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Abstract

This paper explores the energy landscape of ferromagnetic multilayer heterostructures that fea-
ture magnetic skyrmions – tiny whirls of spins with non-trivial topology – in each magnetic layer.
Such magnetic heterostructures have been recently pursued as possible hosts of room temperature
stable magnetic skyrmions suitable for the next generation of low power information technologies
and unconventional computing. The presence of stacked skyrmions in the adjacent layers gives rise
to a strongly coupled nonlinear system, whereby the induced magnetic field plays a crucial stabiliz-
ing role. Starting with the micromagnetic modeling framework, we derive a general reduced energy
functional for a fixed number of ultrathin ferromagnetic layers with perpendicular magnetocrys-
talline anisotropy. We next investigate this energy functional in the regime in which the energy is
dominated by the intralayer exchange interaction and formally obtain a finite-dimensional descrip-
tion governed by the energy of a system of one skyrmion per layer as a function of the position,
radius and the rotation angle of each of theses skyrmions. For the latter, we prove that energy
minimizers exist for all fixed skyrmion locations. We then focus on the simplest case of stray field-
coupled ferromagnetic bilayers and completely characterize the energy minimizers. We show that
the global energy minimizers exist and consist of two stray field-stabilized Néel skyrmions with
antiparallel in-plane magnetization components. We also calculate the energy of two skyrmions of
equal radius as a function of their separation distance.
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‡CEMES, Université de Toulouse, CNRS, 29 Rue Jeanne Marvig, BP94347, 31055 Toulouse, France.
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1 Introduction

Magnetic heterostructures have recently garnered significant interest as promising platforms for hosting
room-temperature stable magnetic skyrmions – tiny whirls of spins with non-trivial topology – mak-
ing them ideal candidates for next-generation low-power information technologies and unconventional
computing [19,20,39]. Magnetic skyrmions are particle-like topologically protected magnetic textures
predicted to exist in ferromagnetic materials since the late 1980s [6–8]. They are typically stabilized
by chiral Dzyaloshinskii-Moriya interaction (DMI) [15, 42] and have been observed in various mag-
netic materials, including chiral magnets, ferromagnetic ultrathin films and multilayers [24,43,47–49].
Magnetic skyrmions have been extensively investigated as potential information carriers for spintronic
devices [18, 29, 45]. Such investigations are impossible without modeling and computational studies
of these systems. Modeling of magnetic skyrmions often relies on two-dimensional models, a choice
which may be justified in the case of bulk chiral materials [8], or for ultrathin magnetic films, when
the film thickness is much smaller than the exchange length [4, 36].

In the last 10 years, there has been a growing body of skyrmion observations in multilayer het-
erostructures, whose intrinsic high tunability enables the observation of skyrmions at room tempera-
ture [41,48]. These heterostructures may present a total thickness that can be larger than the exchange
length, and, most importantly, the reduction of the interlayer exchange interaction due to the use of
non-magnetic spacers facilitates the emergence of a thickness-dependent magnetization, leading to
fully three-dimensional magnetization textures, as observed experimentally [14, 32, 40]. Such twisting
of the magnetization in the direction perpendicular to the layers is a well known phenomena related
to the influence of “magnetic charges” in ferromagnetic films with out-of-plane magnetocrystalline
anisotropy. Indeed, the magnetic field induced by magnetic charges modifies the internal structure of
domain walls, a phenomenon widely studied in the framework of bubble materials in the 1970’s [26,46].

A similar phenomenon occurs in the case of multilayers with in-plane magnetocrystalline anisotropy
in the absence of exchange coupling, i.e. in the case of purely stray field-coupled layers [22, 23].
For magnetic bilayers sufficiently thin to be in the Néel wall regime, the lower-energy state consists
of two Néel walls with opposite rotations in both layers [23], partially cancelling the stray field.
Similarly, in the case of magnetic bilayers with perpendicular magnetic anisotropy it has been observed
experimentally that the Bloch wall, which is energetically favorable in a single layer, is replaced by
two Néel walls with the opposite rotation senses [2]. This configuration can be further stabilized by
the DMI, assuming a proper choice of asymmetric interfaces, as reported in the case of skyrmionic
bubbles in bilayers with opposite DMI constants [25]. For larger number of repeats, the competition
between the dipolar and the DMI interactions leads to twisted walls which present an asymmetry
in the thickness direction with respect to the middle of the magnetic multilayer. This twist has
been evidenced experimentally in the case of domain walls [17, 38] and skyrmionic bubbles [32]. The
asymmetric twisted walls have also been the subject of detailed analytical modeling using domain
wall and skyrmionic bubble ansätze, where the impact of twist on the spin-orbit torque dynamics of
skyrmionic bubbles has been studied [33,35].

In the present work, we focus on a study of compact magnetic skyrmions in ultrathin ferromagnetic
multilayers, i.e., magnetic heterostructures whose total thickness lies below the Bloch wall width of the
ferromagnetic material. We use the tools of asymptotic analysis to investigate multilayer systems with
one skyrmion per layer in the case of purely stray field-coupled layers. We start with the micromagnetic
energy functional for a three-dimensional multilayer system that includes the intralayer exchange, the
magnetocrystalline anisotropy (both of bulk and interfacial origin), the Zeeman, the interfacial DMI
and the full stray field interactions. We then derive a reduced energy functional in the case where each
ferromagnetic layer is thin compared to the exchange length and the whole stack is thin compared to the
characteristic length scale of variation of the magnetization in the film plane. We show that in addition
to the usual local shape anisotropy term and the non-local dipolar interaction terms that are already
present in the case of single ultrathin ferromagnetic layers [4, 13, 30, 44], the expansion of the stray
field energy for multilayers leads to the appearance of a new local dipolar energy term corresponding
to interlayer volume-surface interactions. This term cancels out in the case of identical magnetizations
in the adjacent layers, but becomes equivalent to a stabilizing layer-dependent interfacial DMI when
the in-plane magnetization components in two consecutive layers are opposite to one another.
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The obtained reduced energy functional is investigated in the regime in which the energy is domi-
nated by the intralayer exchange interaction, which corresponds to the conformal limit studied in [5]
in the case of single ultrathin ferromagnetic layers. Following the arguments of [5], we formally ob-
tain a finite-dimensional description of the system of interacting compact magnetic skyrmions with
one skyrmion per layer as a function of the position, radius and the rotation angle of each of theses
skyrmions that is expected to be asymptotically exact in the considered limit. We then investigate
the energy landscape of the above system in the case of zero applied magnetic field and prove that
energy minimizers exist for all fixed skyrmion positions. The difficulty in obtaining such a result is
that a priori it is not clear whether the energy could not be reduced by some skyrmions shrinking to
zero radius. We prove that this phenomenon does not occur, if the skyrmion centers are fixed.

We then apply our results to the case of stray field-coupled ferromagnetic bilayers in the absence
of DMI, where we obtain a complete characterization of global energy minimizers in the intralayer
exchange-dominated regime. These minimizers consist of two concentric Néel skyrmions with anti-
parallel in-plane magnetization and a prescribed chirality. We also provide an expression for the
energy of two skyrmions of equal radius as a function of their separation distance and illustrate our
findings with a result of micromagnetic simulations. Notice that extending such a characterization to
the general case of multilayers presents a difficulty that the energy minimizing sequences could consist
of skyrmions in different layers moving far apart. For bilayers, we show that this cannot occur by an
explicit analysis of all the interaction terms, which, however, becomes intractable for higher numbers
of layers.

Our paper is organized as follows. In section 2, we specify the full three-dimensional micromag-
netic energy functional with all the relevant energy terms in the multilayer geometry and carry out its
non-dimensionalization. In section 3, we explicitly compute the energy of the magnetizations that are
independent of the thickness variable in each ferromagnetic layer. We then carry out an asymptotic
expansion of the energy as the ferromagnetic layer and interlayer thicknesses go to zero, with the num-
ber of layers fixed, to obtain a reduced two-dimensional variational model of ultrathin ferromagnetic
multilayers with perpendicular magnetic anisotropy. Then, in section 4 we introduce an ansatz in the
form of one truncated Belavin-Polyakov skyrmion in each ferromagnetic layer, which is asymptotically
valid in the intralayer exchange-dominated regime and asymptotically compute the finite-dimensional
energy function of such a skyrmion stack. In section 5, we then explore the basic properties of the
obtained energy function and prove that it admits a global energy minimizer for all fixed locations of
the skyrmion centers, see Theorem 1. Finally, in section 6 we completely characterize the global en-
ergy minimizer in the simplest non-trivial case of ultrathin stray field-coupled bilayers in the intralayer
exchange-dominated regime, see Theorem 2. We also corroborate our conclusions with the results of
micromagnetic simulations and characterize the interaction energy of two skyrmions of equal radius
separated by a prescribed distance.

Acknowledgments. N.J.D. and C.B.M. were partially supported by NSF via grant DMS-1908709.
A. Bernand-Mantel was supported by France 2030 government investment plan managed by the
French National Research Agency under grant reference PEPR SPIN [SPINTHEORY] ANR-22-EXSP-
0009 and grant NanoX ANR-17-EURE-0009 in the framework of the Programme des Investissements
d’Avenir. C.B.M. is a member of INdAM-GNAMPA and acknowledges partial support by the MUR
Excellence Department Project awarded to the Department of Mathematics, University of Pisa, CUP
I57G22000700001, and by the PRIN 2022 PNRR Project P2022WJW9H. All analytical calculations
in the paper involving special functions were carried out, using Mathematica 14.2 software.

