
Digital Object Identifier (DOI) 10.1007/s00205-007-0097-x
Arch. Rational Mech. Anal. 188 (2008) 475–508

Existence of Traveling Waves of Invasion
for Ginzburg–Landau-type Problems in Infinite

Cylinders

M. Lucia, C. B. Muratov & M. Novaga

Communicated by F. Otto

Abstract

We study a class of systems of reaction–diffusion equations in infinite
cylinders which arise within the context of Ginzburg–Landau theories and describe
the kinetics of phase transformation in second-order or weakly first-order phase
transitions with non-conserved order parameters. We use a variational character-
ization to study the existence of a special class of traveling wave solutions which
are characterized by a fast exponential decay in the direction of propagation. Our
main result is a simple verifiable criterion for existence of these traveling waves
under the very general assumptions of non-linearities. We also prove boundedness,
regularity, and some other properties of the obtained solutions, as well as several
sufficient conditions for existence or non-existence of such traveling waves, and
give rigorous upper and lower bounds for their speed. In addition, we prove that
the speed of the obtained solutions gives a sharp upper bound for the propagation
speed of a class of disturbances which are initially sufficiently localized. We give
a sample application of our results using a computer-assisted approach.

1. Introduction

This paper is concerned with the study of traveling wave solutions of reaction–
diffusion systems of the gradient type

ut = ∆u + f (u), f (u) = −∇u V (u). (1.1)

Here, u = u(x, t) ∈ R
m , V : R

m → R, x = (y, z) ∈ Σ = Ω × R, Ω ⊂ R
n−1

is a bounded domain, so Σ is an infinite cylinder. Either Neumann or Dirichlet
boundary conditions can be chosen:

(n · ∇u)|∂Σ = 0, or u|∂Σ = 0, (1.2)
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where n is the outward normal to ∂Σ (in fact, one could treat more complicated
boundary conditions in a similar way). We assume that f (0) = 0, and so

u = 0 (1.3)

is the trivial solution of Equations (1.1) and (1.2).
Equation (1.1) is a prototypical equation in the theory of phase transition kinet-

ics. Systems undergoing second-order or weakly first-order phase transitions are
characterized by the presence of a “soft mode” near the transition temperature. This
allows one to introduce the concept of the “order parameter” to describe the ther-
modynamic state of the system near the transition point [29]. The order parameter
is generally a vector field and can physically describe, for example, the magnitude
of the spontaneous polarization, magnetization, or a structural change in a crystal.
If the order parameter is a non-conserved quantity, as is the case in ferroelectrics
and ferromagnets, for example, the relaxation of the soft mode toward equilibrium
may be modeled as a gradient flow in L2(Ω; R

m) down the Ginzburg–Landau free
energy (see, for example, [7,26,31])

ut = −δF

δu
, F[u] =

∫
Ω

(
1

2

m∑
i=1

|∇ui |2 + V (u)

)
dx . (1.4)

Here F[u] is a free energy functional, in which V (u) is a local thermodynamic
potential, typically obtained via a Taylor expansion and symmetry arguments (see,
for example, [30,46]), and the gradient term penalizes spatial variations of the order
parameter [29,30] (for the effect of anisotropy, see the end of Section 6).

We note that equations of the Ginzburg–Landau type can sometimes be sys-
tematically derived from more microscopic theories, such as kinetic Monte Carlo
models, etc. [8,14,27]). For example, the scalar (m = 1) Ginzburg–Landau equa-
tion can be derived by performing a gradient expansion of the non-local evolution
equation obtained for the long-range Ising model subject to Glauber dynamics near
the phase transition point [8]. Let us also point out that the choice of the boundary
conditions is also dictated by the physics at the surface and is, therefore, prob-
lem-dependent. For example, in the context of coarse-grained spin systems with
long-range interactions mentioned above, the Dirichlet boundary conditions will
be more appropriate, as opposed to the more conventional choice of Neumann
boundary conditions in Ginzburg–Landau-type problems.

As an example, if ui are the three components of the magnetization vector in
a ferromagnetic crystal with cubic symmetry near the Curie temperature, and hi

are the components of the applied field, the kinetics of u may be described by the
following Ginzburg–Landau equation:

τ
∂ui

∂t
= g∆ui + hi + aui − b1u3

i − b2ui

∑
i �= j

u2
j , (1.5)

where a, b1, g, τ are all positive constants, and b2 > − b1
2 , in three space dimen-

sions [30]. Note that Ginzburg–Landau-type equations often arise as a result of the
normal form expansion near a bifurcation point for partial differential equations
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(see, for example, [11]). Let us also point out that scalar reaction-diffusion equa-
tions, which automatically fall into the category of gradient systems, arise in a wide
variety of applications, most notably in biology [38].

Traveling wave solutions are special solutions of Equation (1.1) of the form
u(y, z, t) = ū(y, z − ct) with c ∈ R which describe uniformly translating “phase
change regions”, moving with speed c. In the following, we will only consider the
solutions invading the u = 0 equilibrium from the left; hence we will assume c > 0
and ū → 0 as z → +∞ everywhere below. This is an important class of solutions
of Equation (1.1) which is believed to describe the long-time asymptotics of the
solutions of the initial value problem for Equation (1.1) with sufficiently localized
initial data (for recent developments, see [40–42]). In fact, it was recently shown
that under certain assumptions only a special class of traveling wave solutions can
be selected as the long-time asymptotic solution for the initial value problem [37].
These so-called variational traveling waves are characterized by a fast exponential
decay ahead of the traveling wave solution and admit an interesting variational
characterization which allows one to establish a number of their properties. This
paper will be concerned with the problem of the existence of such traveling wave
solutions.

Substituting the traveling wave ansatz into Equation (1.1), we obtain the fol-
lowing elliptic problem for ū:

ūzz + ∆y ū + cūz + f (ū) = 0, (1.6)

with the boundary conditions from Equation (1.2). This equation attracted a great
deal of attention, starting with the early works of Fisher [19] and Kolmogorov,
Petrovskii and Piskunov [28]. The case of scalar equations (that is, m = 1)
has been extensively analyzed (see [5,17,50] for reviews, and more recent work in
[6,24,32,34]). In particular, the fact that (1.6) can be recast into a variational form
was first noted by Heinze [23,24].

Much less is known about the solutions of Equation (1.6) for systems, that is,
when m > 1. Let us point out that it is possible to use dynamical systems tech-
niques to obtain very general existence results for solutions of Equation (1.6) in
cylinders [16,35]. The price to pay, however, is that very little information about the
solutions, in particular, about their limiting behavior at the ends of the cylinder, is
available [16]. So far general existence results for solutions connecting prescribed
equilibria were limited to the case of monotone systems, for which the maximum
principle holds [49], and gradient systems with bistable non-linearities in one space
dimension [10,36,39,45].

Here we are going to establish existence of variational traveling wave solu-
tions for Equation (1.1) with the gradient-type non-linearity under very general
assumptions. By variational traveling wave, we mean a non-trivial solution of Equa-
tion (1.6) for some c that also lies in the exponentially weighted Sobolev space
H1

c (Σ; R
m) [37]. Our main existence result is contained in the following theorem

(for definitions and statements of hypotheses, see Section 2).

Theorem 1.1. Under hypotheses (H1)–(H3), there exist c† � c > 0(where c is the
“trial velocity” given by assumption (H3)) and ū ∈ H1

c†(Σ; R
m), ū �≡ 0, satisfying
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Equation (1.6) with c = c†. Furthermore, ū is a classical solution of (1.6), ū(x) ∈ K
for all x ∈ Σ(where K is given in assumption (H2)) and |ū(y, z)| � Ce−λz , for
some C > 0 and λ > 0.

Let us give a summary of our paper here. In Section 2 we introduce the func-
tional spaces, the exponentially weighted Sobolev spaces of vector-valued functions
H1

c (Σ; R
m), and the main variational problem, problem (P), to be analyzed. Here

we present the three main hypotheses on the non-linearity in Equation (1.6) and
discuss their significance. Then, in Section 3, under the assumption of existence,
we establish a number of properties of the minimizers of problem (P). In partic-
ular, we establish boundedness, regularity, and global gradient estimates for the
minimizers, as well as uniqueness of their speed. Going further, in Section 4 we
introduce a constrained variational problem, problem (P′), which will be used to
establish existence of minimizers for problem (P). Here we show that existence of
solutions for problem (P′) implies that for problem (P).

Then, in Section 5 we prove existence of minimizers for problem (P′). This
result is established via a sequence of lemmas associated with the properties of
the exponentially weighted Sobolev spaces H1

c (Σ; R
m). We first obtain a uniform

estimate that allows one to obtain information on the exponential decay of func-
tions obeying the constraint and uniform estimates on the || · ||1,c-norm. The crucial
piece of the proof is establishing lower semicontinuity of the considered functional.
This is done by estimating the measure of “bad” sets, the sets Ω+(z), for functions
in balls in H1

c (Σ, R
m), as z → +∞, via an application of relative isoperimetric

inequality and the co-area formula.
In Section 6 we establish several criteria of existence and non-existence of the

considered type of the traveling waves. We also prove a number of properties of
the minimizers, such as their one-dimensionality in the case of Neumann boundary
conditions, or the fact that for the potentials V that depend only on the magnitude
of the vector u, the minimizers are essentially scalar (up to a constant vector). We
conclude this section by proving that in a certain class of solutions of the original
parabolic problem the speed of the minimizers is in fact a sharp upper bound on
the speed of propagation of disturbances. Finally, in Section 7 we consider a two-
variable Ginzburg–Landau model as a sample application, for which we explicitly
verify various assumptions of the analysis using a computer-assisted approach.

Remark 1. Under suitable regularity assumptions, our results can be straightfor-
wardly extended to a general class of equations in which ∆y is replaced by a strictly
elliptic second-order operator in divergence form, and both this operator and the
non-linearity are allowed to depend on the transverse coordinate y.

Notations

Throughout the paper, ui denote the components of u ∈ R
m ; Ck , C∞

0 , Ck,α

denote the usual spaces of continuous functions with k continuous derivatives,
smooth functions with compact support, continuously differentiable functions with
Hölder-continuous derivatives of order k for α ∈ (0, 1) (or Lipschitz-continuous
when α = 1), respectively. Unless it is otherwise clear from the context, “·” denotes
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a scalar product and | · | the Euclidean norm in R
n (occasionally, when there can be

no confusion, we use this notation to denote the same quantities in R
m). The symbol

∇ is reserved for the gradient in R
n , while ∇y stands for the gradient in Ω ⊂ R

n−1

(we use ∇u to denote the gradient in R
m). Similarly, the symbol ∆ stands for the

Laplacian in R
n , and ∆y for the Laplacian in Ω . By a classical solution of Equa-

tion (1.6), we mean a function u ∈ (C2(Σ) ∩ C1(Σ̄))m that satisfies this equation
with a given value of c ∈ R and the boundary conditions in Equation (1.2). For
any domain ω ⊆ Ω , the quantity |ω| denotes the Lebesgue measure of ω ⊆ R

n−1

(with the convention that |Ω| = 1 for n = 1), and |∂ω| that of the boundary of ω.
The numbers C, K , M, λ, etc., will denote generic positive constants.

