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Some aspects of pattern formation in developing embryos can be
described by nonlinear reaction–diffusion equations. An important
class of these models accounts for diffusion and degradation of a
locally produced single chemical species. At long times, solutions of
such models approach a steady state in which the concentration
decays with distance from the source of production. We present
analytical results that characterize the dynamics of this process
and are in quantitative agreement with numerical solutions of
the underlying nonlinear equations. The derived results provide
an explicit connection between the parameters of the problem and
the time needed to reach a steady state value at a given position.
Our approach can be used for the quantitative analysis of tissue
patterning by morphogen gradients, a subject of active research
in biophysics and developmental biology.

robustness ∣ tissue regulation ∣ concentration gradient

The formation of tissues and organs in a developing organism
depends on spatiotemporal control of cell differentiation.

This critical function can be provided by the concentration fields
of molecules that act as dose-dependent regulators of gene
expression, Fig. 1A (1). The idea that spatially distributed che-
mical signals can regulate developing tissues is more than
100 years old, but it was most clearly articulated in the 1969
paper by Wolpert (2, 3). Following his work, molecules acting
as spatial regulators of development are referred to as morpho-
gens and their distributions in tissues are called morphogen
gradients. Morphogens remained a largely theoretical concept
until the late 1980s, when morphogen gradients were visualized
in the fruit fly embryo (4–7). At this point, morphogen gradients
are recognized as essential regulators of embryonic development
(8–11).

Morphogen gradients can form by reaction-diffusion mechan-
isms, the simplest of which is the so-called source–sink mechan-
ism, whereby a locally produced molecule is degraded as it
diffuses through the tissue (12–15). The source–sink model has
been used to explain gradient formation in multiple developmen-
tal contexts, including the vertebrate neural tube, the embryonic
precursor of the central nervous system. Neural tube is patterned
by the gradient of locally produced extracellular protein Sonic
hedgehog (Shh), which binds to cell surface receptors that both
mediate cellular responses to Shh and regulate the range of its
diffusion, Fig. 1B (16–18). Cells at different positions in the tube
sense different levels of Shh, express different genes, and give rise
to different neurons (19).

Although genetic and biochemical studies of morphogen
gradients are very advanced, quantitative characteristics of mor-
phogen gradients are relatively unexplored. In particular, the
dynamics of morphogen gradients has been studied only in a
handful of experimental systems and mathematical models (13,
20–31). This motivates our work, in which we present analytical
results for the dynamics in reaction–diffusion equations based on
the source–sink mechanism.

We consider a semiinfinite one-dimensional “tissue” (x > 0), in
which a morphogen is produced at a constant rate Q at the
boundary (x ¼ 0), diffuses with diffusivity D, and is degraded
according to some rate law. Production starts at time t ¼ 0,

when the morphogen concentration, denoted by Cðx;tÞ, is zero
throughout the system. The time evolution of Cðx;tÞ thus satisfies

A

B

Fig. 1. A schematic picture of a one-dimensional morphogen gradient.
(A) A secreted signal (blue) is produced from a localized source (S) and
spreads through the tissue to establish a gradient. Cells respond to different
concentrations of the signal by regulating different sets of genes (red,
orange, and yellow). This induces distinct cell fates (A–C) at different dis-
tances from S. (B) Shh protein (brown) is produced from the notochord
(n) and floor plate at the ventral midline of the neural tube. Shh spreads dor-
sally establishing a gradient that controls the generation of distinct neuronal
subtypes [interneurons (V0–V3) and motor neurons (MN)]. In vitro, different
concentrations of Shh are sufficient to induce the distinct neuronal subtypes.
The concentration of Shh necessary to induce a specific subtype corresponds
to its distance to the source in vivo. [Reproduced with permission from ref. 16
(Copyright 2009, Macmillan Publishers Ltd).]
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∂C
∂t

¼ D
∂2C
∂x2

− kðCÞC; Cðx;t ¼ 0Þ ¼ 0; [1]

−D
∂C
∂x

!!!!
x¼0

¼ Q; Cðx ¼ ∞;tÞ ¼ 0; [2]

where kðCÞ > 0 is the pseudo first-order rate constant of the
degradation process.

The solution of the initial boundary value problem in Eqs. 1
and 2 approaches the steady state, denoted by CsðxÞ, as t → ∞,
which commonly forms the basis for analyzing the experimentally
observed morphogen gradients. At the same time, the extent to
which experimentally observed gradients can be interpreted as
the steady states of the underlying reaction–diffusion process
is currently unclear (23, 32).

Following the classical paper by Crick (33), we address this
question by estimating the time scale on which the concentration
at a particular position x approaches its steady state value CsðxÞ.
If the cells at this position have to respond to the morphogen by
some time that is considerably less than the time of local
approach to the steady state, the tissue is patterned by a time-
dependent gradient. In the opposite extreme, the tissue is
patterned by the steady-state gradient.

The dynamics of local approach to the steady state can be
characterized by the relaxation function, which is defined as
the fractional deviation from the steady state at a given point
(34); see Fig. 2:

Rðx;tÞ ¼ Cðx;tÞ − CsðxÞ
Cðx;0Þ − CsðxÞ

¼ 1 −
Cðx;tÞ
CsðxÞ

: [3]

The fraction of the steady concentration that has been accumu-
lated between times t and tþ dt is given by −ð∂Rðx;tÞ∕∂tÞdt,
which can be interpreted as the probability density for the time
of morphogen accumulation at a given location. Based on this, we
have recently introduced the local accumulation time τðxÞ that
characterizes the time scale of approach to the steady state at
given x:

τðxÞ ¼ −
Z

∞

0
t
"
∂Rðx;tÞ

∂t

#
dt: [4]

We have demonstrated that accumulation time can be used to
quantitatively interpret the dynamics of experimentally observed
morphogen gradients (34). For linear reaction–diffusion models,
i.e., when kðCÞ ¼ k1, an analytical expression for τðxÞ can be
derived from the analytical solution of the corresponding linear
equation:

τ1ðxÞ ¼
1

2k1

"
1þ xffiffiffiffiffiffiffiffiffiffiffi

D∕k1
p

#
: [5]

However, the approach used in ref. 34 no longer works for
nonlinear models, which are frequently used in the current
biophysical literature on morphogen gradients.

To deal with nonlinear problems, we developed a more general
approach that leads to inequalities yielding universal upper and
lower bounds for the local accumulation time. Importantly, these
bounds explicitly depend on the parameters of the problem. For
instance, as we show below, in the case of second-order degrada-
tion kinetics, i.e., when kðCÞ ¼ k2C:
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D

p

Qk2

#
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þ xffiffiffiffi
D
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≤ τ2ðxÞ ≤
1

6
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ffiffiffiffi
D
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1∕3

þ xffiffiffiffi
D

p
&

2

:

[6]

Below we demonstrate that such two-sided inequalities can be
rigorously derived for several nonlinear reaction–diffusion pro-
blems. The derived results are in good quantitative agreement
with the results obtained from numerical solution of the under-
lying nonlinear problems (Fig. 3).

Methods
Our main tool in the analysis of the initial boundary value problems in Eqs. 1
and 2 is the comparison principle for quasilinear parabolic equations, which is
behind many intuitive insights for the considered class of problems (see, e.g.,
refs. 35–40). It gives rise to some strong monotonicity properties of solutions
of these equations, which, in turn, can be used to analyze the solutions by
explicitly constructing barrier functions that can lead to pointwise upper and
lower bounds at all times.

