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A Quantitative Approximation Scheme for the Traveling Wave Solutions in
the Hodgkin—-Huxley Model

C. B. Muratov
Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102 USA

ABSTRACT We introduce an approximation scheme for the Hodgkin-Huxley model of nerve conductance that allows
calculation of both the speed and shape of the traveling pulses, in quantitative agreement with the solutions of the model. We
demonstrate that the reduced problem for the front of the traveling pulse admits a unique solution. We obtain an explicit
analytical expression for the speed of the pulses that is valid with good accuracy in a wide range of the parameters.

INTRODUCTION

Understanding the mechanisms of the propagation of nerve The early analytical works on the HH model relied on the
activity is one of the fundamental problems in biophysics.strong separation of the time scales of the (fast) activation
The simplest example of such a propagation is a singland (slow) inactivation processes. These studies made an
solitary traveling pulse of action potential in an axon (Katz,assumption that the Naactivation is the fastest process and
1966). Today it is well established that the changes of thean be eliminated adiabatically, which amounts to assuming
membrane potential in nerve tissue are the result of théhat the sodium activation variablm = m.(V), where
complex dynamics of the ionic currents through voltage-m (V) is the resting value ah at a given membrane voltage
sensitive channels (Katz, 1966). The first detailed quantitay (FitzHugh, 1961; Casten et al., 1975; Carpenter, 1977,
tive measurements of the ionic currents were performed by979). This leads to a cubic-like nonlinearity in the equation
Hodgkin and Huxley in the early 1950s (Hodgkin and for the membrane potential. By further assuming that the
Huxley, 1952). By using the voltage clamp technique theyNa* inactivation and K dynamics are much slower than
were able to measure the kinetics of Nand K" currents  the Na" activation, the problem of the action potential
in the squid giant axon. This led them to a set of differentialpropagation reduces to a single reaction-diffusion equation
equations that describe the dynamics of the action potentiafor the front of the action potential (Casten et al., 1975). A
Furthermore, by combining these equations with the cableumber of simpler models (FitzHugh—-Nagumo type) with
equation for spreading of the current in the axon they werjmilar properties had been introduced to mimic the behav-
able to calculate the shape and velocity of the propagatingy of the membrane (FitzHugh, 1961; Nagumo et al., 1964;
action potentials (Hodgkin and Huxley, 1952; Huxley, 1959).Rinze| and Keller, 1973; Casten et al., 1975; Jones et al.,
The predictions of their model turned out to be in remark—lggl)_ The latter, in fact, became quite popular for explain-
ably good agreement with the gxperimental observa.tions.ing traveling wave phenomena in a variety of excitable
The reason that the model introduced by Hodgkin andsystems in physics, chemistry, and biology (Vasiliev et al.,
Huxley (the HH model) admits quantitative comparisonsy9g7: Murray, 1989; Mikhailov, 1990; Kerner and Osipov,
with the experiments is that it contains detailed information1994)_
about the voltage-dependent kinetics of the"Nand K Although this kind of analysis leads to a qualitative

channels. Naturally, this makes the models quite complex, sanation of the excitability of the nerve membrane, it
and intractable analytically. So far, the basic tools for studyx,jig {6 give any quantitative predictions for the speed of the
ing the HH model have been'numerlcal _S|mulat|ons. NO'Fepropagating action potentials. It also predicts that the trav-
that because of the HH model’'s complexity it was not um'leling wave should have the form of a broad excitation

recently, with the advent of very fast computers, that S'm'region with the sharp front and back. This is in contrast to

ulations could be done routinely. Even then, one is stiICI)[P

ired to do simulat ¢ h set of th ; the observations in which the pulse is a narrow localized
required 1o do simulations lor €ach Set ol In€ parameters egion of excitation (a spike). The reason for this is that in

the model. Therefore, ar_1alyt|cal studies that give functlon.a eality it is typically the membrane potential rather than the
dependencies of the main parameters of the action potennaﬁ

o . a" activation that is the fastest process. For example, in
on the parameters of the model are still highly desirable. L .
the squid giant axon the time constant of the membrane