2. Preliminaries and variational formulation

In this section, we introduce a few basic definitions and state our main assump-
tions. Throughout this paper it is assumed that Ω is a bounded domain with bound-
ary of class C2 whenever n � 3. We now list some assumptions on the regularity
and growth of V (u).

(H1) The function V : R
m → R satisfies

V ∈ C0(Rm), V (0) = ∇u V (0) = 0, V (u) � −C |u|2 (2.1)

for some C � 0.
(H2) There exists a convex compact set K ⊂ R

m which contains the origin, such
that V ∈ C1,1(K) and for all u �∈ K

V (u) � V (
K(u)), (2.2)

where 
K : R
m → R

m is the projection on the set K, that is, 
K(u) is the
closest point to u which lies in K.

Let us point out that our results remain valid if V is defined only in K, together
with the condition

(ν · ∇u V )|∂K � 0, (2.3)

where ν is any outward normal to ∂K, holds in place of Equation (2.2) in hypothesis
(H2). Indeed, we can always consider the following continuous extension of V (u)

to the whole of R
m :

Ṽ (u) = V (
K(u)) + ∇u V (
K(u)) · (u − 
K(u)). (2.4)

By construction, Ṽ (u) is Lipschitz continuous on the whole R
m and, furthermore,

is continuously differentiable up to the boundary of K [13]. Clearly, by Equa-
tion (2.3) hypothesis (H2) holds for Ṽ . Also, since 
K is 1-Lipschitz, Ṽ satisfies
the condition Ṽ (u) � −C |u|2, and so hypothesis (H1) is also met by Ṽ .

We note that in the context of Equation (1.1) the set K, together with an assump-
tion like the one in Equation (2.3), plays the role of an invariant region, and its exis-
tence ensures global existence of solutions for the initial value problem associated
with Equation (1.1) (see, for example, [43,44]).
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We now introduce the definition of the exponentially weighted Sobolev spaces
in which we will be working:

Definition 1. For c > 0, denote by H1
c (Σ; R

m) the completion of the restrictions
of (C∞

0 (Rn))m to Σ with respect to the norm

||u||21,c = ||u||2L2
c(Σ;Rm )

+ ||∇u||2L2
c (Σ;Rm )

, ||u||2L2
c(Σ;Rm )

=
m∑

i=1

∫
Σ

ecz |ui |2 dx .

For Dirichlet boundary conditions, replace C∞
0 (Rn) with C∞

0 (Σ) above.

The weight appearing in the definition of the spaces H1
c (Σ; R

m) arises quite
naturally in the context of propagation for Equation (1.1) [18,37,40]. Indeed, Equa-
tion (1.1) written in the reference frame moving with speed c loses a variational
structure of Equation (1.4) because of the appearance of the term containing a first
derivative. However, by multiplying this equation by an appropriate weight (ecz)
we obtain an equation which again has a variational structure [23,24,37].

Let us mention an important general property of the spaces H1
c (Σ; R

m) which is
an analogue of the Poincaré inequality and will be needed to establish the existence
result.

Lemma 2.1. For all u ∈ H1
c (Σ; R

m), we have

c2

4

∫
Σ

ecz
m∑

i=1

u2
i dx �

∫
Σ

ecz
m∑

i=1

(
∂ui

∂z

)2

dx . (2.5)

Proof. The proof follows from the estimate in Equation (5.1) of Lemma 5.1 below,
in the limit R → −∞. ��

For u ∈ H1
c (Σ; R

m) define two functionals

Φc[u] =
∫

Σ

ecz

(
1

2

m∑
i=1

|∇ui |2 + V (u)

)
dx, (2.6)

Γc[u] = 1

2

∫
Σ

ecz
m∑

i=1

(
∂ui

∂z

)2

dx . (2.7)

Clearly, by hypothesis (H1) the functional Φc : H1
c (Σ; R

m) → R ∪ {+∞} is well
defined for all u ∈ H1

c (Σ; R
m).

At least formally, Equation (1.6) describing the traveling wave solutions of
Equation (1.1) is the Euler–Lagrange equation associated with the functional Φc

[37]. A major difficulty, however, is the fact that the speed c of the traveling wave
is also part of the solution and must, therefore, be determined simultaneously. Our
approach to this question is via the following variational problem:

(P) Find a non-trivial minimizer ū ∈ H1
c†(Σ; R

m) of Φc† for some c† > 0.

Now the speed c = c† is part of the solution of problem (P), and we have
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Proposition 2.2. Let ū be a solution of problem (P), with ū(x) ∈ K for all x ∈ Σ .
Then ū satisfies Equation (1.6) weakly in H1

c (Σ; R
m) with c = c†.

Proof. Observe that by hypotheses (H1) and (H2) for u(x) ∈ K the functional
Φc†[u] is of class C1 on H1

c†(Σ; R
m). Therefore, if ū is a minimizer of Φc† , then

for any ϕ ∈ H1
c†(Σ; R

m)

∫
Σ

ec†z
m∑

i=1

(
∂ ūi

∂z

∂ϕi

∂z
+ ∇y ūi · ∇yϕi + ∂V (ū)

∂ui
ϕi

)
dx = 0, (2.8)

which is a weak version of Equation (1.6) with c = c†. ��
We point out that under hypotheses (H1) and (H2) we will further prove reg-

ularity of the solutions of problem (P) (see Section 3 below). So these solutions
are classical solutions of Equation (1.6). Let us also mention that several other
variational approaches to traveling waves exist [3,21,25,50].

Before turning to the analysis of problem (P), let us introduce the following
two constants:

ν0 = µ0 + lim inf|u|→0

2V (u)

|u|2 , µ− = min
u∈K

2V (u)

|u|2 , (2.9)

where µ0 is the smallest eigenvalue of −∆y with the boundary conditions as in
Equation (1.2), and the lim inf is taken over u ∈ K. Clearly, in view of hypothesis
(H1), both are well defined. These quantities play a crucial role in the existence of
solutions of problem (P), as we will show below. To motivate their introduction,
let us consider in more detail the decay of the solutions of Equation (1.6) at plus
infinity (see also [37]). To this end, let us linearize Equation (1.6) around u = 0 at
large z. Then the solutions of Equation (1.6) that decay as z → +∞ are expected
to be approximately a superposition of functions uk(y, z) = e−λk zvk(y), where λk

satisfy

λ2
k − cλk − νk = 0, (2.10)

and vk(y) ∈ R
m and νk ∈ R are the eigenfunctions and the eigenvalues defined by

the equality

− ∆yvk + H(0)vk = νkvk, H(u) = (∇u ⊗ ∇u)V (u), (2.11)

where H(u) is the Hessian of the potential V (u) (here we assume that V is twice
differentiable at the origin), provided Re λk > 0. We note that νk can, in turn,
be broken up into a sum of the eigenvalue µk of −∆y in Ω with the boundary
conditions from Equation (1.2), and the eigenvalues of a symmetric matrix H(0),
implying that νk are all real, bounded from below, and increasing as k → ∞.

Equation (2.10) can be trivially solved to give

λ±
k (c) = c ± √

c2 + 4νk

2
, (2.12)
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λ

ν1

ν0
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λ 0
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λ+
1
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λ+
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λ+
2

Fig. 2.1. A qualitative form of the dependencies λ±
k (c) for ν0 < ν1 < 0 < ν2 < · · ·

so for each νk �= 0 there is at least one solution with Re λk > 0. Thus, in the case
of twice-differentiable V (u) the value of ν0 determines the slowest possible rate of
decay of the solutions of Equation (1.6) at plus infinity, corresponding to the plus
sign in Equation (2.12), while µ− gives a lower bound for ν0.

We now state the third assumption needed to establish existence of solutions of
problem (P).

(H3) There exist c > 0 such that c2 + 4ν0 > 0, and u ∈ H1
c (Σ; R

m), u �≡ 0, such
that Φc[u] � 0.

Let us explain the meaning of this assumption. The condition c2 + 4ν0 > 0
ensures the weak lower semicontinuity of the functional Φc on H1

c (Σ; R
m) (see

Proposition 5.5); hence it is crucial in proving existence of minimizers for Φc.
The condition Φc[u] � 0 for some u �≡ 0, guarantees that the minimizer is not
identically equal to zero. Due to Proposition 3.5, this assumption is necessary in
order to have traveling wave solutions of Equation (1.6) lying in H1

c (Σ; R
m).

Observe that, if ν0 � 0, the first condition in (H3) is automatically satisfied,
and the second condition can be expressed only in terms of z-independent functions
(see Proposition 6.2). On the other hand, if ν0 < 0, there exists a finite set of k’s, for
which νk < 0. In turn, for those k’s and c2 > −4ν0 � −4νk there are two values of
λk = λ±

k > 0 that solve Equation (2.10), with λ−
k < c

2 < λ+
k , see Equation (2.12).

As an illustration, consider the case ν0 < ν1 < 0 < ν2 < · · · , in Fig. 2.1. Here
we show schematically the locations of the curves λ±

k as functions of c for the
first four values of k. Since the solution of problem (P) belongs to H1

c (Σ; R
m),

it must decay faster than e−cz/2 (cross-hatched area in Fig. 2.1), and so all the
solutions of Equation (1.6) decaying asymptotically as e−λ−

k z at plus infinity are
automatically excluded. Hence, the hypothesis (H3), together with the existence
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of solutions of problem (P), implies the existence of traveling waves with fast
exponential decay. These are special solutions of Equation (1.6), since generically
one would expect the decay with the slower rate e−λ−

k z at some k for which νk < 0
(see also [11,32,37,41,47]). Under hypothesis (H3) we will be looking for the trav-
eling waves moving with speed c† � c > 2

√−ν0 when ν0 < 0 (see below), this
region corresponds to the cross-hatched area in Fig. 2.1.

3. Properties of minimizers

Before proceeding to the construction of solutions to problem (P), we inves-
tigate a number of their properties. First, observe that both Φc and Γc transform
similarly under translations.

Lemma 3.1. Let u ∈ H1
c (Σ; R

m) and ua(y, z) := u(y, z − a). Then,
ua ∈ H1

c (Σ; R
m) also, and

Φc[ua] = ecaΦc[u] and Γc[ua] = ecaΓc[u]. (3.1)

From this lemma, which is verified by direct inspection of the respective func-
tionals, we obtain the following important result:

Proposition 3.2. If ū is a solution of problem (P), then Φc†[u] � 0 for all
u ∈ H1

c†(Σ; R
m) and Φc†[ū] = 0.

