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Abstract

We developed singular perturbation techniques based on the strong separation of time and length scales to construct
the solutions in the form of the traveling spike autosolitons (self-sustained solitary waves) in the Gray—Scott model of an
autocatalytic reaction. We found that when the inhibitor diffusion is sufficiently slow, the ultrafast traveling spike autosolitons
are realized in a wide range of parameters. When the diffusion of the inhibitor is sufficiently fast, the slower traveling spike
autosolitons with the diffusion precursor are realized. We asymptotically calculated the main parameters such as speed and
amplitude of these autosolitons as well as the regions of their existence in the Gray—Scott model. We also showed that in
certain parameter regions the traveling spike autosolitons coexist with static. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Self-organization and pattern formation in nonequi-
librium systems are among the most fascinating phe-
nomena in nonlinear physics [1-11]. Pattern formation
is observed in various physical systems including flu-
ids; gas and electron—hole plasmas; various semicon-
ductor, superconductor and gas-discharge structures;
some ferroelectric, magnetic and optical media; com-
bustion systems (see, for example [5,9-14,53,54]), as
well as in many chemical and biological systems (see,
for example [1-7,15,55,56]).

Self-organization is often associated with the
destabilization of the homogeneous state of the sys-
tem [1,2,5,10,11]. At the same time, when the ho-
mogeneous state of the system is stable, one can
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excite large-amplitude patterns, including autosoli-
tons (ASs)— self-sustained solitary inhomogeneous
states, by applying a sufficiently strong stimulus
[8-11,16-19,57-60]. Autosolitons are elementary
objects in open dissipative systems away from equi-
librium. They share the properties of both solitons
and traveling waves (or autowaves, as they are also
referred to [2,6]). They are similar to solitons since
they are localized objects whose existence is due to
the nonlinearities of the system. On the other hand,
from the physical point of view they are essentially
different from solitons in that they are dissipative
structures, that is, they are self-sustained objects
which form in strongly dissipative systems as a result
of the balance between the dissipation and pumping
of energy or matter. This is the reason why, in con-
trast to solitons, their properties are independent of
the initial conditions and are determined primarily by
the nonlinearities of the system [8—11].
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A prototype model used to study pattern for-
mation in nonequilibrium systems is a pair of
reaction—diffusion equations of the activator—inhibitor

type

7:95:[ Ae—qu n, A), (])
an 5
Ty, = L7An—Q(8,n, A), (2)

where 6 is the activator, 1 the inhibitor, 74, [ and T,),
L are the time and the length scales of the activator
and the inhibitor, respectively; A is the control (bi-
furcation) parameter; ¢ and Q are certain nonlinear
functions representing the activation and the inhibi-
tion processes. Examples of these equations for var-
ious physical systems are given in [9-13,20] where
the physical meaning of the variables 8 and 1 and the
nature of the activation and the inhibition processes
are discussed. The well-known Brusselator [1] and the
Gray—Scott [21] models of autocatalytic chemical re-
actions, the classical Gierer—Meinhardt model of mor-
phogenesis [22], the FitzHugh—Nagumo [23,61] and
the piecewise-linear Rinzel-Keller model [24,62] for
the propagation of pulses in the nerve fibers are all
special cases of Egs. (1) and (2).

The fact that 6 is the activator means that for cer-
tain parameters the uniform fluctuations of 6 will
grow when the value of 7 is fixed. From the mathe-
matical point of view, this is given by the condition
[9-11,18,60]

q0 <0, 3

a)

0

where go = d¢q /96, for certain values of & and 5. On
the other hand, the fact that  is the inhibitor means that
its own fluctuations decay and that it damps the fluc-
tuations of the activator. Mathematically, these condi-
tions are expressed by [9-11,18,60]

Oy >0, q7Q9 <0 “

for all values of 6 and 5, provided that the derivatives
in Eq. (4) do not change sign.