A

B

C

Fig. 2. Establishment of a one-dimensional morphogen gradient through
production at the boundary, diffusion, and degradation. (A–C) Results from
thenumerical solutionof Eq.21, thedimensionless problemwith second-order
degradation kinetics, where the dimensionless source strength is α ¼ 1.
All numerical solution are obtained using the Crank–Nicolson method.
(A) Concentration profiles for various times, where t ¼ ∞ indicates the steady
state vðxÞ in Eq. 24. (B) Concentration dynamics at three different values
of x. The approach to steady state is faster for points closer to the source
of production. (C) The relaxation function plotted for several values of x.
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Parabolic Comparison Principle. Consider the equation

ut ¼ uxx þ f ðu;x;tÞ; x > 0; [7]

where f is some sufficiently regular function of its arguments (see
SI Appendix for precise assumptions and statements). We will denote by
u ¼ uðx;tÞ a supersolution of Eq. 7, i.e., a sufficiently regular function that
satisfies the inequality

ut ≥ uxx þ f ðu;x;tÞ; x > 0. [8]

Similarly, we will denote by u ¼ uðx;tÞ a subsolution of Eq. 7, i.e., a sufficiently
regular function that satisfies the inequality

ut ≤ uxx þ f ðu;x;tÞ; x > 0. [9]

Now suppose that the following inequality for the super- and subsolution
holds at the boundary

ux ≥ ux; x ¼ 0 [10]

and that u and u are ordered at the initial moment:

u ≤ u; t ¼ 0. [11]

Then we have the following basic result (see SI Appendix for the precise
statement; see also refs. 37–40:

u ≤ u ∀ðx;tÞ ∈ ½0;∞Þ × ½0;∞Þ: [12]

Because the solution of Eq. 7 is both a super- and a subsolution, under the
same type of assumptions on the initial and boundary conditions we obtain
for all x and t:

u ≤ u ≤ u: [13]

Thus, u;u serve as barriers for the solution uðx;tÞ. These functions can often be
constructed explicitly, making the analysis of the considered nonlinear pro-
blems tractable.

As an illustration of the comparison principle, let us prove the intuitively
obvious fact that the solutions of Eqs. 1 and 2 increase monotonically in time
for every x ≥ 0 and approach the steady state as t → ∞. Indeed, for arbitrary
t0 > 0 we have Cðx;t0Þ ≥ 0 ¼ Cðx;0Þ for all x ≥ 0. Therefore, applying the
comparison principle with Cðx;tÞ ¼ Cðx;t þ t0Þ and Cðx;tÞ ¼ Cðx;tÞ, we find
that Cðx;t þ t0Þ ≥ Cðx;tÞ, and in view of arbitrariness of t0 the solution is a
monotonically increasing function of t for each x (36). Similarly, the function
Cðx;tÞ ¼ CsðxÞ is a supersolution that remains above C for all x and t. So by
uniqueness of the steady state Cs for a given Q and any kðCÞ > 0, we have
Cðx;tÞ → CsðxÞ uniformly in x as t → ∞ (see SI Appendix for details). This
justifies the definition of the accumulation time τðxÞ introduced in Eq. 4.

Inequalities for the Local Accumulation Time. Together with the comparison
principle, super- and subsolutions for Eq. 1 can be used to estimate the local
accumulation time from above and below. Upon integration by parts Eq. 4
becomes

τðxÞ ¼
Z

∞

0
Rðx;tÞdt ¼ 1

CsðxÞ

Z
∞

0
ðCsðxÞ − Cðx;tÞÞdt; [14]

which is justified as long as the right-hand side of Eq. 14 is bounded (see
SI Appendix for more detail; this condition is found to be true in all the cases
considered). As a consequence, given an ordered sequence Cðx;tÞ ≤ Cðx;tÞ ≤
Cðx;tÞ, we have

1

CsðxÞ

Z
∞

0
ðCsðxÞ − Cðx;tÞÞdt ≤ τðxÞ ≤ 1

CsðxÞ

Z
∞

0
ðCsðxÞ − Cðx;tÞÞdt:

[15]

Now, let Cðx;tÞ be the solution of Eqs. 1 and 2, and let Cðx;tÞ and Cðx;tÞ be the
respective sub- and supersolutions, i.e., functions satisfying

∂C
∂t

≤ D
∂2C
∂x2

− kðCÞC; Cðx;t ¼ 0Þ ¼ 0; [16]

∂C
∂t

≥ D
∂2C
∂x2

− kðCÞC; Cðx;t ¼ 0Þ ¼ 0; [17]

and −D ∂C
∂x jx¼0 ¼ −D ∂C

∂x jx¼0 ¼ Q. Then the estimate in 15 follows immediately
from the comparison principle. Below, we demonstrate the usefulness of the
approach described above with explicit computations of the bounds in 15 for
several well-established models of morphogen gradients.

Results
We now apply our approach to the case of the degradation rate
obeying a superlinear power law:

kðCÞ ¼ knCn−1; n ¼ 2;3;…; kn > 0. [18]

This model was proposed to describe the situation in which the
morphogen increases the production of molecules which, in turn,
increase the rate of morphogen degradation (41). For example,
Shh induces the expression of its receptor patched, which both
transduces the Shh signal and mediates Shh degradation by cells
(17, 18).

We treat explicitly the case of the second-order degradation
kinetics n ¼ 2 below and then briefly discuss the analytical results
for n ≥ 3 (see SI Appendix for details). The obtained formulae are
compared with the “exact” solutions obtained numerically.

Nondimensionalization and Steady State. For n ¼ 2, the initial
boundary value problem in Eqs. 1 and 2 is rendered dimension-
less by the following transformation:

x0 ¼ x
L
; t0 ¼ t

T
; u ¼ C

C0

; [19]

where

A B

C D

Fig. 3. Comparison of the analytical results of the dimensionless accumula-
tion time τ̂ðxÞ defined through the right-hand side of Eq. 25 with those
obtained from the numerical solution of the corresponding initial boundary
value problems. In A–C, uðx;tÞ solves Eq. 41, with n ¼ 1;2;3, respectively. In D,
uðx;tÞ solves Eq. 43. In all cases, the dimensionless source strength α ¼ 1. In A,
the accumulation time depends linearly on the distance from the source. In B
and C, the accumulation time scales quadratically with distance. In D, the
local accumulation time behaves linearly for large x.
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L ¼
!

D
k2C0

"
1∕2

; T ¼ 1

k2C0

; [20]

and C0 is a reference concentration that characterizes the thresh-
old in the cellular response to the morphogenetic field and is
introduced for convenience of the interpretation. Dropping the
primes to simplify the notation, we arrive at the following dimen-
sionless problem:

ut ¼ uxx − u2; uxð0;tÞ ¼ −α; uðx;0Þ ¼ 0; [21]

where we introduced the dimensionless source strength

α ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk2C3

0

q : [22]

The steady state vðxÞ of this problem satisfies the equation

vxx − v2 ¼ 0; vxð0Þ ¼ −α; [23]

whose explicit solution is

vðxÞ ¼ 6

ðaþ xÞ2
; a ¼

!
12

α

"
1∕3

: [24]

We then define the dimensionless local accumulation time
(cf. Eq. 14)

τ̂2ðxÞ ¼
1

vðxÞ

Z
∞

0
½vðxÞ − uðx;tÞ&dt: [25]

The corresponding dimensional local accumulation time is

τ2ðxÞ ¼ T τ̂2ðx∕LÞ: [26]

Super- and Subsolutions. To proceed with our analysis, we slightly
modify the steps leading to Eq. 15 and introduce the new variable
w ¼ v − u. It is easy to check that w satisfies the following pro-
blem:

8
<

:

wt ¼ wxx − ðuþ vÞw ðx;tÞ ∈ ð0;∞Þ × ð0;∞Þ
wxð0;tÞ ¼ 0 t ∈ ð0;∞Þ
wðx;0Þ ¼ v x ∈ ½0;∞Þ:

[27]

and decreases monotonically to zero for each x as t → 0. We now
explicitly construct super- and subsolutions for this problem.
Consider uniformly bounded functions w;w satisfying

8
<

:

wt ¼ wxx − vw; ðx;tÞ ∈ ð0;∞Þ × ð0;∞Þ;
wxð0;tÞ ¼ 0 t ∈ ð0;∞Þ;
wðx;0Þ ¼ v x ∈ ½0;∞Þ;

[28]

and
8
<

:

wt ¼ wxx − 2vw; ðx;tÞ ∈ ð0;∞Þ × ð0;∞Þ;
wxð0;tÞ ¼ 0 t ∈ ð0;∞Þ;
wðx;0Þ ¼ v x ∈ ½0;∞Þ:

[29]

Because 0 ≤ u ≤ v, it is easy to see that w;w satisfy the types of
inequalities in 8 and 9, respectively, and the same initial and
boundary conditions as w. Therefore, by Parabolic Comparison
Principle, we have

w ≤ w ≤ w; [30]

for all ðx;tÞ ∈ ½0;∞Þ × ½0;∞Þ and, hence,

1

vðxÞ

Z
∞

0
wðx;tÞdt ≤ τ̂2ðxÞ ≤

1

vðxÞ

Z
∞

0
wðx;tÞdt; [31]

for all x ≥ 0, which is analogous to 15.