Proof. The first statement is an obvious consequence of the fact that ū is a mini-
mizer, if the second statement holds. To prove the latter, we first note that
infu∈H1

c† (Σ;Rm ) Φc†[u] � 0, since zero is in H1
c†(Σ; R

m). On the other hand, if

Φc†[u] < 0 for some u ∈ H1
c†(Σ; R

m), then Φc†[ua] < Φc†[u], where

ua ∈ H1
c†(Σ; R

m) is as in Lemma 3.1, with a > 0; hence, there are no minimizers
of Φc† . ��

In other words, the assumption about the existence of a non-trivial
u ∈ H1

c (Σ; R
m) such that Φc[u] � 0 in hypothesis (H3) is in fact necessary,

since the solution of problem (P) has this property for c = c† by Proposition 3.2.
Next we establish a priori bounds on ū and ∇ū for the solutions of problem (P).

Proposition 3.3. If ū is a solution of problem (P), then

(i) ū(x) ∈ K for all x ∈ Σ .
(ii) ū ∈ (C2(Σ) ∩ C1(Σ))m, and ∇ū ∈ (L∞(Σ))mn ∩ H1

c†(Σ; R
mn).

(iii) For all x = (y, z) ∈ Σ , we have |ū(y, z)| � Ce−λz for some C > 0 and
λ > 0.

Proof. (i) Let 
K : R
m → R

m be the projection on the convex set K, as in
hypothesis (H2). Recall that [13]


K(u) = u − dK(u)∇udK(u), (3.2)
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where dK(u) is the distance to u ∈ R
m from the set K. Then, if we replace ū by

ũ := 
K(ū) ∈ H1
c (Σ; R

m), we have V (ũ) � V (ū) by (2.2) and
∑m

i=1 |∇ũi |2 �∑m
i=1 |∇ūi |2 since 
K is a 1-Lipschitz function. Let W ⊂ Σ be defined as W :=

{x ∈ Σ : ū(x) /∈ K} and assume, by contradiction, that W has positive measure.
Then, since the function dK(ū) is not constant on W , there exist a set W ′ ⊂ W
of positive measure and a constant δ > 0 such that |∇dK(ū(x))| � δ almost
everywhere on W ′. Approximating ū with smooth functions in H1

c (Σ; R
m) and

differentiating (3.2), we obtain

∫
W ′

ecz
m∑

i=1

|∇ũi |2 dx <

∫
W ′

ecz
m∑

i=1

|∇ūi |2 dx,

which implies Φc[ũ] < Φc[ū] and contradicts the minimality of ū. So, ū(x) ∈ K
for almost every x ∈ Σ . Then, the statement of the proposition follows from the
regularity result below.

(ii) Since by the above result ū ∈ (L∞(Σ))m and f is continuous on the essen-
tial range of ū, we have fi ∈ L p

loc(Σ), for any p � 1 and for all 1 � i � m.
So, choosing p sufficiently large and applying the De Giorgi–Nash theory to each
component ūi of ū, we obtain ūi ∈ C0,α(Σ), 1 � i � m with some α ∈ (0, 1)

(see, for example, [20, Theorem 8.22]). Then, since f ∈ C0,1(K) by hypothesis
(H2), it follows from the Schauder theory [20] that ū ∈ (C2,α(Σ))m .

To obtain C1,α regularity of ū up to the boundary of Σ and a uniform estimate
for ∇ū in (L∞(Σ))mn , we apply to each component ūi the classical W 2,p regu-
larity theory (see, for example, [1,33]), which can be easily adapted to the case
of a fixed slice of the cylinder Σ . We shall give the proof in detail in the case
of Dirichlet boundary condition; for Neumann boundary conditions, using the the
estimates of [1] (see also [33]) instead of the estimates of [20] and recalling that
∂Σ is uniformly of class C2, one can easily adapt the same proof.

By setting vi := ūi ecz/2, one can see that after a change of variables Equa-
tion (1.6) with ū ∈ H1

c (Σ; R
m) is equivalent to

∆vi − c2

4
vi = fi (ū)ecz/2, vi ∈ H1(Σ), v|∂Σ = 0, (3.3)

where H1(Σ) is the usual Sobolev space.
For fixed z1, z2, z̃1, z̃2 ∈ R, with [z1, z2] ⊂ (z̃1, z̃2), consider the slices Σ0 :=

Ω ×(z1, z2) and Σ̃0 := Ω ×(z̃1, z̃2) of the cylinder Σ . Since ūi ∈ L∞(Σ) (by part
(i)), the right-hand side of Equation (3.3) is in L p(Σ̃0) for all p > 1. By standard
regularity theory (see, for example, [20, Theorem 8.12 and Theorem 9.16]), we
deduce vi ∈ W 2,p(Σ̃0). Moreover, the a priori estimate given by [20, Theorem
9.13] to Equation (3.3) on the domains Σ̃0 and Σ0 yields

‖vi‖W 2,p(Σ0) � C

(
‖vi‖L p(Σ̃0) +

∥∥∥ fi (ū)ecz/2
∥∥∥

L p(Σ̃0)

)

= C

(∥∥∥ui e
cz/2

∥∥∥
L p(Σ̃0)

+
∥∥∥ fi (ū)ecz/2

∥∥∥
L p(Σ̃0)

)
, (3.4)
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where C depends on the parameters n, p, c and the geometry of Σ0, Σ̃0. Since both
ūi , fi (ū) ∈ L∞(Σ), we can set M = max{||ūi ||L∞(Σ), || fi (ū)||L∞(Σ)} to obtain

‖vi‖W 2,p(Σ0)
� 2MC

∥∥∥ecz/2
∥∥∥

L p(Σ̃0)
� 2MC |Σ̃0|ecz̃2/2.

By choosing p > n/2 and applying [20, Theorem 7.26], we deduce that

||vi ||C1(Σ0)
� 2MC S|Σ̃0|

1
n − 1

p +1ecz̃2/2, (3.5)

where S = S(n, p) is the Sobolev imbedding constant. Hence, coming back to the
function u and using the inequality in Equation (3.5), we obtain ūi ∈ C1(Σ0), and
for any (y, z) ∈ Σ0

|∇ūi (y, z)| = |∇(vi e
−cz/2)| � |e−cz/2∇vi | + c

2
|e−cz/2vi |

� (2 + c)MC S|Σ̃0|
1
n − 1

p +1ec(z̃2−z̃1)/2 = C ′,

where the constant C ′ is invariant with respect to translations of the slice along z.
So, translating the slices Σ0, Σ̃0 simultaneously along z, we obtain the estimate
for all x ∈ Σ . Finally, the fact that ∇ū ∈ H1

c†(Σ; R
mn) follows directly from (3.4)

with p = 2 and the inequality | fi (ū)| � C |ū|.
(iii) Now we prove the uniform exponential decay of u as z → +∞. Sup-

pose, to the contrary, there exists a sequence xk = (yk, zk) ∈ Σ , such that zk →
+∞ and |ū(xk)|eλzk → ∞ for all λ > 0. Since ∂Ω is Lipschitz continuous, Σ

satisfies the uniform interior cone property. So there exists a cone CΣ (with finite
height) such that each point xk ∈ Σ is the vertex of a cone Ck congruent to CΣ

that lies in Σ̄ . Up to a subsequence, we can further assume that Ci ∩ C j = ∅ for all
i �= j . By the previous result, we have ∇ū ∈ (L∞(Σ))mn , so |ū(x)| � 1

2 |ū(xk)|
for all x ∈ C̃k , where C̃k is a smaller cone similar to Ck , with the same vertex and
|C̃k | = min{|Ck |, ε|ū(xk)|n} for some ε > 0 (recall that n = dim Σ). By assump-
tion we have |u(xk)| � e−λzk for all k � N for some integer N , and also we can
choose N large enough that |C̃k | � εe−nλzk . But this implies

∫
Σ

ec†z |ū|2 dx �
∞∑

k=1

∫
C̃k

ec†z |ū|2 dx � ε

4

∞∑
k=N

e(c†−λ(2+n))zk = ∞

for λ = c†/(2 + n), which contradicts the fact that ū ∈ H1
c†(Σ; R

m). ��
Let us point out that the obtained value of λ = c†/(2 + n) in the proof above

is, of course, not sharp. It should be possible to obtain precise estimates for λ by
studying the asymptotic behavior of solutions of Equation (1.6) at plus infinity.
However, for n � 3 the rate of decay of the solution can be estimated by not-
ing that from Proposition 3.3(ii) and the Sobolev embedding theorem we obtain
‖vi‖C0,α(Σ) � C . This, in turn, implies that |u(y, z)| � Ce−cz/2 for any c < c†,
which is sharp.

A crucial property of the considered variational problem is uniqueness of the
speed c† (this point was already briefly discussed in [37]).
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Proposition 3.4. The value of c† in the solution of problem (P) is unique.

Proof. Assume by contradiction that there exist c†
2 > c†

1, together with
ū(1) ∈ H1

c†
1

(Σ; R
m) and ū(2) ∈ H1

c†
2

(Σ; R
m) such that

∆ū(1,2) + c†
1,2

∂ ū(1,2)

∂z
+ f (ū(1,2)) = 0.

Let us first show that ū(2) ∈ H1
c†

1

(Σ; R
m). Since c†

2 > c†
1, we have

∫ +∞

−∞

∫
Ω

ec†
1z |ū(2)|2 dy dz =

∫ 0

−∞

∫
Ω

ec†
1z |ū(2)|2 dy dz +

∫ +∞

0

∫
Ω

ec†
1z |ū(2)|2 dy dz

� M |Ω|
c†

1

+
∫ ∞

0

∫
Ω

ec†
2z |ū(2)|2 dy dz

� M |Ω|
c†

1

+
∫

Σ

ec†
2z |ū(2)|2 dx < ∞,

for some M > 0, where we took into account that the solutions of problem (P)
are uniformly bounded by Lemma 3.3. Since, in turn, by Proposition 3.3, we have
∇ū(1,2) ∈ (L∞(Σ))mn as well, this argument can be repeated for the gradient. So
ū(2) ∈ H1

c†
1

(Σ; R
m).

In order to obtain a contradiction, let us scalar multiply Equation (1.6), with

ū = ū(2) and c = c†
2, by ec†

1z ∂ ū(2)

∂z and integrate over Σ . This is justified since ū(2)

is a classical solution of Equation (1.6) by Proposition 3.3; hence we can integrate
the expression over the domain ΣR := Ω × (−R, R) and then let R → +∞ on a
suitable sequence. After a number of integrations by parts, we obtain

0 =
∫

Σ

ec†
1z

m∑
i=1

∂ ū(2)
i

∂z

(
∂2ū(2)

i

∂z2 + c†
2

∂ ū(2)
i

∂z
+ ∆y ū(2)

i + fi (ū
(2))

)
dx

= c†
1Φc†

1
[ū(2)] + 2(c†

2 − c†
1)Γc†

1
[ū(2)], (3.6)

which implies that Φc†
1
[ū(2)] < 0, contradicting Proposition 3.2. ��

We now extend the result in Proposition 3.2 to any classical solution ū of Equa-
tion (1.6) which lies in H1

c (Σ; R
m).

Proposition 3.5. Let ū ∈ H1
c (Σ; R

m) be a classical solution of Equation (1.6).
Then

Φc[ū] = 0. (3.7)

Proof. We scalar multiply as above Equation (1.6) by ecz ∂ ū
∂z and integrate over Σ .

