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Abstract

The complexity and nonlinear dynamics of patterning networks in development make modeling an important approach
for the evaluation of the experimentally derived pattern formation mechanisms. As a rule, mechanistic models of patterning
networks have large number of uncertain parameters; model analysis requires extensive computational searches of the param-
eter space. Analytical techniques can circumvent these difficulties and offer important insights into the networks’ functional
capabilities. Here, we present an asymptotic analysis of the multiple steady states and transitions between them in a mech-
anistic model of patterning events specifying the formation of a pair organ inDrosophila oogenesis. The model describes
the interaction between the spatially nonuniform inductive signal and a network of spatially distributed feedback loops. Our
approach dramatically reduces the complexity of the problem and provides an explicit analytical method for the construction
and parametric analysis of the patterned states responsible for signaling. The analysis reveals a skeleton structure for the
patterning capability of the considered regulatory module and demonstrates how a single regulatory network can be used to
generate a variety of developmental patterns.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The development of multicellular organisms is guided by a surprisingly small number of evolutionary conserved
regulatory networks[1–3]. It is now becoming apparent that developmental instructions in different species and in
different developmental contexts are executed by a set of subroutines, each with a particular developmental function.
These subroutines are operated by biomolecular regulatory networks that involve gene expression in individual cells
and are integrated by the processes of cell–cell communication. Understanding the functional capabilities of these
networks is therefore impossible without studying spatio-temporal dynamics of the underlying signaling patterns.
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In systems well characterized by genetics and biochemistry, regulatory mechanisms can be systematically explored
via mechanistic modeling and computational analysis (see, for example,[4–7]). Generally, such modeling leads
to complicated systems of nonlinear partial differential equations. To gain basic understanding of the underlying
patterning mechanisms and predict possible outcomes of genetic manipulations one needs to study, among other
things, existence and multiplicity of the stable steady solutions of these equations. These studies are computationally
challenging, especially in the face of a large number of the control parameters. Computational analysis is necessarily
limited to particular choices of nonlinearities, parameter sets, etc. Furthermore, interpreting its results may often
be difficult because of the presence of “pathological” solutions. In this sense distinguishing the classes of solutions
that can berobustly realized in a large family of models with certain general properties, as well as the origin of their
robustness, is a problem that may lie beyond mere computational studies. This is why direct analytical methods for
characterizing these solutions are highly desirable.

An important group of cell communication mechanisms relies on regulated release of peptide growth factors
[3]. After their release in the extracellular medium, these molecules diffuse to the neighboring cells and activate
the cognate receptors on the cell surfaces. The range of signals mediated by secreted growth factors is from 1
to ∼10 cells[3,8]. Recent studies inDrosophila have identified a network of growth factors with a rich pattern
formation capability. This network includes the epidermal growth factor receptor (EGFR); signaling through EGFR
can activate expression and/or release of its stimulatory and inhibitory ligands, thus forming positive and negative
feedback loops[9].

This network is used at many stages of theDrosophila development[9,10]. In oogenesis, it has been proposed
to convert the spatially simple, single-peaked signal, into a more complex, two-peaked pattern of signaling activity
[11,12]. Specifically, the layer of identical epithelial cells is locally stimulated by an EGFR ligand. This primary
signal is then amplified and expanded by the positive feedback loop that involves the release of a diffusing stimulatory
ligand. During this process, an inhibitory ligand is produced, splitting the pattern into two smaller domains of high
signaling (for a summary of the signaling network and the identification of the concrete molecular components, see
Fig. 1). The resulting pattern with two domains of high receptor activity serves as a blueprint for the development
of a pair organ (dorsal appendages)[13,14].

Interestingly, in other stages ofDrosophila development the same patterning network generates only single domain
signaling patterns from localized inputs[15–17]. A question then arises as to whether the same regulatory network
can account for different responses to inductive signals in different developmental contexts. In particular, would
extra molecular components be required for establishing different types of signaling patterns (for a discussion, see
[11])? To answer these questions, one needs a deeper understanding of the functional capabilities of the regulatory
mechanisms involved.

To this end, we take on an analytical approach to the study of signaling patterns in the mechanistic model of a
regulatory network inDrosophila oogenesis. We perform an asymptotic analysis of the stationary signaling profiles
in the model to obtain an analytical characterization of the solutions. Our approach captures the properties of the
signaling patterns and allows to investigate their robustness. More importantly, it reveals the core subset of the
stationary solutions and demonstrates that their existence and properties do not depend on the details of the model.
Our analysis shows that different types of patterns can be obtained in the network of the same topology by varying
only a few control parameters.

