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A detailed asymptotic study of the effect of small Gaussian white noise on a relaxation oscillator
undergoing a supercritical Hopf bifurcation is presented. The analysis reveals an intricate stochastic
bifurcation leading to several kinds of noise-driven mixed-mode oscillations at different levels of
amplitude of the noise. In the limit of strong time-scale separation, five different scaling regimes for
the noise amplitude are identified. As the noise amplitude is decreased, the dynamics of the system
goes from the limit cycle due to self-induced stochastic resonance to the coherence resonance limit
cycle, then to bursting relaxation oscillations, followed by rare clusters of several relaxation cycles
�spikes�, and finally to small-amplitude oscillations �or stable fixed point� with sporadic single
spikes. These scenarios are corroborated by numerical simulations. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2779852�

This paper investigates the effect of small random pertur-
bations of dynamical systems near the onset of relaxation
limit cycle oscillations. Such problems often arise in a
wide range of applications in physics, chemistry, and, es-
pecially, biology, where the emergence of a limit cycle
marks the transition from excitable to oscillatory behav-
ior. An important feature of the systems under consider-
ation is the presence of a strong time-scale separation
between the dynamics of their components. This multi-
scale nature makes the dynamics particularly insensitive
to noise, offering a generic and robust way of generating
rhythmic activities. Yet it was recently found that noise
can lead to surprising new effects in systems whose deter-
ministic dynamics are characterized by the existence of
fast and slow motions. Remarkably, in these systems
noise can result in new dynamics that are highly coher-
ent, yet distinct from the dynamics observed in the ab-
sence of the noise. Such phenomena require the “right”
amount of noise: if the noise amplitude is too large, the
noise will wipe out any coherent dynamics; if, on the
other hand, the amplitude of the noise is too small, then it
will have a negligible effect. Here we study the role of the
noise amplitude in a system near the threshold to relax-
ation limit cycle oscillations. We find that noise has an
intricate interplay with the deterministic dynamics in the
vicinity of the fixed point, which is about to lose its sta-
bility. Different amounts of noise lead to qualitatively dis-
tinct behaviors, making the transition from excitability to
relaxation oscillations highly nontrivial. We argue that
the predicted phenomena must be inevitable in real excit-
able systems as noise is always present in noticeable
amounts in such systems.

I. INTRODUCTION

Limit cycle oscillations are universally encountered in a
variety of nonlinear dynamical systems modeling an enor-
mous range of applications in the natural sciences and engi-
neering �see, e.g., Refs. 1–5�. They come in all kinds of
“shapes and sizes,” yet one mechanism is particularly impor-
tant for the robust generation of limit cycle oscillations. This
mechanism relies on a strong separation of time scales be-
tween different dynamical components of the system and
gives rise to an important special class of nonlinear dynami-
cal systems, namely relaxation oscillators.6–8 In the first ap-
proximation, a relaxation oscillator can be thought of as a
hybrid dynamical system in which the slow dynamics are
governed by the motions restricted to the slow manifold.
These slow motions must be supplemented by the rules gov-
erning fast �instantaneous on the slow time scale� jumps be-
tween certain portions on the slow manifold.6,9 This geomet-
ric picture is typically adequate for the description of the
system’s dynamics away from bifurcation points.

Relaxation oscillations are a remarkably robust phenom-
enon, due to the geometric nature of their underlying mecha-
nism, and as such should be expected to be particularly in-
sensitive to noise. This is probably why relaxation oscillators
are encountered so often in biological systems where noise is
often present in noticeable amounts.5,10–12 Yet recent studies
have found quite surprising and unexpected behaviors of re-
laxation oscillators in the presence of even relatively small
amounts of noise.12–19 Importantly, noise has been shown to
alter the dynamics of the system while actually producing
very little randomness. In other words, noise was demon-
strated to be able to play a constructive role in the dynamics
of nonlinear systems with multiple time scales.
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One mechanism, referred to as coherence resonance
�CR�, has been shown to result in the onset of a large-
amplitude relaxation limit cycle in systems that are about to
undergo a Hopf bifurcation11,14 �for an extensive review, see
Ref. 20�. In such systems, the noise plays the role to uncover
the precursor to the large-amplitude limit cycle about to be
created past the bifurcation threshold.21 Perhaps even more
surprisingly, under certain conditions small noise has been
demonstrated to lead to the onset of an entirely new oscilla-
tory behavior as a result of the mechanism referred to as
self-induced stochastic resonance �SISR�.17,18,21–25 Remark-
ably, the degree of coherence of the dynamics is under con-
trol within SISR, i.e., it can be made arbitrarily high by a
suitable choice of the parameters without affecting the limit-
ing deterministic dynamics. Moreover, this choice of the pa-
rameters does not require fine-tuning, making the mechanism
robust and generic.

SISR persists near a Hopf bifurcation, with smaller
amounts of noise necessary to produce the effect similar to
CR.21 As the bifurcation is approached, the interplay between
the deterministic dynamics and the noise can become quite
intricate, due to a singular character of the Hopf bifurcation
in systems with strong time-scale separation.26–29 In this pa-
per, we investigate the detailed structure of the Hopf bifur-
cation in a relaxation oscillator perturbed by noises of differ-
ent amplitudes in relationship to the time-scale separation
ratio. To be specific, we focus on the classical FitzHugh-
Nagumo system perturbed by additive Gaussian white noise.
We verified that the main scenarios described in this paper
are not system-specific and can be observed, e.g., in the
noise-driven Morris-Lecar model of a type-II neuron �for a
recent study of this model, see Ref. 30�. We develop an
asymptotic theory of noise-driven relaxation oscillators and
verify the obtained picture through numerical simulations.
Due to the universal character of the Hopf bifurcation in
relaxation oscillators,29 our results are expected to be appli-
cable to a general class of nonlinear dynamical systems with
fast and slow subsystems in the presence of noise.