The result then follows exactly as in Equation (3.6). ��



Existence of Traveling Waves 487

Observe that ū in Proposition 3.5 may or may not be a solution of problem (P).
In the first case we have c = c† and all the critical points of Φc in H1

c (Σ; R
m) are

solutions of problem (P). In the second case we have c < c†, and ū is only a critical
point of Φc, and not a minimizer. This means that the solutions of Equation (1.6)
obtained by solving problem (P) are the fastest moving traveling waves within a
class of sufficiently rapidly decaying solutions. This also means that, under hypoth-
eses (H1) and (H2), if there exists a traveling wave solution ū ∈ H1

c (Σ; R
m) with

speed c satisfying c2 +4ν0 > 0, then problem (P) has a solution. This follows from
the fact that in this case ū is the function whose existence is required by (H3) [37].

4. Constrained minimization problem

To proceed with establishing the existence of solutions for problem (P), let us
make a simple, but crucial observation about the translational invariance of Equa-
tion (1.6) in the z-direction, which leads to a natural loss of compactness. From
the variational viewpoint, under the assumption of the existence of a non-trivial
u ∈ H1

c (Σ; R
m) such that Φc[u] � 0 in hypothesis (H3), which is necessary for

existence of solution of problem (P), one cannot expect any kind of coercivity for
the functional Φc[u], since the sequence of un(z, y) := ū(z−n, y) has the property
that Φc[un] � 0, while ||un||1,c → ∞ by Proposition 3.2.

To deal with this issue, we follow the idea of Heinze [24] and introduce an
auxiliary constrained variational problem. Define

Bc := {u ∈ H1
c (Σ; R

m) : Γc[u] = 1}. (4.1)

Then consider the following variational problem:

(P′) Find uc ∈ Bc satisfying: Φc[uc] = inf
Bc

Φc[u] � 0.

It is easy to see that the constraint Bc gives a natural way to fix translations along
the axis of the cylinder. In particular, the functional Φc becomes coercive on Bc

(see Lemma 5.2). Let us note that up to a transformation, problem (P′) is equivalent
to the constrained variational problem considered by Heinze [24].

In the following, we will show that existence of solutions of problem (P′) implies
the same for problem (P). Let us begin by proving that the solutions of the problem
(P′) also lie within K.

Lemma 4.1. Let uc be a solution of problem (P ′). Then u(x) ∈ K for almost
everywhere x ∈ Σ .

Proof. We use the same projection argument as in Proposition 3.3. Namely, suppose
that uc(x) is not in K in a set of non-zero measure. Then, repeating the arguments
of Proposition 3.3, we obtain Φc[ũ] < Φc[uc] � 0, where ũ := 
K(uc). Similarly,
Γc[uc] � Γc[ũ] > 0, where the last inequality follows from the fact that Φc[ũ] < 0.
So, by Lemma 3.1 there exists a constant a � 0 such that ũa(y, z) := ũ(y, z − a)

is in Bc, and Φc[ũa] � Φc[ũ]. Therefore, uc is not a minimizer of problem (P′),
leading to contradiction. ��
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The following proposition establishes the connection between the solutions of
problems (P) and (P′).

Proposition 4.2. If uc is a solution of problem (P ′), then

ū(y, z) = uc(y, z
√

1 − Φc[uc]) and c† = c
√

1 − Φc[uc], (4.2)

are those for problem (P).

Proof. First of all, as in Proposition 2.2, we have Φc and Γc of class C1 on
H1

c (Σ; R
m). Let DΓc[u]v be the Fréchet derivative of Γc at u acting on v. Since

DΓc[u]u =
∫

Σ

ecz
m∑

i=1

(
∂ui

∂z

)2

dx = 2, ∀u ∈ Bc,

we obtain DΓc[u] �≡ 0 on the constraint. Thus, applying the Lagrange multiplier
theorem (see, for example, [9, Section 3.5]), we obtain

∫
Σ

ec†z
m∑

i=1

(
(1 − µ)

∂uc,i

∂z

∂ϕi

∂z
+ ∇yuc,i · ∇yϕi + ∂V (uc)

∂ui
ϕi

)
dx = 0. (4.3)

where µ is the Lagrange multiplier.
Let us now show that µ < 1. Indeed, suppose the opposite is true. Fix a > 0,

and consider ua(x) := e−ca/2uc(x) ∈ K almost everywhere (recall that K is con-
vex, and 0 ∈ K). Then, for v = ua − uc ∈ H1

c (Σ; R
m) the Fréchet derivatives of

Φc and Γc on uc satisfy

DΦc[uc]v = µDΓc[uc]v � 2(e−ca/2 − 1) < 0, (4.4)

where we recalled that uc ∈ Bc. Therefore, since Φc is of class C1, there exists a suf-
ficiently small a > 0 such that Φc[ua] < Φc[uc] � 0. Now, consider ũa(y, z) :=
ua(y, z − a). A straightforward calculation then shows that ũa ∈ Bc. However, by
Lemma 3.1 and the fact that Φc[ua] < 0, we obtain Φc[ũa] < Φc[uc], contradicting
the fact that uc is a minimizer.

So, µ < 1, and from Lemma 4.1 and the argument of Proposition 3.3 we deduce
that uc ∈ (C2(Σ))m and satisfies

(1 − µ)

(
∂2uc

∂z2 + c
∂uc

∂z

)
+ ∆yuc + f (uc) = 0. (4.5)

Now, we scalar multiply Equation (4.5) by ecz ∂ ū
∂z as in Proposition 3.4, and

integrate over Σ to obtain

0 =
∫

Σ

ecz
m∑

i=1

[
(1 − µ)

∂uc,i

∂z

∂2uc,i

∂z2 + ∇yuc,i · ∂

∂z
∇yuc,i + ∂V (uc)

∂ui

∂uc,i

∂z

]
dx

= c(µ − Φc[uc]),
where we recalled that Γc[uc] = 1. This means that

µ = Φc[uc]. (4.6)
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To show that ū and c† are solutions of problem (P), first fix u ∈ H1
c†(Σ; R

m) and

introduce ũ(y, ζ ) = u
(

y,
ζ√

1−µ

)
, which is possible since µ < 1. Then

∫ +∞

−∞

∫
Ω

ecζ ũ2
i dy dζ = √

1 − µ

∫ +∞

−∞

∫
Ω

ec†zu2
i dy dz, (4.7)

∫ +∞

−∞

∫
Ω

ecζ |∇y ũi |2 dy dζ = √
1 − µ

∫ +∞

−∞

∫
Ω

ec†z |∇yui |2 dy dz, (4.8)

∫ +∞

−∞

∫
Ω

ecζ
(

∂ ũi

∂z

)2

dy dζ = 1√
1 − µ

∫ +∞

−∞

∫
Ω

ec†z
(

∂ui

∂z

)2

dy dz. (4.9)

Therefore, ũ ∈ H1
c (Σ; R

m), and

Φc†[u] =
∫ +∞

−∞

∫
Ω

ec†z

(
1

2

m∑
i=1

[(
∂ui

∂z

)2

+|∇yui |2
]

+ V (u)

)
dy dz

= 1√
1 − µ

∫ +∞

−∞

∫
Ω

ecζ

(
1

2

m∑
i=1

[
(1−µ)

(
∂ ũi

∂ζ

)2

+ |∇y ũi |2
]

+V (ũ)

)
dy dζ

= 1√
1 − µ

(Φc[ũ] − µΓc[ũ]) . (4.10)

Now we claim that if the solution of problem (P′) exists, then

Φc[ũ] � µΓc[ũ]. (4.11)

Indeed, if Γc[ũ] = 0, then by Lemma 2.1 and hypothesis (H1) we have Φc[ũ] = 0
also, so Equation (4.11) holds trivially. On the other hand, if Γc[ũ] > 0, then there
exists a constant a ∈ R such that the translated function ũa(y, z) := ũ(y, z − a) of
ũ is in Bc. Hence, Φc[ũa] � Φc[uc] = µΓc[ũa], and by Lemma 3.1 the inequality
in Equation (4.11) holds for ũ, with equality achieved when ũ = uc. Hence, by
Equation (4.10) we have Φc†[u] � 0 for all u ∈ H1

c†(Σ; R
m), and ū gives a solution

of problem (P). ��

5. Existence of constrained minimizers

To proceed with the proof of existence of constrained minimizers, we need to
establish some compactness properties of the sublevel sets of Φc. Since we will
work in the weak topology of H1

c (Σ; R
m), which is a Hilbert space, it is enough to

show that Φc has bounded sublevel sets (that is, it is coercive). This, however, may
be false for general Φc, even after eliminating translations in some way. As a simple
example, consider Φc[u] = 1

2

∫
R

ecz(u2
z − u2 + u4) dz, with u : R → R. It is easy

to see that this functional is not coercive on H1
c (R) when c = 2. Indeed, consider

a sequence of functions un ∈ H1
c (R) defined as un(z) = e−(1+1/n)z for z � 0 and

un(z) = 1 for z < 0. Clearly, the sequence (un) is not bounded in H1
c (R). However,

a straightforward calculation shows thatΦc[un] = (3n2+5n+2)/(2n(n+2)) < ∞.
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This difficulty in fact is not merely technical, and puts certain limitations on the
applicability of our variational approach. In particular, as can be seen from the exam-
ple just mentioned, it cannot be used directly to characterize the minimal speed of
traveling waves in systems with Fisher-type non-linearities (see also Proposition
6.1 and [37]).

Even if coercivity of Φc may not hold in general, in Lemma 5.2 we show that
it does hold if we consider the intersection of the sublevel sets of Φc with the set
Bc defined in (4.1). So, establishing existence for problem (P′) amounts to proving
weak sequential lower semicontinuity of Φc. Here, again, there is a difficulty, since
Σ is an unbounded domain and V (u) is allowed to be negative, so the standard
theory [12] does not apply. In the following we will establish sequential lower semi-
continuity of the functional Φc under the assumption c2 +4ν0 > 0 from hypothesis
(H3). This assumption is also essential, as it is possible to construct sequences in
H1

c (Σ; R
m) on which Φc “jumps up”, if this condition is not satisfied (see the

discussion following Proposition 5.5).
We begin by proving the following lemma about a Poincaré-type inequality in

the weighted Sobolev space H1
c (Σ; R

m).

Lemma 5.1. Let u ∈ H1
c (Σ; R

m). Then

c2

4

∫ +∞

R

∫
Ω

ecz
m∑

i=1

u2
i dy dz �

∫ +∞

R

∫
Ω

ecz
m∑

i=1

(
∂ui

∂z

)2

dy dz, (5.1)

∫
Ω

m∑
i=1

u2
i (y, R) dy � e−cR

c

∫ +∞

R

∫
Ω

ecz
m∑

i=1

(
∂ui

∂z

)2

dy dz, (5.2)

for any R ∈ R.