Upper and Lower Bounds for τ̂2ðxÞ. In contrast to the original equa-
tion, the equations for w;w are linear and, therefore, are easier to
study. In particular, we can apply the Laplace transform

W ðx;sÞ ¼
Z

∞

0
e−stwðx;tÞdt; [32]

W ðx;sÞ ¼
Z

∞

0
e−stwðx;tÞdt; [33]

to Eqs. 28 and 29 to obtain the following boundary value pro-
blems:

Wxx − ðvþ sÞW ¼ −v; Wxð0;sÞ ¼ 0; [34]

Wxx − ð2vþ sÞW ¼ −v; Wxð0;sÞ ¼ 0. [35]

This is justified for all s > 0 in view of the boundedness of w;w.
Furthermore, in terms of the Laplace transform 31 takes an espe-
cially simple form:

W ðx;0þÞ
vðxÞ

≤ τ̂2ðxÞ ≤
W ðx;0þÞ
vðxÞ

; [36]

where in passing to the limit as s → 0þ we applied monotone con-
vergence theorem (42) (note that a priori both bounds in 31 could
also be infinite).

Both Eqs. 34 and 35 admit closed form analytical solutions.
The formula for W ðx;sÞ reads

W ðx;sÞ ¼ 6

sðaþ xÞ2

!
1 −

2e−
ffiffi
s

p
xðsðaþ xÞ2 þ 3

ffiffi
s

p
ðaþ xÞ þ 3Þ

a
ffiffi
s

p
ða2sþ 3a

ffiffi
s

p
þ 6Þ þ 6

"
;

[37]

where a is given in Eq. 24. Note that this is a meromorphic func-
tion of z ¼

ffiffi
s

p
for each x and, therefore, admits a Laurent series

expansion at z ¼ 0. Performing the expansion, we find that this
function is analytic in the neighborhood of zero, and

W ðx;0þÞ ¼ 1. [38]

A similar computation can be performed in the case of W ðx;sÞ,
yielding (the result can no longer be expressed in terms of ele-
mentary functions, but the same steps apply, see SI Appendix)

W ðx;0þÞ ¼ 1

2
: [39]

Then, substituting Eqs. 38 and 39 into 36, we obtain matching
upper and lower bounds for the quantity τ̂2ðxÞ:

1

12
ðaþ xÞ2 ≤ τ̂2ðxÞ ≤

1

6
ðaþ xÞ2: [40]

Because the obtained upper and lower bounds differ only by
a factor of two, they should provide a good estimate of the
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accumulation time computed on the basis of numerical solution
of the original nonlinear problem. As shown in Fig. 3B, this is
indeed the case.

Higher-Order Degradation Kinetics. We now briefly mention the
results obtained for the dimensionless version of the problem
in Eqs. 1, 2, and 18 with n ≥ 3:

ut ¼ uxx − un; uxð0;tÞ ¼ −α; uðx;0Þ ¼ 0. [41]

Defining τ̂nðxÞ to be the dimensionless accumulation time for
a given value of n as in Eq. 25, we performed a similar analysis
for n ≥ 3 (see SI Appendix for details). For example, we obtained
that

a3 þ 2ðxþ aÞ3

12ðxþ aÞ
≤ τ̂3ðxÞ ≤

a2 þ ðxþ aÞ2

2
; a ¼

!
2

α2

"
1∕4

: [42]

A similar bound is found for n ¼ 4 (see SI Appendix).
As can be seen from the obtained formulae, we have τ̂nðxÞ ∼ x2

for x ≫ 1 and n ¼ 2;3;4. Let us point out that under this growth
assumption the formulae for the bounds may be formally
obtained by solving the analogs of Eqs. 34 and 35, setting
s ¼ 0 and selecting the unique solution that yields the required
growth. One needs to be careful, however, in applying this formal
approach, because in the absence of a rigorous justification it can
lead to incorrect results. For example, it can be shown that for
n ≥ 5 this approach produces negative upper bounds. This indi-
cates that the solution of the analog of Eq. 34 diverges as s → 0þ,
and more sophisticated supersolutions need to be constructed to
obtain meaningful bounds for n ≥ 5.

Dependence on the Time Scales of Diffusion and Reaction.When mor-
phogen degradation follows first-order kinetics [kðCÞ ¼ k1], the
accumulation time τ1ðxÞ is given by Eq. 5. From this expression
it is clear that at distances exceeding the characteristic reaction–
diffusion length scale L ¼

ffiffiffiffiffiffiffiffiffiffiffi
D∕k1

p
, the accumulation time is given

by the geometric mean of the times of reaction (τr ≡ 1∕k1) and
diffusion (τd ≡ x2∕D): τ1ðxÞ ∼ ðτrτdÞ1∕2. How is this scaling mod-
ified when the rate of morphogen degradation is a nonlinear
function of concentration? Our results can be used to systemati-
cally address this question for problems with superlinear power-
law degradation rates.

Back in the original scaling, the estimates derived for τ2ðxÞ take
the form given by Eq. 6. Based on this equation, for large x
we have τ2ðxÞ ∼ τd ≡ x2∕D; i.e., the local accumulation time is
governed solely by the diffusion time scale. It is easy to see that
this is also true in the cases n ¼ 3;4, where the upper and lower
bounds were derived analytically (see SI Appendix). The results
for n ¼ 3 (see Eq. 42), together with those obtained from the di-
rect numerical solution of Eq. 41 are plotted in Fig. 3C. Thus,
local accumulation times for morphogen gradients in models
with superlinear power-law degradation are proportional to
the diffusion time and are independent of the kinetic parameters
(kn and n), at least for n < 5.

Dependence on the Strength of the Source. Another important dif-
ference in the accumulation times in linear and nonlinear pro-
blems lies in the dependence on the strength of the source of
morphogen production. For the first-order degradation rate law,
τ1ðxÞ does not depend on the strength of the morphogen produc-
tion at the boundary; see Eq. 5 (34). This is an immediate con-
sequence of the definition of the relaxation function and the
linearity of the problem for k ¼ k1. On the other hand, in the case
of second-order degradation, τ2ðxÞ depends on the strength of
the source. In particular, it is a decreasing function of Q that

asymptotically approaches a value that is proportional to the
diffusion time; see Eq. 6. In other words, the accumulation time
is insensitive to the strength of the source at large values of Q.
The accumulation times computed for problems with higher
order of degradation (n ¼ 3;4) exhibit the same asymptotic beha-
vior (see SI Appendix).

This result has important implications for the robustness of
morphogen gradients. Specifically, the steady solutions for pro-
blems with n > 1 have a similar asymptotic behavior: For large
values of Q, the solution at a given x approaches a value that
depends on the distance from the source of production, diffusiv-
ity, and the degradation rate constant (41) [see also recent work
(43) for the case of a stochastic source]. Taken together, the
asymptotic behavior of the steady-state concentration and local
accumulation time mean that for any x not equal to zero, there
is a regime (large values of Q) where the same steady-state value
is reached in the same time.