2 Micromagnetic model

Our starting point is the micromagnetic modeling framework (in the SI units), in which the observed
magnetization configurations are interpreted as local or global energy minimizers of a micromagnetic
energy functional evaluated on vector fields M : Ω → R3 of fixed length |M| = Ms [9, 27, 31]. Here
Ω ⊆ R3 is the spatial domain (an open set) occupied by a single centrosymmetric crystalline ferro-
magnetic material, M = M(r) is the magnetization vector at point r = (x, y, z) ∈ Ω, and Ms > 0
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is the saturation magnetization (in A/m). The energy functional (in J) that contains the exchange,
bulk magnetocrystalline anisotropy, Zeeman, stray field, interfacial magnetocrystalline anisotropy and
interfacial DMI contributions, in that order, reads

E(M) =

∫
Ω

{
A

M2
s

|∇M|2 +KuΦu

(
M

Ms

)
− µ0Ha ·M− µ0

2
Hd ·M

}
d3r

+

∫
∂Ω

{
KsΦs

(
M

Ms
, r

)
+

Ds

M2
s

(
M∥∇⊥ ·M⊥ −M⊥ · ∇⊥M

∥
)}

dH2(r). (2.1)

Here A > 0 is the exchange stiffness (in J/m), Ku ≥ 0 is the bulk magnetocrystalline anisotropy
constant (in J/m3), Φu : S2 → R+ = [0,∞) specifies the dependence of the bulk anisotropy energy on
the direction of M, µ0 = 4π×10−7 H/m is the vacuum permeability, Ha ∈ R3 is the applied magnetic
field in (A/m), and Hd : R3 → R3 is the demagnetizing field (in A/m) produced by M via the solution
of the stationary Maxwell’s equations

∇ · (Hd +M) = 0, ∇×Hd = 0, (2.2)

distributionally in R3, with M extended by zero in R3\Ω [12]. The interfacial terms in the second
line of (2.1) contain the interfacial DMI constant Ds : ∂Ω → R (in J/m), which may take different
values depending on the adjacent non-magnetic material, the DMI energy term written in terms of
M = (M⊥,M∥), where M∥ is the component of M along the normal to ∂Ω and M⊥ is the tangential
component to ∂Ω, respectively, and ∇⊥ is the tangential gradient, Ks : ∂Ω → R+ is the interfacial
magnetocrystalline anisotropy constant (in J/m2), which may also take different values depending
on the adjacent non-magnetic material, and Φs : S2 × ∂Ω → R+ specifies the dependence of the
interfacial anisotropy energy on the magnetization orientation relative to the crystalline axes in Ω and
the normal to ∂Ω. When Ω is unbounded, one often needs to subtract the contribution of a fixed
reference configuration M⋆ from the integrand in (2.1) to make the resulting integrals convergent.

As usual, we introduce the normalized magnetization vector m : Ω → S2, extended by zero to the
rest of R3. In terms of m the energy becomes

E(Msm) =

∫
Ω

(
A|∇m|2 +KuΦu(m)− 2Kdh ·m−Kdhd ·m

)
d3r

+

∫
∂Ω

(
KsΦs(m, r) +Ds(m

∥∇⊥ ·m⊥ −m⊥ · ∇m∥)
)
dH2(r), (2.3)

in which Kd = 1
2µ0M

2
s , h = Ha/Ms, hd = Hd/Ms, m = (m⊥,m∥) on ∂Ω as before. Note that the

demagnetizing field hd satisfies [12]

hd = −∇U, ∆U = ∇ ·m, (2.4)

distributionally in R3. In particular, the magnetostatic potential U is given by

U(r) = −
∫
R3

∇ ·m(r′)

4π|r− r′|
d3r′, r ∈ R3. (2.5)

The quantity ρm = −∇ · m hence has the meaning of the magnetic charge density distributionally
in R3, which includes the regular contribution of the volume charges from the absolutely continuous
part of ρm in Ω and a singular contribution to ρm of the surface charges from the jump of m to zero
across ∂Ω.

We now specify the geometry of interest, which is that of a system of N identical ferromagnetic
layers of thickness d separated by non-magnetic spacers of thickness (a− 1)d with a > 1, so that the
total thickness of the magnetic layer plus the non-magnetic layer is ad:

Ω = R2 ×
N⋃

n=1

[
(n− 1)ad, (n− 1)ad+ d

]
, (2.6)
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Figure 1: Schematics of the geometry of a multilayer system. The heterostructure consists of N
repeats of a sandwich of thickness ad in the form of a layer of one non-magnetic material (NM a),
followed by a layer of a ferromagnet (FM) of thickness d, followed by a layer of another non-magnetic
material (NM b), from the bottom to the top.

see Fig. 1. The magnetic material is assumed to be uniaxial, with an easy axis perpendicular to
the layers, so that Φu(m) = |m⊥|2, where we now use the convention m(r) = (m⊥(r),m∥(r)) with
m⊥(r) ∈ R2 and m∥(r) ∈ R being the in-plane and out-of-plane components of the magnetization,
respectively, for all r ∈ R3. Similarly, we assume that the interfacial anisotropy penalizes the tangential
component of the magnetization. Hence, we take Φs(m, r) = |m⊥|2 as well. As is common in the
spintronic multilayer materials [41,47], the spacer is assumed to generally consist of two sublayers, so
the upper surface of each magnetic layer is characterized by the interfacial DMI constant D+

s and the
interfacial anisotropy constant K+

s , while the bottom surface is characterized by the parameters D−
s

and K−
s , respectively. Notice that in the case of a single material spacer we simply set the parameters

of the two surfaces equal to each other. Finally, we assume that the applied field is perpendicular to
the film plane: h = hẑ for h ∈ R.

As can be easily seen from the above choices, for K > Kd, where

K = Ku +
K+

s +K−
s

d
(2.7)

is the total magnetocrystalline anisotropy constant that takes into account the interfacial magnetocrys-
talline anisotropy, the uniform magnetization prefers to point out of the film plane. Indeed, if m is
constant across Ω, the solution of the Maxwell’s equation in (2.2) is given by hd = −m in Ω, resulting
in the energy density (K−Kd)|m⊥|2 minimized by m = ±ẑ. Letting χn be the characteristic function
of the n-th interval In =

(
(n− 1)ad, (n− 1)ad+ d

)
⊂ R, we hence define the reference configuration

in which the magnetization points downward in all the layers and is extended by zero to the whole of
R3 as

m⋆(x, y, z) = −
N∑

n=1

ẑχn(z), (2.8)

whose associated demagnetizing field is h⋆
d = −∇U⋆ = −m⋆, where U⋆ is a bounded solution of (2.4)

with m = m⋆. Subtracting its contribution from the integrand in (2.3) and choosing the units of
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energy and length to be given by Ad and the exchange length ℓex =
√

A/Kd, respectively, we can
write the resulting renormalized energy functional (non-dimensionalized) as

E(m) =
1

δ

N∑
n=1

∫ ((n−1)a+1)δ

(n−1)aδ

∫
R2

(
|∇m|2 +Qu|m⊥|2 − 2h(m∥ + 1) +m · ∇U − 1

)
d2r dz

+
N∑

n=1

∫
R2

(
Q−

s |m⊥|2 + 2κ−m⊥ · ∇m∥
) ∣∣∣∣

{z=(n−1)aδ}
d2r (2.9)

+
N∑

n=1

∫
R2

(
Q+

s |m⊥|2 − 2κ+m⊥ · ∇m∥
) ∣∣∣∣

{z=((n−1)a+1)δ}
d2r,

where we integrated the DMI by parts as in [4, 5] to make it more compact and mathematically
well-behaved. Here

δ =
d

ℓex
, Qu =

Ku

Kd
, Q±

s =
K±

s

dKd
, κ± =

D±
s

d
√
AKd

(2.10)

are the dimensionless ferromagnetic layer thickness, the magnetocrystalline bulk and interfacial anisotropies’
quality factors, and the dimensionless DMI strengths on the top and bottom surfaces of the film, re-
spectively. Note that with this definition E(m⋆) = 0.

3 Reduced model for ultrathin multilayers

We now consider the situation in which each ferromagnetic layer is thin compared to the exchange
length, i.e., the case δ ≪ 1, when the variations of the magnetization along the z-direction in each
layer are highly penalized. In this case, following [21], it is appropriate to consider the magnetizations
m = m̃ that do not vary across each layer and hence have the particular form

m̃(x, y, z) =
N∑

n=1

mn(x, y)χn(z) =
N∑

n=1

(
m⊥

n (x, y) + ẑm∥
n(x, y)

)
χn(z), (3.1)

where mn : R2 → S2 for each n = 1, . . . , N , m⊥
n is treated as an in-plane vector in R3, and now

χn(z) =

{
1 if z ∈ [(n− 1)aδ, ((n− 1)a+ 1)δ],

0 otherwise.
(3.2)

Focusing on the renormalized stray field energy, which for configurations mn(x, y) converging to
−ẑ sufficiently fast as x2 + y2 → ∞ can be rewritten, after integrations by parts, as

Ed(m̃) =
1

δ

∫
R3

(
|∇U |2 −

∑
n

χn

)
d3r. (3.3)

We define m̃r = m̃−m⋆ and Ur = U − U⋆, and observe that

Ed(m̃) =
1

δ

∫
R3

(
|∇Ur|2 − 2

N∑
n=1

χn∂zUr

)
d3r = E′

d(m̃) + E′′
d (m̃). (3.4)

Examining the second term, we note that

N∑
n=1

∫
R3

χn∂zUr d
3r = −

∫
R3

∇U⋆ · ∇Ur d
3r =

∫
R3

U⋆∇ · m̃r d
3r

= −
∫
R3

m̃r · ∇U⋆ d3r =

N∑
n=1

∫
R3

(m∥
n + 1)χn d

3r, (3.5)
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after integrations by parts and using (2.4). Therefore, using the fact that |mn| = 1 and hence

2(m
∥
n + 1) = |m⊥

n |2 + |m∥
n + 1|2 for all n, we obtain

E′′
d (m̃) = −2

δ

N∑
n=1

∫
R3

χn∂zUr d
3r = −

N∑
n=1

∫
R2

(
|m⊥

n |2 + |m∥
n + 1|2

)
d2r. (3.6)

We now investigate

E′
d(m̃) =

1

δ

∫
R3

|∇Ur|2d3r =
1

δ

∫
R3

∫
R3

∇ · m̃r(r)∇ · m̃r(r
′)

4π|r− r′|
d3r d3r′, (3.7)

as can be seen from (2.5) and an integration by parts. Explicitly, this integral reads

E′
d(m̃) =

1

δ

∫
R

∫
R

∫
R2

∫
R2

∇ · m̃r(r, z)∇ · m̃r(r
′, z′)

4π
√
|r− r′|2 + (z − z′)2

d2r d2r′ dz dz′, (3.8)

where from now on the variables of integration r, r′ ∈ R2. Noting that

∂zm̃
∥
r(r, z) =

n∑
n=1

(m∥
n(r) + 1)[δa(n−1)δ(z)− δ(a(n−1)+1)δ(z)], ∀r ∈ R2, (3.9)

where δα(z) is the Dirac delta centered at α ∈ R, and integrating in z and z′, we obtain

E′
d(m̃) =

1

δ

N∑
n=1

N∑
k=1

∫
R2

∫
R2

{
Ka(k−n)

vv (|r− r′|) ∇ ·m⊥
n (r)∇ ·m⊥

k (r
′)

+Ka(k−n)
vs (|r− r′|) ∇ ·m⊥

n (r)(m
∥
k(r

′) + 1)

+Ka(k−n)
sv (|r− r′|) (m∥

n(r) + 1)∇ ·m⊥
k (r

′)

+Ka(k−n)
ss (|r− r′|) (m∥

n(r) + 1)(m
∥
k(r

′) + 1)

}
d2r d2r′,

(3.10)

where for u ∈ R we defined the volume-volume, volume-surface and surface-surface charge interaction
kernels as

Ku
vv(r) =

1

4π

∫ δ

0

∫ (u+1)δ

uδ

dz′ dz√
r2 + (z − z′)2

, (3.11)

Ku
vs(r) =

1

4π

∫ δ

0

dz√
r2 + (z − uδ)2

− 1

4π

∫ δ

0

dz√
r2 + (z − (1 + u)δ)2

, (3.12)

Ku
sv(r) =

1

4π

∫ δ

0

dz′√
r2 + (z′ + uδ)2

− 1

4π

∫ δ

0

dz′√
r2 + (z′ − (1− u)δ)2

, (3.13)

Ku
ss(r) =

1

2π
√
r2 + u2δ2

− 1

4π
√

r2 + (u− 1)2δ2
− 1

4π
√
r2 + (u+ 1)2δ2

. (3.14)

We see clearly that Ku
vs(r) = K−u

sv (r), allowing these terms to be combined in the expression for E′
d.