The model under study is the following systems of sto-
chastic differential equations �SDEs�:

�ẋ = x − 1
3x3 − y + ���1Ẇ1, �1a�

ẏ = x + a + �2Ẇ2. �1b�

Here, x and y are the dynamical variables, �, �1, �2, and a are
positive parameters, and W1 and W2 are independent Wiener
processes. We assume throughout the paper that ��1, im-
plying that x is fast and y is slow. We are also interested in
the situation in which the noise amplitude is small. More
precisely, we define the parameter

� = ��1
2 + �2

2 � 1, �2�

which characterizes the strength of the stochastic perturba-
tion. Indeed, the value of � controls the noise strength in both
equations in Eqs. �1a� and �1b� on their corresponding time
scales, which are O��� and O�1�, respectively. In the follow-
ing, we will investigate different scaling regimes as �→0
with �→0 jointly on appropriate sequences. Depending on

the choice of the sequence, a rich variety of qualitatively
different behaviors will be demonstrated.

This paper is organized as follows. In Sec. II, we review
the analysis of the solutions of Eqs. �1a� and �1b� in an O���
neighborhood of the Hopf bifurcation �in terms of the param-
eter a� in the absence of noise. Then, in Sec. III, we derive a
reduced one-dimensional SDE describing the behavior of the
solution near the fixed point in the presence of sufficiently
small noise. In Sec. IV, we interpret the solutions of the
reduced problem from the preceding section in various scal-
ing limits. In Sec. V, we corroborate the conclusions of the
asymptotic analysis via numerical simulations of Eqs. �1a�
and �1b�. Finally, in Sec. VI, we summarize the results of our
analysis and discuss its possible implications to applications.

II. SINGULAR HOPF BIFURCATION

Let us first discuss the onset of the limit cycle oscilla-
tions in the deterministic version of Eqs. �1a� and �1b�, i.e.,
when ��0. The analysis of the deterministic version of sys-
tem �1a� and �1b� shows that it has a unique fixed point,

x0 = − a, y0 = − a + 1
3a3, �3�

which is stable for �a��1, while at �a�=1 the system under-
goes a Hopf bifurcation. In both cases, the bifurcation is
supercritical, with the frequency of the quasiharmonic oscil-
lations at the onset being �0=�−1/2. Note that because of the
symmetry x→−x, y→−y, and a→−a, it is sufficient to
study the behavior of the system only near one bifurcation
point, say a=1.

For ��1, the Hopf bifurcation acquires a singular char-
acter, and so the normal form expansion near the point a=1
remains valid only in a very narrow range of a. Nevertheless,
the dynamics near this singular Hopf bifurcation can be com-
pletely characterized asymptotically and does not depend on
the detailed features of the nonlinearities. A general
asymptotic analysis of the onset of the limit cycle in the
vicinity of a Hopf bifurcation in two-variable dynamical sys-
tems in the limit �→0 was performed by Baer and
Erneux.26,27 They identified a range of the bifurcation param-
eter 1−a=O��� in which the limit cycle emerging past the
bifurcation threshold changes from small-amplitude oscilla-
tions, whose amplitudes in x and y are O��1/2� and O���,
respectively, to a relaxation limit cycle whose amplitude is
O�1� in both x and y. The transition to the O�1� limit cycle
occurs via the “canard explosion” in an exponentially narrow
range of the parameter a within an �-neighborhood of the
bifurcation threshold.6,31,32 A computation shows that in the
particular system considered here, the transition to relaxation
oscillations occurs asymptotically at 1−a= 1

8� �see below�.26

Past this transition region, the limit cycle is essentially
that shown in Fig. 1.1,6,9 It consists of the slow motions down
and up the left and the right branches of the slow manifold
S=SL�SR, where

SL = ��x,y�:x � �− �,− 1�,y = x − 1
3x3	 , �4�
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SR = ��x,y�:x � �+ 1, + ��,y = x − 1
3x3	 , �5�

connected by fast transitions from SR to SL or vice versa. The
transition from SR to SL occurs when the trajectory reaches
the right knee at �x ,y�= �1, 2

3
�; during the transition, the value

of y remains asymptotically constant. Similarly, the transi-
tion from SL to SR occurs when the trajectory reaches the left
knee on the slow manifold at �x ,y�= �−1,− 2

3
�. This limit

cycle persists when �→0 first and then a→1− afterwards. In
this case, the time to reach the left knee on SL remains finite
despite the fact that in the limit the fixed point �x0 ,y0� is
located right at the knee. The period of the limit cycle �LC�
in this limit can be calculated asymptotically: TLC
3, see
Ref. 21. Let us emphasize that in the absence of noise, the
system possesses a unique global attractor �either the fixed
point for �a��1 or the limit cycle for �a��1�. Hence, for all
values of the parameters there is no bistability in the consid-
ered problem with �=0, and so at vanishingly small noise
amplitudes the trajectories of the system go to the attractor
with probability 1.33

III. STOCHASTIC EXTENSION

We are interested in how the noise added to the right-
hand side of Eqs. �1a� and �1b�, i.e., the case of ��0
changes the zero-noise picture. In what follows, we will use
the ideas of Baer and Erneux applied to the system of sto-
chastic differential equations near the onset of a singular
Hopf bifurcation and develop an asymptotic theory of the
noise-driven singular Hopf bifurcation.