Discussion
We have developed a systematic analytical approach for charac-
terizing the dynamics of morphogen gradients. Importantly, this
approach provides explicit parametric dependence of the time
needed to establish a steady-state gradient in reaction–diffusion
models of the source–sink mechanism. Our bounds for local
accumulation times are in very good quantitative agreement
(within approximately 30%) with the results of the direct numer-
ical solution of the governing equations. These bounds can, there-
fore, be considered as counterparts of the exact results obtained
in the case of linear problems. Given that the parameters in the
underlying models are usually not known to very high accuracy,
our analytical bounds represent a practical analog of the exact
solution of the problem.

We demonstrated the effectiveness of our approach by deriv-
ing two-sided inequalities for the accumulation time in models
with superlinear power-law degradation kinetics. The same
approach can be readily applied to other types of kinetics. For
example, in a number of experimental systems, morphogen
degradation is mediated by cell surface receptors that become
saturated at high morphogen concentration. The simplest model
of this mechanism is given by the following dimensionless reac-
tion–diffusion problem (see SI Appendix for details):

ut ¼ uxx −
u

1þ u
; uxð0;tÞ ¼ −α; uðx;0Þ ¼ 0; [43]

where α is again proportional to the source strength. Thus, the
degradation rate law follows the first- and zeroth-order kinetics
at low and high morphogen concentrations, respectively. In this
case, the inequalities for the accumulation time can be derived
(see SI Appendix) and are given explicitly by

x
2
þ vð0Þ

2α
≤ τ̂0ðxÞ ≤

x
2
þM − PvðxÞ −QxvðxÞ

1þ vðxÞ
; [44]

where M;P;Q are some positive constants depending only on α,
and vðxÞ is the steady state. Similar to the problems with power-
law degradation kinetics, these bounds are also in good agree-
ment with the results of the direct numerical solution (Fig. 3D).
As expected, from this expression one can see that τ̂0ðxÞ ∼ x, for
large x, and the asymptotic behavior is precisely the same as for
the linear degradation, where τ̂1ðxÞ ¼ 1

2ðxþ 1Þ.
At this point, our approach can handle only single-variable

models of the source–sink mechanism. These scalar models
can be viewed as simplified versions of more complex multi-
component models that lead to systems of nonlinear reaction–
diffusion equations. For systems of reaction–diffusion partial dif-
ferential equations, the analysis of the dynamics is complicated by
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the general lack of comparison principle, which was essential to
our approach. In some nonlinear problems, such as the one that
can be classified as monotone systems (see, e.g., ref. 44), our
approach may be still be applicable. Morphogen dynamics in
other systems, such as the ones where the local kinetics is char-
acterized by overshoots (45–47), may require different analyti-
cal tools.
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Local kinetics of morphogen gradients: SI Text

Peter V. Gordon∗, Christine Sample†, Alexander M. Berezhkovskii‡, Cyrill B. Muratov∗,

Stanislav Y. Shvartsman†

1 Mathematical preliminaries

Here we present the precise mathematical statements of the basic results related to the considered class of partial
differential equations that are used throughout our paper. Consider a general initial boundary value problem






ut = uxx + f(t, x, u) (t, x) ∈ (0,∞)× (0,∞),
ux(t, 0) = −g(t) t ∈ (0,∞),
u(0, x) = u0(x) x ∈ [0,∞).

(1.1)

where by solution u = u(t, x) ∈ R we mean the classical solution of the problem in (1.1), i.e., a function u ∈ A,
where A := C1,2((0,∞) × [0,∞)) ∩ C([0,∞) × [0,∞)) ∩ L∞((0,∞) × (0,∞)) (for notation and further details,
see e.g. [1]). Well-posedness of problem (1.1) in the considered class is well-known under some mild regularity
assumptions on f , g and u0, including all situations considered in the present paper (see e.g. [2, 1, 3])

Our main tool for constructing the upper and lower bounds for the local accumulation time is the parabolic
comparison principle, which, in its general form in the case of one-dimensional quasilinear parabolic equations can
be stated as:

Proposition 1.1 (Parabolic comparison principle) Let f satisfy

|f(t, x, u1)− f(t, x, u2)| ≤ L|u1 − u2|, (1.2)

for some L > 0, all (t, x) ∈ [0,∞)× [0,∞), and all u1, u2 satisfying |u1|, |u2| ≤ M , for some M > 0. Then, every
solution u, u ∈ A of differential inequalities






ut ≥ uxx + f(t, x, u) (t, x) ∈ (0,∞)× (0,∞),
ux(t, 0) ≤ −g(t) t ∈ (0,∞),
u(0, x) ≥ u0(x) x ∈ [0,∞),

(1.3)

and





ut ≤ uxx + f(t, x, u) (t, x) ∈ (0,∞)× (0,∞),
ux(t, 0) ≥ −g(t) t ∈ (0,∞),
u(0, x) ≤ u0(x) x ∈ [0,∞),

(1.4)

such that |u|, |u| ≤M satisfies

u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞)× [0,∞). (1.5)

Proof. The proof follows from [4, Theorem 10 and Remark (ii) of Chap. 3, Sec. 6] applied to w = u−u and using
(1.2) (see also [2, 5]).

The functions u and u above are called sub- and supersolutions for the problem in (1.1). Moreover, since the
solution u(t, x) of (1.1) is both super- and subsolution, it holds

u(t, x) ≤ u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞)× [0,∞). (1.6)

That is, the solution of problem (1.1) is squeezed between its sub- and supersolutions.
∗
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2 Approach to the steady state

Now consider the steady version of (1.1) with

f(t, x, u) = −k(u)u, g(t) = α. (2.1)

where α > 0 is a given constant and k > 0 is a given continuously differentiable function, corresponding to secretion

at the boundary and bulk degradation with a local concentration feedback control. The steady state v > 0 for (1.1)

and (2.1) satisfies

vxx − k(v)v = 0, vx(0) = −α, v(∞) = 0. (2.2)

A straightforward integration of this equation yields

vx = −G(v), G(v) =

�

2

� v

0
sk(s)ds, (2.3)

where we noted that by elliptic regularity the limit as x→∞ in (2.2) also holds for vx (see e.g. [1]). In particular, in

view of the strict monotonic increase of G(v) on [0,∞), for every α > 0 there exists a unique constant v0 = v0(α) > 0

solving G(v0) = α, provided that G(∞) =∞ (true in all cases considered in this paper). Furthermore, in this case

the solution of (2.2) is given parametrically by

� v0

v(x)

ds

G(s)
= x. (2.4)

Note that this formula defines the solution for all x > 0, since the integral in (2.4) diverges as v → 0
+
. Thus,

for every α > 0 there exists a unique positive classical solution of (2.2) and (2.1), which is strictly monotonically

decreasing and goes to zero together with its derivative as x→∞.

Now, choosing u(t, x) = 0 and u(t, x) = v(x) as sub- and supersolution, respectively, one can see that the

solution of the initial value problem in (1.1) with g(t) = α exists globally in time (see e.g. [2, 3]) and remains

bounded between 0 and v for all times:

0 ≤ u(t, x) ≤ v(x) ≤M <∞, (2.5)

where M = v(0) = v0(α). In particular, the solution u(t, x) of (1.1) and (2.1) is uniformly bounded, is monotonically

increasing in time for every x ≥ 0 (see the argument at the end of Methods in the main text) and converges to the

stationary solution by, e.g., the arguments of [6, Theorem 3.6]. Hence by Dini’s theorem the solution approaches

v from below uniformly on every compact subset of [0,∞). Finally, since limx→∞ v(x) = 0, in view of (2.5) this

convergence is in fact uniform on the whole of [0,∞).