For simplicity, we express the energy as the sum of the interaction energies:

E′
d(m̃) =

N∑
n=1

N∑
k=1

{
E(nk)

vv (m̃) + E(nk)
vs (m̃) + E(nk)

ss (m̃)
}
, (3.15)

where

E(nk)
vv (m̃) =

1

δ

∫
R2

∫
R2

Ka(k−n)
vv (|r− r′|)∇ ·m⊥

n (r)∇ ·m⊥
k (r

′) d2r d2r′, (3.16)

E(nk)
vs (m̃) = −2

δ

∫
R2

∫
R2

Ka(k−n)
vs (|r− r′|)m⊥

n (r) · ∇m
∥
k(r

′) d2r d2r′, (3.17)

E(nk)
ss (m̃) =

1

δ

∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)(m∥

n(r) + 1)(m
∥
k(r

′) + 1) d2r d2r′, (3.18)
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and we integrated by parts in the second line.
We can explicitly evaluate the interaction kernels:

Ku
vv(r) =

1

4π

[
2
√
r2 + u2δ2 −

√
r2 + (1 + u)2δ2 −

√
r2 + (1− u)2δ2

+ (1 + u)δ sinh−1

(
(1 + u)δ

r

)
+ (1− u)δ sinh−1

(
(1− u)δ

r

)
− 2uδ sinh−1

(
uδ

r

)]
, (3.19)

Ku
vs(r) =

1

4π

[
2 sinh−1

(
uδ

r

)
− sinh−1

(
(u+ 1)δ

r

)
− sinh−1

(
(u− 1)δ

r

)]
. (3.20)

The obtained expressions for Ks
vv, K

u
vs and Ku

ss may be viewed as generalizations of those obtained
in [21] for u = 0. Notice that by an explicit calculation we have∫

R2

Ku
ss(|r|) d2r =

{
δ(1− |u|), |u| ≤ 1,

0, |u| > 1.
(3.21)

By a similar explicit calculation∫
R2

Ku
vs(|r|) d2r =

δ2

2
sgn(u), |u| > 1. (3.22)

Also notice that K0
vs(r) = 0, which can also be seen immediately from the symmetry considerations.

We can further simplify the surface-surface interaction term. First we observe that(
m∥

n(r)−m∥
n(r

′)
)(

m
∥
k(r)−m

∥
k(r

′)
)
=
(
m∥

n(r) + 1
)(

m
∥
k(r) + 1

)
+
(
m∥

n(r
′) + 1

)(
m

∥
k(r

′) + 1
)

−
(
m∥

n(r) + 1
)(

m
∥
k(r

′) + 1
)
−
(
m∥

n(r
′) + 1

)(
m

∥
k(r) + 1

)
.

(3.23)

Integrating with the kernel K
a(k−n)
ss , we find due to the invariance of K

a(k−n)
ss (|r− r′|) with respect to

interchanging r and r′ that∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)

(
m∥

n(r)−m∥
n(r

′)
)(

m
∥
k(r)−m

∥
k(r

′)
)

d2r d2r′

= 2

∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)

(
m∥

n(r) + 1
)(

m
∥
k(r) + 1

)
d2r d2r′

− 2

∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)

(
m∥

n(r) + 1
)(

m
∥
k(r

′) + 1
)

d2r d2r′.

(3.24)

Therefore, the surface-surface self-interaction energy for layer n may be written as

E(nn)
ss (m̃) =

∫
R2

|m∥
n + 1|2d2r − 1

2δ

∫
R2

∫
R2

K0
ss(|r− r′|)

(
m∥

n(r)−m∥
n(r

′)
)2

d2r d2r′, (3.25)

where we noted that by (3.21) we have
∫
R2 K

0
ss(|r|)d2r = δ. At the same time, the surface-surface

interaction energy for different layers n ̸= k is

E(nk)
ss (m̃) = − 1

2δ

∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)

(
m∥

n(r)−m∥
n(r

′)
)(

m
∥
k(r)−m

∥
k(r

′)
)

d2r d2r′, (3.26)

where again we used (3.21) and noted that
∫
R2 K

u
ss(|r|)d2r = 0 for all u > 1, recalling that a > 1 and

|k− n| ≥ 1. Then, combining all three interactions in (3.15) with (3.6) we get an exact expression for
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the energy of m̃:

Ed(m̃) = −
N∑

n=1

∫
R2

|m⊥
n |2 d2r +

1

δ

N∑
n=1

N∑
k=1

∫
R2

∫
R2

Ka(k−n)
vv (|r− r′|)∇ ·m⊥

n (r)∇ ·m⊥
k (r

′) d2r d2r′

−2

δ

N∑
n=1

N∑
k=1

∫
R2

∫
R2

Ka(k−n)
vs (|r− r′|)m⊥

n (r) · ∇m
∥
k(r

′) d2r d2r′

− 1

2δ

N∑
n=1

N∑
k=1

∫
R2

∫
R2

Ka(k−n)
ss (|r− r′|)

(
m∥

n(r)−m∥
n(r

′)
)(

m
∥
k(r)−m

∥
k(r

′)
)

d2r d2r′.

(3.27)

We now simplify this cumbersome expression in such a way that it is valid asymptotically as δ → 0
with m̃ and all the other parameters fixed. Since the layer displacement parameter, u, is understood
to be fixed with respect to δ → 0, one expands to find the following asymptotic behaviors for δ ≪ 1:

Ku
vv(r) =

δ2

4πr
+ o(δ2), (3.28)

Ku
vs(r) =

uδ3

4πr3
+ o(δ3), (3.29)

Ku
ss(r) =

δ2

4πr3
+ o(δ3). (3.30)

Therefore, for mn sufficiently smooth the expression in (3.25) may be rendered asymptotically for
δ ≪ 1 as

E(nn)
ss (m̃) =

∫
R2

|m∥
n + 1|2 d2r − δ

∫
R2

∫
R2

(m
∥
n(r)−m

∥
n(r′))2

8π|r− r′|3
d2r d2r′ + o(δ), (3.31)

where we noted that the strong singularity of the kernel is partially cancelled by (m
∥
n(r)−m

∥
n(r′))2 =

O(|r−r′|2) form∥
n ∈ C1(R2), making the integral in the right-hand side of (3.31) convergent. Similarly,

we have

E(nk)
ss (m̃) ≃ −δ

∫
R2

∫
R2

(m
∥
n(r)−m

∥
n(r′))(m

∥
k(r)−m

∥
k(r

′))

8π|r− r′|3
d2r d2r′ + o(δ) (3.32)

for all n ̸= k. Meanwhile, using (3.28) the volume-volume interactions can be asymptotically expressed
as

E(nk)
vv (m̃) = δ

∫
R2

∫
R2

∇ ·m⊥
n (r)∇ ·m⊥

k (r
′)

4π|r− r′|
d2r d2r′ + o(δ). (3.33)

As can be seen from (3.29), we have δ−2Ku
vs(r) → 0 as δ → 0 for all r > 0. Care, however, is

needed in passing to the limit in the integral, as the strong singularity of the kernel in (3.29) precludes

passing the pointwise limit to the value of E
(nk)
vs (m̃) at O(δ). In fact, from (3.22) and the above

observation it is clear that for all |u| > 1 we have

2

δ2
Ku

vs(|r|) → sgn(u)δ(r) as δ → 0, (3.34)

in the sense of distributions, where δ(r) is a Dirac delta centered at the origin in R2. As a consequence,
by an argument similar to the one in the case of the surface-surface interactions the volume-surface
interaction energies admit the following asymptotic expansion:

E(nk)
vs (m̃) = −sgn(k − n)δ

∫
R2

m⊥
n · ∇m

∥
kd

2r + o(δ). (3.35)
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Thus, combining all the terms as in (3.27), we obtain that to within o(δ) accuracy for δ ≪ 1 and
with all other parameters fixed, the total energy is asymptotically E(m̃) ≃ EN ({mn}), where

EN ({mn}) =
N∑

n=1

∫
R2

(
|∇mn|2 + (Q− 1)|m⊥

n |2 − 2h(m∥
n + 1)− 2κm⊥

n · ∇m∥
n

)
d2r

− δ
N−1∑
n=1

N∑
k=n+1

∫
R2

(
m⊥

n · ∇m
∥
k −m⊥

k · ∇m∥
n

)
d2r (3.36)

+ δ
N∑

n=1

N∑
k=1

∫
R2

∫
R2

(
∇ ·m⊥

n (r)∇ ·m⊥
k (r

′)

4π|r− r′|
−

(m
∥
n(r)−m

∥
n(r′))(m

∥
k(r)−m

∥
k(r

′))

8π|r− r′|3

)
d2r d2r′,

where we defined the material quality factor and the dimensionless DMI strength

Q =
K

Kd
, κ = κ+ − κ−, (3.37)

respectively. We note that, as can be seen from the above derivation, the asymptotic formula in (3.36)
is rigorously valid in the limit δ → 0 at least for everymn : R2 → S2 such thatmn+ẑ ∈ C∞

c (R2;R3) for
every n = 1, . . . , N , and by an approximation argument also extends to the natural class of functions
mn + ẑ ∈ H1(R2;R3).