2. Model

A mathematical model based on the mechanism of EGFR signaling mediated by positive and negative autocrine
feedback loops[11] takes the following form[18]:
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Fig. 1. Network connectivity and signaling by autocrine loops in the follicular epithelium inDrosophila oogenesis. The oocyte locally secretes
a stimulatory ligand Gurken that binds to EGFRs on the surface of follicle cells (FCs). EGFR activation in the FC initiates expression of the
genesrhomboid andargos. The corresponding protein product Argos is secreted into the narrow gap between the FC and the oocyte, where it
diffuses around and binds to EGFRs, inhibiting their activity. Protein Rhomboid is an intracellular protease that processes an inactive intracellular
precursor of Spitz into the biologically active, secreted form. After it is secreted, Spitz diffuses and can then bind to and activate EGFRs on the
surfaces of Spits-producing cells and their neighbors.
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E = S − αA + βG. (4)

HereS is the concentration of the stimulatory ligand (the active form of Spitz),G the concentration of the stimulatory
signal (Gurken),A the concentration of the inhibitory ligand (Argos), all three in the extracellular space;R the
intracellular concentration of the ligand-processing protein (Rhomboid);E the concentration of the activated EGFRs
in the FC membranes (Fig. 1); x the coordinate along the circumference of the egg andt the time. The distribution of
G serves as a localized inductive signal whose amplitude is ramped up from zero to a steady level at long times. The
model involves various rate constants (k’s,D’s,g’s) as well as the sigmoidal nonlinearityσ(x)which is characterized
by offsets and steepnesses (γ ’s andδ’s, respectively). The level of EGFR activationE is positively stimulated byS
andG and is negatively stimulated byA, characterized by constantsα andβ [18].

Within the framework of the model, the outcome of the patterning events is identified with the stable steady state of
the network attained after the transient following the switching on of the inductive signal. Computational analysis of
Eqs. (1)–(4)shows that the model can robustly generate complex signaling patterns from simple spatially distributed
inductive signals[18,19]. Numerical bifurcation studies of the stationary solutions reveal multiple coexisting steady
states, whose existence and selection as a function of the control parameters can be correlated with the observed
eggshell phenotypes and is in agreement with the large amount of genetic and biochemical data[13].
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3. Asymptotic reduction

Below we develop an asymptotic procedure for analyzing the stationary solutions ofEqs. (1)–(4)in the limit of
strong length scale separation between the positive and negative feedback loops. After an appropriate dimensional
reduction[18], Eqs. (1)–(4)can be written as

τs
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∂t
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− s + r, (5)
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−x2

x2
0
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, σ(x) = x2θ(x)

1 + x2
, (8)

wheres, a, r, gare the dimensionless concentrations andθ(x) is the Heaviside function. For concreteness we assumed
a particular form of the dependence ofg onx and a particular form of the sigmoidal functionσ(x). Functionally,s is
a short-rangedmessenger, r is an autocrineswitch, a is the long-rangedinhibitor, andg is the localized stimulating
inductive signal[18]. Since the experimentally observed patterns are highly localized[20,21], the no flux boundary
conditions forEqs. (5) and (6)can be pushed off to infinity.

Thus, the qualitative properties of the solutions are determined by a number of dimensionless parameters:cr,a are
the dimensionless offsets andbr,a are the dimensionless steepnesses of the sigmoidal functions in the production of
r anda, respectively;λ is the relative strength of the negative feedback;g0(t) andx0 characterize the amplitude and
width of the time-dependent inductive signal;τs,a are the time scales ofs anda relative to that ofr, andε is the ratio
of the length scales ofs anda. The available biochemical information suggests that the latter is a small parameter:
ε � 0.1, whilex0 � 3 [11,20,22]. We will take advantage of this fact and construct the solutions ofEqs. (5)–(7)in
the limit ε → 0. We are also going to make another simplifying assumption supported by the experiments that the
response ofa to the activation of EGFR is characterized by a sharp threshold higher than that ofr [11,17,21,23].
In the model, this translates to taking the limitba → 0, thus replacing the sigmoidal function inEq. (6)with the
Heaviside step, and assuming thatca > cr.