A. Dynamics in the vicinity of the fixed point

Following the ideas of Baer and Erneux,26,27 we intro-
duce the rescaled variables, together with new time and the
control parameter,

� = �−1/2�x − x0�, 	 = �−1�y − y0� , �6�


 = �−1/2t, � = �−1�1 − a� . �7�

In terms of these variables, Eqs. �1a� and �1b� can be rewrit-
ten as the following systems of SDEs:

d� = ��2 − 	 + �1/2�2�� − 1
3�3�	d
 + �1�−3/4dW1�
� + ¯ ,

�8a�

d	 = �d
 + �2�−3/4dW2�
� , �8b�

where “¯” denotes higher-order terms in �.
Observe that in the limit �→0, �−3/4�→0, the system

�8a� and �8b� reduces to a pair of ordinary differential equa-

tions. Denoting by �̄ and 	̄ the solution of Eqs. �8a� �8b� in
this limit, we have

d�̄

d

= �̄2 − 	̄ , �9a�

d	̄

d

= �̄ . �9b�

By inspection, one sees that this system admits a first inte-
gral,

G = e−2	�1 + 2	 − 2�2� , �10�

i.e., we have �d /d
�G��̄ , 	̄��0. For 0�G�1, all trajecto-
ries of Eqs. �9a� and �9b� are closed curves corresponding to
cycles, whereas for G�0 all trajectories are unbounded, go-
ing from �=−� to �= +� �see Fig. 2�. The trajectory corre-
sponding to G=0,

	̄ = �̄2 − 1
2 , �11�

is the separatrix between these two classes of solutions. Fi-
nally, the solution corresponding to G=1 is the fixed point,

�̄=0, 	̄=0.
Going back to the original system of SDEs in Eqs. �8a�

and �8b�, one can see that G will be a slowly varying quan-

FIG. 1. The relaxation limit cycle. The dashed line is the curve y=x− 1
3x3.

FIG. 2. The phase portrait of the reduced system. The thick solid line is the
separatrix.
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tity for ��1 and �−3/4��1. Applying the Itô formula34 to G
with � and 	 from Eqs. �8a� and �8b�, we obtain

dG = − 2�1/2e−2	��2�4� − 2
3�2�

+ �−2��1
2 + �2

2�2�2 − 2	 + 1��	d


+ 4�−3/4e−2	��1
2�2 + �2

2��2 − 	�2dW�
� + ¯ , �12�

where, again, “¯” denote higher-order terms. Now, to obtain
a closed equation for the leading-order approximation to G,

denoted by Ḡ, for 0�G�1, we average Eq. �12� with �= �̄
and 	= 	̄ over a period of the cycle.33 This leads to the

following asymptotic SDE for Ḡ:

dḠ = b�Ḡ�d
 + ��Ḡ�dW�
� , �13�

with a natural boundary condition at Ḡ=1 and an absorbing
�since for G�0 the solutions run off to infinity� boundary

condition at Ḡ=0. The effective drift and dispersion terms in
Eq. �13� are given explicitly by

b = −
2�1/2

T
�

0

T

e−2	̄��̄2�4� − 2
3 �̄2�

+ �−2��1
2 + �2

2�2�̄2 − 2	̄ + 1��	d
 , �14�

�2 =
16�−3/2

T
�

0

T

e−4	̄��1
2�̄2 + �2

2��̄2 − 	̄�2	d
 , �15�

where T=T�Ḡ� is the period of the cycle with G= Ḡ. Using
Eqs. �9a� and �9b�, one easily finds

T = 2�
	min�Ḡ�

	max�Ḡ� d	̄

��̄�
, �̄ = 
�1 + 2	̄ − Ḡe2	

2
. �16�

Let us now analyze Eq. �13� in more detail. First of all,

observe that by assumption Ḡ� �0,1�. According to Eqs.

�14� and �15�, in the vicinity of Ḡ=1 we have

T 
 2� , �17�

b 
 − 2�1/2���1 − Ḡ� + �−2��1
2 + �2

2�	 , �18�

�2 
 4�−3/2��1
2 + �2

2��1 − Ḡ� , �19�

where we have expanded �̄ and 	̄ around ��̄ , 	̄�= �0,0�. Simi-

larly, in the vicinity of Ḡ=0 we have

T 
 4 ln1/2 Ḡ−1/2, �20�

b 
� �e2

2�3 ln Ḡ−1/2
��2��� − �� − �1

2 − 2�2
2� , �21�

�2 
� �e4

4�3 ln Ḡ−1/2
��1

2 + 2�2
2� , �22�

where now we took into account that for Ḡ�1 the trajectory

��̄�
� , 	̄�
�� spends most of its time in the neighborhood of
the separatrix in Eq. �11�, and that T�1. In Eq. �21�,

�� = 1
8 , �23�

which is the critical value of � at which the small-amplitude
limit cycle disappears via the “canard explosion” phenom-
enon for �=0 in the limit �→0; see Refs. 6, 26, 27, 31, and
32.