potential change is, ~ 0.01 ms, whereas the time constant
: — - of the Na" activation is roughlyry, ~ 0.2 ms. Therefore,
Received for publication 9 May 2000 and in final form 21 August 2000. the FitzHugh—Nagumo-type models are in fact not adequate
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scales. We will construct an approximate solution for aCelsius. The lengths are measured in centimeters and the
single traveling pulse in the HH model that is in quantitativetimes in milliseconds. The voltagéis measured in millivolts.
agreement with the solutions of the full HH model. We will  Equations 1-4 constitute a closed system of partial dif-
investigate the structure of the front of the traveling pulseferential equations thajuantitativelydescribes the changes
and show that it is substantially different from the conven-in the membrane as functions of time and space. Let us
tional case of the FitzHugh—Nagumo-type models. We willemphasize that their ingredients are obtained by measure-
also obtain an explicit analytical expression for the speed ofments and fitting of the parameters to the actual experi-
the pulses that agrees with the results of the simulations ahents, so it is important to understand the relationships
the HH model within 20% accuracy in a wide parameterbetween the characteristic parameters, namely the time
range. Using the obtained solutions, we will construct arscales, in this system. From the functional formaoénd 3
approximate solution for the entire pulse that is also invalues (Hodgkin and Huxley, 1952) we can make the fol-
quantitative agreement with the solutions of the full HH lowing estimates for the time constantg, ,for m, h, and

model. n, respectively, al = 6.3C:
Tm ~ 0.2 ms, (5)
THE HODGKIN-HUXLEY MODEL 7~ 5ms, (6)
In the following we will use the version of the HH model
T,~ 3 MS. @)

that was originally introduced by Hodgkin and Huxley to
study the behavior of the squid giant axon (Hodgkin andalso, from Eq. 1 one gets the following estimate for the

Huxley, 1952) and later adopted by many researchers ast@ne scaler, of the variation of the voltage, assuming that
benchmark of the models of nerve activity. Namely, we will g]| the Na" channels are open:

consider the following equations

Ty ~ Clgna~ 0.01 ms. (8)
v a Vv i i i
C— = 500 + gnah(Vaa — V) One can see that the following hierarchy of time scales
ot 2p ox holds in the system:
+ gKnA(VK - V) + g|(V| - V)l (1)

T Ty << Th The (9)

The first inequality holds better for sufficiently low temper-
i an(V)(1 —m) = Bn(VIm, @) atures and remains qualitatively correct up to the tempera-

turesT ~ 30°C, at which the pulses fail to propagate in the

HH model (Huxley, 1959). As we pointed out in the Intro-

ot a(V)(1 = h) = By(V)h, (3) duction, this is an important property of the system which is
not taken into account in most of the analytical studies of

an the HH model. In the following, we will use this hierarchy

ot a(V)(1 = n) = By(V)n. (4)  oftime scales to introduce the approximation scheme for the

traveling pulses in this model.
Here, as usual, Eg. 1 is the cable equation for the membrane Another important point about the HH model is the fact
potentialV, with C = 1 uF/cn? the membrane capacitance that the very nonlinearities in Eq. 1, namely the powers with
per unit areaa = 238 um is the radius of the axon, apd= which the variablesm, h, and n enter the equation, are
35.4Q X cm the resistivity of the intracellular spaag;, = determined experimentally (Hodgkin and Huxley, 1952).
120 m)~Yen?, ge = 36 mQ~Yen? are the conductances Furthermore, these powers correspond to the number of
of the open N& and K" channels per unit are¥,, = 115  particles involved in the operation of the respective chan-
mV andV, = —12 mV are the equilibrium potentials of nels and therefore represent significant physical quantities.
Na" and K", andg, = 0.3 M)~ Ycn? andV, = 10.5989 mV  As will be seen below, these powers play crucial roles in our
are the leakage conductance per unit area and the leakageidies.
voltage, respectively. With these definitions the resting po- Before going to the analysis of the traveling pulses, let us
tential V, = 0. Similarly,m andh are the activation and the discuss the basic physics of the excitability in the HH
inactivation variables for the Nachannels, respectivelyy ~ model. In the rest state, the Nachannels are basically
is the K" inactivation variable; the rates,, ;, ,andB,,,as  closed; aV = 0 the equilibrium values fan andh arem, =
functions ofV at temperaturd = 6.3°C can be found in  0.05 andh, = 0.60, respectively, while the Kchannels are
Hodgkin and Huxley (1952) (note that Hodgkin and Huxley partially open, withn, = 0.32. If, by applying an external
(1952) have an opposite sign convention Yr The tem-  stimulus, the membrane volta§éis increased te-10 mV,
perature changes are accounted for by a faehor= the Na" channels will start opening on the time scale of
36310 myltiplying all « and B values;T is in degrees orderr,,. The influx of the N& ions will in turn lead to the
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increase of the membrane potentialon the time scale
intermediate betweem, and 7,, (see below), resulting in 2
positive feedback. The membrane potentawill come 18
close to the resting potentid, while the Na channels ﬁ
will become mostly open witm = 1. During this time, the = 1,
slow inactivation variableh and n will remain almost ~ 1
unchanged. After that, the slow inactivation variatiesnd =~ &%
n will start to react, closing the Naand opening the K zj
channels, which will drive the potenti& back to equilib- 02
rium. In the spatially extended system the diffusive spread- o
ing of the current in front of the excitation region in the 2
axon will provide the sustaining force for the propagation of ) 5 10 15 20
the pulse along the axon. In that sense, from the physical 2

