of 𝜙𝜌𝛿 we have 𝑚̄𝛿 ∈ 𝑑+1 for all 𝛿 ≪ 1. Furthermore, by
(3.74)–(3.77) and again the Cauchy-Schwarz inequality for the DMI term in (𝑚) we have

(𝑚̄𝛿) ≤ (𝑚) + 8𝜋 + 𝐶𝛿2, (3.78)
for some 𝐶 > 0 independent of 𝛿 ≪ 1. We then conclude by applying (3.78) to a minimizing
sequence (𝑚𝑛) ∈ 𝑑 and using a diagonal argument.
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Remark 3.6. We note that contrary to Lemma 3.4, the construction in the proof of Proposition
3.3 does not allow one to conclude a strict inequality, since the rotation𝑅 is a priori not close to
identity and, hence, we may not pick a negative contribution from the DMI term. Furthermore,
even if we were able to show that the competitor produces a net negative contribution to the
DMI energy, we would not be able to conclude a priori that it beats the possible positive gain
in the exchange energy due to the cutoff.

4 Proofs of the main theorems
Now we conclude the proofs of Theorem 2.1, Proposition 2.2, and Theorem 2.5.
Proof of Theorem 2.1. Step 1. Ensuring the applicability of Lemma 3.5. We first show that
under assumption (2.7) it is possible to find 𝐶 > 0 universal such that if assumption (2.8)
holds, then the condition on |Ω| of Lemma 3.5 with 𝜀 > 0 from Lemma 3.4 is satisfied. That
is, we need to ensure that |Ω| ≥ 𝐶0 (𝛽(𝜅,𝑄, 𝑑) + 1) 𝑑

𝜀𝜅2 with 𝜀 > 0 universal from Lemma 3.4,
𝛽(𝜅,𝑄, 𝑑) defined in (3.10), and 𝐶0 > 0 being a universal constant from Lemma 3.5.

If 𝜆0 ≥ 𝑄 − 1, then 𝛽(𝜅,𝑄, 𝑑) = 1, and using inequality (2.8) we have

|Ω| ≥ 𝐶𝑑
𝜅2

= 𝐶0 (𝛽(𝜅,𝑄, 𝑑) + 1) 𝑑
𝜀𝜅2

, (4.1)

if 𝐶 = 2𝐶0∕𝜀. Otherwise, we have 𝜆0 < 𝑄 − 1. Using condition (2.7) and Lemma 3.2, we
have

2
𝑑
≥ 𝛼(𝑄, 𝜅) ≥ 2𝜅2

3(𝑄 − 1)
, (4.2)

and therefore 𝛽(𝜅,𝑄, 𝑑) = 𝑑𝜅2

𝑄−1 ≤ 3. Consequently, invoking the inequality (2.8), we have

|Ω| ≥ 𝐶𝑑
𝜅2

≥ 𝐶0 (𝛽(𝜅,𝑄, 𝑑) + 1) 𝑑
𝜀𝜅2

, (4.3)

if 𝐶 = 4𝐶0∕𝜀.
Step 2. Convergence of minimizing sequences and lower semicontinuity. Let (𝑚𝑛) ∈ 𝑑be a minimizing sequence. By Lemma 3.1, since inequality (3.5) holds by assumption, we get

that (𝑚𝑛) is uniformly bounded in 𝐻1(Ω;𝕊2). Consequently, there exists a subsequence (not
relabeled) and 𝑚∞ ∈ 𝐻1(Ω;𝕊2) such that 𝑚𝑛 → 𝑚∞ in 𝐿2 and ∇𝑚𝑛 ⇀ ∇𝑚∞ in 𝐿2 as 𝑛 → ∞.
Furthermore, by a weak-times-strong argument, we get ∫Ω 𝑚′

𝑛 ⋅∇𝑚𝑛,3 d𝑥 → ∫Ω 𝑚′
∞ ⋅∇𝑚∞,3 d𝑥and, therefore, we have

(𝑚∞) ≤ lim inf
𝑛→∞

(𝑚𝑛) = inf
𝑑

 . (4.4)

Thus, it remains to prove that 𝑚∞ ∈ 𝑑 , i.e., that  (𝑚∞) = 𝑑.
Arguing as in [16, 54] and [7, Lemma A.3], we complete the squares to get for all 𝑚 ∈

𝐻1(Ω;𝕊2) that

∫Ω
|∇𝑚|2 d𝑥 ± 8𝜋 (𝑚) = ∫Ω

|𝜕1𝑚 ∓ 𝑚 × 𝜕2𝑚|
2 d𝑥. (4.5)
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As a result, by the lower semicontinuity of the right-hand side in (4.5) and the continuity of the
DMI and anisotropy terms we have

(𝑚∞) ± 8𝜋 (𝑚∞) ≤ lim inf
𝑛→∞

(𝑚𝑛) ± 8𝜋𝑑. (4.6)

Step 3. Proving 1 ≤  (𝑚∞) ≤ 𝑑. With the help of Lemma 3.1 we know that (𝑚∞) ≥ 0
and inf𝑑

 < 8𝜋𝑑. Therefore, using (4.6) with the “–” sign”, we obtain −8𝜋 (𝑚∞) < 0,
implying  (𝑚∞) ≥ 1.