Numerical simulations ofEqs. (5)–(8)show that for sufficiently slowly varying signal amplitudesg0(t) the
dynamics are governed by a series of abrupt transitions between different types of quasistationary signaling patterns
[18]. To illustrate this, we show a simulation in whichg0(t) is slowly ramped up from zero to a certain level and
then decreased back to zero in the same fashion (Fig. 2). One can see a sequence of transitions from no signaling (0
pulses)→ 1 narrow pulse→ 2 pulses→ 1 broad pulse wheng0 is increased. Similarly, upon decreasingg0 the one
broad pulse solution transforms into two pulses, which then disappear at a critically low level of inductive signal.
Note the hysteretic character of the transitions.

4. The nature of large-amplitude patterns in the model

For similar systems of reaction–diffusion equations without any inductive signals it is well established that for
ε � 1 stable large-amplitude stationary solutions have the form of domains separated by narrow domain walls (see,
for example,[24–27]). This is also what we see as outcomes of the transitions triggered by the adiabatic variation
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Fig. 2. A sequence of transitions and the hysteresis by slowly varying inductive signal. The snapshots of the distributions ofs at differ-
ent times are shown on the left. The color-coded space–time plot of the distribution ofs is shown in the center, with “red” corresponding
to s � 1 and “blue” corresponding tos � 0. Results of the numerical solutions ofEqs. (5)–(8)with ε = 0.05, λ = 1.6, ca = 0.5,
ba = 0.05, cr = 0.4, br = 0.2, x0 = 3, τs = 0.1, τa = 1. The signal amplitude is taken to beg0(t) = 1.6 × t/2500 for 0 ≤ t ≤ 2500
andg0(t) = 1.6 × (2 − t/2500) for 2500≤ t ≤ 5000 (right).

of the inductive signal (seeFig. 2). Therefore, in the following we will be looking for the solutions of this type.
In the limit ε → 0 these stationary solutions break up into the inner and outer solutions, which vary on the length
scales ofε and 1, respectively (see also[24–30]). Let us introduce a slowly varying quantity

v(x) = a(x) − g(x) + cr. (9)

Then, on the inner scale we can assume thatv(x) � v0 = const, so the stationaryequations (5) and (7)for the inner
solution become

0 = ε2sxx + f(s, v0), f(s, v0) = −s + σ

{
s − v0

br

}
. (10)

It is easy to see that for small enoughbr (br < 0.6086 for our choice ofσ) the nonlinearityf(s) is N-shaped, so
equationf(s, v0) = 0 has three roots:s−(v0) < s0(v0) < s+(v0), whenevervmin < v0 < vmax. Furthermore, when
v0 satisfies∫ s+(v0)

s−(v0)

f(s, v0)ds = 0. (11)

Eq. (10)has solutions in the form of the domain wall connectings−(v0) with s+(v0) [24–26,29,30]. The quantities
above can be easily calculated numerically for any fixed value ofbr. For example, forbr = 0.2, we find that
v0 � 0.2398,vmax � 0.4042 andvmin � −0.0101.

On the outer scale the derivative term inEq. (5)can be neglected, sos obeys the local coupling relations = s±(v),
wheres+(v) ands−(v) are the smallest and the largest roots of equationf(s, v) = 0 corresponding to the “on” and
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“off” states of the positive feedback, respectively, withs+(v) defined forv ≤ vmax ands−(v) defined forv ≥ vmin.
Furthermore, forca not much larger thancr andba → 0 the distribution ofa satisfiesEq. (6), in which the sigmoidal
function is replaced by the characteristic function of the “on” state. If theith “on” domain, which we will call a
pulse, is characterized by the position of its centerri and widthwi, then it is not difficult to show that the solution
of Eq. (6)inside theith pulse is

a(x) = λ


∑

i
=j

sinh
wj

2
e−|x−rj | + 1 − e−wi/2 cosh(x − ri)


 , (12)

while outside all the pulses it is given by

a(x) = λ
∑
j

sinh
wj

2
e−|x−rj |. (13)

Matching the outer and inner solutions at the boundaries of the pulses, we obtain the self-consistency condition

v(ri ± 1
2wi) = v0. (14)

This equation, together withEq. (12), determines the positions and widths of each pulse in a stationary pattern with
an arbitrary number of pulses. Note that the sigmoidal nonlinearity in the positive feedback now enters the problem
only through the values ofv0, vmin andvmax.