point of view the traveling pulse in the nerve axon is a

classical example of aautosoliton—self-sustained solitary FIGURE 1 The numerical solution of Egs. 10-13Tat= 6.3C.
inhomogeneous state in an active dissipative system whose

existence is determined only by the nonlinearities of the

system and not the initial conditions (Kerner and Osipov

1994).

'observe that the length scale of the rise of the potential is

substantially smaller than that of the fall of the potential.

Second, during the rise of the potential the varialbiesd

SOLITARY PULSE n rc_amajn almost unchanged at their resting valqmndnp.
Third, in front of the spike the value oh (that is,m) is

We are now going to construct an approximate travelingoractically zero.

wave solution in the form of a solitary pulse, using the ideas Let us use the above facts to simplify Eqs. 10—13. Be-

introduced in the preceding section. Let us introduce &ause the values ¢f andn change little in the front of the

self-similar variablez = x — ct, wherec is the propagation spike, we may replace them by their valugsandn, at rest

speed of the pulse. Then, Egs. 1-4 for a traveling wave wittaind disregard Egs. 12 and 13. Furthermore, because the

speedc will become value ofm, is very small, with very good accuracy, we may
-y qv assume it to be zero. Therefore, in the rest state we will have
oo gz T gyt IV — V) OV + gV, = 0 with very good accuracy, so these terms
2p 74 drop out of Eq. 10. Also, the coefficient multiplyingV in

ang RV the last two terms of Eq. 10 is of order 0.7 and is much
ToNM V= V)T gMVi=VI =0, (10) 1 ler than the contribution from the teig m°h during
dm the rise of the potential whemis not close to zero, so these
gy T amVI(L —m) — Br(V)IMm=0, (11)  terms can be dropped as well. What we are then left with is
an equation fol coupled only to the equation fon with a

dh number of terms dropped. Observe that becaugemuch
¢z T V@ —h = B(Vh=0, (12)  faster thanm when m ~ 1, the value ofm has to be
sufficiently small for the nontrivial collective dynamics éf
dn andm to be possible.
Caz ™ a,(V)(1 = n) = B,(V)n=0. (13) This allows further simplification of Eq. 11 by neglecting
the terms proportional tom. After making all these approx-
The boundary conditions for these equations are imations, we are left with the following set of equations
V(o) =0, m(x»)=m, 14 a v av o
h(iOO) — h(), n(iOO) — nO, ( ) TPE + CCE + gNa hO(VNa_ V) - 01 (15)

wherem, hy, andng are the values ah, n, andh in the rest dm
state, respectively. For the chosen functiarendg the rest ¢ gz T (V) — an(0) =0, (16)
stateV = 0 is unique and stable.