The inequality (4.6) with the “+” sign, together with Lemma 3.1 and the topological bound
(3.1) yield

8𝜋(2 − 𝛼(𝑄, 𝜅)) (𝑚∞) < 16𝜋𝑑. (4.7)
Therefore, under assumption (2.7) we have

 (𝑚∞) < 2𝑑
2 − 𝛼(𝑄, 𝜅)

≤ 𝑑 + 1. (4.8)

Thus, by discreteness of the degree we have  (𝑚∞) ≤ 𝑑. Note that this is the only place in
our argument where we crucially need 𝛼(𝑄, 𝜅) to be bounded proportionally to 𝑑−1.

Step 4. Proving  (𝑚∞) = 𝑑. If 𝑑 = 1, we are done now, producing a minimizer of  over
1 (compare with [57, Theorem 2.1] in the case 𝑄 = 1). So in the following we may assume
𝑑 ≥ 2.

We argue by contradiction and assume 𝑁 ∶=  (𝑚∞) < 𝑑. Using estimate (4.6), we have
inf
𝑁

 + 8𝜋 (𝑑 −𝑁) ≤ inf
𝑑

 . (4.9)

Since 1 ≤ 𝑁 < 𝑑 and we already have existence for 𝑑 = 1, we can use induction and assume
that the minimum of  over 𝑑′ is attained for all 1 ≤ 𝑑′ < 𝑑, with min𝑑′

 < 8𝜋𝑑′ by
Lemma 3.1. Then applying first Lemma 3.5, then Lemma 3.4 repeatedly to the minimizers of
 in 𝑑′ for 𝑁 ≤ 𝑑′ < 𝑑, we obtain

inf
𝑑

 < min
𝑁

 + 8𝜋 (𝑑 −𝑁) . (4.10)

However, this contradicts estimate (4.9), and, therefore, the assumption 𝑁 < 𝑑 is false, proving
the assertion of the theorem.
Proof of Proposition 2.2. Arguing as in [72], let 𝜉 ∈ 𝐶∞

𝑐 (Ω;ℝ3). Then, for |𝑡| < 𝑡0 with 𝑡0 > 0
small enough, we have

𝑚𝑡 ∶=
𝑚 + 𝑡𝜉
|𝑚 + 𝑡𝜉|

∈ 𝑑 . (4.11)

Indeed, for 𝑖 = 1, 2, we get |𝑚𝑡
| = 1 a.e. in Ω, 𝑚𝑡 = −𝑒3 on 𝜕Ω and

𝑚𝑡 = 𝑚 + 𝑡 (𝜉 − (𝜉 ⋅ 𝑚)𝑚) + 𝑂(𝑡2), (4.12)
𝜕𝑖𝑚

𝑡 = 𝜕𝑖𝑚 + 𝑡
(

𝜕𝑖𝜉 −
(

𝑚 ⋅ 𝜕𝑖𝜉 + 𝜉 ⋅ 𝜕𝑖𝑚
)

𝑚 − (𝜉 ⋅ 𝑚)𝜕𝑖𝑚
)

+ 𝑂(𝑡2(1 + |∇𝑚|)), (4.13)
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for a.e. 𝑥 ∈ Ω, where the constants in the 𝑂-notation depend on 𝜉, but not on 𝑚. In partic-
ular, we have 𝑚𝑡 ∈ 𝐻1(Ω;𝕊2) for all |𝑡| < 𝑡0 and 𝑚𝑡 is continuous in 𝐻1(Ω;ℝ3) at 𝑡 = 0.
Therefore, by continuity of the degree in 𝐻1(Ω;ℝ3) we have  (𝑚𝑡) = 𝑑 in a sufficiently small
neighborhood of 𝑡 = 0.

We now compute the derivative of (𝑚𝑡) at 𝑡 = 0. Rewriting the anisotropy term as (𝑄 −
1)(1 − 𝑚2

3) and interpreting ∇𝑚3 = (𝜕1𝑚3, 𝜕2𝑚3, 0), by minimality of 𝑚 we have

0 = d
d𝑡
(𝑚𝑡)

|

|

|

|𝑡=0
= 2∫Ω

(

∇𝑚 ∶ ∇𝜉 − |∇𝑚|2𝑚 ⋅ 𝜉
)

d𝑥

+ 2𝜅 ∫Ω

(

(∇ ⋅ 𝑚′)(𝑒3 − 𝑚3𝑚) − (∇𝑚3 − (𝑚 ⋅ ∇𝑚3)𝑚
)

⋅ 𝜉 d𝑥

− 2(𝑄 − 1)∫Ω

(

𝑚3𝑒3 − 𝑚2
3𝑚

)

⋅ 𝜉 d𝑥.