In general, the functions b�Ḡ� and ��Ḡ� can be repre-
sented as

b�Ḡ� = �−3/2�b1�Ḡ��1
2 + b2�Ḡ��2

2	 + �1/2�b3�Ḡ�� + b4�Ḡ�	 ,

�24�

�2�Ḡ� = �−3/2��1
2�Ḡ��1

2 + �2
2�Ḡ��2

2	 , �25�

where the dependence of bi’s and �i’s on Ḡ can be found
numerically by evaluating the corresponding integrals in
Eqs. �14� and �15�, making use of Eq. �16�. These depen-
dences are plotted in Fig. 3. Let us note that outside of the

immediate vicinity of Ḡ=0 these quantities can be very well
approximated by the following expressions:

b1�−2+ 1
10�1− Ḡ�2, b2�−4+2Ḡ, b3�2�Ḡ−1�, b4� 1

7 �1
− Ḡ�2, �1

2�4�1− Ḡ�, and �2
2�6�1− Ḡ�.

The representation in Eqs. �24� and �25� also allows one
to construct the potential

V�Ḡ� = −
2�2

�2 � b�Ḡ�

�2�Ḡ�
dḠ . �26�

At small effective noise amplitudes, � /��1, this potential
becomes independent of � and � and determines the behavior
of metastable equilibria governed by Eq. �13�. In particular,

the metastable probability density for Ḡ is given by

p̄�Ḡ� � exp�− �2V�Ḡ�/�2� . �27�

Also, the lifetime of the metastable state Ḡ� corresponding to
the minimum of V is, to the leading order, determined by the

barrier �V=V�0�−V�Ḡ��, and is O�exp��2�V /�2�� for
�V�0, see Ref. 33.

An example of the form of V for one choice of the pa-
rameters is shown in Fig. 4. Here the potential V has a global

minimum at Ḡ��0.8, corresponding to the stable fixed

point, and p̄�Ḡ� is concentrated in the vicinity of the fixed

point. Also note that dV /dḠ�0 strictly at Ḡ=0. The latter is,
in fact, true for all ����−�−2��1

2+2�2
2�.

B. Matching conditions

We now discuss how the dynamics in the vicinity of the
fixed point �x0 ,y0� is connected with the global dynamics in
the presence of large excursions away from the fixed point.
Suppose that we are given an initial condition that is O�1�
away from the fixed point �here we use the original, un-
scaled, variables and time�. Then the initial stage of the dy-
namics will be governed by the fast motions in which the
value of y is frozen. The noise will have a small effect on
this dynamics for ��1. As a result, on the O��� time scale,
the trajectory of the system is initially attracted to the stable
manifold S consisting of the left and the right branch, SL and
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SR, respectively �see Eqs. �4� and �5�, and Fig. 1�, depending
on the initial value of x. After that, the trajectory will follow
the slow manifold on the O�1� time scale of the slow mo-
tions. For �=O�1�, we may set a=1 to the leading order in �
in order to describe the slow motions away from the imme-
diate vicinity of the fixed point.

Assuming that �1
2 ln �−1�1, i.e., that we are not dealing

with SISR,21 the slow dynamics can proceed according to
two scenarios. If the trajectory initially falls on SR, it first
moves up SR to reach the right knee at �x ,y�= �1, 2

3
�, then

jumps to SL, and then proceeds down SL toward the left knee
at �x ,y�= �−1,− 2

3
�. Or, the trajectory will immediately pro-

ceed down SL toward the left knee, if it started on SL at the
beginning. In both cases, the trajectory eventually makes it
into the vicinity of the fixed point. Importantly, it approaches

the fixed point along SL, which in this region can be approxi-
mated as y
− 2

3 + �x+1�2. Therefore, in terms of the scaled
variables �� ,	�, the trajectory approaches the fixed point es-
sentially along the separatrix in Eq. �11� down from �� ,	�
= �−� , +��. In other words, when studying the dynamics of

Ḡ, one needs to assume that initially Ḡ
0 in order to match
the motions described by Eq. �13� to the large-amplitude
slow motions. In terms of probability, one needs to assume

that the initial probability density p0�Ḡ� upon entering the
vicinity of the fixed point is given by

p0�Ḡ� = ��Ḡ − 0+� . �28�

A trajectory that enters along the separatrix may leave
the neighborhood of the fixed point in O��1/2� time �in the
original units� by escaping toward �� ,	�= �+� , +��, or it can
get trapped in the vicinity of the fixed point. Note, however,
that we cannot use Eq. �13� directly to analyze the escape
statistics, since the trajectory starts initially in the immediate
vicinity of the absorbing boundary. Instead, we need to look
at the discrete version of Eq. �12� describing the dynamics of
G on the sequence of times 
n=nT, where the period of the
cycle T can be treated asymptotically as constant because of
only slow logarithmic dependence on G �see Eq. �20��.

To calculate the probability density pn�Ḡ� that the trajec-
tory remains in the vicinity of the fixed point with the value

of G�
n�= Ḡ�0 after n revolutions around the fixed point,
we look at the small change of G for 0�G�1 during each
cycle. According to Eq. �12� averaged over a period, the
increment of G during one cycle is asymptotically a Gauss-
ian random variable with mean bT and dispersion �2T,
where b and �2 are given by Eqs. �21� and �22�. Under these

FIG. 3. The dependences of the func-

tions bi’s and �i’s on Ḡ.