4.1. State of no signaling

When the system is in the “off” state, we havea = 0, so fromEq. (9)we see that such a solution exists as long as
v = −g(x)+ cr ≥ vmin. If the value ofg0 is increased, the first point at which this condition is violated isx = 0, so
wheng0 = g

(0→1)
0 = cr − vmin, the all “off” solution disappears. Dynamically, this corresponds to switching of the

positive feedback on atx = 0 and leads to a transition from zero to one pulse (“ignition”) (Fig. 2). Let us point out
that in our model a Turing-like instability is never realized even for very broad inductive signals, since the positive
feedback is switched on at the level of EGFR activity at which the diffusive inhibitor is not produced. Therefore,
in our model signaling patterns can develop only through a series of abrupt transitions between large-amplitude
localized patterns. See[18] for more discussion of the distinctions with the classical activator–inhibitor mechanism
[24,31–33]. Let us emphasize that in our model pattern formation is governed by the interplay between long-range
inhibition and stimulation by a strongly inductive signal.

4.2. Single pulse solution

Most of the properties of the signaling patterns forming in the model can be inferred from the analysis of the
simplest inhomogeneous pattern: a single pulse. These patterns, also calledautosolitons, play a fundamental role
in systems with competing positive and negative feedbacks[24].

Since for a single pulse the functiona(x) given byEq. (12)is symmetric relative to its center,Eq. (14)can only
be satisfied whenr1 = 0. Substituting this intoEqs. (9), (12) and (14), after a simple calculation we obtain that the
pulse of widthw1 exists wheng0 = g

(1)
0 , where

g
(1)
0 = (1

2λ(1 − e−w1) + cr − v0)ew
2
1/4x2

0. (15)

By inspection, this is a monotonically increasing function ofw1, so for each large enough value ofg0 there is a
unique one pulse solution. An example of such a solution is shown inFig. 3(a).
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Fig. 3. Asymptotic one and two pulse solutions (only half of the solution is shown). The parameters are:br = 0.2, cr = 0.4, λ = 1.6, g0 =
0.7, x0 = 3.

In the model, the value ofcr is chosen to be greater thanv0, so that the one pulse solutions do not exist in the
absence of the inductive signal, consistent with the experimental data[34]. Therefore, sincew1 > 0, we must have
g0 > g

(1→0)
0 = cr − v0 for the solution to exist. Dynamically, the one pulse solution collapses wheng0 is slowly

decreased belowg(1→0)
0 (“extinction”) [18]. Thus, forg(1→0)

0 ≤ g0 ≤ g
(0→1)
0 there is coexistence of zero and one

pulse solutions.
The regions of existence of the one pulse solutions are limited by the possibility of thelocal breakdown in the

center or the tails of the pulse (for general reaction–diffusion systems see, for example,[24,35–40]). In our model
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the local breakdown will occur in the center of the pulse when the value ofv reachesvmax at x = 0 (seeFig. 3),
making the value ofs jump down to the lower branch of the local coupling curves±(v). UsingEq. (12)to calculate
v(0) and combining it withEq. (15), after a simple calculation we obtain that the local breakdown in the pulse center
occurs whenx0 > x

(1→2)
0 , with

x
(1→2)
0 = w1

2
ln −1/2

[
λ(1 − e−w1/2) + cr − vmax

(λ/2)(1 − e−w1) + cr − v0

]
. (16)

This equation, together withEq. (15), determines parametrically the boundary of existence of the one pulse solution
due to the local breakdown in the center. Dynamically, upon crossing this boundary the positive feedback switches
off in the center of the pulse, so one pulse solution splits into two pulses (Fig. 2).

Alternatively, the value ofv can reachvmin somewhere outside the pulse (seeFig. 3). This will occur first at
the pointx at whichv reaches a minimum, so, usingEq. (13)to calculatev, we obtain a system of transcendental
equations:

vmin = λ sinh 1
2(w1)e−x − g0 e−x2/x2

0 + cr, (17)

0 = −λ sinh
w1

2
e−x + 2g0x

x2
0

e−x2/x2
0. (18)

These equations, together withEq. (15), are solved numerically to find the value ofx0 = x
(1→3)
0 as a function ofg0

at which the one pulse solution disappears. Once again, dynamically this results in the ignition of a pair of pulses
in the tails of the one pulse solution and thus leads to a transition from one to three pulses[18,19].