The obtained energy functional in (3.36) generalizes the one obtained in [3,4] for a single layer to
the case of multilayers. Notice that in addition to the non-local dipolar interactions present in the
case of a single-layer, a peculiar new local term appears in the second line of (3.36) that corresponds
to the interaction of the out-of-plane magnetic moments with the approximately vertical magnetic
field formed by the volume charges immediately above and below the layers (see also [35]). This term
vanishes, as expected, in the case when all layers have identical magnetizations, in which case the
energy is equivalent to that of the magnetization of a single layer of thickness Nδ. However, when the
in-plane magnetizations in two layers are opposite to one another: m⊥

n = −m⊥
k , this term works as

an effective interfacial DMI term, favoring Néel rotation in these layers.
The reduced energy is applicable in the situation in which the characteristic scale of variation

of mn(x, y) exceeds the thickness aNδ of the entire stack. Note that in this regime the energy is
independent of a and, hence, does not see the presence of the non-magnetic spacers. This property is
known to be violated once the magnetization configurations acquire the lateral size comparable to the
stack thickness [32], in which case the full kernels Ku

vv, K
u
vs and Ku

ss need to be utilized, resulting in
a much more cumbersome model that only permits a numerical treatment [10,33,35].

4 Energy of N stacked skyrmions

We have demonstrated that for ultrathin multilayers the micromagnetic energy functional of a mag-
netization configuration m : Ω → S2 obeys E(m) ≃ EN ({mn}), where EN ({mn}) is given by (3.36).
This energy may be further simplified by taking advantage of the scaling properties of different terms
in the energy. For Q > 1, introducing a rescaling and the new parameters:

r → r√
Q− 1

, δ̄ =
δ√

Q− 1
, h̄ =

h

Q− 1
, κ̄ =

κ√
Q− 1

, (4.1)

we see that EN ({mn(·/
√
Q− 1)}) = ĒN ({mn}), where

ĒN ({mn}) =
N∑

n=1

∫
R2

(
|∇mn|2 + |m⊥

n |2 − 2h̄(m∥
n + 1)− 2κ̄m⊥

n · ∇m∥
n

)
d2r

− δ̄
N−1∑
n=1

N∑
k=n+1

∫
R2

(
m⊥

n · ∇m
∥
k −m⊥

k · ∇m∥
n

)
d2r (4.2)

+ δ̄
N∑

n=1

N∑
k=1

∫
R2

∫
R2

(
∇ ·m⊥

n (r)∇ ·m⊥
k (r

′)

4π|r− r′|
−

(m
∥
n(r)−m

∥
n(r′))(m

∥
k(r)−m

∥
k(r

′))

8π|r− r′|3

)
d2r d2r′.
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Hence in the following we focus our attention on the study of the energy ĒN for the magnetization
configurations consisting of a single skyrmion in each ferromagnetic layer. The latter may be specified
by prescribing the topological degree +1 to the magnetization in each layer:

N (mn) =
1

4π

∫
R2

mn · (∂xmn × ∂ymn) d
2r = 1 ∀n = 1, . . . , N, (4.3)

which together with some additional technical assumptions should ensure existence of local minimizers
of the energy [4, 5].

For N = 1, it is known that for h̄ = 0 the energy ĒN admits minimizers in an appropriate function
class for all 0 < δ̄ < δ̄0, with δ̄0 > 0 universal [4]. Moreover, the energy-minimizing profiles admit a
complete asymptotic characterization in the conformal limit κ̄, δ̄ → 0 [5]. After a suitable translation,
dilation and rotation, these profiles approach the canonical Belavin-Polyakov (BP) profile

m∞(r) =

(
− 2r

1 + |r|2
,
1− |r|2

1 + |r|2

)
. (4.4)

This is due to the fact that for δ̄ ≪ 1 the energy of a skyrmion in a single layer gets close to the value
of the Dirichlet energy of harmonic maps with degree +1, whose minimizers are well-known [1, 5, 16].
Furthermore, the rigidity estimates for almost harmonic maps of degree +1 and a fine analysis of the
tail of the skyrmion profiles yield closeness of the profiles to those of the formm(r) = Rm∞((r−r0)/ρ),
where R ∈ SO(3) is a rotation around the z-axis [5]. As the anisotropy energy evaluated on m∞
diverges, in order to determine the skyrmion radius ρ and the rotation angle θ as functions of κ̄ and δ̄
one needs to consider a truncated BP profile, whose energy yields the asymptotic dependence of the
skyrmion characteristics on κ̄, δ̄ → 0 [5].

To that end, we define

f(r) =
2r

1 + r2
, r ≥ 0, (4.5)

and its truncated version

fL(r) =

f(r) , if r ≤
√
L,

f(
√
L)

K1(1/
√
L)
K1(r/L) , if r >

√
L,

(4.6)

where K1(x) is the modified Bessel function of the second kind. This choice of the truncation is
motivated by the asymptotic decay of the skyrmion solution at infinity to the leading order in κ̄, δ̄ ≪ 1
determined by the exchange and anisotropy terms [28]. For L > 1 we then define

mρ,θ,L,r0(r) =

(
−fL

(
|r− r0|

ρ

)
Rθ(r− r0)

|r− r0|
, sgn(ρ− |r− r0|)

√
1− f2

L

(
|r− r0|

ρ

) )
, (4.7)

where Rθ ∈ SO(2) is a counter-clockwise rotation by angle θ ∈ [−π, π). Using the above expression
as an ansatz, the task of determining the values of ρ and θ for a skyrmion amounts to minimizing the
energy of mρ,θ,L,r0 in ρ, θ and L to the leading order in κ̄, δ̄ ≪ 1.

It is clear that the above considerations should remain valid for several layers, each containing
a single skyrmion. Therefore, we now consider an asymptotic expansion of the energy ĒN for the
profiles of the form (see Fig. 2 for an illustration):

mn = mρn,θn,Ln,rn , n = 1, . . . , N, (4.8)

and study the energy landscape of ĒN ({mρn,θn,Ln,rn}) in terms of its dependence on {ρn, θn, Ln, rn}
for δ̄, |κ̄| ≪ 1. Notice that despite having reduced our problem to a finite-dimensional one, we still
need to study a strongly nonlinear, fully coupled system whose analysis is a significant challenge. In
particular, it is not a priori clear whether the minimum of ĒN ({mρn,θn,Ln,rn}) is attained, as it may
be energetically favorable for a skyrmion in one of the layers to collapse, which would correspond to
ρn → 0, violating (4.3) in the limit.
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Figure 2: An example of a skyrmion configuration from (4.8) with three distinct radii and centers in
a ferromagnetic trilayer. The skyrmion in the bottom layer is of Néel type (θ1 = 0), the skyrmion
in the top layer is of Bloch type (θ3 = π/2), and the skyrmion in the middle layer is of mixed type
(θ2 = π/4).

For simplicity of notation, we can write

ĒN ({mρn,θn,Ln,rn}) =
N∑

n=1

(
Ēex(mn) + Ēan(mn) + ĒZ(mn) + ĒDMI(mn)

)
+

N−1∑
n=1

N∑
k=n+1

Ēvs(mn,mk) +
N∑

n=1

N∑
k=1

(
Ēvv(mn,mk) + Ēss(mn,mk)

)
, (4.9)

where each term in the sum corresponds to the respective one in (4.2). As was shown in [5], for all
Ln ≥ L0, with some L0 > 1 universal, one can carry out an expansion of each term in (4.9) that
becomes asymptotically exact as L0 → ∞. Utilizing the results from [5, Lemma A.6] and [3], we
obtain that for L0 ≫ 1 we have

Ēex(mn,ρn,θn,Ln)− 8π ≃ 4π

L2
n

, (4.10)

Ēan(mn,ρn,θn,Ln) ≃ 4πρ2n ln

(
4L2

n

e2(1+γ)

)
, (4.11)

ĒZ(mn,ρn,θn,Ln) ≃ −4πh̄ρ2n ln

(
4L2

n

e1+2γ

)
, (4.12)

ĒDMI(mn,ρn,θn,Ln) ≃ −8πκ̄ρn cos θn. (4.13)

We next introduce the Fourier transform of mr,n = mn + ẑ ∈ H1(R2;R3):

m̂r,n(q) =

∫
R2

e−iq·rmr,n(r) d
2r (4.14)
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and write the stray field-mediated terms as [37]

Ēvv(mn,mk) =
δ̄

2

∫
R2

(q · m̂⊥
r,n)(q · m̂⊥

r,k)

|q|
d2q

(2π)2
, (4.15)

Ēss(mn,mk) = − δ̄

2

∫
R2

|q|
(
m̂

∥
r,n

)
m̂

∥
r,k

d2q

(2π)2
, (4.16)

Ēvs(mn,mk) = −iδ̄

∫
R2

q ·
(
m̂⊥

r,nm̂
∥
r,k − m̂⊥

r,km̂
∥
r,n

) d2q

(2π)2
, (4.17)

where the overline denotes complex conjugate.
We now assume that the magnetization mn takes the form (4.8). Using the fact that

Rθn

r− rn
|r− rn|

=
r− rn
|r− rn|

cos θn +
(r− rn)

|r− rn|

⊥
sin θn, (4.18)

where (r−rn)
⊥ denotes the 90◦ counter-clockwise rotation of r−rn, we can split the in-plane component

of mn into two terms and note that the second term has zero divergence and will not factor into the
volume charge energy. Using the results from [5, Lemmas A.5 and A.6], we obtain asymptotically for
L0 ≫ 1:

Ēvv(mn,mk) ≃ 2δ̄ρ2nρ
2
k cos θn cos θk

∫
R2

eiq·(rn−rk)|q|K1(ρn|q|)K1(ρk|q|) d2q, (4.19)

Ēss(mn,mk) ≃ −2δ̄ρ2nρ
2
k

∫
R2

eiq·(rn−rk)|q|K0(ρn|q|)K0(ρk|q|) d2q, (4.20)

Ēvs(mn,mk) ≃ −4δ̄ρ2nρ
2
k cos θn

∫
R2

eiq·(rn−rk)|q|K1(ρn|q|)K0(ρk|q|) d2q

+ 4δ̄ρ2nρ
2
k cos θk

∫
R2

eiq·(rk−rn)|q|K0(ρn|q|)K1(ρk|q|) d2q. (4.21)

Integrating in polar coordinates with q = |q| and φ being the polar angle between the vectors rn − rk
and q, we can further reduce the above integrals with the help of the well-known formula

1

2π

∫ 2π

0
eiq|rn−rk| cosφdφ = J0 (q|rn − rk|) , (4.22)

where J0(x) is the Bessel function of the first kind. Introducing the new variables

α =

√
ρk
ρn

, β =
√
ρnρk , λ =

|rn − rk|√
ρnρk

, (4.23)

and the rescaled variable of integration ξ = q
√
ρnρk, we can write the energies above as