(4.14)

This gives the distributional version of equation (1.2).
As the lower order terms in this equation are all 𝐿2-integrable, standard regularity theory

implies that𝑚 ∈ 𝐶∞(Ω;𝕊2), see [58, Chapter 4]. Thus, the Euler-Lagrange equation is satisfied
classically. If Ω is additionally simply connected with a 𝐶1,𝛼 boundary, then we also have
continuity up to the boundary, see [60, Theorem 1.1, Remark 1.4, and Corollary 1.6].

Proof of Theorem 2.5. By inequality (2.9) the condition (2.7) is satisfied for 𝑄𝑛 ≫ 1 and,
therefore, existence of a minimizer 𝑚𝑛 ∈ 𝑑(Ω) follows from Theorem 2.1 for all 𝑛 large
enough.

By Lemma 3.1 and the Poincaré inequality, the sequence (𝑚𝑛+𝑒3) is bounded in𝑊 1,2(ℝ2;ℝ3)
after constant extension by −𝑒3 outside of Ω. Indeed, using Lemma 3.1 we have

lim
𝑛→∞∫ℝ2

|∇𝑚𝑛|
2 d𝑥 = 8𝜋𝑑, (4.15)

since 𝛼(𝑄𝑛, 𝜅) → 0 by inequality (2.9). For 𝑥 ∈ ℝ2, let

Φ(𝑥) ∶=
(

− 2𝑥
1+|𝑥|2

1−|𝑥|2

1+|𝑥|2

)

. (4.16)
Then by conformal invariance of the Dirichlet energy in two dimensions, see for example [7,
Lemma A.2], also 𝑚̂𝑛 ∶ 𝕊2 → 𝕊2 defined as 𝑚̂𝑛 ∶= 𝑚𝑛◦Φ−1 satisfies

lim
𝑛→0∫𝕊2

|∇𝑚̂𝑛|
2 d2 = 8𝜋𝑑. (4.17)

Consequently, in view of the topological lower bound (3.1) it is a minimizing sequence of the
Dirichlet energy among maps from 𝕊2 to 𝕊2 of degree 𝑑.

Additionally, by Proposition 2.2 we have𝑚𝑛 ∈ 𝐶(ℝ2;𝕊2) and thus 𝑚̂𝑛 ∈ 𝐶(𝕊2;𝕊2). By [50,
Theorem 1”], there exists a subsequence, a weakly harmonic map 𝑚̂∞ ∈ 𝑊 1,2(𝕊2;𝕊2) and a
non-negative Radon measure 𝜈 on 𝕊2 such that

𝑚̂𝑛 ⇀ 𝑚̂∞ (4.18)
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in 𝑊 1,2(𝕊2;𝕊2), and for 𝑑𝜇̂𝑛 ∶= |∇𝑚̂𝑛|
2 d2 and 𝑑𝜇̂∞ ∶= |∇𝑚̂∞|

2 d2 we have
𝜇̂𝑛

∗
⇀ 𝜇̂∞ + 𝜈, (4.19)

as measures when 𝑛 → ∞. By [50, Theorem 5.8], there exist 𝑘 ∈ ℕ ∪ {0}, 𝑧1,… , 𝑧𝑘 ∈ 𝕊2,
and 𝑑1,… , 𝑑𝑘 ∈ ℕ such that

𝜈 =
𝑘
∑

𝑗=1
8𝜋𝑑𝑗𝛿𝑧𝑗 , (4.20)

with the convention that 𝜈 = 0 if 𝑘 = 0.
Turning our attention to 𝑚̂∞, we observe that because it is a stationary point of the Dirichlet

energy on the sphere, it must be an energy-minimizing map in its own homotopy class, a fact that
was first independently proved by Lemaire [46] and Wood [78], see also [23, (10.5)]. However,
since 𝑚̂∞(𝑥) = −𝑒3 for 𝑥 ∈ 𝕊2 ⧵ Φ(Ω), we must have that 𝑚̂∞ = −𝑒3 on the entirety of 𝕊2,
which can be proved by, for example, using [16, Lemma A.1].

We thus have

𝜇̂𝑛
∗
⇀

𝑘
∑

𝑗=1
8𝜋𝑑𝑗𝛿𝑧𝑗 , (4.21)

as measures when 𝑛 → ∞. In particular, from convergence (4.17) it follows that 𝑘 ≠ 0 and
∑𝑘

𝑗=1 𝑑𝑗 = 𝑑. Since |∇𝑚̂𝑛|
2(𝑥) = 0 for all 𝑥 ∉ Φ(Ω), we must have 𝑧1,… , 𝑧𝑘 ∈ Φ

(

Ω
)

.
Pulling back these statements to the plane by precomposing with Φ, we obtain the conver-

gence of the exchange energy density to the sum of delta measures as in (2.12). At the same
time, by estimate (3.62) that applies to 𝑚𝑛 we get that the rest of the terms in the energy go to
zero in the sense of measures as 𝑛 → ∞. This gives the desired result.
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