Proof. Let us first prove Equation (5.1):

c

2

∫ +∞

R

∫
Ω

eczu2
i dy dz = −1

2
ecR

∫
Ω

u2
i (y, R) dy −

∫ +∞

R

∫
Ω

eczui
∂ui

∂z
dy dz

�
(∫ +∞

R

∫
Ω

eczu2
i dy dz

)1/2
(∫ +∞

R

∫
Ω

ecz
(

∂ui

∂z

)2

dy dz

)1/2

,

which implies (5.1).
Turn to Equation (5.2) now. Since

∫ +∞

R

∫
Ω

ecz
(√

cui + 1√
c

∂ui

∂z

)2

dy dz � 0,

we obtain

1

c

∫ +∞

R

∫
Ω

ecz
(

∂ui

∂z

)2

dy dz � −2
∫ +∞

R

∫
Ω

eczui
∂ui

∂z
dy dz−c

∫ +∞

R

∫
Ω

eczu2
i dy dz

= ecR
∫

Ω

u2
i (y, R) dy,

which gives Equation (5.2). ��
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The following lemma estimates the norm of ∇yu on Bc and, via Lemma 2.1,
establishes coercivity of the functional Φc on Bc.

Lemma 5.2. Let V satisfy hypotheses (H1) and (H2), and let u ∈ Bc. Then
∫

Σ

ecz
m∑

i=1

|∇yui |2 dx � 2Φc[u] + 8|µ−|
c2 , (5.3)

where µ− is defined in Equation (2.9).

Proof. By Equations (2.9) and Lemma 2.1, we have
∫

Σ

ecz V (u) dx � −|µ−|
2

∫
Σ

ecz
m∑

i=1

u2
i dx � −2|µ−|

c2

∫
Σ

ecz
m∑

i=1

(
∂ui

∂z

)2

dx .

Hence, for Γc[u] = 1 we have

1

2

∫
Σ

ecz |∇yu|2 dx � Φc[u] −
∫

Σ

ecz V (u) dx � Φc[u] + 4|µ−|
c2 ,

which is equivalent to Equation (5.3). ��
We now turn to the question of lower semicontinuity. Let us introduce the

following notation:

Φc[u, (a, b)] =
∫ b

a

∫
Ω

ecz

(
1

2

m∑
i=1

|∇ui |2 + V (u)

)
dydz. (5.4)

We will analyze the behavior of Φc[u, (−∞, R)] and Φc[u, (R,+∞)] on a weakly
converging sequence and take the limit R → +∞. To this end, we first establish
the sequential lower semicontinuity of Φc[u, (−∞, R)] for all R ∈ R, with respect
to the weak topology of H1

c (Σ; R
m).

Lemma 5.3. Let V satisfy hypotheses (H1)and (H2), and let un ⇀ u in H1
c (Σ; R

m).
Then,

lim inf
n→∞ Φc[un, (−∞, R)] � Φc[u, (−∞, R)]

for any R ∈ R.

Proof. This follows by standard semicontinuity results (see, for example, [12,
Propositions 2.1, 2.2]) by considering v := ecz/2u ∈ H1(Σ; R

m) and using the fact
that by hypothesis (H2) V (u) is bounded from below, and

∫ R
−∞

∫
Ω

ecz dy dz < ∞.
��

To proceed, we need to establish the following key estimate.

Lemma 5.4. Let V satisfy hypotheses (H1) and (H2), and let c2 + 4ν0 > 0. Then,
for any ε > 0 and C > 0, there exists R = R(ε, C) such that

Φc[u, (R,+∞)] � −ε,

for any u ∈ H1
c (Σ; R

m) such that ||u||1,c � C.
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Proof. Since (C∞
0 (Rn))m is dense in H1

c (Σ; R
m), in the following arguments we

can assume that u ∈ (C∞
0 (Rn))m . We prove this lemma via a sequence of steps.

Step 1. In view of Equation (5.1), we have

Φc[u, (R,+∞)] �
∫ +∞

R

∫
Ω

ecz

(
1

2

(
c2

4
+ µ0

) m∑
i=1

u2
i + V (u)

)
dy dz, (5.5)

where, as in Equation (2.9), µ0 � 0 is the smallest eigenvalue of −∆y in Ω with
the corresponding boundary conditions. From the definition of ν0 in Equation (2.9),
for any ε > 0 there exists δ > 0 such that for all |u| < δ

V (u) � 1

2

m∑
i=1

(ν0 − µ0 − ε)u2
i .

Therefore, if c2 + 4ν0 > 0, the integrand in Equation (5.5) is non-negative for all
|u| < δ, with some positive δ.

Note that if n = 1, then from Equation (5.2) it follows that u → 0 uni-
formly as R → +∞; so from the argument above it immediately follows that
Φc[u, (R,+∞)] � 0 for sufficiently large R, and the statement of the lemma is
proved (see also [32]). So, in the following we will assume that n � 2.

Step 2. Define

v(y, z) = −1

2

(
c2

4
+ µ0

) m∑
i=1

u2
i (y, z) − V (u(y, z)) (5.6)

and introduce

Ω+(z) = {y ∈ Ω : v(y, z) > 0}. (5.7)

By the result of Step 1, we have |u(y, z)| � δ whenever y ∈ Ω+(z). Therefore

|Ω+(z)|δ2 �
m∑

i=1

∫
Ω+(z)

u2
i (y, z) dy �

m∑
i=1

∫
Ω

u2
i (y, z) dy. (5.8)

Combining this with Equation (5.2) and taking into account that Γc[u] = 1, we
obtain

|Ω+(z)| � 2e−cz

cδ2 → 0 as z → +∞. (5.9)

Step 3. Now we want to estimate the integral in Equation (5.5). First, observe
that v(y, z) = 0 whenever y ∈ ∂Ω+(z) ∩ Ω . From Equations (5.5) and (5.6), we
have

Φc[u, (R,+∞)] � −
∫ +∞

R

∫
Ω+(z)

eczv dy dz. (5.10)
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Let us introduce the level sets (for simplicity of notation, we suppress the
z-dependence in the definition)

ω(t) = {y ∈ Ω+(z) : v(y, z) > t}. (5.11)

In view of Equation (5.9), we have |ω(t)| � |Ω+(z)| � 1
2 |Ω| for sufficiently large

R. Then, by the relative isoperimetric inequality [15] there exists a constant CΩ

which depends only on Ω and not on ω, such that (recall that dim Ω = n − 1)

|ω| n−2
n−1 � CΩ |∂ω0|, ∂ω0 = ∂ω ∩ Ω. (5.12)

Then, using the Cavalieri principle and then the co-area formula [15], we obtain
∫

Ω+(z)
v dy =

∫ ∞

0
|ω(t)| dt � |Ω+(z)| 1

n−1

∫ ∞

0
|ω(t)| n−2

n−1 dt

� CΩ |Ω+(z)| 1
n−1

∫ ∞

0
|∂ω0(t)| dt =CΩ |Ω+(z)| 1

n−1

∫
Ω+(z)

|∇yv| dy. (5.13)

Let us now multiply the last integral in Equation (5.13) by ecz and integrate over
(R,+∞). Then, using the definition of v in Equation (5.6), chain rule, hypothesis
(H1) and the Schwarz inequality, we obtain

(∫ +∞

R

∫
Ω+(z)

ecz |∇yv| dydz

)2

=
(∫ +∞

R

∫
Ω+(z)

ecz

∣∣∣∣∣
m∑

i=1

[(
c2

4
+ µ0

)
ui + ∂V

∂ui

]
∇yui

∣∣∣∣∣ dy dz

)2

� M

⎡
⎢⎣
∫ +∞

R

∫
Ω+(z)

ecz

(
m∑

i=1

u2
i

)1/2
⎛
⎝ m∑

j=1

|∇yu j |2
⎞
⎠

1/2

dy dz

⎤
⎥⎦

2

� M
∫ +∞

R

∫
Ω+(z)

ecz
m∑

i=1

u2
i dy dz

∫ +∞

R

∫
Ω+(z)

ecz
m∑

i=1

|∇yui |2 dy dz

� 8M

c2

∫ +∞

−∞

∫
Ω

ecz
m∑

i=1

|∇yui |2 dy dz, (5.14)

where M is a constant independent of R and u, and in the last step we used Equa-
tion (5.1) and the fact that u ∈ Bc. Combining this with Equations (5.9) and (5.13)
yields

∫ +∞

R

∫
Ω+(z)

eczv dy dz � K e− cR
n−1

(∫ +∞

−∞

∫
Ω

ecz
m∑

i=1

|∇yui |2 dy dz

)1/2

,

(5.15)

where K is a constant independent of R and u.
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Finally, by assumption the integral in the right-hand side of Equation (5.15) is
bounded by C , so its left-hand side can be made arbitrarily small by choosing large
enough R. In view of Equation (5.10), this proves the statement of the lemma. ��

Combining the two lemmas above, we obtain the following:

Proposition 5.5. Let V satisfy hypotheses (H1) and (H2), and let c2 + 4ν0 > 0.
Then, the functionalΦc is sequentially weakly lower semicontinuous on H1

c (Σ; R
m).

Proof. Let un ⇀ u in H1
c (Σ; R

m). Hence, (un) is bounded in H1
c (Σ; R

m), and
by Lemmas 5.3 and 5.4

lim inf
n→∞ Φc[un] � lim inf

n→∞ {Φc[un, (−∞, R)]} + lim inf
n→∞ {Φc[un, (R,+∞)]}

� Φc[u, (−∞, R)] − ε

= Φc[u] − Φc[u, (R,+∞)] − ε, (5.16)

for large enough R. Now, by noting that Φc[u, (R,+∞)] � ε for sufficiently large
R, Equation (5.16) leads to

lim inf
n→∞ Φc[un] � Φc[u] − 2ε,

and since ε > 0 is arbitrary, we conclude that Φc[u] � lim infn→∞ Φc[un]. ��
We notice that the assumption c2 + 4ν0 � 0 is also necessary to ensure the

lower semicontinuity of Φc. Indeed, assume by contradiction that Φc is sequen-
tially weakly lower semicontinuous with c2 + 4ν0 < 0, and consider the sequence
un ∈ H1

c (Σ; R
m), defined as un(y, z) := v0(y)√

n
e−cz/2−z2/n2

, where v0 �= 0 is an

eigenvector of the operator −∆y + ∇2
u V (0), corresponding to the eigenvalue ν0

(here we assume for simplicity that V is twice differentiable in 0). It is easy to
see that the sequence (un) is bounded in H1

c (Σ; R
m) and converges weakly to 0.

However, a simple calculation shows that

lim
n→∞ Φc[un] =

√
π

4
√

2
(c2 + 4ν0)

∫
Ω

v2
0 dy < 0 = Φc[0],

which gives a contradiction.
We are ready to prove our main existence result.

Proposition 5.6. Let V satisfy hypotheses (H1) and (H2), and suppose that there
exists u ∈ Bc such that Φc[u] � 0, for some c satisfying c2 + 4ν0 > 0. Then
problem (P′) has a solution.