The solution of Egs. 10-13 in the form of a traveling instead of Egs. 10 and 11. Note that we added a term
solitary pulse obtained numerically at the “standard” tem-—q_(0) to Eq. 16 for this equation to be consistent with the

peraturelT = 6.3C is shown in Fig. 1. From this figure one approximate boundary conditions ahead of the spike front
can see several features of the solution we will use in the

approximation scheme that we are going to construct. First, m(+ow) =0, V(+o) =0, V,(+x)=0, (17)

Biophysical Journal 79(6) 2893-2901
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whereV, = dV/dz We can do this in our approximation 1 T 1 T ;
scheme because the valueagf(0) is in practice very small
compared tox,(Vna)- 0s |- .

Let us assume that the characteristic valuamoiin the
front is m << 1 and the characteristic width of the front is
I. Then, as all the terms in Eqgs. 15 and 16 should be of th

same order of magnitude, we obtain the following estimates: ol )

a cC . cm
W R Onaho™, T~ am(Via)- (18) 02| i

From these one can also estimate the characteristic time . ! . )

scale for the rise of the potential in the pulseras I/c ~ 0 02 04 06 038 !
(ClaZ guaho) Y, where u
=« (Vo) — an(0) (19) FIGURE 2 The dependencgu).
so
s - dv sS(1-u
7~ (T (20) e I (25)

One can see from this equation that the dynamics in the q
front of the traveling pulse will indeed occur on the time - j — _}

: . a(u) -, (26)
scale intermediate betweeg and 7, ds c

From the estimates above we immediately conclude tha\}vh e n is an independent variable. Th transform
in the traveling spike ere nows is a ependent variable. These transforma

tions can be done for & u < 1 becausex(u) is always

_{aBagnahy e positive foru # 0 (see Fig. 2). Note that these equations do
Cc= C<164C5) , not have any¢ dependence in their right-hand side, so it
p suffices to solve only Eqgs. 24 and 25. The solution §®)
- a,C\" can then be obtained by a simple integration.

= (gNahO) (21) The problem now became substantially simpler because
instead of solving the nonlinear boundary value problem for

_ a' 18 Egs. 10-13, one now needs to solve the initial value prob-

- 16p°C3a2 guaho lem for Egs. 24 and 25. Indeed, according to Eq. 17, when

zZ— +o we havem — 0, sos — 0 asé — +o. This means
whereC is a constant of order 1. Substituting the parametershatu = 0 andv = 0 ats = 0, becauseudé = —tv — 0
of the HH model aff = 6.3°C, we see tham = 0.6, what  as¢ — +x (see Egs. 17, 24, and 26). One should be careful
corresponds to the relevant quantify = 0.2, which is  to specify what exactly happens near 0, becaus(0) =
indeed rather small. 0. To do this, let us divide Eq. 25 by Eq. 24. We get
Let us introduce the following new variables:

dv S$(1—u)
z cm % _ du du T @y 27
§=T, S=—, U=T, V=OZ(U)CTS, (22)
m Na Whens — 0, we havedv/du — 1, provided that(s) has a
where non-zero derivative as = 0 (the latter follows from the
physical considerations). Therefore, according to Egs. 24
- om(Vival) — ain(0) and 25, as — 0, the solution will behave like
a(u) = . (23)
C‘m(VNa) - Olm(O) s
u(s) = = +0(s), w(s = +o0(s), (28)

The latter is plotted in Fig. 2. Note that this way the time a'(0) a'(0)
scale in Eq. 16 has been absorbed into the congtgnt

In terms of the variables introduced in Eq. 22 and after avhere the prime means differentiation. Here we expanded

few manipulations one can rewrite Egs. 15 and 16 in thex(U) in the neighborhood of zero and took into account that

following form: a'(0) # 0.
Itis not difficult to see from Eq. 27 that for€ u < 1 and
a(u) diu —v (24) v > 0 the projection of the phase trajectory on th& plane
ds will lie below the lineu = v. Becausaluw/ds > 0 and there
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are no fixed points in this region af andyv, the solution andds obtained from Eqgs. 24 and 25

u(s), v(s) will cross either the linei = 1 orv = 0 in theu—v ~

plane. By direct inspection of Egs. 24 and 25 one can see E 55— _a(u) Sv (29)
that this intersection is transversal. Observe that the inter- du™  vg

section of the linesi = 1 andv = 0 is a fixed point in this
plane.