FIG. 4. The potential V computed for �1=0.1�, �2=0.1�, and �=−0.1.
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assumptions, the probability density pn is asymptotically given by

pn�Ḡ� 

�3/4

2e�3/4��1
2 + 2�2

2�
0

�

e−�G − G� − 2e�2���1/2��� − �� − �−3/2��1
2 + 2�2

2��	2/4e2���−3/2��1
2+2�2

2�pn−1�Ḡ��dḠ�. �29�

Here we also assumed that the integral is dominated by a

small neighborhood of Ḡ=0 and extended the upper limit of
integration to infinity. Note that for this to be true we must
have ���3/4, which is, of course, also the underlying as-
sumption of the averaging approach of Sec. III A.

It may happen in a particular realization of the trajectory
that G becomes negative for � large positive; such a trajec-
tory will then run off to infinity to produce a large excursion.

Therefore, the part of pn with Ḡ�0 in Eq. �29� is responsible
for this phenomenon, and so the probability rn that the tra-
jectory escapes during the nth cycle and the total probability
r of escape after any number of cycles are

rn 
 �
−�

0

pn�Ḡ�dḠ, r = 

n=1

�

rn, �30�

respectively. Correspondingly, the probability that the trajec-
tory will spend a significant amount of time in the vicinity of
the fixed point is equal to 1−r. Note that from Eq. �28� we
explicitly have

r1 

1

2�erf�21/2�1/4��1
2 + 2�2

2 + �2�� − ����

�3/4��1
2 + 2�2

2 � + 1� ,

�31�

which also gives a lower bound for r. In general, however, it
is not possible to express rn for n�1 in closed form. Never-
theless, it is not difficult to see that when −���−5/4�, the
series in Eq. �30� rapidly converges, and so the value of r can
be significantly different from unity. It is also possible to

estimate r as it approaches unity by replacing the discrete
time random walk for G after a few steps by a continuous
one with an absorbing boundary condition at G=0; the result
is 1−r��5/4��� /��1 for −��1 and sufficiently large �.

We verified the above picture numerically by solving
Eqs. �8a� and �8b� �with higher-order terms dropped� with
the initial condition ��0 ,	0� lying on the separatrix, with �0

sufficiently large negative, and observing the trajectory until
it reaches a sufficiently large positive value of � at which the
probability of the trajectory returning to the vicinity of the
origin is negligible. The probability distribution of exit times
computed for a particular set of parameters chosen so that
�=O��5/4� and �=O�1� is presented in Fig. 5. One can see
that this distribution has the form of a sequence of sharp
narrow peaks corresponding to exits after an integer number
of revolutions in the phase plane �cf. Ref. 35�. Also observe
that the exit probability for a given number of revolutions
initially decays algebraically �see the inset�, signifying a
diffusion-dominated regime. This should be followed by an
exponential cutoff at 
��2T /b2. Furthermore, we found that
in the simulations of Fig. 5 we have r
0.75, which is sig-
nificantly different from unity, in agreement with the theoret-
ical arguments presented earlier. We also found r1
0.383 in
the numerics, which agrees very well with the value of r1


0.3716 obtained from Eq. �31�.

IV. SCALINGS

Now we are going to consider different dynamical re-
gimes arising for different scaling relationships between �
and � as both tend jointly to zero. Let us point out that our
analysis goes beyond a direct application of the Wentzell-
Freidlin large deviation theory for dynamical systems weakly
perturbed by noise, since this theory is asymptotic for �→0
with � fixed.33 In all cases below, we assume that �→0,
making the standard Wentzell-Freidlin theory inapplicable.

It turns out to be convenient to consider the different
scalings of � with � in decreasing order. This is because at
sufficiently high noise amplitudes �for precise scalings, see
below� the presence of the Hopf bifurcation becomes irrel-
evant as a consequence of either the SISR or the CR mecha-
nism. As the value of � is lowered, however, these two
mechanisms are no longer realized, and the effect of the
noise becomes rather intricately intertwined with the deter-
ministic Hopf bifurcation. We investigate this interplay in
detail below.

A. Self-induced stochastic resonance:
�1› ln−1/2�−1, �2�1

This regime was studied by us previously in Ref. 21.
Here we briefly recall our main observations. When �2 is

FIG. 5. The probability distribution of exit times for a trajectory satisfying
Eqs. �8a� and �8b�, which starts at �=�0 on the separatrix and stops upon
reaching �=−�0�1. The inset shows the same data plotted on the log-log
scale; dashed line shows the 
−3/2 dependence. The parameters are �=10−4,
�1=2�10−6, �2=0, �=0.1, and �0=−3. The time step of the simulation was
chosen to be �
=10−4. The distribution is obtained from 105 independent
runs, with each run terminated at 
=300 if the trajectory failed to exit. For
details of the numerical method, see Sec. V.
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sufficiently small and �=�1
2 ln �−1� ��c1�a� , 3

4
�, where �c1

=O��a−1�3� for 1�a��3 and �c1=0 for 0�a�1, a deter-
ministic limit cycle with period TLC=TSISR�a ,�� due to SISR
is created in the limit �, �→0 with �=O�1� fixed. When �
�

3
4 , the trajectory would be essentially governed by Eq. �1a�

alone with y frozen at y=y0; see Ref. 33.