4.3. Two pulse solution

Let us now consider a symmetric (r2 = −r1, w2 = w1) two pulse solution which corresponds to the established
signaling pattern in the wild type phenotype[11]. A long but straightforward calculation fromEqs. (12) and (14)
shows that a solution with the given values ofr1 andw1 exists wheng0 = g

(2)
0 andx0 = x

(2)
0 , where

x
(2)
0 =

√
2r1w1

ln 1/2((cr − v0 + (λ/2)(1 − e−w1)(1 + ew1−2r1))/(cr − v0 + (λ/2)(1 − e−w1)(1 + e−2r1)))
, (19)

g
(2)
0 =

(
cr − v0 + (λ/2)(1 − e−w1)(1 + ew1−2r1)

cr − v0 + (λ/2)(1 − e−w1)(1 + e−2r1)

)(2r1−w1)
2/8w1r1 (

cr − v0 + λ

2
(1 + ew1−2r1)(1 − e−w1)

)
.

(20)

In general, existence and multiplicity of the two pulse solutions can be studied graphically by looking at the level
sets generated by these equations. We find that for a wide range of the parameters there is a unique symmetric two
pulse solution for a given inductive signal. An example of such a solution is shown inFig. 3(b).

Eqs. (19) and (20)allow to determine two boundaries of existence for the two pulse solutions in the parameter
space. One corresponds to disappearance of solutions as bothr1 andw1 go to 0. According to these equations, this
can happen for anyx0, wheng0 approachesg(2→0)

0 = g
(1→0)
0 = cr − v0. The other comes from the geometric

constraint thatr1 > w1/2, crossing this boundary corresponds to merging of pulses into a single broad pulse (Fig. 2).
Substitutingr1 = w1/2 intoEq. (19), we find the value ofx0 = x

(2→1)
0 at which the two pulse solution disappears:

x
(2→1)
0 = w1 ln −1/2

[
cr − v0 + λ(1 − e−w1)

cr − v0 + (1/2)λ(1 − e−2w1)

]
. (21)



C.B. Muratov, S.Y. Shvartsman / Physica D 186 (2003) 93–108 101

It is also possible to study boundaries of existence of the two pulse solutions associated with the local breakdown
and ignition in the tails in the way similar to that for a single pulse.

4.4. More complex solutions

In a similar manner, it is possible to construct and analyze more complex patterns consisting of more than two
pulses. For a given set of the model parameters, one can solveEq. (14)for ri andwi numerically.Fig. 4(a) and (b)
show the solutions with three and four pulses for a particular set of parameters. Numerical analysis shows that the
three and four pulse solutions exist in a wide range of the parameters and are a robust feature of the considered
regulatory network. Moreover, they cancoexist with the two pulse solution and are therefore potential candidates for
the time-asymptotic patterns established by the inductive signal. Therefore, in the wild type (which is characterized
by a two-pulse signaling pattern) the network must be tuned to avoid reaching these states.

In addition to these patterns, we found the existence of asymmetric two pulse solutions. An example of such a
pattern is shown inFig. 4(c). Furthermore, we found that the asymmetric solution bifurcates from a symmetric two
pulse solution via a pitchfork bifurcation. Dynamically, this means that a symmetric two pulse solution undergoes
a repumping instability [24] resulting in a transformation of a symmetric two pulse solution to the asymmetric one.

The value ofg(2→2′)
0 at which this happens can be obtained by linearizingequation (14)around the symmetric two

pulse solution and requiring that this linearization contains a zero eigenvalue. A straightforward calculation shows
that this requirement leads to the following equation:

det




g0(2r1 − w1)

x2
0

e−(2r1−w1)
2/4x2

0 + λ

2
(e−2r1 − e−w1) −λ

2
(e−w1 − e−2r1)

−λ

2
(e−w1 − e−2r1) −g0(2r1 + w1)

x2
0

e−(2r1+w1)
2/4x2

0 + λ

2
(e−2r1 − e−w1)


 = 0, (22)

whereg0 andx0 are given byEqs. (19) and (20). This equation is solved numerically to obtain the values ofg
(2→2′)
0

parametrically.
Numerical solution ofEqs. (5) and (6)shows that the symmetric two pulse solution becomes unstable when

g0 > g
(2→2′)
0 . Note, however, that according to the simulations this instability may develop on the time scales much

longer than the time scale for pulse splitting, which may be beyond the time scale of the validity of the model.
Nevertheless, from the symmetry considerations such an instability must be a generic feature of systems stimulated
by simple symmetric inductive signals and must therefore be considered as a potential outcome of the signaling
activity. This, in turn, implies a possibility of existence of a phenotype with an asymmetric pair (one thin and one
thick) of dorsal appendages.