According to Egs. 24 and 25, once the solution leaves thejy

region bounded by the linas= v, u = 1, andv = 0, it can

d s §(1—U)8 35(1—u) SS+8§(1—U)56
V—=———-—"0V— = = .
v Covo Covo

(30)

never come back to this region. Indeed, if the solution

crosses the lina = 1 at somev > 0 in theu-v plane, it will
then havedv/ds > 0 for all s, sov will stay positive. If,
however, the solution crosses the Iwe 0 at someu < 1,
we will have bothdvds < 0 anddu/ds < 0 afterward. In
fact, it is easy to see that the only trajectory on whicnd

Because the change tdoes not affect the initial condi-
tions, we should have

ov(0) =0, 6s(0)=0. (31)
Note that according to Egs. 28 we haye~ u ands, ~ u,

v will remain bounded for al is the one that connects the so 8s ~ u® andév ~ u® in the neighborhood ofi = 0.

pointu = 0, v = 0 with u = 1, v = 0. Therefore, this

According to Eqg. 30, when — 0 we have ¢/du) év >

trajectory is precisely the one that corresponds to the frong for 6¢ > 0, sodv > 0. In turn, according to Eq. 29¢du)

of the traveling pulse.
Of course, not all the speedswill produce this kind of

trajectory. Itis clear that it is very large, the trajectory will

cross the lineu = 1 in the u—~v plane atv close to 1.

However, ifc is very small, the trajectory will cross the line
v = 0 at very smallu. Fig. 3 shows the results of the
numerical solution of Egs. 24 and 25 at different values. of

8s < 0 and thereforés < 0. This means that the derivatives
(d/du) év and @/du) s do not change signs, sé&v > 0
everywhere foibc > 0 and vice versa. Therefore, when the
value of ¢ changes from 0 tee, the point at which the
trajectory crosses either the lime= 1 or the linev = 0 in
the u—v plane will go monotonically fromu = 0, v = 0 to
u=1,v = 1. Because it depends continuously @rthere

From this numerical solution we found that the trajectory thatis a unique value o€ = ¢*, at which this point coincides
connectsl = 0,v= 0andu = 1,v = lexists only foraunique with u = 1, v = 0. Numerically, the value of* = % up to

value oft = ¢*.

the fourth digit. Thus, the dynamics in the pulse front

In fact, it is possible to prove that such a trajectory indeeduniquely determines its propagation speed.

exists and is unique at a unique valuecoTo do this, let us
see what happens with the trajectory as the value isf
changed. For convenience, we will usénstead ofs as an
independent variable. Let(u) andsy(u) be a trajectory in
the region bounded by = v, u = 1, andv = 0 with the
initial conditionsvy(0) = 0, s5(0) = 0 for somet = C,. To
calculate the changes in the trajectdwy(u), és(u) asc is
changed bysc, we write the equations in variations fév

08~ N

0.6 7

04 T

02 N

u

FIGURE 3 The numerical solution of Egs. 24 and 25 in the plane
v(u) at differentC.

Thus, we have obtained an approximatealytical ex-
pression for the speed of the traveling pulses in the HH
model:

2(a%a guao)
T (32)
3\ 16p°C

Equation 32 predicts the speed of the traveling pulse as a
function of the parameters. To compare this predicted speed
with the results obtained from the numerical solution of the
HH model, we plot the speeadas a function of temperature
obtained from Eq. 32 and from the numerical simulations of
the HH model (see also Huxley, 1959) in Fig. 4 (recall that
the temperature dependence is contained in the valag )of

As can be seen from this figure, the approximate expression
for the speed of the pulse given by Eqg. 32 agrees with the
results for the HH model within 20% at temperatures below
15°C. We emphasize that this is the kind of accuracy with
which the HH modeitself predicts the speeds of the trav-
eling pulses as compared to the experiments. At higher
temperatures the agreement between Eq. 32 and the results
of the simulations of the HH model becomes worse, and at
the temperatures of the propagation threshold Eq. 32 fails
completely. We have also checked that Eq. 32 predicts the
correct dependences on the other parameters with similar
accuracy at low enough temperatures. For example, Fig. 5
shows a comparison of the prediction of Eq. 32 with the