Ēvv(mn,mk) ≃ 4πδ̄β cos θn cos θk

∫ ∞

0
J0(λξ)K1(αξ)K1(ξ/α) ξ

2dξ, (4.24)

Ēss(mn,mk) ≃ −4πδ̄β

∫ ∞

0
J0(λξ)K0(αξ)K0(ξ/α) ξ

2dξ, (4.25)

Ēvs(mn,mk) ≃ −8πδ̄β cos θn

∫ ∞

0
J0(λξ)K0(αξ)K1(ξ/α) ξ

2dξ

+ 8πδ̄β cos θk

∫ ∞

0
J0(λξ)K1(αξ)K0(ξ/α) ξ

2dξ. (4.26)

Now define the functions

Fvv(α, λ) =
32

3π2

∫ ∞

0
ξ2J0(λξ)K1(αξ)K1(ξ/α)dξ, (4.27)

Fss(α, λ) =
32

π2

∫ ∞

0
ξ2J0(λξ)K0(αξ)K0(ξ/α)dξ, (4.28)

Fvs(α, λ) = 2

∫ ∞

0
ξ2J0(λξ)K0(αξ)K1(ξ/α)dξ, (4.29)
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Figure 3: The plots of Fvv(α, 0) (a), Fss(α, 0) (b), and Fvs(α, 0) (c).

normalized so that Fvv(1, 0) = Fss(1, 0) = Fvs(1, 0) = 1. Notice that all these three functions are
uniformly bounded. Indeed, since K0,1(t) > 0 for all t > 0 and |J0(t)| ≤ 1, we have |Fvv(α, λ)| ≤
Fvv(α, 0), |Fss(α, λ)| ≤ Fss(α, 0) and |Fvs(α, λ)| ≤ Fvs(α, 0), with the equality achieved only for λ = 0
(see Lemmas 1 and 2 in the Appendix). At the same time, for 0 < α < 1 there holds

Fvv(α, 0) =
16α

((
α4 + 1

)
E
(
1− α4

)
− 2α4K

(
1− α4

))
3π (α4 − 1)2

, (4.30)

Fss(α, 0) =
16α3

((
α4 + 1

)
K
(
1− α4

)
− 2E

(
1− α4

))
π (α4 − 1)2

, (4.31)

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively.1

For α > 1 one can infer the values of the above functions via identities Fvv(α, 0) = Fvv(α
−1, 0) and

Fss(α, 0) = Fss(α
−1, 0). We also can explicitly compute for any α > 0

Fvs(α, 0) =
2α3

(
α4 − 4 lnα− 1

)
(α4 − 1)2

, (4.32)

extending the last expression by continuity to Fvs(α, 0) = 1 at α = 1. The graphs of the above
functions are presented in Fig. 3.

With these definitions, we have the following representation for the energies:

Ēvv(mn,mk) ≃
3π3

8
δ̄β cos θn cos θkFvv(α, λ), (4.33)

Ēss(mn,mk) ≃ −π3

8
δ̄βFss(α, λ), (4.34)

Ēvs(mn,mk) ≃ −4πδ̄β cos θnFvs(α, λ) + 4πδ̄β cos θkFvs(α
−1, λ). (4.35)

1We use the convention K(m) =
∫ π/2

0
dθ√

1−m sin2 θ
and E(m) =

∫ π/2

0

√
1−m sin2 θ dθ.
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Coming back to the original set of parameters {ρn, Ln, θn, rn}, it is clear that

Ēvv(mn,mk) ≃
3π3

8
δ̄
√
ρnρk cos θn cos θkFvv

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
, (4.36)

Ēss(mn,mk) ≃ −π3

8
δ̄
√
ρnρkFss

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
, (4.37)

Ēvs(mn,mk) ≃ −4πδ̄
√
ρnρk cos θnFvs

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
+ 4πδ̄

√
ρnρk cos θkFvs

(√
ρn
ρk

,
|rn − rk|√

ρnρk

)
, (4.38)

and from the definitions of Fvv and Fss we observe that

Ēvv(mn,mn) ≃
3π3

8
δ̄ρn cos

2 θn, (4.39)

Ēss(mn,mn) ≃ −π3

8
δ̄ρn. (4.40)

Using the above expressions, we may asymptotically express the full energy, to leading order in L0 ≫ 1
as ĒN ({ρn, θn, Ln, rn})− 8πN ≃ FN ({ρn, θn, Ln, rn}), where

FN ({ρn, θn, Ln, rn})

=
N∑

n=1

[
4π

L2
n

+ 4πρ2n ln

(
4L2

n

e2(1+γ)

)
− 4πh̄ρ2n ln

(
4L2

n

e1+2γ

)
− 8πκ̄ρn cos θn + δ̄

π3

8
ρn(3 cos

2 θn − 1)

]

+
N−1∑
n=1

N∑
k=n+1

δ̄
π3

4

√
ρnρk

[
3 cos θn cos θkFvv

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− Fss

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)]

−
N−1∑
n=1

N∑
k=n+1

4πδ̄
√
ρnρk

[
cos θnFvs

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− cos θkFvs

(√
ρn
ρk

,
|rn − rk|√

ρnρk

)]
.

(4.41)
This is the reduced energy function that determines the energy landscape of an N -skyrmion stack in
terms of the skyrmion parameters.

5 The landscape of the energy function FN

We now investigate the energy landscape governed by the function FN in the regime of its applicability
to stacked magnetic skyrmions in ferromagnetic multilayers. To simplify the discussion, from now on
we assume that there is no applied external magnetic field, h̄ = 0, and omit the Zeeman contribution
to the energy from now on. The analysis below can be easily extendable to the case h̄ < 0, when the
field is applied opposite to the magnetization direction in the skyrmion core. At the same time, for
fields applied along the magnetization in the core, h̄ > 0, the energy landscape becomes more complex
due to skyrmion bursting [3], a new phenomenon whose study goes beyond the present paper.

As we are interested in the minimization of FN , we introduce several auxiliary functions which are
obtained by partial minimization. With a slight abuse of notation, we still utilize the symbol FN to
denote those functions, which now depend on fewer variables. For example, we introduce

FN ({ρn, θn, rn}) = min
Ln>0

FN ({ρn, θn, Ln, rn}), (5.1)

which is obtained by minimizing the energy function in all Ln. An explicit calculation shows that
FN ({ρn, θn, Ln, rn}) is minimized for Ln = ρ−1

n , which is also the unique critical point of FN ({ρn, θn, Ln, rn})
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in Ln, resulting in

FN ({ρn, θn, rn})

=
N∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
− 8πκ̄ρn cos θn + δ̄

π3

8
ρn(3 cos

2 θn − 1)

]

+
N−1∑
n=1

N∑
k=n+1

δ̄
π3

4

√
ρnρk

[
3 cos θn cos θkFvv

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− Fss

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)]

−
N−1∑
n=1

N∑
k=n+1

4πδ̄
√
ρnρk

[
cos θnFvs

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− cos θkFvs

(√
ρn
ρk

,
|rn − rk|√

ρnρk

)]
.

(5.2)

Note, however, that this value of Ln is admissible only when Ln > L0, where L0 ≫ 1 is the parameter
that measures the applicability of the energy function FN to the system of N stacked skyrmions (see
section 4). This means that for consistency we need to restrict the admissible values of ρn to ρn < L−1

0

for a fixed L0 > 0 sufficiently large. We thus define, for {rn}Nn=1 ⊂ R2, an admissible class

AN ({rn}) =
{
ρn ∈ (0, L−1

0 ), θn ∈ [−π, π), rn
}N
n=1

. (5.3)

Without loss of generality, from now on we may assume that L0 > L̄0, where

L̄0 =
1

2
e2+γ , (5.4)

which ensures that the first term in the first line of the right-hand side of (5.2) is strictly convex in
ρn.

We next investigate the energy FN ({rn}) obtained by fixing the positions of the skyrmions and
minimizing with respect to angles and radii. We note that as the admissible set of the radii 0 < ρn <
L−1
0 is not closed, the existence of solutions for this minimization problem is not a priori clear, since

some skyrmions may prefer to collapse, ρn → 0, or burst, ρn → L−1
0 , in the course of minimization.

As a first step, we prove that the minimization of FN ({ρn, θn, rn}) in θn and ρn is well defined, i.e.,
that minimizers of this problem exist. The obtained minimal energy can be used to understand the
interaction between magnetic skyrmions at different locations. It also allows to estimate from below
the energy of the saddle points that separate the basins of attraction of different skyrmion spatial
arrangements. We will subsequently illustrate the explicit solution of this problem in the simplest
case of stray field-coupled ferromagnetic bilayers with no DMI.

Theorem 1. Let N ∈ N and L0 > L̄0. There exists δ̄0 > 0 such that for any fixed {rn} ⊂ R2 and all
δ̄, |κ̄| < δ̄0 there exists a minimizer of the problem

FN ({rn}) = min
AN ({rn})

FN ({ρn, θn, rn}). (5.5)

Proof. Step 1. We first minimize in angles θn, keeping {ρn, rn} fixed, with 1 ≤ n ≤ N . It is clear
that if we fix rn ∈ R2 and ρn ∈ (0, L−1

0 ), the function FN ({ρn, θn, rn}) is continuous and periodic in
θn with period 2π and, therefore, there exists a global minimizer {θ∗n} ⊂ [−π, π)N . We define the
resulting minimal energy as FN ({ρn, rn}) = minθn FN ({ρn, θn, rn}), where

FN ({ρn, rn}) =
N∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
− 8πκ̄ρn cos θ

∗
n + δ̄

π3

8
ρn(3 cos

2 θ∗n − 1)

]

+
N−1∑
n=1

N∑
k=n+1

δ̄
π3

4

√
ρnρk

[
3 cos θ∗n cos θ

∗
kFvv

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− Fss

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)]

−
N−1∑
n=1

N∑
k=n+1

4πδ̄
√
ρnρk

[
cos θ∗nFvs

(√
ρk
ρn

,
|rn − rk|√

ρnρk

)
− cos θ∗kFvs

(√
ρn
ρk

,
|rn − rk|√

ρnρk

)]
.

(5.6)
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Step 2. Now we show that FN ({ρn, rn}) is bounded from below. From Lemmas 1 and 2 in the
Appendix, we know that Fss(α, λ), Fvv(α, λ), and Fvs(α, λ) are bounded functions. Then since
2
√
ρnρk ≤ ρn + ρk, it follows that for some C > 0 universal we have

FN ({ρn, rn}) ≥
N∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
− C(|κ̄|+ δ̄)ρn

]
≥ −C1 (5.7)

for some C1 > 0 and all 0 < ρn < L−1
0 .