Proof. Let (un) be a minimizing sequence for problem (P′), i.e un ∈ Bc with
Φc[un] → infBc Φc. By assumption, infBc Φc � 0, and without the loss of gener-
ality we may assume that Φc[un] � 0. Since Γc[un] = 1, from inequality (2.5) we
obtain

∫
Σ

ecz |un|2 dx � 8
c2 . Also, from Lemma 5.2 we obtain a similar bound for

the norm of ∇yu. Thus, the sequence (un) is bounded in H1
c (Σ); therefore, up to

a subsequence, it converges weakly to some u ∈ H1
c (Σ).



Existence of Traveling Waves 495

If infBc Φc = 0, we deduce that u in the assumption of this proposition is a
minimizer. Therefore, let us assume that infBc Φc < 0. Then, by lower semicon-
tinuity of Φc established in Proposition 5.5 we have Φc[u] � infBc Φc < 0, so
u �≡ 0. Also, since by standard semicontinuity results [12]

1 = lim inf
n→∞ Γc[un] � Γc[u] > 0,

we can, by using Lemma 3.1, choose a � 0 such that

Γc[ua] = 1 with ua(y, z) := u(y, z − a).

Since infBc Φc < 0 and a � 0, we derive

Φc[ua] = ecaΦc[u] � Φc[u] � inf
Bc

Φc

with the first inequality being strict when a > 0. Therefore, a = 0, meaning that
Γc[u] = 1 and Φc[u] = infBc Φc, so u solves problem (P′). ��

Let us point out that, for one-dimensional problems (n = 1), in which the func-
tional Γc generates an equivalent norm in H1

c (R), the minimizing sequence (un)

converges to u strongly in H1
c (R).

6. Further properties of minimizers

In this section we analyze problem (P) and its solutions in more detail. Our first
result, based on the application of Theorem 1.1, is a general non-existence result
for the solutions of problem (P) with sufficiently large c (see also [37,32]).

Proposition 6.1. Let V satisfy hypotheses (H1)and (H2), and let c2+4(µ0+µ−) >

0, where µ0 is the smallest eigenvalue of −∆y in Ω with boundary conditions from
Equation (1.2), and µ− is given by Equation (2.9). Then problem (P) has no solu-
tions.

Proof. Let ū ∈ H1
c (Σ; R

m) be a solution of problem (P). By Propositions 3.3
and 2.2 we know that ū(x) ∈ K and ū(·, z) ∈ (C2(Ω) ∩ C1(Ω))m . Since

∫
Ω

|∇y ūi (y, z)|2 dy � µ0

∫
Ω

ū2
i (y, z) dy, z ∈ R,

we obtain, using Lemma 2.1,

Φc[ū] � 1

2

m∑
i=1

∫ +∞

−∞

∫
Ω

ecz

[(
∂ ūi

∂z

)2

+ (µ0 + µ−)ū2
i

]
dy dz

� 1

2

(
c2

4
+ µ0 + µ−

)∫ +∞

−∞

∫
Ω

ecz
m∑

i=1

ū2
i dy dz > 0,

unless ū = 0. But this contradicts Proposition 3.2. ��
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Naturally, in view of the discussion at the end of Section 3, this implies that
under the assumptions of Proposition 6.1 there are no traveling wave solutions lying
in H1

c (Σ; R
m). A simple example of such a situation is the Fisher’s equation in one

space dimension, for which it is known that all the traveling wave solutions decay
at infinity with the rate e−λ−z (see Equation (2.10) with νk = 0) and, therefore,
cannot lie in H1

c (R) [2,32].
Let us point out that we will have µ− � 0 if V (u) � 0 throughout K, so a

necessary condition for existence of solutions of problem (P), which is familiar
from the analysis of the one-dimensional scalar problem [17], is that V (u) < 0
somewhere in K. In that case, if also µ0 +µ− < 0, problem (P) may have solutions
only with c � cmax, where cmax = 2

√−µ0 − µ− [37].
Next we establish the following necessary and sufficient condition for existence

of traveling wave solutions for potentials with linearly stable equilibrium at u = 0.
Let us introduce the functional

E[v] :=
∫

Ω

(
1

2

m∑
i=1

|∇yvi |2 + V (v)

)
dy, v ∈ H1(Ω; R

m), (6.1)

where H1(Ω; R
m) is the Sobolev space of functions with values in R

m (for
Dirichlet boundary conditions, take H1

0 (Ω; R
m) instead). Under the hypotheses

(H1) and (H2), this functional is known to have a minimizer v̄ ∈ H1(Ω; R
m) (see

[12]) which satisfies the corresponding boundary conditions and such that

∆y v̄ + f (v̄) = 0. (6.2)

Observe that for Neumann boundary conditions v̄ is constant and is simply a mini-
mum of the potential V . It turns out that this functional can be used to characterize
the existence of solutions of Equation (1.6).

Proposition 6.2. Let V satisfy (H1) and (H2), and assume ν0 � 0. Then Equa-
tion (1.6) has a solution ū ∈ H1

c (Σ; R
m) if and only if

inf E[v] < 0, (6.3)

where the inf is taken over the functions v ∈ H1(Ω; R
m) that satisfy the boundary

conditions in Equation (1.2).

Proof. Let us first prove that this assumption is sufficient. If Equation (6.3) is
satisfied, then choose a trial function

uλ(y, z) =
{

v̄(y), z < 0,

v̄(y)e−λz, z � 0,
(6.4)

where v̄ is a minimizer of E . Clearly, uλ ∈ H1
c (Σ; R

m) if λ > c
2 . Substituting this

into the definition of Φc, we find that

Φc[uλ] � 1

c
E[v̄] + 1

2(2λ − c)

∫
Ω

m∑
i=1

(
(λ2 + C)v̄2

i (y) + |∇y v̄i |2
)

dy, (6.5)
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where we used hypothesis (H1). Noting that E[v̄] < 0, for fixed λ it is then possible
to choose c so small that the right-hand side of this expression is negative. Then, uλ

will satisfy hypothesis (H3), which ensures the existence of a solution ū of problem
(P) by Theorem 1.1.

Let us prove that the assumption (6.3) is also necessary. Suppose on the contrary
that E[v] � 0 for all v ∈ H1(Ω; R

m). Then also

∫
Σ

ecz

(
1

2

m∑
i=1

|∇yui |2 + V (u)

)
dx � 0

for all u ∈ H1
c (Σ; R

m). Using this and Lemma 2.1, we then obtain

Φc[u] �
∫

Σ

ecz
m∑

i=1

(
∂ui

∂z

)2

dx � c2

8

∫
Σ

ecz
m∑

i=1

u2
i dx . (6.6)

Therefore, from Proposition 3.5 we conclude that there are no non-trivial solutions
of Equation (1.6) which lie in H1

c (Σ; R
m). ��

Notice that inequality (6.6) shows that, if Equation (1.6) has a non-trivial solu-
tion in H1

c (Σ; R
m), then inf E[v] < 0, without any assumption on the sign of

ν0.
In the case of Neumann boundary conditions, we have the following result.

Proposition 6.3. Let ū be a solution of problem (P) with Neumann boundary
conditions. Then ū depends only on the variable z.

Proof. Let us consider the function g : Ω → R defined as

g(y) :=
∫

R

ecz

(
1

2

m∑
i=1

|∇ūi |2 + V (ū)

)
dz,

so that by Proposition 3.2 we have Φc[ū] = ∫
Ω

g(y) dy = 0. Assume first that the
function g is not constant almost everywhere in Ω . Hence, we can choose ȳ ∈ Ω

such that g(ȳ) < 0. By Fubini’s theorem, we can also assume that the function
ũ(y, z) := ū(ȳ, z) belongs to H1

c (Σ; R
m). However, clearly Φc[ũ] � g(ȳ)|Ω| < 0,

contradicting Proposition 3.2.
If the function g is constant almost everywhere on Ω but ū depends on y, then

we can choose ȳ ∈ Ω such that
∫

R

ecz |∇y ū(ȳ, z)|2 dz > 0.

Defining ũ as above, we obtain Φc[ũ] < Φc[ū] = 0, which gives again a contra-
diction. ��

Next we establish the fact that the solutions of problem (P) are essentially scalar
functions, if the potential V depends only on the modulus of u.
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Proposition 6.4. Assume V (u) = V (|u|), that is, the function V depends only on
the modulus of u, and let ū ∈ H1

c (Σ; R
m) be a solution of problem (P). Then, there

exists a vector v ∈ R
m and a function η ∈ C2(Σ) ∩ C1(Σ), η(x) > 0, such that

ū(x) = η(x)v for any x ∈ Σ .

Proof. Consider the non-empty open set Σ ′ ⊆ Σ on which |ū| > 0. Introduce
η(x) = |ū(x)| on Σ and n(x) = ū(x)/|ū(x)| on Σ ′. The latter has the meaning of
the director of the vector field u, and so we have |n| = 1. From these definitions
ū = ηn in Σ ′ and ∇ū = 0 almost everywhere in Σ\Σ ′. So a straightforward
calculation shows that

m∑
i=1

|∇ūi |2 = |∇η|2 + η2
m∑

i=1

|∇ni |2 � |∇η|2. (6.7)

Now consider ũ(x) = (η(x), 0, . . . , 0) ∈ H1
c (Σ; R

m). If the last inequality in
Equation (6.7) is strict, then

Φc[ũ] < Φc[ū],
since by assumption V (ũ) = V (η) = V (|ū|) = V (ū), and this contradicts the
minimality of ū. So, ∇n = 0 in Σ ′ and ũ is also a minimizer, and, therefore, is
regular by Proposition 3.3. Therefore, η is a classical solution of the scalar equation

∆η + cηz − V ′(η) = 0, (6.8)

and, furthermore, η(x) � 0. Then, we have in fact η(x) > 0 everywhere in Σ ,

and so Σ ′ = Σ . Indeed, define the function c±(x) =
[

V ′(η(x))
η(x)

]±
, where [v]− =

− min{v, 0} and [v]+ = max{v, 0}, for all x ∈ Σ ′, and set c±(x) = 0 otherwise.
Note that by hypothesis (H2) we have c± ∈ L∞(Σ). Then Equation (6.8) can be
rewritten as

∆η + cηz − c+(x)η = −c−(x)η � 0.

So, by the strong maximum principle [20, Theorem 3.5], we conclude that η(x) > 0
for all x ∈ Σ . It then follows that n is a constant vector throughout Σ , which con-
cludes the proof. ��

In other words, to find the solution of problem (P) under the above assumption,
one only needs to consider the scalar equation whose solutions lie in the considered
exponentially weighted Sobolev spaces. Notice that for constant sign solutions of
Equation (6.8) precise estimates of the decay of the solution as z → +∞ can
be obtained [48]. Since, in addition, our solutions lie in the spaces H1

c (Σ; R
m),

it follows that u = O(e−λ+
0 z), where λ+

0 is defined in Equation (2.12), for large
positive z. Thus, generally these solutions are special in the sense that they have a
non-generic fast exponential decay at +∞ (see also [32]).