B. Coherence resonance: �3/2���3/2 ln−1/2�−1›��1,
�1� ln−1/2�−1

When �2=0 and the value of �1 is decreased, the SISR
limit cycle crosses over to the deterministic limit cycle cre-
ated at a=1− in the limit �→0, with period TSISR�1,0�
3,
corresponding to the CR limit cycle.21 This is the case in
which �3/2���3/2ln−1/2 �−1��1� ln−1/2 �−1, with ��0 and
�−1/2� �����−1. Alternatively, the CR limit cycle is created
when �1=0 and �3/2���3/2ln−1/2 �−1��2�1 for these values
of �. To extend these results to the case of �����−1/2, we
simply observe that the noise always overwhelms the dy-
namics governed by Eqs. �8a� and �8b� for ���3/4, resulting
in a CR limit cycle as well for these values of �.

C. Transition from sporadic single spikes to clusters
of spikes: −�œ�−5/4�, �›���3/4

Let us first consider the case ��0 and 1� �����−1/2.
Since we are in the scaling regime in which the results of
Sec. III B are applicable, we need to consider the probability
of the trajectory “sticking” to the fixed point after arriving in
its vicinity. For ��� sufficiently large, the term involving b3

dominates in the expression for b. By examining Eqs. �29�
and �30�, or, simply estimating r with r1 from Eq. �31�, one
can see that the probability of the trajectory falling to the
small neighborhood of the fixed point becomes overwhelm-
ing when �����−5/4�. Once the trajectory comes to the vi-
cinity of the fixed point, it needs to overcome the barrier
�V����. Hence, since �����−2�2 in this range, the trajec-
tory will stay near the fixed point an exponentially long
O�exp�����2 /�2�� time before escaping and undergoing a
single large excursion �a spike�. Upon returning to the vicin-
ity of the fixed point, this situation will repeat. Note that this
is also what will happen in the limit �→0, then �→0, for
a=O�1� in the excitable regime.

On the other hand, when ��0 and ���=O��−5/4��, a
different scenario will occur. Now we will have the probabil-
ity 1−r of the trajectory sticking to the fixed point signifi-
cantly different from unity. As a result, once a large excur-
sion away from the fixed point occurs, it will be followed by
another excursion with probability r=O�1�, resulting in a
clustering of spikes. Still, if the trajectory goes to the vicinity
of the fixed point, it will take a long O�exp�����2 /�2�� time
to escape, just like before. Thus, this parameter regime is
characterized by rare clusters of spikes.

D. Transition from clusters of spikes to bursting
relaxation oscillations: �−2�2�−���−5/4�, �›���3/4

From the results of Sec. III B, for �−2�2� �����−5/4�,
which implies 1� �����−1/2, we have r
1. This means that
with overwhelming probability one large excursion will be
followed by another, etc., with only sporadic transitions to no

oscillations with an exponentially long lifetime. In other
words, in this regime one will observe persistent bursts of
relaxation oscillations, alternating with periods of quies-
cence. In contrast, for �����−2�2, the drift term b changes
sign, and now we have r=1 exactly. When ���=O��−2�2�, the
lifetime of the fixed point becomes O�1�, see Eq. �26�, and so
the trajectory cannot stick to the fixed point any more. There-
fore, in this case we have relaxation oscillations, as in CR.
The transition from bursting to the full limit cycle occurs
asymptotically at �=��−�−2��1

2+2�2
2�, according to

Eq. �21�.

E. Transition from bursting relaxation oscillations
to no oscillations or small-amplitude limit cycle:
�=O„1…, �5/4����

Since the case of large negative � has already been
treated above, throughout the rest of our analysis we will
assume that �=O�1�. Now the terms in b associated with b1

and b2 are negligible. Following the arguments above, we
may conclude that in the considered scaling one should ob-
serve bursting relaxation oscillations for ����. If ��0,
bursting will alternate with periods of quiescence. On the
other hand, when 0�����, bursting relaxation oscillations
will, in turn, alternate with the small-amplitude limit cycle
whose lifetime is still long, O�exp��2 /�2�� time. For ����,
one will observe relaxation oscillations. Note that this is the
range of parameters in which mixed-mode oscillations �i.e.,
either small-amplitude limit cycle or relaxation oscillations�
will occur.

F. Rare clusters of spikes: �=O„1…, �=O„�5/4
…

This is the case in which r=O�1�, giving rise to clusters
of spikes. As before, if ��0, these clusters will alternate
with the exponentially long stays in the vicinity of the fixed
point. If 0�����, the clusters compete with the exponen-
tially long-lived small-amplitude limit cycle. Still, only re-
laxation oscillations will be observed for ����.

G. No oscillations or small-amplitude oscillations
plus sporadic single spikes: �=O„1…, ���5/4

Lastly, when ���5/4, we have r
0 for ����, and so
only the deterministic solution �fixed point for ��0, small-
amplitude limit cycle for 0�����, or relaxation oscilla-
tions for ����� will be observed. Occasionally, on the
O�exp��2 /�2�� time scale, one will see rare single-spike ex-
cursions away from the deterministic limit.

V. NUMERICAL SIMULATIONS

We now present the results of the numerical simulations
of Eqs. �1a� and �1b� for different levels of the noise, cor-
roborating the conclusions of the asymptotic analysis of the
preceding sections. Here we will present a study of the effect
of the noise acting on the x variable only, i.e., �1�0 and
�2=0, since this is the case that leads to SISR for sufficiently
large �1 and is, therefore, the most interesting one. We veri-
fied that for smaller �’s, when SISR does not occur, it does
not matter where precisely the noise is added, in agreement
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with our asymptotic analysis of the preceding sections. In all
cases, Eqs. �1a� and �1b� were discretized using a simple
Euler scheme with the time step �t=0.01� to ensure that the
shortest time scale in the problem is adequately resolved.
The noise was generated using the standard Box-Muller al-
gorithm based on the lagged Fibonacci pseudorandom num-
ber generator �see, e.g., Ref. 36; the implementation is avail-
able at NETLIB, www.netlib.org�.