Therefore, for 1 ≤ n ≤ N there are minimizing sequences (ρn,l)l such that as l → ∞

FN ({ρn,l, rn}) → inf
ρn

FN ({ρn, rn}) > −∞. (5.8)

Since ρn,l ∈
(
0, L−1

0

)
, up to extraction of a subsequence (not relabeled) they converge:

lim
l→∞

ρn,l = ρ∗n ∈ [0, L−1
0 ]. (5.9)

Step 3. We now show that in a minimizing sequence ρn,l do not converge to 0. Assume this is not true
and, without loss of generality, there is a minimizing sequence with ρN,l → 0, while for 1 ≤ n ≤ N − 1
we have ρn,l → ρ∗n ≥ 0 as l → ∞. Let us assume ρ∗n > 0 for all 1 ≤ n ≤ N − 1, as the other case
is simpler and will follow in a similar fashion. We also assume that rN ̸= rn for all 1 ≤ n ≤ N − 1,
as the other case is also simpler. We now observe that the infimum of the energy is achieved on
{ρ∗n}N−1

n=1 ∪ {0}:

inf
ρn

FN ({ρn, rn}) =
N−1∑
n=1

[
−4π(ρ∗n)

2 ln

(
e1+2γ

4
(ρ∗n)

2

)
− 8πκ̄ρ∗n cos θ

∗
n + δ̄

π3

8
ρ∗n(3 cos

2 θ∗n − 1)

]

+

N−2∑
n=1

N−1∑
k=n+1

δ̄
π3

4

√
ρ∗nρ

∗
k

[
3 cos θ∗n cos θ

∗
kFvv

(√
ρ∗k
ρ∗n

,
|rn − rk|√

ρ∗nρ
∗
k

)
− Fss

(√
ρ∗k
ρ∗n

,
|rn − rk|√

ρ∗nρ
∗
k

)]

−
N−2∑
n=1

N−1∑
k=n+1

4πδ̄
√
ρ∗nρ

∗
k

[
cos θ∗nFvs

(√
ρ∗k
ρ∗n

,
|rn − rk|√

ρ∗nρ
∗
k

)
− cos θ∗kFvs

(√
ρ∗n
ρ∗k

,
|rn − rk|√

ρ∗nρ
∗
k

)]
= FN−1({ρ∗n, rn}).

(5.10)

Therefore, we only need to show that there exists ρN ̸= 0 such that with ρn = ρ∗n for 1 ≤ n ≤ N − 1
we have

FN ({ρn, rn}) < FN−1({ρ∗n, rn}). (5.11)

Since FN ({ρn, rn}) is obtained by minimizing in θn, from (5.10) we know that by taking θn = θ∗n for
1 ≤ n ≤ N − 1 and θN = π

2 we have

FN ({ρn, rn}) ≤ FN ({ρn, θn, rn}) = FN−1({ρ∗n, rn})−G({ρn, rn}), (5.12)

where

G({ρn, rn}) = 4πρ2N ln

(
e1+2γ

4
ρ2N

)
+ δ̄

π3

8
ρN + δ̄

π3

4

N−1∑
n=1

√
ρnρNFss

(√
ρN
ρn

,
|rN − rn|√

ρNρn

)
(5.13)

+ 4πδ̄
N−1∑
n=1

√
ρnρN cos θ∗nFvs

(√
ρN
ρn

,
|rN − rn|√

ρnρN

)
. (5.14)

We now need to show that G({ρn, rn}) > 0 as then we will have a contradiction with minimality. We

will take ρN > 0 small and investigate Fss(α, λ) = Fss(α
−1, λ) defined in (4.28), where α =

√
ρN
ρn

,

λ = |rN−rn|√
ρNρn

. We can use the change of variables t = ξλ to obtain

Fss(α, λ) =
32

π2λ3

∫ ∞

0
t2J0(t)K0(αt/λ)K0(t/(αλ))dt. (5.15)
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Next we observe that for ρN ≪ 1 the value of β = α
λ = ρN

|rN−rn| > 0 is small, while 1
αλ = ρn

|rN−rn| is
fixed. We have estimates on the Bessel function:

0 < K0(t) < h(t) = max{− ln t+ 1, 1}, ∀t > 0. (5.16)

It is now clear that with the help of |J0(t)| ≤ 1 we can estimate∣∣∣∣∫ ∞

0
t2J0(t)K0(αt/λ)K0(t/(αλ))dt

∣∣∣∣ ≤ ∫ ∞

0
t2K0(t/(αλ))h(βt)dt

= lnβ−1

∫ β−1

0
t2K0(t/(αλ))dt+

∫ β−1

0
t2K0(t/(αλ))| ln t|dt (5.17)

+

∫ ∞

0
t2K0(t/(αλ))dt ≤ C| ln ρN |,

for some C = C(ρn, |rN − rn|) > 0 and all ρN > 0 small enough. Since λ−3 =
( √

ρNρn
|rN−rn|

)3
, we obtain

δ̄
π3

4

N−1∑
n=1

√
ρNρnFss

(√
ρn
ρN

,
|rN − rn|√

ρNρn

)
≥ −Cδ̄ρ2N | ln ρN | (5.18)

for some C = C(ρn, |rN − rn|) > 0 and all ρN > 0 small enough.
We now use the same approach to estimate Fvs defined in (4.29):

Fvs(α, λ) = 2

∫ ∞

0
k2J0(λk)K0(αk)K1(k/α)dk =

2

λ3

∫ ∞

0
t2J0(t)K0(αt/λ)K1(t/(αλ))dt. (5.19)

Using the fact that

|Fvs(α, λ)| ≤
2

λ3

∫ ∞

0
t2K1(t/(αλ))h(βt)dt ≤

C| ln ρN |
λ3

, (5.20)

where C = C(ρn, |rN − rn|) > 0, for all ρN > 0 sufficiently small, we deduce

4πδ̄
N−1∑
n=1

√
ρnρN cos θ∗nFvs

(√
ρN
ρn

,
|rn − rN |
√
ρnρN

)
≥ −Cδ̄ρ2N | ln ρN |. (5.21)

It follows that

G({ρn, rn}) ≥ 4πρ2N ln

(
e1+2γ

4
ρ2N

)
+ δ̄

π3

8
ρN − Cδ̄ρ2N | ln ρN | > 0 (5.22)

for any δ̄ > 0 and all ρN > 0 small enough.

Step 4. It remains to show that ρ∗n < L−1
0 with L0 > L̄0 for all 1 ≤ n ≤ N . Assume this is not

true and, without loss of generality, that ρ∗N = L−1
0 . In this case it is not difficult to show that for all

δ̄ < δ̄0 with some δ̄0 > 0 small enough depending only on N and L0 we have

inf
ρn

F ({ρn, rn}) > lim
l→0

F ({ρn,l, rn}), (5.23)

where ρn,l = ρ∗n for all 1 ≤ n ≤ N − 1 and ρN,l → 0 as l → ∞. Therefore, ρN = L−1
0 cannot be a

minimizer and ρ∗n ∈ (0, L−1
0 ) for all 1 ≤ n ≤ N . Finally, as the function FN ({ρn, rn}) is continuous

for ρn ∈ (0, L−1
0 ), the minimum is attained in AN ({rn}) for all δ̄ < δ̄0.

Having established existence of minimizers of FN ({ρn, θn, rn}) over AN ({rn}), it would next be
interesting to understand the nature of the minimizers of FN ({rn}) with respect to the positions rn
of the skyrmions in each layer. This, however, is in general a daunting task, as the interaction energy
describes a fully coupled, strongly nonlinear system, in which the dependence on positions arises,
in addition to the direct interaction term, due to the implicit and a priori unknown dependence of
the skyrmion radii ρn and angles θn on the skyrmion positions {rn}. In particular, it is not a priori
clear whether minimizers of FN ({rn}) over the positions exist, as the interaction between different
skyrmions could be repulsive, leading to failure of compactness of the minimizing sequences and, as a
consequence, to failure of existence of minimizers.
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6 Application to the case of bilayers in the absence of DMI

Instead of treating the problem in its full generality, in the remainder of this paper we focus on the
simplest particular case of stray field-coupled ferromagnetic bilayers in the absence of DMI. Here we
can obtain a complete characterization of the energy minimizers. We show that minimizers indeed
exist, signifying an attractive interaction of the skyrmions in the adjacent layers. We find that the
energy minimizers consist of pairs of concentric identical skyrmions of Néel type, except that their
in-plane magnetizations are anti-parallel. Furthermore, these skyrmion pairs are chiral, as the sense
of the magnetization rotation in each of the layers is fixed by the direction of the magnetization at
infinity. This is in contrast with the case of ferromagnetic monolayers, which are known to support
stray field-stabilized skyrmions of Bloch type that can have two chiralities.

We now define the energy by setting N = 2 and κ̄ = 0 in (5.2):

F2({ρn, θn, rn}) =
2∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
+ δ̄

π3

8
ρn(3 cos

2 θn − 1)

]
+ δ̄

π3

4

√
ρ1ρ2

[
3 cos θ1 cos θ2Fvv

(√
ρ2
ρ1

,
|r2 − r1|√

ρ1ρ2

)
− Fss

(√
ρ2
ρ1

,
|r2 − r1|√

ρ1ρ2

)]
− 4πδ̄

√
ρ1ρ2

[
cos θ1Fvs

(√
ρ2
ρ1

,
|r2 − r1|√

ρ1ρ2

)
− cos θ2Fvs

(√
ρ1
ρ2

,
|r2 − r1|√

ρ1ρ2

)]
.

(6.1)

and would like to investigate the energy minimizing configurations of stacked skyrmion pairs in a
bilayer. We have the following result that gives a complete characterization of the minimizers of this
problem.

Theorem 2. Let L0 > L̄0. Then there exists δ̄0 > 0 such that for every δ̄ < δ̄0 the minimizers of the
energy F2({ρn, θn, rn}) among ρ1,2 ∈ (0, L−1

0 ), θ1,2 ∈ [−π, π) and r1,2 ∈ R2 exist and satisfy

i) r1 = r2;

ii) θ1 = 0, θ2 = −π;

iii) ρ1 = ρ2 = ρ, where

ρ =
(16 + π2)δ̄

−64W−1

(
−16+π2

128 e1+γ δ̄
) , (6.2)

and W−1(t) is the Lambert W function.