Kerner and Osipov [8-11,16-18,20,57-60] showed
that the properties of patterns and self-organization
scenarios in systems described by Egs. (1) and (2) are
chiefly determined by the parameters e = [/L and o =
79/, and the shape of the nullcline of the equation
for the activator, that is, the dependence n(6) given
by the equation g(8, n, A) = 0 for A = const. They
demonstrated that depending on the shape of the acti-
vator nullcline the majority of systems can be divided
into two fundamentally different classes: N-systems,
for which the nullcline is N- or inverted N-shaped
and, A- or V-systems, for which the nullcline is A- or
V-shaped, respectively (see Fig. 1).

Most works devoted to the description of pattern
formation on the basis of Egs. (1) and (2) deal with
N-systems. In N-systems the equation g(6,n, A) =
0 has three roots: 61, 6>, and 63, for given values of
A and 7. The roots #; and 63 correspond to the sta-
ble states and 6, corresponds to the unstable state in
the system with n = const. It is easy to see that the
FitzHugh—Nagumo and the piecewise-linear models
belong to N-systems. For these models it was shown
[24,25,62,63] that Egs. (1) and (2) with L = 0 and

b) =0

7

0

Fig. 1. Two qualitatively different types of the nullclines of Egs. (1) and (2): N-systems (a) and A-systems (b).
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a = 19/7; < 1 have solutions in the form of the
traveling waves (also called autowaves [2,6], or trav-
eling ASs [8-11]). For ¢« « 1 these ASs consist of
fronts and backs in which the activator varies sharply
while the inhibitor remains almost constant, separated
by regions in which both the inhibitor and the acti-
vator vary smoothly. It was found that in N systems
the speed of these ASs cannot exceed values of or-
der //7p [9,11,18,24,25,60,62,63]. In [16-19,57-60] it
was shown that in another limit L >> [ (or, more pre-
cisely, when € = [/L « 1 and « 2 1) N-systems
admit solutions in the form of the stable static pat-
terns including ASs (see also [9—11]). Furthermore, it
was shown that in N-systems with € < 1 and o < 1
one can excite static, pulsating, and traveling patterns
[8-11,18,20,26-31,60,64—67].

On the other hand, there are many physical, chem-
ical and biological systems for which the activator
nullcline is A-or V-shaped (Fig. 1(b)). In this case the
equation g (6, n, A) = 0 for given A and n has only
two roots: 07 corresponding to the stable state, and
0, corresponding to the unstable state in the system
with n = const [9-11,16,57,58]. Among A-systems
are many semiconductor and gas-discharge struc-
tures, electron—hole and gas plasmas, radiation heated
gas mixtures (see, for example [9-12,16,20,57,58]).
It is not difficult to see that the Brusselator and
the Gray—Scott models are A-systems, and the
Gierer—Meinhardt model is a V-system.

Kerner and Osipov [9,11,16,32,33,57,58] qualita-
tively showed that in A-systems the so-called spike
ASs and more complex spike patterns can be excited.
They analyzed the static spike ASs and strata in the
Brusselator, the Gierer—Meinhardt model, and the
electron—hole plasma [16,32,57,58]. They found that
when € <« 1 and @ 2 1, the one-dimensional static
spike AS can have small size of order / and huge
amplitude which goes to infinity as € — 0. Dubitskii
et al. [11,32] formulated the asymptotic procedure
for finding the stationary solutions in A-systems for
sufficiently small €. In [34] we showed that in an-
other limiting case @ < 1 and € > 1 one can excite
the one-dimensional traveling spike AS which also
has small size and whose amplitude goes to infinity
as « — 0. We also showed that, in contrast to the

traveling patterns in N-systems, the velocity of this
one-dimensional traveling spike AS can have huge
values (¢ > [/ty) and that the inhibitor distribution
varies stepwise in the front of the spike. Thus, one can
see that the properties of the spike patterns forming
in A-systems differ fundamentally from those of the
domain patterns forming in N-systems [35,68-70].
At the same time, spike patterns including the spike
ASs are observed experimentally in the nerve tissue
[36], chemical reactions [5,37], electron-hole plasma
[38,71], gas-discharge structures [39,72], as well as
numerically in the simulations of the Brusselator,
the Gierer—-Meinhardt, and the Gray—Scott models
[1,15,22,40,41,55,56,73].