Throughout the simulations below, we fix �=10−4 and
a=1−0.1� at which a small-amplitude limit cycle exists in
the system for �=0. We first choose the noise amplitude in
the range of the validity of SISR, �1=0.2, see Ref. 21. The
results of the simulations are shown in Figs. 6�a� and 6�b�.
One can clearly see a coherent noise-induced limit cycle due

to SISR. We then observe the changes in the dynamics as the
value of �1 is decreased by an order of magnitude. When
�1=0.02, the limit cycle becomes considerably more coher-
ent, Fig. 6�c�, yet the period and other parameters of oscilla-
tions are still determined by SISR, with the jump-off point
approaching the left knee on SL, Fig. 6�d�. This is consistent
with the explanation of Ref. 21 as the value of a approaches
the bifurcation threshold. Upon further decrease to �1

=0.002, one obtains a quasideterministic precursor to the
large-amplitude relaxation limit cycle, Figs. 6�e� and 6�f�,
created at a→1− in the limit �→0. This is the parameter
regime in which the limit cycle due to SISR becomes indis-
tinguishable from the one due to CR.14,21 The sequence of

FIG. 6. The transition from the SISR limit cycle to the CR limit cycle as the noise amplitude is decreased. Results of the numerical solution of Eqs. �1a� and
�1b� with �=10−4, 1−a=10−5, �2=0, and different values of �1. In �a,c,e� the time series of x is shown, and in �b,d,f� the phase portrait is plotted. The values
of �1 are �1=0.2 in �a,b�, �1=0.02 in �c,d�, and �1=0.002 in �e,f�.
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transitions just observed corresponds to the situation in
which ���3/4, discussed in Sec. IV.

This picture begins to change qualitatively as the value
of �1 is decreased further. When �1=2�10−4=0.2�3/4, one
still observes a coherent large-amplitude relaxation limit
cycle, Fig. 7�a�. However, now the trajectory loops around a
few times before exiting the neighborhood of the fixed point,
see Fig. 7�b�. One can also see a small delay in the transition
from SL to SR in Fig. 7�a�. This effect becomes considerably
more pronounced for �1=2�10−5=0.2� when the trajectory
typically makes several highly coherent loops around the
fixed point at every cycle, see Figs. 7�c� and 7�d�. Occasion-
ally, the trajectory gets attracted to the small-amplitude limit

cycle; it can then take a long time for a system to escape and
perform a large excursion. This is the regime in which bursts
of relaxation oscillations are observed, alternating with the
small-amplitude limit cycle. As the value of �1 is decreased
even further to �1=2�10−6=0.2�5/4, the character of the ob-
served dynamics changes yet again, see Figs. 7�e� and 7�f�.
Now, the trajectory is typically attracted to the small-
amplitude limit cycle, Fig. 7�f�. Occasionally, the noise
pushes the system outside the basin of attraction of the limit
cycle, giving rise to clusters of several relaxation cycles
�spikes�, see Fig. 7�e�. From the simulations, the probability
of one spike following another within the time interval �t
�6 is r
0.73, in agreement with the asymptotic result ob-

FIG. 7. The transition from the relaxation limit cycle to the small-amplitude limit cycle as the noise amplitude is decreased further. Results of the numerical
solution of Eqs. �1a� and �1b� with �=10−4, 1−a=10−5, �2=0, and different values of �1. In �a,c,e� the time series of x is shown, and in �b,d,f� the phase
portrait is plotted. The values of �1 are �1=2�10−4 in �a,b�, �1=2�10−5 in �c,d�, and �1=2�10−6 in �e,f�.
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tained numerically for this set of parameters at the end of
Sec. III B.

Finally, as the noise amplitude is decreased further, the
spikes quickly become exceedingly rare and essentially are
not observed any more. This is the regime in which the de-
terministic dynamics, i.e., the small-amplitude limit cycle for
these values of the parameters, takes over on the time scale
of the observation �results not shown�. Note that all the tran-
sitions discussed above and the associated scales of the noise
amplitude are consistent with the predictions of the
asymptotic analysis of Sec. IV.

VI. SUMMARY AND DISCUSSION

Let us now summarize our findings. We have considered
a two-variable dynamical system that exhibits relaxation os-
cillations, as well as a singular Hopf bifurcation, in the limit
of strong timescale separation. We found that Gaussian white
noise of small amplitude significantly modifies the observed
dynamics near the Hopf bifurcation, giving rise to new phe-
nomena: bursting relaxation oscillations and spike clustering,
as well as modifying the parameter ranges in which no os-
cillations, small-amplitude limit cycle, or relaxation limit
cycle are observed.