Proof. We first observe that by Lemmas 1 and 2 in the Appendix the absolute values of the functions
Fvv(α, λ), Fss(α, λ) and Fvs(α, λ) are maximized at λ = 0 for fixed α > 0. Moreover, at λ = 0 all
these functions are positive. It follows, that

F2({ρn, θn, rn}) ≥
2∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
+ δ̄

π3

8
ρn(3 cos

2 θn − 1)

]
− δ̄

π3

4

√
ρ1ρ2

[
3| cos θ2|| cos θ1|Fvv

(√
ρ2
ρ1

, 0

)
+ Fss

(√
ρ2
ρ1

, 0

)]
− 4πδ̄

√
ρ1ρ2

[
| cos θ1|Fvs

(√
ρ2
ρ1

, 0

)
+ | cos θ2|Fvs

(√
ρ1
ρ2

, 0

)]
,

(6.3)

and equality is achieved if and only if r1 = r2, cos θ1 ≥ 0 and cos θ2 ≤ 0.
We now observe by completing the square that the function

h0(θ1, θ2) =
3π3

8
δ̄

(
2∑

n=1

ρn cos
2 θn − 2

√
ρ1ρ2Fvv

(√
ρ2
ρ1

, 0

)
| cos θ1|| cos θ2|

)
(6.4)

is non-negative due to the fact that Fvv (α, 0) ≤ 1 with equality achieved only at α = 1 (see Lemma
1 in the Appendix). Moreover, for ρn > 0 the function h0(θ1, θ2) = 0 if and only if one of the two
alternatives below holds:
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Figure 4: Plot of F (ρ) when ρ ∈ (0, ρ0) with ρ0 = L̄−1
0 for δ̄ = 0.25.

i) ρ1 ̸= ρ2 and |θ1,2| = π
2 ;

ii) ρ1 = ρ2 and | cos θ1| = | cos θ2|.

We also observe that

−| cos θ1|Fvs

(√
ρ2
ρ1

, 0

)
− | cos θ2|Fvs

(√
ρ1
ρ2

, 0

)
≥ −Fvs

(√
ρ2
ρ1

, 0

)
− Fvs

(√
ρ1
ρ2

, 0

)
, (6.5)

with equality achieved at θ1,2 = 0 or θ1,2 = π. Minimizing the right-hand side of the above expression
in ρ1, ρ2 we obtain ρ1 = ρ2 and hence the following lower bound achievable if ρ1 = ρ2:

−Fvs

(√
ρ2
ρ1

, 0

)
− Fvs

(√
ρ1
ρ2

, 0

)
≥ −2, (6.6)

where we used Lemma 2 in the Appendix. Recalling that 0 < Fss(α, 0) ≤ 1 with equality achievable
if and only if α = 1 (see Lemma 1 of the Appendix) and combining our findings above, we obtain

F2({ρn, θn, rn}) ≥
2∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
− δ̄

π3

8
ρn

]
− δ̄

π3

4

√
ρ1ρ2 − 8πδ̄

√
ρ1ρ2

≥
2∑

n=1

[
−4πρ2n ln

(
e1+2γ

4
ρ2n

)
− δ̄

π3

4
ρn − 4πδ̄ρn

]
≥ 2F (ρ),

(6.7)

with equality achieved if and only if r1 = r2, θ1 = 0 and θ2 = π, and ρ1 = ρ2 = ρ, where

F (ρ) = −4πρ2 ln

(
e1+2γ

4
ρ2
)
− δ̄

π3

4
ρ− 4πδ̄ρ. (6.8)

The graph of F (ρ) is illustrated in Fig. 4.
It is now clear that

inf
ρn

min
θn,rn

F2({ρn, θn, rn}) = 2 inf
ρ
F (ρ). (6.9)

We can minimize F (ρ) in the admissible interval of ρ ∈ (0, L−1
0 ). It is easy to check that for L0 > L̄0

and δ̄0 > 0 sufficiently small depending only on L0 the minimum of F (ρ) is attained at the point
ρ ∈ (0, L−1

0 ) satisfying

0 = F ′(ρ) = −8πρ

[
ln

(
ρ2

e1+2γ

4

)
+ 1

]
− δ̄π3

4
− 4πδ̄. (6.10)

After a little algebra, one can see that the solution of this equation in the interval (0, ρ0), where
ρ0 = L̄−1

0 , is given by (6.2). This concludes the proof.
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To summarize, we have demonstrated that the global energy minimizers of F2({ρn, θn, rn}) are
characterized by a certain symmetry that makes the in-plane components of the magnetization in (4.8)
anti-parallel. It is instructive to see what this assumption would lead to on the level of the original

energy in (4.2), before introducing the truncated BP ansatz. Setting (m⊥
1 ,m

∥
1) = (−m⊥

2 ,m
∥
2) = m,

we see that the energy Ē2 of the configuration {m1,m2} becomes Ē2({m1,m2}) = 2Ē±(m), where

Ē±(m) =

∫
R2

(
|∇m|2 + |m⊥|2 − δ̄m⊥ · ∇m∥

)
d2r − 2δ̄

∫
R2

∫
R2

(m∥(r)−m∥(r′))2

8π|r− r′|3
d2r d2r′. (6.11)

One can observe that for these configurations the volume-surface interactions act as an effective inter-
facial DMI term, favoring the Néel rotation of the magnetization with a particular rotation sense. At
the same time, the volume-surface and surface-surface interactions act constructively to stabilize the
skyrmion pair, while the penalizing volume-volume charge interaction is absent. The reason for the
stabilizing action of the volume-surface interaction may be seen from Fig. 5. For skyrmions with anti-
parallel in-plane magnetizations in the two layers and counter-clockwise rotation in the bottom layer
the volume-surface interaction energy is lower than that of all other possible skyrmion configurations
with anti-parallel in-plane magnetizations and the same out-of-plane component. Notice that the stray
field energy due to the volume-volume interactions may be forced to be zero by choosing the Bloch
rotation in both layers instead (not necessarily anti-parallel). However, in that case the DMI-like term
due to the volume-surface interaction does not contribute to the energy of the skyrmion pair, making
the Bloch rotation as compared to the Néel rotation with anti-parallel in-plane components of the
magnetization less favorable. Finally, notice that the configuration in Fig. 5(f) that corresponds to
the lowest energy is reminiscent of a flux closure structure in bulk ferromagnets.

To verify the predictions of our asymptotic analysis, we carried out a numerical study of skyrmion
profiles in stray field-coupled ferromagnetic bilayers, using MuMax3 software [34]. For the material
parameters, we chose those corresponding to a ferrimagnetic material such as GdCo with the material
parameters A = 20 pJ/m, Ms = 105A/m, Ku = 6700 J/m3 [11]. We consider two 5 nm-thick layers
of such a material with a non-magnetic separator of negligible thickness. These parameters give an
exchange length ℓex ≃ 56.4 nm and a small dimensionless layer thickness δ ≃ 0.089, justifying the use
of the reduced model appropriate for ultrathin films. The quality factor associated with the uniaxial
magnetocrystalline anisotropy isQ ≃ 1.066, giving the parameter δ̄ ≃ 0.344 characterizing the strength
of the stray field interaction that is also within the validity range of the asymptotic theory in δ̄ ≪ 1.
For this value of δ̄, the formula in (6.2) predicts ρ ≃ 0.0938, which corresponds to the dimensional
skyrmion radius of 20.5 nm. The resulting profiles obtained, using the minimize function of MuMax3
on a 2048× 2048× 2 grid with the in-plane discretization steps ∆x = ∆y = 0.5 nm, the out-of-plane
step equal to d = 5 nm and the number of repeats in (X,Y, Z) set to (5, 5, 0) to approximate the
periodic boundary conditions, are presented in Fig. 6. In a very good agreement with the theoretical
prediction, the obtained profiles consist of a pair of concentric Néel skyrmions that are very close
to the Belavin-Polyakov profiles with radius 20 nm obtained by fitting the numerical profiles to the
Belavin-Polyakov profiles.

We conclude our study by attempting to calculate the function F2({r1, r2}) from Theorem 1
that determines the interaction energy of two skyrmions in the adjacent layers of a bilayer. By the
translational and rotational symmetries of the problem this function depends only on r = |r1−r2| and
is obtained by minimizing the function F2({ρn, θn, rn}) in four parameters ρ1,2 and θ1,2. Nevertheless,
the problem is still intractable analytically, since no manageable closed form analytical expressions for
the functions Fvv(α, λ), Fss(α, λ) and Fvs(α, λ) are available for λ > 0 and general α > 0. It would
seem plausible, and is supported by the numerical evaluation of the energy at a few points of the
parameter space that the minimizers from Theorem 1 in the case of bilayers, N = 2, would exhibit a
symmetry for the skyrmion radius with respect to the layer position, which is also certainly true for
the global energy minimizers by Theorem 2. Thus, it is reasonable to conjecture that in a minimizer
from Theorem 1 at fixed r > 0 we have ρ1 = ρ2 = ρ, and thus F2({r1, r2}) = F sym

2 (r), where F sym
2 (r)
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Figure 5: An illustration of the stray field interactions between the volume and surface charges in a

bilayer for a skyrmion with anti-parallel in-plane magnetization components (i.e., with m
∥
1 = m

∥
2 and

m⊥
1 = −m⊥

2 ): (a,c,e) clockwise rotation in the bottom layer; (b,d,f) anti-clockwise rotation in the
bottom layer. The volume charge density ρvolm = −∇⊥ ·m⊥ in one layer is indicated in blue (negative)
and red (positive), and its associated magnetic field lines are shown by the lines with arrows going

from red to blue regions. Only the out-of-plane component m
∥
n of the magnetization in the other

layer that contributes to the volume-surface interaction is shown in (a-d), while the corresponding full
magnetization profiles are shown in (e,f). In (a,c), the out-of-plane magnetic moments of one layer
point agains the field lines from the other layer, resulting in a higher energy. In (b,d), the out-of-
plane magnetic moments of one layer point along the field lines from the other layer, resulting in a
lower energy. The total surface-surface interaction energies are identical in both cases, and the total
volume-volume interaction energy is asymptotically zero.
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Figure 6: Stray field-stabilized Néel skyrmion in an ultrathin ferromagnetic bilayer. (a) The out-of-

plane components m
∥
1,2 of the magnetization in the bottom and top layers, respectively, along the

horizontal line through the skyrmion center. (b) The in-plane components x̂ · m⊥
1,2 in the bottom

and top layers, respectively, along the horizontal line through the skyrmion center. (c) and (d) The
top view of the magnetization in the bottom and top layers, respectively. Results of the MuMax3
simulations on the 2048× 2048× 2 grid with the in-plane discretization steps ∆x = ∆y = 0.5 nm, the
out-of-plane discretization step ∆z equal to the single layer thickness d = 5 nm, and periodic boundary
conditions in the plane. The material parameters are A = 20 pJ/m, Ms = 105A/m, Ku = 6700 J/m3,
corresponding to a ferrimagnetic material, with a non-magnetic spacer of negligible thickness. In all
the panels, only a 400 nm × 400 nm region around the skyrmion center is shown. In (a) and (b), the
Néel Belavin-Polyakov profiles with radius 20 nm are also shown by thin red lines.
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Figure 7: Plot of − ln [−F sym
2 (ρ, r)] for δ̄ = 0.25. The choice of the function plotted helps to visualize

the part of the parameter space in which the energy is negative.