3 Equivalent definitions of the accumulation time

For bounded monotonically increasing solutions of the initial boundary value problem in (1.1) the accumulation

time τ(x) is defined as the expectation value (possibly infinite a priori) of t ∈ (0,∞) with respect to the probability

measure p(t, x)dt [7]:

τ(x) =

� ∞

0
tp(t, x)dt, p(t, x) =

1

v(x)

∂u

∂t
(t, x). (3.1)

Since p(·, x) ∈ C((0,∞)) for every x ≥ 0, it is convenient to rewrite this formula in terms of u, using integration

by parts:

τ(x) =
1

v(x)

� ∞

0
(v(x)− u(t, x))dt. (3.2)

However, this step requires a justification, since for nonlinear problems we do not in general have an a priori decay

estimate ensuring that the boundary term arising during integration by parts does not contribute. To circumvent
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this difficulty, let us introduce a cutoff function η ∈ C∞(R), such that η(t) = 1 for all t < 1 and η(t) = 0 for all
t > 2. Then, using monotone convergence theorem, we have

� ∞

0
tp(t, x)dt = lim

ε→0+

�
1

v(x)

� ∞

0
tut(t, x)η(εt)dt

�

= lim
ε→0+

�
1

v(x)

� ∞

0
(v(x)− u(t, x))η(εt)dt +

1
v(x)

� ∞

0
(v(x)− u(t, x)) εt η�(εt)dt

�

=
1

v(x)

� ∞

0
(v(x)− u(t, x))dt + lim

ε→0
Rε(x), (3.3)

|Rε(x)| ≤
�

2 max |η�(t)|
v(x)

� ∞

ε−1
(v(x)− u(t, x))dt

�
→ 0 as ε→ 0 ∀x ∈ [0,∞),

yielding (3.2) under the assumption that the right-hand side of (3.2) is bounded. Our upper bound constructions
will show that the latter is true for all situations considered.

4 Equation ut = uxx − un

In what follows we construct an estimate to

τ̂n(x) =
1

v(x)

� ∞

0
(v(x)− u(t, x)) dt, (4.1)

where u ∈ A is the solution for the following problem:





ut = uxx − un (t, x) ∈ (0,∞)× [0,∞),
ux(t, 0) = −α t ∈ (0,∞),
u(0, x) = 0 x ∈ [0,∞),

(4.2)

and v solves
�

vxx − vn = 0 x ∈ [0,∞),
vx(0) = −α, v(∞) = 0,

(4.3)

respectively, where n ∈ N and α > 0 are some given constants. The case of n = 1 admits a closed form solution
and was treated previously in [7]. The solution of (4.3) for any n > 1 is explicitly

v(x) =
�

2
(n + 1)
(n− 1)2

� 1
n−1

(x + a)−
2

n−1 , (4.4)

where

a =
2

n
n+1 (n + 1)

1
n+1 α

1−n
1+n

n− 1
. (4.5)

Here and everywhere below the algebraic computations are performed, using Mathematica 7.0 software.

4.1 Case n = 2

As the first step we explicitly consider the important particular case n = 2. We define the difference

w(t, x) = v(x)− u(t, x). (4.6)

Subtracting (4.3) from (4.2) and setting n = 2, we have





wt = wxx − (u + v)w (t, x) ∈ (0,∞)× [0,∞),
wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞).

(4.7)

Also, by (2.5), we have

0 ≤ w(t, x) ≤ v(x) (t, x) ∈ (0,∞)× [0,∞). (4.8)
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A direct inspection shows that the functions w and w satisfying





wt = wxx − vw (t, x) ∈ (0,∞)× [0,∞)
wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞),

(4.9)

and





wt = wxx − 2vw (t, x) ∈ (0,∞)× (0,∞),
wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞),

(4.10)

are super- and subsolutions for the problem (4.7), respectively, that is

wt − wxx + (u + v)w = uw ≥ 0, (4.11)
wt − wxx + (u + v)w = −(v − u)w ≤ 0, (4.12)
wx = wx = wx = 0. (4.13)

Here we took into account (2.5) and positivity of w and w, which, again, follows from the comparison principle for
(4.9) and (4.10), using zero as subsolution. Therefore, by comparison principle we have

w(t, x) ≤ w(t, x) ≤ w(t, x) (4.14)

Next we consider the Laplace transforms of w and w:

w(x, s) =
� ∞

0
w(t, x)e−stdt, W (x, s) =

� ∞

0
w(t, x)e−stdt, s > 0. (4.15)

Thanks to (2.5), the following estimates hold

W (x, s) ≤ M

s
, W (x, s) ≤ M

s
(4.16)

so that W (x, s) and W (x, s) are well defined for each s > 0 and x ∈ [0,∞).
On the other hand in a view of monotone convergence theorem we have

lim
s→0+

W (x, s) =
� ∞

0
w(t, x)dt, lim

s→0+
W (x, s) =

� ∞

0
w(t, x)dt, (4.17)

where the limits above could possibly evaluate to +∞. Now, since

τ̂2(x) =
1

v(x)

� ∞

0
w(t, x)dt (4.18)

we deduce from (4.17) that

1
v(x)

lim
s→0+

W (x, s) ≤ τ̂2(x) ≤ 1
v(x)

lim
s→0+

W (x, s) (4.19)

Let us evaluate W (x, s) and W (x, s). Applying Laplace transform to equations (4.9) and (4.10) we have:





W xx − (v + s)W = −v, (x, s) ∈ (0,∞)× [0,∞)
W x(0, s) = 0 s ∈ (0,∞)
W (x, s) < M

s (x, s) ∈ [0,∞)× (0,∞)
(4.20)

and





W xx − (2v + s)W = −v, (x, s) ∈ [0,∞)× (0,∞)
W x(0, s) = 0 s ∈ (0,∞)
W (x, s) < M

s (x, s) ∈ [0,∞)× (0,∞)
(4.21)

The condition involving the limit at infinity is a direct consequence of the estimate (4.16) and allows to rule out
exponentially growing modes for solutions of (4.20) and (4.21).
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The solution of problem (4.3) (the function v(x)) which is needed for solving (4.20) and (4.21) takes a particularly
simple form (see (4.4)):

v(x) =
6

(x + a)2
, a =

�
12
α

�1/3

. (4.22)

Similarly, problems (4.20) and (4.21) admit exact analytical solutions. Let us start with the solution of the boundary
value problem problem (4.20). As can be verified by direct substitution, the two functions:

W 1(x, s) =
e−
√

s(a+x)
�
s(a + x)2 + 3

√
s(a + x) + 3

�
√

πs5/4(a + x)2
, (4.23)

W 2(x, s) =
e
√

s(a+x)
�
s(a + x)2 − 3

√
s(a + x) + 3

�
√

πs5/4(a + x)2
(4.24)

are two linearly independent solutions of the homogeneous equation

W xx − (v + s)W = 0, (x, s) ∈ [0,∞)× (0,∞) (4.25)

Next, having (4.23) and (4.24), we apply the variation of parameters formula to obtain a particular solution of the
equation

W xx − (v + s)W = −v, (x, s) ∈ [0,∞)× (0,∞) (4.26)
(4.27)

which turns out to be simply

W p(x, s) =
6

s(x + a)2
(4.28)

To solve the boundary value problem (4.20), we write the general solution

W g(x, s) = C1W 1(x, s) + C2W 2(x, s) + W p(x, s) (4.29)

and choose constants C1, C2 in such a way that both the side conditions in (4.20) are satisfied. It is easy to observe
that the boundedness condition at x → ∞ requires C2 = 0, and the second condition at x = 0 fixes the constant
C2. After simple algebraic manipulations we have that

W (x, s) =
6

s(x + a)2

�
1−

2e−
√

sx
�
s(a + x)2 + 3

√
s(a + x) + 3

�

a
√

s (a2s + 3a
√

s + 6) + 6

�
(4.30)

solves the boundary value problem (4.20). Evaluating the limit of the above expression we obtain

lim
s→0+

W (x, s) = 1. (4.31)

This result is more transparently seen from a series expansion of W (x, s) around s = 0. Since W (x, s) in (4.30) is a
meromorphic function of

√
s for each x, it can be expanded into the Laurent series around s = 0 by Taylor expansion

of the exponential functions involved in (4.30). The result of the computation shows that the contributions of all
the poles in the series vanish and the leading order terms in the expansion are:

W (x, s) = 1−
s
�
a4 + (a + x)4

�

4(a + x)2
+ O(s3/2), (4.32)

implying (4.31).
A similar computation allows to obtain the solution for problem (4.21). Let us follow the basic steps in

construction of this solution. The two linearly independent solution corresponding to the homogeneous problem is

W 1(x, s) =
e−
√

s(a+x)
�√

s(a + x)
�
s(a + x)2 + 6

√
s(a + x) + 15

�
+ 15

�
√

πs7/4(a + x)3
, (4.33)

W 2(x, s) =
e
√

s(a+x)
�√

s(a + x)
�
s(a + x)2 − 6

√
s(a + x) + 15

�
− 15

�
√

πs7/4(a + x)3
(4.34)
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Applying variation of parameters, we also obtain a particular solution of the corresponding inhomogeneous equation

W p(x, s) =
3

4s3/2(a + x)3
×

�
15
√

s(a + x) + (4.35)

Chi
�√

s(a + x)
� �

3
�
2s(a + x)2 + 5

�
sinh

�√
s(a + x)

�
−
√

s(a + x)
�
s(a + x)2 + 15

�
cosh

�√
s(a + x)

��
+

Shi
�√

s(a + x)
� �√

s(a + x)
�
s(a + x)2 + 15

�
sinh

�√
s(a + x)

�
− 3

�
2s(a + x)2 + 5

�
cosh

�√
s(a + x)

�� �
,

where Shi(x) and Chi(x) stand for the integral sine and cosine functions, respectively [8].
Next, forming the general solution out of (4.33), (4.34) and (4.35) and choosing the constants to satisfy the side

conditions at x = 0 and x→∞ we obtain the solution of the boundary value problem (4.21)

W (x, s) = W p(x, s) + C(s)W 1(x, s) (4.36)

where

C(s) = −3
√

π

4
s1/4ea

√
s

a4s2 + 6a3s3/2 + 21a2s + 45a
√

s + 45
×

�
a
√

s
�
a
2
s + 45

�
+

Chi
�
a
√

s
� ��

a
2
s
�
a
2
s + 21

�
+ 45

�
sinh

�
a
√

s
�
− 3a

√
s
�
2a

2
s + 15

�
cosh

�
a
√

s
��

+

Shi
�
a
√

s
� �

3a
√

s
�
2a

2
s + 15

�
sinh

�
a
√

s
�
−

�
a
2
s
�
a
2
s + 21

�
+ 45

�
cosh

�
a
√

s
�� �

(4.37)

The function above has the following expansion around s = 0:

W (x, s) =
1
2
−

�
2a5 + 3x5

�
s

60x3
+ O

�
s
2 log s

�
, (4.38)

from which it follows immediately that

lim
s→0+

W (x, s) =
1
2
. (4.39)

Combining (4.31), (4.39) with (4.19) and (4.22) we have:

(x + a)2

12
≤ τ̂2(x) ≤ (x + a)2

6
(4.40)

4.2 Case of arbitrary integer n ≥ 2

In the case of arbitrary n ∈ N, n ≥ 2, the strategy for obtaining the estimates for τ̂n is identical to the one used in
the previous section for the n = 2 case. First let w be as in (4.6). Next, subtracting equations (4.3) and (4.2), we
have






wt = wxx −
�

n�

k=1

u
k−1

v
n−k

�
w (x, t) ∈ [0,∞)× (0,∞),

wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞).

(4.41)

By comparison principle, using zero as a subsolution, we have w ≥ 0 and thus (2.5) holds. This observation and
(4.41) immediately gives that the function w ≥ 0 satisfying






wt = wxx − nvn−1w (t, x) ∈ (0,∞)× [0,∞),
wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞),

(4.42)

is a subsolution, and the function w ≥ 0 satisfying





wt = wxx − vn−1w (t, x) ∈ (0,∞)× [0,∞),
wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞),

(4.43)

is a supersolution for problem (4.41). The function v(x) for each n is given by (4.4).
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We apply arguments identical to these of previous section concerning Laplace transform of functions w(t, x)
and w(t, x) to end up with the following equations for W (x, s) and W (x, s) (defined as before by (4.15))






W xx − (vn−1 + s)W = −v (x, s) ∈ [0,∞)× (0,∞),
W x(s, 0) = 0 s ∈ (0,∞),
W (x, s) ≤ M

s (x, s) ∈ [0,∞)× (0,∞),
(4.44)

and





W xx − (nvn−1 + s)W = −v (x, s) ∈ [0,∞)× (0,∞),
W x(s, 0) = 0 s ∈ (0,∞),
W (x, s) ≤ M

s (x, s) ∈ [0,∞)× (0,∞).
(4.45)

The accumulation time can be then estimated in terms of solutions of the problems (4.44) and (4.45) as follows

1
v(x)

lim
s→0+

W (x, s) ≤ τ̂n(x) ≤ 1
v(x)

lim
s→0+

W (x, s). (4.46)

4.3 Case n = 3

The explicit solutions for problems (4.44) and (4.45) for increasing values of n become exceedingly cumbersome.
Therefore, in the remainder of this section we limit ourselves to the case n = 3. In this case

v(x) =
√

2
x + a

, a =
�

2
α2

�1/4

. (4.47)

The solutions of problems (4.44) and (4.45) are obtained by exactly the same steps as those used for solving
problems (4.20) and (4.21). They lead to

W (x, s) =
√

2
s(x + a)

�
1− e−

√
sx (
√

s(a + x) + 1)
a2s + a

√
s + 1

�
(4.48)

and

W (x, s) = A(s)
e−
√

s(a+x)
�
s(a + x)2 + 3

√
s(a + x) + 3

�
√

πs5/4(a + x)2
+

1√
2s3/2(a + x)2

×
�
3
√

s(a + x) +

sinh
�√

s(a + x)
� ��

s(a + x)2 + 3
�
Chi

�√
s(a + x)

�
+ 3
√

s(a + x)Shi
�√

s(a + x)
��

(4.49)

− cosh
�√

s(a + x)
� �

3
√

s(a + x)Chi
�√

s(a + x)
�

+
�
s(a + x)2 + 3

�
Shi

�√
s(a + x)

�� �
,

where

A(s) =
π

2
ea
√

s

4
√

s (a
√

s (a2s + 3a
√

s + 6) + 6)
×

�
Chi

�
a
√

s
� �

a
√

s
�
a
2
s + 6

�
cosh

�
a
√

s
�
− 3

�
a
2
s + 2

�
sinh

�
a
√

s
��

+ (4.50)

Shi
�
a
√

s
� �

3
�
a
2
s + 2

�
cosh

�
a
√

s
�
− a
√

s
�
a
2
s + 6

�
sinh

�
a
√

s
��
− 6a

√
s

�
.

These two functions have the following expansions around s = 0:

W (x, s) =
a2 + (a + x)2√

2(a + x)
−
√

2
√

s
�
2a3 + (a + x)3

�

3(a + x)
+ O(s), (4.51)

and

W (x, s) =
a3 + 2(a + x)3

6
√

2(a + x)2
+

s

900
√

2(a + x)2

�
15

�
3a

5 + 2(a + x)5
�
log(s) + 18(5γ − 6)a5

+90a
5 log(a)− 25a

3(a + x)2 + 4(15γ − 23)(a + x)5 + 60(a + x)5 log(a + x)
�

+ O

�
s
3/2

�
, (4.52)
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respectively. In the equation above γ ≈ 0.577216 is the Euler’s constant. As a consequence, we have

lim
s→0+

W (x, s) =
a2 + (x + a)2√

2(x + a)
, lim

s→0+
W (x, s) =

a3 + 2(x + a)3

6
√

2(x + a)2
, (4.53)

and so

a3 + 2(x + a)3

12(x + a)
≤ τ̂3(x) ≤ a2 + (x + a)2

2
. (4.54)

4.4 Case n = 4

In the case n = 4 the stationary solution for (4.2) reads

v(x) =
�

10
9

�1/3 1
(x + a)2/3

, a =
�

80
243α3

�1/5

. (4.55)