We performed an asymptotic analysis of the dynamics in
the limit of strong timescale separation, �→0, under various
scalings of � and �=�−1�1−a� with �. The results of our
analysis can be conveniently summarized in the scaling dia-
gram presented in Fig. 8. This figure shows different scaling
regions of the dynamics in the �ln � / ln ��− �ln��� / ln ��
plane. Our previous analysis covered the case of SISR,
which in Fig. 8 is represented by the thick dashed line at
�1=O�ln−1/2 �−1�, independently of �, as well as the case of
CR for �−1/2����−1 and �3/2���3/2ln−1/2 �−1���1, see
Ref. 21. Our present analysis covers the region �����−1/2

and ���3/4.
We found that the relaxation limit cycle due to CR per-

sists for −���−2�2 and ���. In the region �5/4����3/4

and �−2�2�−���−5/4�, one will, instead, see bursts of re-
laxation oscillations, alternating with periods of quiescence
in which the system remains near the stable fixed point.
When ��0 and ���=O��−5/4��, one will see clusters of sev-
eral relaxation cycles �spikes� separated by long periods of
quiescence. Finally, only sporadic single spikes can be ex-
cited by the noise for ���5/4���, for all −��1. Let us note
that the intervals of bursts and of quiescence between spikes
must follow asymptotically a Poisson distribution with expo-
nentially long lifetimes.33 This is in contrast with the sharply
peaked interspike interval distribution due to SISR.21

Finally, mixed-mode oscillations �MMOs� are observed
in the considered system for �=O�1�. Here one can separate
four different regimes. First, when �1=O�ln−1/2 �−1� and
�2�1, one will observe the noise-induced limit cycle due to
SISR.18,21,22 Then, at ����1 the CR relaxation limit cycle
emerges. This crosses over at �5/4���1 to bursts of relax-
ation oscillations alternating with long periods of quiescence
when ��0, or with long-lived small-amplitude oscillations,
if 0�����. Still, relaxation oscillations persist asymptoti-
cally when ����. At �=O��5/4�, spike clustering will be
observed for ����. Finally, when ���5/4, the observed
dynamics is essentially described by the deterministic ver-
sion of Eqs. �1a� and �1b�, with rare isolated spikes due to
noise.

Let us now see how all this picture affects the slow
passage through the Hopf bifurcation in the considered prob-
lem. Up to now we were studying the effect of varying noise
amplitude on the system with fixed deterministic parameters.
A more realistic question is what happens with the system at
fixed timescale ratio ��1 and noise amplitude ��1 as the
value of the control parameter � passes adiabatically through
the bifurcation threshold ��=0�. Here the following four sce-
narios are possible. First, if the values of � and � obey the
scaling of SISR, then the deterministic Hopf bifurcation at
�=0 has little to do with the observed stochastic bifurcation
at −�=O��−1�, see Refs. 21 and 22. Alternatively, suppose
we fix �=O���� with �� �0, 3

4
�. Then upon passing through

the bifurcation point, an abrupt transition to the relaxation
limit cycle will occur at −���−1/2 by the CR mechanism,
before the deterministic threshold. If, on the other hand,
�� � 3

4 , 5
4

�, then, first, isolated spikes will appear, followed by
clusters of spikes, at −�=O��−5/4+��. As the value of � is
increased further, the clusters of spikes will become more
numerous, transforming into bursts of relaxation oscillations.
These bursts eventually become continuously firing when −�
reaches O��2��−1�� if ��1. For ��1, on the other hand,
bursting continues up to �=O�1�, and so the character of
interburst intervals will change from no oscillations to small-
amplitude oscillations when � reaches zero. After that, the
interburst intervals will become progressively shorter, until
at �=�� continuous firing is established. The latter is illus-
trated by a numerical simulation in Fig. 9. Finally, if ��

5
4 ,

then the observed sequence of transitions will essentially co-
incide with the bifurcation diagram of the deterministic sys-
tem; noise will become mostly negligible in this regime.

In conclusion, let us note that the dynamics uncovered
by our analysis should not rely on the details of the particular
model studied in this paper and are, therefore, expected to be

FIG. 8. The diagram of different scaling regimes near singular Hopf bifur-
cation. The boundary between CR and sporadic single spikes is where −�
��−1�2/3. The boundary between CR and bursting is where −���−2�2, and
the boundary between bursting and sporadic single spikes is where −�
��−5/4�. Note that for SISR to occur, the noise associated with �1 must
dominate.
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observed in generic excitable systems with strong separation
of time scale. Such systems are abundant in applications,
especially in biology. We point out that the phenomena of
spike clustering and bursting oscillations in models of relax-
ation oscillators near a singular Hopf bifurcation in the pres-
ence of noise, which describe systems of very different
physical nature, were first observed in Refs. 15, 16, 37, and
38. These phenomena are also widely observed experimen-
tally �see, e.g., Refs. 4 and 39�. Our analysis suggests that the
possible constructive role of noise should be carefully con-
sidered in the modeling of these phenomena.

The mechanism of mixed-mode oscillations analyzed by
us should also persist in more complicated models contain-
ing more than two degrees of freedom. These types of mod-
els may introduce an interesting interplay between the sto-
chastic effects and several slow variables. In particular, such
systems may self-tune in a way that the slow dynamics con-
tinuously brings the trajectory to the neighborhood of the
shadow of the Hopf bifurcation, where the effect of small
noise can be significant.15,40 Let us note that the effect of
spike clustering was observed in the simulations of a detailed
biophysical model of medial entorhinal cortex layer II stel-
late cells in the presence of small noise.41 A recent analytical
study42 revealed a lower-dimensional reduction of the full
model in Ref. 41 that has the ingredients necessary for the
mechanism discussed in this paper to be feasible.
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