can now be calculated in closed form. Indeed, we have

Fvv(1, λ) =
32

3π2λ2 (λ2 + 4)3/2

[(
λ2
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4

)]
,

where, again, K(m) and E(m) are the complete elliptic integrals of the first and second kind, respec-
tively. Similarly

Fss(1, λ) = − 32

π2λ2 (λ2 + 4)3/2
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1
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√
λ2 + 4

4

)]
,

and

Fvs(1, λ) = 2

(
1

λ2 + 4
+

4 sinh−1
(
λ
2

)
λ (λ2 + 4)3/2

)
. (6.14)

With these expressions for Fvv(α, λ), Fss(α, λ) and Fvs(α, λ), we can proceed to minimize the en-
ergy in (6.1) with respect to the angles θ1,2 to obtain a closed form expression for F sym

2 (ρ, r) =
min
θ1,θ2

F2(ρ1, θ1, ρ2, θ2, r) with ρ1 = ρ2 = ρ. The plot of this function for a particular value of δ̄ is

presented in Fig. 7.
The function F sym

2 (ρ, r) can finally be minimized numerically for a given value of r > 0. The
results for a particular choice δ̄ = 0.25 are presented in Fig. 8, where the minimal energy, the optimal
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Figure 8: The result of the global numerical minimization of F sym
2 (ρ, r) in ρ for δ̄ = 0.25: (a) the

minimum energy F sym
2 (r); (b) zooming in on the minimum energy F sym

2 (r) to show the repulsion at
large separation distances; (c) optimal value of ρ as a function of r; (d) optimal value of cos θ1 as a
function of r.

value of ρ and the optimal value of cos θ1 = − cos θ2 > 0 (the latter is due to the fact that from
0 < Fvv(1, λ) < 1 for λ > 0 follows that the energy is a strictly convex function of cos θ1 and cos θ2)
are plotted. We observe that the minimum of the energy is indeed attained at r = 0, as it should be
by Theorem 2. As the value of r increases, the equilibrium radius ρ also slightly increases, while the
optimal angles remain those of the minimizer: θ1 = 0 and θ2 = −π, in Theorem 2. We note that as
can be seen from Fig. 7, the energy landscape in the (ρ, r) plane consists of a wide valley for not too
big values of ρ ∼ r and a narrow gorge providing an escape path to r → ∞ and corresponding to an
almost constant value of ρ and increasing values of r. At r ≫ 1 the latter corresponds to a pair of
non-interacting skyrmions in each layer.

When the value of r is increased from zero, at first the minimum is found in the wide valley, but
as the parameters push the energy towards the steep wall at a certain critical value of r (close to
0.054 for δ̄ = 0.25) the minimizer jumps into the gorge and continues to follow along it. Notice that
for this value of δ̄ the angles switch abruptly from those corresponding to the Néel skyrmions in a
global energy minimizer to |θ1,2| ≃ π

2 corresponding to a pair of Bloch skyrmions. Also notice that
the radius of the skyrmions in the gorge is an order of magnitude smaller than that of the global
minimizer, and the absolute value of its energy is two orders of magnitude lower, respectively. In sum,
the skyrmions remain of Néel type and exhibit a strongly attractive interaction within a certain range
of separation distances. Beyond that range they abruptly change their nature and behave as a pair of
weakly interacting Bloch skyrmions, and at large separations these skyrmions exhibit a weak repulsive
interaction dominated by the dipolar forces. The strongly nonlinear attractive interaction of a pair of
skyrmions at sufficiently short distances thus may provide an important stabilization mechanism that
is highly desirable for spintronic applications.
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A Appendix

In this section, we establish a few basic properties of the functions Fvv(α, λ), Fss(α, λ) and Fvs(α, λ)
necessary in proving our theorems. An impatient reader may quickly convince oneself about these facts
by simply plotting those functions evaluated numerically from their respective integral definitions.

Lemma 1. For α ∈ (0, 1), let Fvv(α, 0) and Fss(α, 0) be defined by (4.30) and (4.31), respectively.
Then 0 < Fvv(α, 0) < 1 and 0 < Fss(α, 0) < 1. Furthermore, for all α > 0 and λ ≥ 0

|Fvv(α, λ)| ≤ Fvv(α, 0), |Fss(α, λ)| ≤ Fss(α, 0), (A.1)

where Fvv(α, λ) and Fss(α, λ) are defined in (4.27) and (4.28), and Fvv(α, λ) and Fss(α, λ) are uniquely
maximized by (α, λ) = (1, 0), with maxFvv = maxFss = 1.

Proof. The statements about Fvv(α, λ) and Fss(α, λ) follow immediately from the first part of the
lemma, since from the definitions of Fvv(α, λ) and Fss(α, λ), and from the fact that |J0(λξ)| < 1 for
all λ > 0 and ξ > 0 we have |Fvv(α, λ)| < Fvv(α, 0) and |Fss(α, λ)| < Fss(α, 0) for all α > 0 and λ > 0,
together with the facts that Fvv(α, 0) = Fvv(α

−1, 0) and Fss(α, 0) = Fss(α
−1, 0).

We now prove that Fss(α, 0) attains its maximum only at α = 1. Since Fss(α, 0) = Fss(α
−1, 0)

and Fss(1, 0) = 1, we only need to investigate the interval of α ∈ (0, 1). Recalling the definition of
Fss(α, 0) and using the change of variables t = 1− α4 with t ∈ (0, 1), we note that

Fss((1− t)
1
4 , 0) =

16(1− t)
3
4

πt2
((2− t)K(t)− 2E(t)) . (A.2)

We now need to show that f(t) = Fss((1−t)
1
4 , 0) has a unique maximum at t = 0. We can differentiate

to obtain

f ′(t) = − 4

πt3(1− t)
1
4

(
(3t2 − 16t+ 16)K(t) + 8(t− 2)E(t)

)
. (A.3)

If we show that f1(t) = (3t2 − 16t+16)K(t) + 8(t− 2)E(t) > 0 on (0, 1) then it follows that f ′(t) < 0
on (0, 1), and hence the maximum of Fss(α, 0) is achieved at α = 1.

We note that f1(0) = 0 and

f ′
1(t) = − 3

2(1− t)

(
(3t2 − 11t+ 8)K(t) + (7t− 8)E(t)

)
. (A.4)

Hence we need to show that f2(t) = (3t2 − 11t + 8)K(t) + (7t − 8)E(t) < 0. Again, we note that
f2(0) = 0 and

f ′
2(t) =

9

2
(t− 2)K(t) + 9E(t). (A.5)

Hence we need to show that f3(t) =
9
2(t− 2)K(t) + 9E(t) < 0. We note that f3(0) = 0 and

f ′
3(t) = − 9

4(1− t)
(K(t)(t− 1) + E(t)). (A.6)

Finally, we need to show that f4(t) = K(t)(t− 1) + E(t) > 0. We note that f4(0) = 0 and

f ′
4(t) =

1

2
K(t) > 0. (A.7)

The result is proved.
We now prove that Fvv(α, 0) attains its maximum only at α = 1. Similarly, we consider only the

interval of α ∈ (0, 1). Recalling the definition of Fvv(α, 0) and using the change of variables t = 1−α4

with t ∈ (0, 1), we obtain

Fvv((1− t)
1
4 , 0) =

16(1− t)
1
4

3πt2
((2− t)E(t)− 2(1− t)K(t)) . (A.8)
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We now need to show that g(t) = Fvv((1− t)
1
4 , 0) has maximum at t = 0. We can differentiate to

obtain

g′(t) =
4

3πt3(1− t)
3
4

(
8(t2 − 3t+ 2)K(t)− (t2 − 16t+ 16)E(t)

)
. (A.9)

If we show that g1(t) = 8(t2 − 3t + 2)K(t) − (t2 − 16t + 16)E(t) < 0 on (0, 1) then it follows that
g′(t) < 0 on (0, 1), and, hence, the maximum of Fvv(α, 0) is achieved at α = 1.

Arguing as in the case of f(t), we note that g1(0) = 0 and

g′1(t) = −5

2
((8− 5t)K(t) + (t− 8)E(t)) . (A.10)

We now need to show that g2(t) = − ((8− 5t)K(t) + (t− 8)E(t)) < 0. Again, we note that g2(0) = 0
and

g′2(t) = − 3

2(t− 1)
(2(1− t)K(t) + (t− 2)E(t)) . (A.11)

Hence, we now need to show that g3(t) = − (2(1− t)K(t) + (t− 2)E(t)) > 0. We note that g3(0) = 0
and

g′3(t) =
3

2
(K(t)− E(t)) > 0. (A.12)

The result is proved.

Lemma 2. For α > 0, let Fvs(α, 0) be defined by (4.32). Then 0 < Fvs(α, 0) ≤ 2, and for all λ ≥ 0

|Fvs(α, λ)| ≤ Fvs(α, 0), (A.13)

where the function Fvs(α, λ) is defined in (4.29). Furthermore,

|Fvs(α, λ)|+ |Fvs(α
−1, λ)| ≤ 2, (A.14)

with equality achieved only at (α, λ) = (1, 0).

Proof. As in the case with Fvv(α, λ) and Fss(α, λ), the statements about Fvs(α, λ) follow, once we
demonstrate the desired properties of Fvs(α, 0), since by the same argument |Fvs(α, λ)| ≤ Fvs(α, 0).
From the definition of the latter, it is clear that the function Fvs(α, 0) is positive and continuous for
all α > 0, including at α = 1, since limα→1 Fvs(α, 0) = 1. Therefore, since Fvs(α, 0) → 0 as α → 0 or
α → ∞, the function Fvs(α, 0) is uniformly bounded.

To show the inequality in (A.14), we observe that

Fvs(α, 0) + Fvs(α
−1, 0) =

2α
(
α2 − 1

) (
α4 + 4α2 lnα− 1

)
(α4 − 1)2

= sechω(1 + ω sechω cschω), (A.15)

where ω = lnα, which is manifestly maximized at ω = 0 among all ω ∈ R. Finally, the upper bound
on Fvs(α, 0) follows directly from (A.14).
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