Let us emphasize that € or « are the natural small
parameters in the systems under consideration. Their
relative smallness is in fact a necessary condition for
the feasibility of any patterns [9—11]. Indeed, if the in-
verse were true, that is, if both the characteristic time
and length scales of the variation of the inhibitor were
much smaller than those of the activator, the inhibitor
would easily damp all the deviations of the activator
from the homogeneous steady state, making the for-
mation of any kinds of persistent patterns impossible.
On the other hand, the fact that we must have either
€ <1 ora <1 for the patterns to be feasible implies
that it is advantageous to consider the asymptotic lim-
its € <« 1 and/or ¢ <« 1, which should result in a
significant simplification of the original highly nonlin-
ear problem. Note that this kind of approach has been
successfully applied to a variety of pattern formation
problems (see, for example [42,74-76]).

This paper is one in a series of papers devoted to an
asymptotic study of the spike ASs in the Gray—Scott
model of an autocatalytic chemical reaction. We chose
the Gray—Scott model because it has an advantage of
relatively simple nonlinearities, which in many cases
allow to obtain explicit analytic results. Also, because
of this one can expect a certain degree of universal-
ity of pattern formation exhibited by it. In this pa-
per we concentrate on the traveling spike ASs, so we
will study the one-dimensional Gray—Scott model with
a < 1 and different values of €. We will develop for-
mal asymptotic methods for the description of these
patterns and study their major properties.
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The outline of our paper is as follows. In Section
2 we introduce the model we will study, in Section 3
we asymptotically construct the solutions in the form
of two types of traveling spike ASs, in Section 4 we
compare our results with the numerical simulations,
and in Section 5 we draw conclusions.

2. The model

The Gray—Scott model describes the kinetics of a
simple autocatalytic reaction in an unstirred flow reac-
tor. The reactor is a narrow space between two porous
walls. Substance Y whose concentration is kept fixed
outside of the reactor is supplied through the walls
into the reactor with the rate ko and the products of the
reaction are removed from the reactor with the same
rate. Inside the reactor Y undergoes the reaction in-
volving an intermediate species X:

2x + Y83x, (5)
Xginert. (6)

The first reaction is a cubic autocatalytic reaction re-
sulting in the self-production of species X; therefore,
X is the activator species. On the other hand, the pro-
duction of X is controlled by species Y, so Y is the
inhibitor species. The equations of chemical kinetics
which describe the spatiotemporal variations of the
concentrations of X and Y in the reactor and take into
account the supply and the removal of the substances
through the porous walls take the following form [21]:

dX 5
= —(ko 4+ k2)X + k1 X?Y + DxAX, )

ot
oY )
gzko(Yo—Y)—le Y 4+ Dy AY, ®)
where now X and Y are the concentrations of the
activator and the inhibitor species, respectively, Yy
is the concentration of Y in the reservoir, A the
two-dimensional Laplacian, and Dy and Dy are the
diffusion coefficients of X and Y.

In order to be able to understand various pattern

formation phenomena in a system of this kind, it is
crucial to introduce the variables and the time and

length scales that truly represent the physical pro-
cesses acting in the system. The first and the most
important is the choice of the characteristic time
scales. These are primarily dictated by the time con-
stants of the dissipation processes. For Y this is the
supply and the removal with the rate kg, whereas for
X this is the removal from the system and the decay
via the second reaction with the total rate kg + k. The
natural way to introduce the dimensionless inhibitor
concentration is to scale it with Yy. Since we want
to fix the time scale of the variation of the inhibitor
(with the fixed activator), we will rescale X in such a
way that the reaction term in Eq. (8) will generate the
same time scale as the dissipative term. This leads to
the following dimensionless quantities:

X Y ko\'/?
o= —— Xo=(2) . 9
Xo " Yo 0 <k1> ®

The characteristic time and length scales for these
quantities are

w=(ko+k) ", 1=k, (10)

I = (Dxtg)'/?, L = (Dyt,)'/2. (11)

Naturally, one should require positivity of 6 and 7.