5. Multiparametric analysis

The analytical expressions for the boundaries of existence of different types of stationary solutions obtained
above can be easily used to perform multiparametric studies inall of the parameters involved in the asymptotic
formulation. Let us, for example, show a two-parameter “cut” through the parameter space, corresponding to the
fixed network parameters (Fig. 5). This diagram shows regions of existence of zero, one, and symmetric two pulse
solutions as functions of the inductive signal, and transitions between them. In this figure, we also showed the
boundaries of existence of one and two pulse solutions associated with more complex transitions. Note that in this
diagram we did not show the regions of existence of the more complex solutions which coexist with the zero, one,
and symmetric two pulse solutions.
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The diagram inFig. 5can be conveniently used to quantify signaling patterns for different network parameters.
We find that variations in the thresholdcr or steepnessbr of the positive feedback, or the strength of negative
feedbackλ do not change significantly the structure ofFig. 5, they basically stretch or shift it around in theg0–x0

plane. This demonstrates robustness of the considered patterning network with respect to variations of the network

Fig. 4. Asymptotic solutions in the form of complex signaling patterns. The parameters are as inFig. 3, except:x0 = 4, g0 = 1 in (a) and (b),
x0 = 2.75, g0 = 1.2 in (c).
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Fig. 4. (Continued ).

parameters. On the other hand, we found that the structure of the diagram inFig. 5is strongly affected by theshape
of the sigmoidal nonlinearityσ, expressed in the relationship betweenvmin, v0, andvmax. Changing the location of
v0 relative tovmax andvmin results in the relative motion of the 1→ 2 and the 1→ 3 transition curves. It turns out
that in order for the transition 1→ 2 to occur before the 1→ 3 transition, the value ofv0 must be shifted closer to

Fig. 5. Multiple steady states and transitions between them as functions of the inductive signal’s width and amplitude. The network parameters
are:br = 0.2, cr = 0.4, λ = 1.6.
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Fig. 6. (a) The sequence of transitions upon the adiabatic variation of the inductive signal’s amplitude. (b)–(d) One parameter bifurcation cuts showing the value ofs in the center of
the system in the stationary solutions of the full model and transitions between them [Eqs. (5)–(8)]. The parameters are as inFig. 2, exceptε = 0.15 (b),ε = 0.1 (b), andε = 0.05
(d).N in (a) is the number of pulses; numbers in (b)–(d) indicate different stationary solutions with the corresponding number of peaks, solid lines show stable, and dashed lines show
unstable solutions.
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vmax. This requires a substantial degree of asymmetry between the “on” and “off” states of the positive feedback
loop. Note that such an insight must be very difficult to obtain in merely computational studies.

Let us summarize the results of our asymptotic analysis of the stationary signaling patterns (seeFig. 5). First,
there are large regions of the parameter space where the inhomogeneous patterns including those consisting of one
and two pulsesexist. Second, the regions of existence of different types of stationary patterns overlap, so for certain
values of the parameters different patterns maycoexist. Third, crossing the boundaries of existence of a pattern
results in an abrupttransition to a different kind of pattern; these transitions will govern selection of the outcome.
Thus, the formation of a two-peaked signaling pattern inDrosophila oogenesis may be viewed as a sequence of
transitions from zero to one to two pulses driven by a slow increase of the inductive signal’s amplitude as the egg
develops,Fig. 6(a).

For comparison, let us examine the one-parameter bifurcation cuts together with transitions between the qua-
sistationary patterns obtained computationally for the same network and inductive signal parameters, but different
values ofε. At ε = 0.05 the diagram inFig. 6(d) essentially coincides with the asymptotics [Fig. 6(a)]. When the
value ofε is increased [Fig. 6(c) and (b)], the overall structure of the transitions remains; however, a number of
deviations may be observed. First, for small values ofg0 the amplitude of the one pulse solution becomes very
small, down to 10% at the threshold. Second, the transition between two pulse solution and the one broad pulse
solution splits into a sequence of two transitions, with a new two pulse solution appearing in a very narrow region
of the parameters. This solution has two peaks, however, the level of signaling remains relatively high in the center
of the pattern. Let us emphasize that at the present level of modeling these solutions cannot be reliably identified
with the underlying signaling patterns inDrosophila oogenesis and may be artifacts of the model.