Biophysical Journal 79(6) 2893-2901
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Observe that Fig. 4 also shows the dependence of the
- speed of the pulse on temperature obtained from the simu-
lations of the HH model without thé and n dynamics
(dotted ling. Note that the insignificance of these variables
is one of the key assumptions in deriving Eq. 32. One can
1 see that this solution gives an even better approximation to
. the speed of the pulse. This problem, however, cannot be
treated analytically in the same manner as that for Egs. 15
and 16.
Let us emphasize that the existence of the front solution
" T is essentially determined by the complicated interplay of the
0 ' ' : L V andm kinetics, so the problem does not reduce to simple
’ phase plane analysis, in contrast to most studies of the
T, °C traveling waves in excitable systems (FitzHugh, 1961; Rin-
zel and Keller, 1973; Casten et al., 1975; Carpenter, 1977,
g showa e et o ot o o o) 979 Vsl e o, 1987; Miralow, 1990) Note that
1al W. | 1 R . . . .
‘Sl"ze dashed line is the :rediction O;JEq. 32. Th:dotted line li'ls the result oi,slmllajr situation takes plqce ina clags of eXCItabl,e SyStemS
the solution of the HH model without tHeandn dynamics. in which the so-called spike autosolitons are realized (Osi-
pov and Muratov, 1995; Muratov and Osipov, 1999). These
models also give rise to the complicated front structures that
) ) ) are similar to the one realized in the HH model.
results of the numerical simulations of the H_H modeTa§ The validity of the approximations made by us is violated
6.3C as the value of the membrane capacita@iqger unit 1o cases. First, when the temperature becomes suffi-
area is varied on the log—log plot. Note that the slopes of th%iently high, the dynamics of tha variable becomes faster,
two graphs in Fig. 5 agree very well with each other. Thegy ihe separation of the time scakesand r, used in our
agreement of the slopes is not as good for the log-log ploL;q ments will no longer be justified. One of the implica-
of the dependence afon gy, with other parameters fixed. ons of the absence of this scale separation is the fact that
ThIS is probably the consequence of the fact that the IOl e characteristic value of = min the front can no longer
introduced by our approximation depend g, SIronger e treated as small. This allows us to derive a criterion for

40

30

20

C, m/s

10

than the prediction of the approximatian~ gi/s. the validity of our approximations
Incidentally, if the factor of 2/3 in Eq. 32 is replaced by
5/9, it will give the speed of the pulse within a few percent a.C

of that found in the full HH model foilf < 15°C. Note that h
if one assumes than is the fastest variable (FitzHugh, o

1961; Casten et al., 1975; Carpenter, 1977, 1979) and Cafyhich, js equivalent tan < 1 (see Eq. 21). In the case of the

culates the speed of the traveling wave, one will get a valuggyig giant axon this criterion shows the applicability of our
an order of magnitude greater than the actual value. results up tol = 25°C, in good agreement with Fig. 4.

Another problem may occur when the temperature be-
comes too low and the variabihatoo slow. In this case the
100 . effective time scaler of the dynamics in the front of the
r pulse slows down (see Eq. 20), so at some point it may
become comparable to the leakage time seate C/g, ~ 3
ms. In this case one can no longer discard the leakage and
the K™ contributions to the membrane current in Eg. 10.
1 Thus, the second validity criterion becomes (see Eq. 18)

=1, (33)

(9 + onp)*
= = " = l

a3 C3gnaho B

(34)

e . " For the squid giant axon, this quantity becomes comparable
to 1 only for the unrealistically low temperaturéls <

C, uF/cm? y y P

—30°C.

FIGURE 5 The speed of the traveling pulse as a function of the As C_an b_e seen from Egs. 33 a_nd 34, the_q”a“tY of the

membrane capacitand@. The solid line is the result of the numerical @PProximations used by us should increase with the increase

solution of the HH model, the dashed line is the prediction of Eq. 32.  Of gy, IN fact, our procedure for finding the spike’s speed
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and the front profile is the leading order of the asymptotictives in Eqg. 10 to zero, we find

limit my — 0 andgy, — °°.
Fig. 6 shows the functionsi(¢) and s(¢) for ¢ = ¢*
obtained numerically. One can see th@f) has the form of