If we now write Egs. (7) and (8) in terms of the
dimensionless quantities 6 and 5, we will arrive at the
following set of equations:

00 2 )
rg§=1A9+A9 n—20, (12)
m _ 2
T"E_L An—0n+1—-n (13)
with the dimensionless parameters ¢ = [/L, o =
79/Ty and A:
< koDx )1/2
e=|—-—"—— ,
(ko + k2) Dy
ko
o0=—)
ko + ko
1/2,1/2
Yok, "k
A= "1 (14)
ko + ko

Note that in the literature the Gray—Scott model is of-
ten written in terms of semi-dimensionless parameters
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A, B, D, which can be related to our parameters €, «
and A by noticing that A = ko, B = ko + kp, and
D= Dx, when Y() = DY =1.

One can see from Egs. (12) and (13) that 79 and 7,
are in fact the characteristic time scales, and / and L
the characteristic length scales of the variation of small
deviations of 6 and n from the stationary homogeneous
state 6 = 6y and n = np:
onh =0, nh = 1. (15)
As can be seen from Eq. (12), the parameter A is the
dimensionless strength of the activation process, that
is, it describes the degree of deviation of the system
from thermal equilibrium. With all this, Egs. (12) and
(13) are reduced to the form of Egs. (1) and (2). Notice
that the system given by Eqgs. (12) and (13) is indeed
a system of the activator—inhibitor type: the condition
in Eq. (3) is satisfied for 6 > %An, and the conditions
in Eq. (4) are satisfied with g, < 0 and Qg > 0 for
all & > 0 and n > 0.

The nullclines of Eqgs. (12) and (13) are shown in
Fig. 2. From this figure one can see that the null-
cline of the equation for the activator has degenerate
A-form. It consists of two separate branches: 8 = 0
and 6 = 1/An. Note that adding an extra small con-
stant term in the right-hand side of Eq. (19) (which
physically would correspond to some finite concentra-
tion of substance X in the reservoir), one can remove
this degeneracy of the nullcline and make the nullcline
truly A-shaped.

One can easily check that for 0 < A < 2 there
is only one stationary homogeneous state given by
Eq. (15), whereas for A > 2 two extra stationary ho-
mogeneous states exist:

Aq:vA2—4 A++A2—4
O3 = ——7i, M3 = ——~—".
2 2A
(16)

The stability analysis of these homogeneous states
shows that for ¢ < 1 or @ < 1 the homogeneous state
0 = 6ny, 1 = nn2 is always unstable. For € < 1 the
homogeneous state 0 = 6h3, n = nu3 is unstable with
respect to the Turing instability if A < 0.41e~!. For
o < 1 it is unstable with respect to the homogeneous
oscillations (Hopf bifurcation) if 0.41a"1/? < A <
a~1/2 or it is an unstable node if A < 0.41a~!/2. On
the other hand, the homogeneous state 0 = 6y, n =
nn is stable for all values of the system’s parameters.
The latter is simple to understand; in order for the re-
action to begin there has to be at least some amount
of the activator put in at the start. Equivalently, the
fact that the homogeneous state in Eq. (15) is stable
for all values of the parameter A (for an arbitrary de-
viation from thermal equilibrium) is the consequence
of the degeneracy of the nullcline of Eq. (12). Thus,
self-organization associated with the Turing instability
of the homogeneous state 0, = 0 and n = 1 is not re-
alized in the Gray—Scott model. In such a stable homo-
geneous system any inhomogeneous pattern, including
ASs, can only be excited by a sufficiently strong lo-
calized stimulus. In turn, self-organization will occur

Fig. 2. The nullclines of Eqgs. (12) and (13) for A =1 (a) and A = 3 (b).
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as a result of the instabilities of the large-amplitude
patterns already present in the system.