Finally, our analysis indicates that there exists a large region in the parameter space in which two pulse solutions
exist while single pulse solutions do not (seeFig. 5). This feature of the asymptotic limit persists in the full model
[18]. In this region a simple one-peaked inductive signal must necessarily result in complex spatial response. We
believe that this is a robust feature of the considered patterning mechanism and is at the heart of the induction of a
pair organ by a simple single-peaked input.

6. Discussion

In conclusion, we have performed an asymptotic analysis of the large-amplitude solutions in a mathematical
model of a spatially distributed patterning network inDrosophila oogenesis. Our method allows a very efficient
way of constructing strongly nonlinear solutions, characterizing the domains of their existence, and interpreting
the dynamics of the patterns. Furthermore, it reveals the core subset of the stationary solutions which provide the
skeleton structure for the considered patterning mechanism. We have verified that the obtained solutions are in fact
good approximations for the solutions of the full model. Moreover, our approach can guide computational studies
of patterning mechanisms by quickly identifying the parameter regions of interest and then focusing on them in the
large-scale computational analysis.

The fact that the one pulse solutions cease to exist for a wide range of single-peaked inductive signals is a striking
result. It means that in this range single-peaked signals will always be converted into complex patterns. Let us
emphasize that signaling patterns in development are biological blueprints, so this patterning capability might be
employed in the mechanisms leading to complex tissue morphologies in a number of developmental contexts[2,11].
We emphasize that crucial for understanding the functional capabilities of the regulatory networks in development
is the question of pattern selection. Our analysis provides a first step in that direction.

The existence of multiple steady states of the signaling network suggests versatility of the considered patterning
mechanism. Hence, the irreversible commitment mechanism does not have to be invoked in order to explain why
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inhibition by Argos generates single-domain signaling patterns in other stages of fruit fly development (compare
with [11]). Furthermore, the mechanism robustly predicts the existence of patterns with more than two domains
of high signaling, suggesting a possibility of more complex eggshell phenotypes. Such phenotypes can indeed be
generated by genetic manipulations of the patterning network[41,42]. They are also observed in the wild type
phenotypes of the related fly species[20,43].

Our results also indicate that the peak-splitting network is plastic, i.e. it can form a wide range of patterns
in response to the quantitative variations of the single-peaked input. An interesting prediction of our analysis is
related to the emergence of complex (three- and four-peaked) patterns by strong and broad inductive signals. Since
the number of peaks in the pattern corresponds to the number of dorsal appendages, this predicts eggshells with
three and four appendages. Recently, we have started a genetic experiment aimed at testing this prediction[44].
Our preliminary results are encouraging: we have indeed observed that strong and broad inputs can induce novel
morphologies with well-formed additional appendages inDrosophila melanogaster.

Our method provides a direct way of assessing robustness of the patterning mechanism by giving explicit analytical
criteria for the existence of the stationary solutions. Moreover, it allows reformulation of the problem of existence
in terms of the parameters of the solutions (for example, the width of the pulses and the distance between them for
the two pulse solution) rather than in terms of the control parameters. Thus, it allows to solve the inverse problem
of finding appropriate parameter ranges and nonlinearities in order for a specified type of a signaling pattern to be
realized.

Our asymptotic technique allows a number of natural extensions. It is possible to generalize our analysis to
higher-dimensional stationary patterns in the presence of multiple inhomogeneous inductive signals. There is a
number of experimental and computational indications that this extension is necessary and relevant to the real
patterning module[12,18,19]. In another direction, the analysis of the stationary patterns can be generalized to
patterns in the form of moving pulses (for similar approaches, see[38,45–49]). In this description, pulses will be
created or destroyed as a result of the local breakdown. This hybrid kinematic description will allow to assess
stability and selection of the outcomes of patterning events and may provide a way to probe the optimal dynamical
strategies for inductive signal design necessary for selecting a particular pattern out of the multitude of possible
ones.
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