_ OnahVaa + gV + gV,
~ Guth+ g’ +g

(37)

a front connecting the rest staie= 0 with the excited state This expression uniquely determines the valueVos a
u = 1, which in the original variables corresponds to thefunction ofm h. andn

saturation valud/ = V.
As can be seen from Fig. 6, the distributis@) behind
the front approaches a straight line with the slepg. In

To find the approximate distributions of all the variables
in the back and behind the spike we simply need to solve the
initial value problem given by Egs. 11-13 withgiven by

terms of the original variables, this should correspond to th%q_ 32 and the following initial conditions:

unlimited growth ofm behind the front. This, however,

should not be a problem because this happens only when

m ~ m << 1. Whenm becomes of order 1, the approxima-
tions used to derive Eq. 16 ceases to be valid. Howeve
when this happen¥, should already be very close¥g,,, SO

on the time scal&,, << 7, , the variablem will simply
exponentially relax tan = m,, (V) = 1 behind the front,
where, as usual

_ V)
M @ By
(35)
(V) = —1
; an(V) + Bn(V)’

This will happen at distances of ordet,, >> |, ast,, > 7
(see Eq. 20). If we assume that on the time seglthe front
was located az = 0, the distribution ofm that properly
matches with that in Fig. 6 will be

mM(2) = m.(Vna){1 — exd zcrn(Vaa) I}- (36)

m(0) =1, h(0) = h,, n(0) = ny, (38)

vahere we assumed that on the even larger length seale
the front is located at = 0. This initial value problem can
be straightforwardly solved numerically. The result of this
solution is shown in Fig. 7. Note that the changes in tem-
perature will only change the characteristic length of this
solution, not its shape.

One can simplify the procedure of finding the distribu-
tions of m, h, andn by using the fact that,, << =, , by
adiabatically eliminatingn. This will amount to replacingn
by m,(V) from Eq. 35 in Eq. 37 and then solving foras a
function ofh andn. The result of the numerical solution of
Egs. 12 and 13 with these approximations is shown in Fig.
8. This figure shows a good agreement of the slow variables
h andn in the refractory tail. Also, observe an abrupt jump
in the back of the spike. This is due to the fact that now the
value ofV is not uniquely determined Hyandn, so at some
point in the solution a jump occurs from one branch of the
dependenc&/(h, n) to the other (see also Carpenter (1977,
1979)). Note that while the adiabatic eliminationmofvorks

As was already noted, in the back of the spike and in thgye|| for the refractory tail, it fails in the back of the pulse

refractory tail the voltage/ changes substantially slower
than in the front. Because this happens whenr- 1, the

voltage is indeed the fastest variable, so we can eliminate
adiabatically from the equations. If we put all the deriva-

0.8

u,s

0.6

0.4

0.2

(=]

' :

FIGURE 6 The functionsi(§) ands(£) obtained numerically from Egs.
24-26 forc = c*.

(compare Figs. 7 and 8).

~ The results in Figs. 6, 7, and Eq. 36 can be combined to
five a quantitative approximation for the whole pulse. This
is done in Fig. 9 foIT = 6.3°C. One can see a remarkable
similarity between the solution of the full HH model shown
in Fig. 1 and the one shown in Fig. 9. Thus, our approxi-

-25
0

FIGURE 7 The numerical solution of Egs. 11-13, 37, and 38.
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imation introduced by us gives an error that is comparable
to the error produced by the HH model itself, as opposed to
the experiments. For example, Bt= 18.5C the speed of
the pulse in the squid giant axon was found to be 21.2 m/s
(Hodgkin and Huxley, 1952). The direct numerical simula-
tion of the HH model produces the speed of 18.8 m/s, while
our procedure, which for this temperature is already near the
limit of its applicability, gives 24.7 m/s. Therefore, we
suggest that the ideas of our analysis can be built into

0 \ 4o simpler and more tractable models of nerve conductance
02 ¢ ] that will yet be able to give quantitative agreement with the
20 -15 -10 5 0 experimental observations.