Our next group of results concerns the behavior of solutions of problem (P) as
z → −∞. Our main tool here is the familiar energy estimate for gradient systems.
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Lemma 6.5. Let ū ∈ H1
c†(Σ; R

m) be a solution of problem (P), then ūz ∈ L2

(Σ; R
m).

Proof. Scalar multiplying Equation (1.6) by ūz and integrating over ΣR := Ω ×
(−R, R), R > 0, we obtain

0 =
m∑

i=1

∫
ΣR

∂ ūi

∂z

(
∂2ūi

∂z2 + ∆y ūi + c† ∂ ūi

∂z
+ fi (ū)

)
dx

= c†
∫

ΣR

m∑
i=1

(
∂ ūi

∂z

)2

dx

+
[∫

Ω

(
1

2

m∑
i=1

(
∂ ūi

∂z

)2

− 1

2

m∑
i=1

|∇y ūi |2 − V (ū)

)
dy

]R

−R

, (6.9)

where we used the boundary conditions in Equation (1.2) to erase the boundary
term ∫

∂Ω×(−R×R)

(∇y ūi · n∂Σ)
∂ ūi

∂z
dσ dz.

Recalling that by Proposition 3.3, we have ūi ∈ W 1,∞(Σ), passing to the limit in
the equality (6.9) for R → +∞, we obtain the thesis. ��

For any R ∈ R, let Σ̃R := Ω × (R, R + 1). By the results of part (ii) of
Proposition 3.3 we have that the functions ūi are uniformly bounded in W 2,p(Σ̃R),
with p > n, independently of R. It then follows that ūz is bounded and uniformly
continuous on Σ , hence from Lemma 6.5 we obtain

lim
z→±∞ ūz(y, z) = 0 uniformly in y ∈ Ω. (6.10)

On the other hand, by Proposition 3.3 we know that ū(z, y) → 0 uniformly in
y ∈ Ω as z → +∞. Then, by the same W 2,p(Σ̃R) estimate and Sobolev imbed-
ding theorem we obtain

lim
z→+∞ |∇y ū(y, z)| = 0 uniformly in y ∈ Ω. (6.11)

In the following proposition we characterize the possible limits (that is, the
α-limit set) of ū(·, z) for z → −∞ (we refer the reader also to [22] for related
results using dynamical systems techniques).

Proposition 6.6. Let ū ∈ H1
c†(Σ; R

m) be a solution of problem (P), then there

exists a sequence zn → −∞ and a function v ∈ (C2(Ω) ∩ C1(Ω))m, satisfying
the same boundary conditions as ū, such that

lim
n→+∞ ū(·, zn) = v in (C1(Ω))m .

∆yv + f (v) = 0 in Ω. (6.12)

Conversely, let v be any function such that limn→∞ ū(·, zn) = v in (C1(Ω))m, for
some sequence zn → −∞. Then v ∈ (C2(Ω) ∩ C1(Ω))m, v satisfies the same
boundary conditions as ū, and Equation (6.12) holds.
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Proof. Let φ ∈ H1(Ω; R
m) be a test function (we further assume φ ∈ H1

0 (Ω; R
m)

if we have Dirichlet boundary conditions). Scalar multiplying Equation (1.6) by
φ(y) and integrating over Σ̃R , we obtain

0 =
[

m∑
i=1

∫
Ω

φi
∂ ūi

∂z
dy

]R+1

R

+ c
m∑

i=1

∫
Σ̃R

φi
∂ ūi

∂z
dx

−
m∑

i=1

∫
Σ̃R

(∇y ūi · ∇yφi − fi (ū)φi
)

dx . (6.13)

Since ūz → 0 in C0(Σ̃R) for R → −∞, we have

lim
R→−∞

m∑
i=1

([∫
Ω

φi
∂ ūi

∂z
dy

]R+1

R
+ c

∫
Σ̃R

φi
∂ ūi

∂z
dx

)
= 0. (6.14)

Note that the family of functions ū(y, z + R) is equibounded in (C1(Σ0))
m ,

where Σ0 := Ω × (0, 1). Indeed, from the estimates of Proposition 3.3, we obtain
a uniform bound on ūi (y, z + R) in W 2,p(Σ0), with p > n. So, by the Ascoli–
Arzelà theorem there exists a sequence Rn → −∞ and a function ṽ such that
ū(y, z + Rn) → ṽ in (C1(Σ0))

m . Moreover, since limR→−∞ ūz(y, z + R) = 0
uniformly on Σ0, we obtain ṽz = 0, that is, the function ṽ depends only on y.
Setting v(y) := ṽ(y, z), we then obtain limn→∞ ū(·, zn) = v in (C1(Ω))m , for
example, for zn = Rn .

From Equations (6.13) and (6.14), it then follows

0 = lim
n→+∞

m∑
i=1

∫
Σ̃Rn

(∇y ūi · ∇yφi − fi (ū)φi
)

dx

=
m∑

i=1

∫
Ω

(∇yvi · ∇yφi − fi (v)φi
)

dy, (6.15)

for any φ ∈ H1(Ω; R
m) (responsible for any φ ∈ H1

0 (Ω; R
m)), which implies

v ∈ (C2(Ω)∩C1(Ω))m , v satisfies the same boundary conditions as ū on ∂Ω , and
∆yv + f (v) = 0 in Ω .

Conversely, let us assume that there exists a function v such that
limn→∞ ū(·, zn) = v in (C1(Ω))m , for some sequence zn → −∞. Then, rea-
soning exactly as above with Rn = zn we obtain v ∈ (C2(Ω) ∩ C1(Ω))m , v

satisfies the same boundary conditions as ū on ∂Ω , and ∆yv + f (v) = 0 in Ω . ��
We note that, by regularity of ū, a weak form of convergence (such as weak in

L2(Ω; R
m), for example) implies a stronger (C1(Ω))m–convergence in the second

part of Proposition 6.6.
Let E[v] be the functional defined in (6.1) and introduce

W :=
{
v ∈ H1(Ω; R

m) : v(y) ∈ K for all y ∈ Ω, and E[v] < 0
}

.
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Again, in the case of the Dirichlet boundary conditions replace H1(Ω; R
m) with

H1
0 (Ω; R

m). Taking R = −zn in (6.9) and letting n → +∞, from Proposition 6.6
and Equations (6.10) and (6.11), we obtain the following:

Corollary 6.7. Let v be as in Proposition 6.6. Then v ∈ W , and in particular,
v �= 0.

Under some extra assumptions on the critical points of E[v], it is possible to give
more precise information on the asymptotic behavior of the solutions of problem
(P) at z = −∞.

Corollary 6.8. Assume that any critical point of E in W is isolated in the strong
topology of H1(Ω; R

m). Then the limit in Proposition 6.6 is a full limit, that is,

lim
z→−∞ ū(·, z) = v in (C1(Ω))m,

with v ∈ W .

Proof. Note that the mapping z �→ ū(·, z) is a continuous mapping from R to
H1(Ω; R

m). Suppose that the full limit of ū(·, z) does not exist. By continuity of
this mapping, Proposition 6.6 and Corollary 6.7, there exists ε > 0 and a sequence
z′

n → −∞ such that ε � ||ū(·, z′
n) − v||H1(Ω;Rm ) � 2ε, where v ∈ W is some

limit from Proposition 6.6, and the 2ε-neighborhood of v does not contain any other
elements of W . By regularity of ū we can pass to a subsequence, still labeled (z′

n)

that converges strongly in H1(Ω; R
m). Therefore, if v′ = limn→∞ ū(·, z′

n), then
ε � ||v′ − v||H1(Ω;Rm ) � 2ε, too. But, by Proposition 6.6 and Corollary 6.7 every
convergent sequence in (C1(Ω))m has a limit that is in W , which contradicts the
assumption that there are no elements of W in the 2ε-neighborhood of v that are
distinct from v. ��

Note that a sufficient condition for a critical point of E to be isolated is that it
is non-degenerate (that is, that the second variation of E does not have zero eigen-
values). Also note that in the case of Neumann boundary conditions we know from
Proposition 6.3 that the function ū is independent of y ∈ Ω , which implies that the
function v is a constant. Therefore, we obtain the full limit in Proposition 6.6 simply
if we assume that any critical point of V in the open set {u ∈ R

m : V (u) < 0} ⊂ R
m

is isolated.
We conclude this section by showing that, under suitable assumptions, the solu-

tions of Equation (1.1) propagate along Σ with asymptotic speed bounded by c†.
Let us note that to address this question in full generality we need a suitable exis-
tence theory for the initial value problem given by Equation (1.1). This, however,
would go beyond the scope of our paper. On the other hand, it is possible to show
that a large class of initial data for Equation (1.1) will generate solutions in the
class Qc(Σ, R

+) introduced in [37], a natural target space for the solutions of
Equation (1.1):

Definition 2. We will say that u ∈ Qc(Σ, R
+), if u ∈ C∞(Σ × R

+), u(x, t) ∈ K,
and there exists λ > c

2 such that for any T > t0 > 0 and multi-index α there exists
a constant Cα = Cα(t0, T ) such that |Dαu(·, t)| < Cα(1+e−λz) for all t ∈ [t0, T ].
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Notice first that in the context of Equation (1.1) the set K has a meaning of
an invariant region, whose existence assures global in time existence of solutions
for Equation (1.1), and by standard parabolic theory we obtain uniform bounds on
the derivatives (see, for example, [33]). So, what the classes Qc(Σ, R

+) control is
mainly the rate of exponential decay of the solution, quantified by the value of c.
Notice that the assumption that the solution of Equation (1.1) lies in Qc(Σ, R

+)

(even with arbitrary c > 0) can be easily satisfied, for example, whenever u(·, 0)

takes values in K and has compact support.
We now state our result.

Proposition 6.9. Suppose that problem (P) has a solution, and let u(x, t) ∈ Qc†

(Σ, R
+) be a solution of Equation (1.1). Then, for any c′ > c†, it holds that

u(y, z + c′t, t) → 0 as t → ∞, uniformly on compact subsets of Σ .

Proof. Fix a constant c′′ such that c† < c′′ < 2λ, with λ from the defini-
tion of Qc†(Σ, R

+), then u(·, t) ∈ H1
c′′(Σ; R

m). Differentiating Φc′′ [u(y, z +
c′′t, t)] in t and integrating by parts, which is justified by the uniform estimates for
u ∈ Qc†(Σ, R

+), we obtain for all t > 0

dΦc′′ [u(y, z + c′′t, t)]
dt

= −
∫

Σ

ec′′z
m∑

i=1

(
∆ui + c′′ ∂ui

∂z
+ fi (u)

)2

dx � 0.