Once again, the solutions of problems (4.44) and (4.45) are obtained by exactly the same steps as those used for
solving problems (4.20) and (4.21). They lead to the following formulas:

W (x, s) = A(s)(x + a)1/2
K 7

6

�√
s(x + a)

�
−

�
10
9

�1/3 �
0F1

�
;− 1

6 ; 1
4s(x + a)2

�
− 1

�

s(x + a)2/3
, (4.56)

where

A(s) =
2

�
9 3
√

30a2s 0F1

�
; 5

6 ; a2s
4

�
+ 2 3
√

30 0F1

�
;− 1

6 ; a2s
4

�
− 2 3
√

30
�

9a7/6s

�
a
√

sK 1
6

(a
√

s)−K 7
6

(a
√

s) + a
√

sK 13
6

(a
√

s)
� , (4.57)

and

W (x, s) = B(s)
√

a + xK 13
6

�√
s(a + x)

�
+

1
26

�
5
36

�1/3

(a + x)4/3 ×
�
9 0F1

�
;
19
6

;
1
4
s(a + x)2

�
1F2

�
−2

3
;−7

6
,
1
3
;
1
4
s(a + x)2

�
(4.58)

+4 0F1

�
;−7

6
;
1
4
s(a + x)2

�
1F2

�
3
2
;
5
2
,
19
6

;
1
4
s(a + x)2

� �
,

where

B(s) =
1

10374

�
5
36

�1/3 �
a
13/6

s
13/12

�
5320 0F1

�
;−7

6
;
a2s

4

�
1F2

�
3
2
;
5
2
,
19
6

;
a2s

4

�

−19152 0F1

�
;
19
6

;
a2s

4

�
1F2

�
−2

3
;−7

6
,
1
3
;
a2s

4

� �
+ a

25/6
s
25/12 ×

�
1368 0F1

�
;−1

6
;
a2s

4

�
1F2

�
3
2
;
5
2
,
19
6

;
a2s

4

�
− 1134 0F1

�
;
25
6

;
a2s

4

�
1F2

�
−2

3
;−7

6
,
1
3
;
a2s

4

� �
(4.59)

1197 25/6
a
13/6

s
7/6Γ

�
−7

6

�
0F1

�
;
19
6

;
a2s

4

�
I− 13

6

�
a
√

s
�

−38304 21/6Γ
�

19
6

�
0F1

�
;−7

6
;
a2s

4

�
I 13

6

�
a
√

s
� �

/

�
a
4/3

s
13/12 ×

�
a
√

sK 7
6

�
a
√

s
�
−K 13

6

�
a
√

s
�

+ a
√

sK 19
6

�
a
√

s
�� �

. (4.60)

Here and below 0F1 is the confluent hypergeometric limit function and 1F2 is the generalized hypergeometric
function, respectively [8, 9]. Performing the expansions around s = 0, we find

W (x, s) =
�

15
4

�1/3 �
3a2 + 2ax + x2

�

(a + x)2/3
− 301/3 3

40

�
54a4 + 36a3x + 14a2x2 − 4ax3 − x4

�

(a + x)2/3
s + O(s7/6), (4.61)
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W (x, s) =
9a3 + 15a2x + 15ax2 + 5x3

2 302/3(a + x)5/3
+

�
3

100

�1/3 �
81a5 + 135a4x + 330a3x2 + 350a2x3 + 175ax4 + 35x5

�

140(a + x)5/3
s + O

�
s
2
�
, (4.62)

and so

lim
s→0+

W (x, s) =
�

15
4

�1/3 �
3a2 + 2ax + x2

�

(a + x)2/3
, lim

s→0+
W (x, s) =

9a3 + 15a2x + 15ax2 + 5x3

2 302/3(a + x)5/3
, (4.63)

The latter yield

9a3 + 15a2x + 15ax2 + 5x3

20(a + x)
≤ τ̂4(x) ≤ 3

2
�
3a

2 + 2ax + x
2
�
. (4.64)

5 Michaelis-Menten nonlinearity

The aim of this section is to obtain bounds for

τ̂0(x) =
1

v(x)

� ∞

0
(v(x)− u(t, x)) dt (5.1)

where u and v are solutions of the following problems





ut = uxx − u
1+u (t, x) ∈ (0,∞)× [0,∞),

ux(t, 0) = −α t ∈ (0,∞),
u(0, x) = 0 x ∈ [0,∞),

(5.2)

and
�

vxx − v
1+v = 0 x ∈ [0,∞),

vx(0) = −α, v(∞) = 0,
(5.3)

respectively. Note that the solution of (5.3) is a bounded decreasing non-negative function, that is

0 ≤ v(x) ≤ v0 <∞, (5.4)

which is given implicitly by
� v0

v

ds�
2(s− ln(s + 1))

= x, (5.5)

where the constant v0 = v(0) solves
�

2(v0 − ln(v0 + 1)) = α. (5.6)

By direct application of the comparison principle to problem (5.2) we have

u(t, x) ≥ 0 on (t, x) ∈ [0,∞)× [0,∞). (5.7)

Next we set

w = v − u. (5.8)

Subtracting equation (5.3) from (5.2) we have





wt = wxx − w
(1+v)(1+u) (t, x) ∈ (0,∞)× [0,∞),

wx(t, 0) = 0 t ∈ (0,∞),
w(0, x) = v x ∈ [0,∞).

(5.9)

Applying comparison principle to (5.9) we obtain w ≥ 0 and thus

v ≥ u. (5.10)
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Combining (5.4) and (5.10) we also have

0 ≤ u(t, x) ≤ v(x). (5.11)

This observation allows to conclude that the functions w and w belonging to A and satisfying






wt = wxx − w
(1+v)2 (t, x) ∈ (0,∞)× [0,∞),

wx(t, 0) = 0 t ∈ (0,∞),

w(0, x) = v x ∈ [0,∞),

(5.12)

and






wt = wxx −
w

(1+v) (t, x) ∈ (0,∞)× [0,∞),

wx(t, 0) = 0 t ∈ (0,∞),

w(0, x) = v x ∈ [0,∞),

(5.13)

are super and subsolutions for the problem (5.9), respectively.

One can verify by direct substitution into (5.12) that the function v0e
−(1+v0)

−2t is a supersolution. Therefore,

W (x) =

� ∞

0
w(t, x)dt, W (x) =

� ∞

0
w(t, x)dt, W (x) =

� ∞

0
w(t, x)dt, (5.14)

are well-defined. Integrating (5.12) and (5.13) over t we then have

�
W xx − W

(1+v)2 = −v x ∈ [0,∞)

W x(0) = 0, W (∞) <∞,
(5.15)

and

�
W xx −

W
(1+v) = −v x ∈ [0,∞)

W x(0) = 0, W (∞) <∞.
(5.16)

The accumulation time can be then estimated using solutions of (5.3), (5.15) and (5.16) as follows

W (x)

v(x)
≤ τ̂0(x) ≤ W (x)

v(x)
. (5.17)

5.1 Heuristic arguments

As follows from linearization of (5.3) around v = 0, the solution of problem (5.3) will have the following behavior

for x� 1:

v(x) = Re
−x

+ O(e
−2x

) (5.18)

for some constant R > 0. Next observe that for x� 1 equations (5.9), (5.15) and (5.16) reduce to

�
Wxx −W = −Re−x + h.o.t.,

W (∞) <∞,
(5.19)

This gives that for large x the solution reads:

W (x) =

�
Rx

2
+ C

�
e
−x

+ h.o.t., (5.20)

with some constant C ∈ R.