z One of the observations from the analysis made by us is
the fact that the speed of the traveling spikes in the HH
model depends very weakly on the slow-state variables of
the membrane. Indeed, according to Eq. 32, the speed of the
spike is independent of the value win front of the spike

and is proportional th3'®, so a change by a factor of 2 I

mation scheme has been ableqgieantitativelycapture the . ' - .
yeap will result in only a 10% change in the speed. This makes a

essential features of the traveling pulses in the HH model. . . )
perfect biological sense. Thus, propagation of the nerve

pulses is indeed a very robust phenomenon.
CONCLUSIONS Another observation one can make from Eq. 32 is that if

We have developed a method that allows approximate Com%ne ass_umes that in addition to the membrane conductance

putatlon of the shape and parameters of the traveling Sp'ke&%annel, there exists a density of the channels at which the
in the HH model of conductance along an axon. Our metho : . :

S . . speed is maximal (Hodgkin, 1975). Indeed, let us assume
is different from the conventional approach (FItZHth'thatC — C. + NC. and — NGt whereC. is the
1961; Rinzel and Keller, 1973; Casten et al., 1975, Carpen(-:a acitancg of the hr;‘ilembrglﬁz WitthT?,the chanrgels the
ter, 1977, 1979) in the fact that it treats theembrane P '

SR : : )
potential rather than the sodium activation variable, as thec_hannel den5|tyCNa*|s _the capau_tance associated with a
. L single channel, andy, is the maximum conductance of a
fast variable. We show that this is in fact the case for the”. o
. . single channel. For the squid giant axon these parameters
typical set of the parameters of the Hodgkin—Huxley model. ) * T8
: o are estimated to b€, = 0.8 uF/cn?, C}, = 4 X 10 *8F,
This leads to a goodjuantitativeagreement between the

— —12 —1 _ -2 ;
predictions of the theory and the results of the numericag'\‘a - 24X .10. {7, andN .500 mm (Hodgkin,
. . 975). Substituting these expressions into Eq. 32, one gets
simulations of the HH model.

Let us emphasize that the HH model itself gives only anthe speed of the pulse as a functionNoflt is not difficult

: . - to see that this function has a maximumMt= N, =
approximate, although quite accurate, description of theCO/(4C*a) For the numerical values above we fiNg.. =
dynamics of the action potential in an actual axon. What wi Na/ ax

o . 9500 wm~2, which suggests that the channel density in the
find s that in & broad range of the parameters the approxélxon is indeed at the optimum level. The fact that we get
exactly the same value &f as the one observed may be a
bit fortuitous because of the approximate nature of Eq. 32.
Note that because of the very slow dependence of the speed
0oN gy the maximum of the dependenc@) is in fact very
flat, so a change dfl by a factor of 2 fronN,,,, results only
in a 7% difference irc.

So far, we were talking only about the traveling wave
solutions in the form of the solitary spikes. It is not difficult
to see that our method can be extended to spike trains as
well. Indeed, the speed of a spike in a spike train is deter-
0 mined by the value of the slow variabkein front of the
02 spike (see Eq. 32), which, however, is now different from
04 15 o - 0 s the equilibrium valuédn, and must be determined. Outside of
the spike fronts one has to solve the equations of the slow
dynamics given by Egs. 11-13 in which the fast variable
FIGURE 9 An approximate solution for the entire pulse. has been eliminated adiabatically via Eq. 37. These equa-

=
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FIGURE 8 The numerical solution of Egs. 12, 13, 37, and 38 witk
m.(V) given by Eg. 35.

24 T T T T V

22

g

1.8
1.6

o 14
12
1

E‘ 0.8
0.6
0.4
0.2

1 Il Il | T | 1 1

o
(=]

Biophysical Journal 79(6) 2893-2901



A Quantitative Approximation Scheme 2901

tions have to be solved as an initial value problem-far = nerve conductance. We hope that our results will provide an

z = 0 with m(0) = m.(Vya), h(0) = h,, andn(0) = n,. Here  easy and convenient tool for analyzing the fascinating com-

hs andng are the values dfi andn in the spike, respectively, plexity of neural activity.

L is the spatial period of the spike train, and we assumed

that the front of one of the spikes in the spike train is located

atz = 0. The spikes are also assumed to travel to the righ

with the speed given by Eq. 32, in whitl is replaced by

hs. Then, the values oh, and n, have to be found self-

consistently from the condition that(—L) = h, and REFERENCES
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