(6.16)

Since also c′′ > c†, we have 0 � Φc′′ [u(y, z + c′′t, t)] � Φc′′ [u(y, z, t0)], t0 > 0,
and by Lemma 3.1 we obtain

Φc′′ [u(y, z + c′t, t)] = e−c′′(c′−c′′)tΦc′′ [u(y, z + c′′t, t)] → 0 (6.17)

as t → ∞. On the other hand, letting ũ(y, ζ, t) := u
(

y, c†

c′′ ζ, t
)

and retracing the

arguments of Equations (4.7)–(4.9), we obtain ũ ∈ H1
c†(Σ; R

m) and

Φc′′ [u] =
∫

Σ

ec′′z
(

1

2

m∑
i=1

[(
∂ui

∂z

)2

+ |∇yui |2
]

+ V (u)

)
dy dz

= c†

c′′

∫
Σ

ec†ζ

(
1

2

m∑
i=1

[(
c′′

c†

)2 (
∂ ũi

∂ζ

)2

+ |∇y ũi |2
]

+ V (ũ)

)
dy dζ

= c′′2 − c†2

c′′c† Γc†[ũ] + c†

c′′ Φc†[ũ] � c′′2 − c†2

c′′c† Γc†[ũ]= c′′2 − c†2

c′′2 Γc′′ [u],

since Φc†[u] � 0 for all u ∈ H1
c†(Σ; R

m) by Proposition 3.2. But then, using
Lemma 2.1, we have

Φc′′ [u(y, z + c′t, t)] � c′′2 − c†2

8

∫
Σ

ec′′z
m∑

i=1

u2
i (y, z + c′t, t)2dy dz. (6.18)

Therefore, u(y, z + c′t, t) → 0 in L2
c†(Σ; R

m) as t → ∞. Since u(·, t) ∈
(L∞(Σ))m we have ∇u(·, t) ∈ (L∞(Σ))mn uniformly for any t � t0, with t0 > 0
(see [33]); hence u(y, z + c′t, t) → 0 uniformly on compact subsets of Σ . ��
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Let us emphasize that the result in Proposition 6.9 implies that the speed c†

obtained in problem (P) has a special significance for the solutions of the original
parabolic problem. Indeed, c† is the maximum speed with which solutions may
propagate (for example, in the sense of the speed of the leading edge [37,40]). On
the other hand, observe that this is also a sharp upper bound, since existence of
solutions of problem (P) obviously implies existence of solutions of Equation (1.1)
which propagate with speed c†.

Finally, let us note that in general the free energy functional in Equation (1.4)
may include the effect of anisotropy [29,30], that is, the gradient square term in
F[u] can be replaced by a quadratic form generated by a symmetric positive-definite
constant n × n matrix G. Then the analogue of Equation (1.1) becomes

ut = ∇ · (G∇u) − ∇u V (u). (6.19)

Similarly, the boundary conditions for this equation should be modified from Equa-
tion (1.2) and become

(ν · G ∇u)|∂Σ = 0 or u|∂Σ = 0. (6.20)

One can naturally ask whether the above problem admits traveling wave solutions,
too. Indeed, it is not difficult to see that Equation (6.19) with the boundary con-
ditions from Equation (6.20) can be reduced to Equation (1.1), with the boundary
conditions from Equation (1.2), by the linear change of variables

x ′ = G−1/2x .

In this way we obtain a problem of the type considered above on a modified cylinder
Σ ′, which can then be treated in the same fashion.

7. An application

In this section, we consider a sample application problem, for which various
assumptions of the theorems above can be explicitly verified, and demonstrate the
practical utility of our methods. For a particular example we will use a computer-
assisted approach to obtain the necessary estimates for existence. Note that with
a bit of extra work these types of results can be made completely rigorous. This,
however, is beyond the purpose of this section, which is to illustrate our theorems.

As a sample problem, we will consider Equation (1.5) with τ = 1, g = 1,
a = 3, b1 = 1, b2 = 3

2 , h1 = 11
20 , and h2 = 0. For simplicity, we will consider

the case m = 2 and n = 1 (implying that Σ = R), so that the vector character
of the problem is preserved. Let us mention that in one space dimension existence
of traveling wave solutions in gradient systems can be also studied by topological
techniques [36,39,45].

Thus, with u = (u1, u2), this problem has the following expression for the
potential V :

V (u1, u2) = − 11
20 u1 − 3

2

(
u2

1 + u2
2

)
+ 1

4

(
u4

1 + u4
2

)
+ 3

4 u2
1u2

2. (7.1)
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Fig. 7.2. The level curves of the potential V in Equation (7.1). The outermost contour
corresponds to V = 1

4 and shows the boundary of the set K. The set K+ is enclosed by the
dashed lines

The plot of the level curves of V is presented in Fig. 7.2. An inspection of this figure
shows that V has one local maximum O(p0, 0), four local minima P±(p±, 0) and
Q±(p1,±q1), and four saddle points R±(p2,±q2) and S±(p3,±q3), respectively
(see Fig. 7.2). It is easy to see that the set K := {(u1, u2) ∈ R

2 : V (u1, u2) � 1
4 }

has the required properties, being convex and satisfying Equation (2.3). There is
also a rectangle K+ = {(u1, u2) ∈ R

2 : p3 � u1 � p+, 0 � u2 � q3}, which is
also convex and satisfies Equation (2.3).

We are going to study existence of several types of traveling waves which con-
nect to different equilibria, namely to O , P−, and S+. Each such case leads to a
different variational problem, since in order to satisfy hypothesis (H1), one needs
to subtract from V its value at the equilibrium point reached at z = +∞. So,
we will consider each such problem separately and establish existence and non-
existence of variational traveling waves, as well as the upper and lower bounds
for the speed. To simplify the notation, we will still say that u lies in H1

c (Σ; R
m),

tacitly assuming that the equilibrium point is properly subtracted from u.
Let us point out that if one sets u2 = 0, then the problem becomes scalar, and

existence of traveling waves connecting P+, P−, and O is well-known (see, for
example, [2,50]). These are the heteroclinic orbits P−O , P+O , and P+ P−, respec-
tively, and there exists a continuous family of solutions monotonically connecting
P+ and P− with O , and a unique solution going monotonically from P+ to P−. Fur-
thermore, an exact solution for the traveling wave P+ P− can be found [4], giving
c = 0.393419 for this wave. These are natural candidates for the solutions of the
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variational problems under consideration, so, in particular, we need to see whether
we can discriminate between them and the solutions of the vector problem.

We start by studying the case of the waves connecting to O . To begin, we com-
pute the value of ν0, which in all considered cases is simply the smallest eigenvalue
of the Hessian at the equilibrium approached at z = +∞. A straightforward cal-
culation shows that at O we have ν0 = −2.94841 < 0. So, in order to be able to
apply Theorem 1.1, we need to find a trial function that makes the functional Φc

non-positive for c > c0 = 2
√−ν0 = 3.43419. We were not able to find such a trial

function.
On the other hand, at O we can estimate the value of µ− to be slightly greater

than −3. By Proposition 6.1, there are no variational traveling waves for c �
c1 = 3.4641. Therefore, our method can give solutions only in a narrow range of
3.43419 < c < 3.4641, if any. Since also for c < 2

√−ν1 = 3.40401 the solution
will approach O in an oscillatory fashion (see the discussion in [37, Section 3]),
it will not be expected to lie in H1

c (R), either. This suggests that there are no var-
iational traveling waves that connect to O . In fact, we can prove that there are no
variational traveling waves satisfying hypothesis (H3) that lie entirely to the left of
O (that is, for which u1 � p0). Indeed, applying the Taylor formula, we have

V (u1, u2) = V (p0, 0) + 1
2

{(
−3 + 3ũ2

1 + 3
2 ũ2

2

)
(u1 − p0)

2

+6ũ1ũ2(u1 − p0)u2 +
(
−3 + 3

2 ũ2
1 + 3ũ2

2

)
u2

2

}
,

where u1 � ũ1 � p0 < 0 and ũ2 lies between 0 and u2. Clearly, the coeffi-
cients of the first and the third terms in the curly brackets are greater or equal to
−ν0 = −3 + 3

2 p2
0. Furthermore, since (u1 − p0)ũ1 � 0 and ũ2u2 � 0, we then

have V (u1, u2) � V (p0, 0)+ 1
2ν0((u1 − p0)

2 +u2
2), which implies that Φc[u] = 0

if and only if u = (p0, 0) for all u ∈ H1
c (R) with c2 + 4ν0 > 0, so Theorem 1.1

cannot be applied. Then, in view of Proposition 3.5, this means non-existence of
variational traveling waves with these speeds. Note also that this argument can be
strengthened to show that all the solutions P−O with u2 = 0 are not variational
traveling waves (see also [32]). This is not unusual for the traveling waves invading
an unstable equilibrium.

Let us now consider the waves that connect to P−. Here we obtain ν0 =
0.994441 > 0, and we know from the case u2 = 0 that problem (P) has a solu-
tion. The question is whether this solution is in fact one-dimensional, and what the
bounds on the speed are. To begin, we first find that for P− the value of µ− is slightly
greater than −0.34. Again, by Proposition 6.1 this means that the variational trav-
eling waves connecting to P− may exist only for c < c1 = 2

√−µ− < 1.1662. To
see whether there are variational traveling waves that move faster than in the case
u2 = 0, we construct the trial function u = (u1, u2) defined as

u1(z, a, b) := p− + 1
2 (p+ − p−)(1 − tanh az),

u2(z, a, b) := b sech2 az.

Next we evaluate Φc on u and minimize with respect to a and b. We then find a
(large enough) value of c at which the minimum value of Φc is still negative. We
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found that the choice of a = 0.5876, b = 1.6301 works with c = 0.5240. So now,
applying Theorem 1.1, we can conclude that there exists a traveling wave solution
connecting to P− that lies in K and has speed 0.5240 < c < 1.1662. Observe that
this speed is higher than that of the scalar solution obtained earlier, so the latter
is in fact not a solution of problem (P). Also, by Corollary 6.8 the solution is a
heteroclinic orbit from P− to either Q±, S±, or P+ (the equilibria O and R± have
higher potential than P−). Let us point out that our arguments can be made rigorous
(with a slightly smaller value of c) by performing a linear interpolation of the above
trial function, over finitely many intervals, then rationalizing the values of u at the
interpolation nodes, and then carrying out some simple, albeit tedious, analysis.

Finally, we turn to the solutions that connect to S+ and lie in K+. For S+, we
obtain ν0 = −0.588022, so in order for hypothesis (H3) to be satisfied, we need
to find a trial function for which Φc < 0 with c > 1.53365. We use the following
trial function u = (u1, u2):

u1(z, a, b) := p3 + p+ − p3

1 + eaz
,

u2(z, a, b) := q3 − q3

(1 + ebz)3/2 .

Once again, we fix c and minimize Φc[u] with respect to a and b. As a result, we
find that the functional is negative for a = 1.1536, b = 0.8778, and c = 1.61 >

1.53365. Therefore, the assumptions of Theorem 1.1 are satisfied in K+, and we
obtain a traveling wave solution connecting to S+ that lies in K+. On the other hand,
we find µ− to be slightly greater than −0.91, implying an upper bound for the speed
of the traveling wave to be c < 2

√−µ− < 1.91. Thus, the obtained solution will
have speed 1.61 < c < 1.91. Again, by Corollary 6.8 this is a heteroclinic orbit
from S+ to P+.
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