Thus using (5.18) and (5.20) we have

τ̂0(x) ≈ W (x)

v(x)
≈ x

2
+ K(x) x� 1, (5.21)

where K(x) is some function uniformly bounded on [0,∞).
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5.2 Solution for problem (5.16)

We seek the solution of problem (5.16) in the following form:

W (x) = v(x)φ(x), (5.22)

where v(x) is the solution of (5.3). Substituting (5.22) into (5.16) after straightforward computations and taking
into account (5.3) we have:

�
φxx + 2(ln v)xφx = −1 x ∈ [0,∞)
αφ(0) = v(0)φx(0), (5.23)

and boundedness of W implies φ(x) grows no faster than
�
v(x)

�−1 as x→∞. From (5.23) follows (using v2 as the
integrating factor) that

�
φxv2

�
x

= −v2 (5.24)

Integrating this equation from 0 to x and taking into account the boundary condition at x = 0 (see (5.23)), we
have

φx(x) =
1

v2(x)

�
φx(0)v2(0)−

� x

0
v2(z)dz

�
(5.25)

Taking a limit x → ∞ of (5.25), using boundary condition in (5.23) at x = ∞ and taking into account that
v(x) ∼ e−x for large x we have

φx(0) =
1

v2(0)

� ∞

0
v2(z)dz (5.26)

Integrating (5.25) from 0 to x and taking into account (5.26) and (5.23) we obtain

φ(x) =
�∞
0 v2(z)dz

αv(0)
+

� x

0

�� ∞

y

�
v(z)
v(y)

�2

dz

�
dy (5.27)

By the definition of the function φ in (5.22) we have

φ(x) =
W (x)
v(x)

≤ τ̂0(x) (5.28)

and thus expression (5.27) serves as a lower bound for the accumulation time.
Now we use (5.27) to construct more explicit bound on τ̂0(x). To do so let us first show that the solution of

(5.3) allows the following representation

v(x) = ρ(x)e−x, (5.29)

where ρ is some positive increasing function.
Substituting (5.29) into (5.3) we have

ρxx − 2ρx = − ρ2e−x

1 + ρe−x
(5.30)

and thus

�
ρxe−2x

�
x

= − ρ2e−3x

1 + ρe−x
(5.31)

Integrating this expression we have

ρx(x)e−x =
�

ρx(0)−
� x

0

ρ2(y)e−3y

1 + ρ(y)e−y
dy

�
ex. (5.32)
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Next, the boundary conditions in (5.3) give

vx(0) = −α = ρx(0)− ρ(0), (5.33)
ρx(x)e−x − ρ(x)e−x = ρx(x)e−x − v(x)→ 0 as x→∞.

Since, v(x)→ 0 as x→∞ the second condition in (5.33) gives

ρx(x)e−x → 0 as x→∞. (5.34)

Therefore, taking the limit x→∞ in (5.32) we obtain

ρx(0) =
� ∞

0

ρ2(y)e−3y

1 + ρ(y)e−y
dy. (5.35)

Substituting this result into (5.32) we have

ρx(x) =
� ∞

x

ρ2(y)e2x−3y

1 + ρ(y)e−y
dy ≥ 0, (5.36)

so that

ρx(x) > 0 x ∈ (0,∞). (5.37)

Next, observe that

� x

0

�� ∞

y

�
v(z)
v(y)

�2

dz

�
dy =

� x

0

�� ∞

0

�
v(z + y)

v(y)

�2

dz

�
dy =

� x

0

�� ∞

0

�
ρ(z + y)

ρ(y)

�2

e−2zdz

�
dy. (5.38)

By (5.37) we have

ρ(z + y)
ρ(y)

> 1 for all y > 0, z > 0. (5.39)

It then follows immediately from (5.39) and (5.38) that

� x

0

�� ∞

y

�
v(z)
v(y)

�2

dz

�
dy =

� x

0

�� ∞

0

�
ρ(z + y)

ρ(y)

�2

e−2zdz

�
dy >

� x

0

�� ∞

0
e−2zdz

�
dy =

x

2
(5.40)

Moreover, since ρ is an increasing function and using that ρ(0) = v(0) we have
� ∞

0
v2(x)dx =

� ∞

0
ρ2(x)e−2xdx > ρ2(0)

� ∞

0
e−2xdx =

v2(0)
2

. (5.41)

Combining (5.40) and (5.41) we have from (5.27)

φ(x) >
v0

2α
+

x

2
, (5.42)

where v0 = v(0) and α are related by (5.6).
Finally, combining (5.42) and (5.28) we have

v0

2α
+

x

2
< τ̂0(x) (5.43)

5.3 An upper bound for τ̂0(x)

As a first step let us note that any function W † satisfying the differential inequality
�

W †
xx − W †

(1+v)2 + v ≤ 0 x ∈ [0,∞)
W †

x(0) ≤ 0, W †
x(∞) <∞,

(5.44)
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is a supersolution for the problem (5.15) and thus

W (x) ≤W †
(x) x ∈ [0,∞). (5.45)

Consequently from (5.17) and (5.45) we have the following upper bound for the accumulation time

τ̂0(x) ≤ W †
(x)

v(x)
(5.46)

Heuristic arguments (see sect. 5.1) strongly suggest that the accumulation time can be represented as
1
2x + C(x)

where C(x) is some uniformly bounded function. Guided by this intuition we look for the solution of the problem

(5.44) in the following form:

W †
(x) =

1

2
xv(x) +

ψ(x)v(x)

1 + v(x)
(5.47)

where ψ(x) is a function to be determined. Substituting (5.47) into (5.44) and taking into account (5.3) and

�
v

1 + v

�

x

=
vx

(1 + v)2
,

�
v

1 + v

�

xx

=
v

(1 + v)3
− 2v2

x

(1 + v)3
, (5.48)

we obtain

�
ψxx + 2

vx
v(1+v)ψx − 2v2

x
v(1+v)2 ψ +

xv
2(1+v)2 + (1 + v)

�
1 +

vx
v

�
≤ 0, x ∈ (0,∞),

v0
2 −

αψ(0)
(1+v0)2

+
v0ψx(0)
1+v0

≤ 0, ψx(∞) <∞,
(5.49)

where vx is given by the first integral of (5.3)

vx = −
�

2(v − ln(1 + v)). (5.50)

Now let us seek a solution for the inequality (5.49) in the form

ψ(x) = M − Pv(x)−Qxv(x), (5.51)

where M , P and Q are constant to be determined. Substituting (5.51) into the first inequality of (5.49) and

collecting terms containing v and xv as a common factor, we obtain that the first inequality in (5.49) holds,

provided

Q =
1

2
sup

v∈(0,v0]

v2
(1 + v)

v2(1 + v) + 2v2
x

, (5.52)

P = P0 − P1M = sup

v∈(0,v0]

2Q(2 + v)v|vx| + (v − |vx|)(1 + v)
2

v2(1 + v) + 2v2
x

− 2 inf
v∈(0,v0]

v2
x

(1 + v)(v2(1 + v) + 2v2
x)

M.

Substituting (5.51) into the second inequality of (5.49) we have

M ≥Mbc =
v0

2α

�
(1 + v0)

2
+ 2αP0(2 + v0)− 2Qv0(1 + v0)

1 + P1v0(2 + v0)

�
(5.53)

Finally, we require positivity of the function ψ. Therefore

M ≥ sup

x∈[0,∞)
Pv(x) + Qxv(x) (5.54)

Since

sup

x∈[0,∞)
Pv(x) + Qxv(x) ≤ P sup

x∈[0,∞)
v(x) + Q sup

x∈[0,∞)
xv(x) = Pv0 +

Q√
2

sup

v∈[0,v0]
v

� v0

v

dz�
z − ln(1 + z)

, (5.55)

where we use representation of x as a function of v by integrating (5.50), we set

M ≥Mp =
1

1 + P1v0

�
P0v0 +

Q√
2

sup

v∈[0,v0]
v

� v0

v

dz�
z − ln(1 + z)

�
. (5.56)
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Hence for ψ(x) to be a non-negative solution of the problem (5.49) we can take

M = max{Mbc,Mp}. (5.57)

The above computations yield that an upper bound for the accumulation time reads

τ̂0(x) ≤ 1

2
x +

M − Pv(x)−Qxv(x)

1 + v(x)
, (5.58)

with M given by (5.53), (5.56) and (5.57) and P,Q given by (5.52).
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