Note that in the opposite case € > 1 and o >
1 the dynamics of the system becomes dramatically
simpler. Indeed, if we set both L and 7, to zero, from
Eq. (13) we get a local relationship n = 1/(1 4 6?).
Substituting this back to Eq. (12), we obtain

2
1+62

0

This equation possesses a simple variational structure

00 §F
50"

Tg— =
Jt
12(V0)? 62
]—‘:/ddx< (2 ) —A9+Aarctan6+?).

(18)

For A < 2 the functional F has a unique global mini-
mum at 6 = 6y, = 0, so any initial condition will decay
to the homogeneous state 6. For A > 2 there are two
stable homogeneous states 0 = 6y and 6 = 63 (see
above), so it is possible to have the waves of switch-
ing from one homogeneous state to the other [5]. It is
easily checked that for 2 < A < 2.18 the dominant
homogeneous state is 6, while for A > 2.18 the dom-
inant homogeneous state is 3. Let us also mention
the work of Hale et al. [43] for the case of « >~ 1 and
€ >~ 1 (see also the remark in the conclusion of [47]).

In the case of @ « 1 it is convenient to scale length
and time with / and 7g, respectively. In these units
Egs. (12) and (13) restricted to one dimension will
take the following form:

O = O + AO%7 — 6, (19)
a =€ P — 0P+ 1—1. (20)

We will assume that the problem is defined on the
infinite domain with the boundary conditions,

6(£00) = th, 1(£00) = 1. @1

Notice that the kinetic model used to arrive at
Egs. (19) and (20) imposes a restriction « < 1 (see
Eq. (10)). For the sake of generality, in the following
we will allow « to take on arbitrary values.

3. Traveling spike autosolitons

According to the general qualitative theory of ASs,
for @ = 19/7; < 1 and € sufficiently large, Egs. (19)
and (20) should have solutions that propagate with a
constant speed without decay — traveling ASs [9—-11].
As we will show below, in the Gray—Scott model trav-
eling ASs are realized for sufficiently small o and have
the shape of narrow spikes of high amplitude which
strongly depends on «.

The equations describing an AS traveling with con-
stant speed ¢ along the x-axis take the form,

d%e  de

— tc—+ A —0 =0, 22

dz? +cdz + 7 22)

4 a1 g2y =0 (23)
dz2 dz ’

where we introduced a self-similar variable z = x —ct.
The solution with ¢ > 0 travels from left to right. The
boundary conditions for these equations are given by
Eq. (21).

3.1. Nondiffusive inhibitor: € > a'/?

There are two qualitatively different types of travel-
ing spike ASs in the Gray—Scott model. First we con-
sider the ultrafast traveling spike AS, which is real-
ized when the inhibitor does not diffuse, that is, when
L = 0 (or € = 00). Such an AS was discovered by
us in a similar reaction—diffusion model (the Brusse-
lator) [34]. A remarkable property of this AS is that
it has the shape of a narrow spike whose velocity ¢ ~
Aa~'/2 is much higher than the characteristic speed
l/tp (which in these units is of order 1) determined
by the physical parameters of the problem, and whose
amplitude goes to infinity as o« — O.

3.1.1. Case a'?> < A < a~V2: ultrafast traveling
spike autosoliton

If we assume that & > 1, we can drop the last
term from Eq. (22) and neglect the last two terms in
Eq. (23) (with the term involving the second derivative
of n dropped in the limit of large €) in the front of the
spike where n ~ ny, = 1. If we then multiply the latter
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equation by A and add it to the former equation, we
will get
d29+ d9+A 1 dn
dz2 Cdz * Cdz N

This equation can be straightforwardly integrated.
If we introduce the variables

0. (24)

6 = ozA_IH, ¢ = al/zA_lc, &= Aa_1/2z,
(25)
we can write the solution for 1 as
=1-6 1d6 (26)
n= Zdg’

where we took into account the boundary condition
6(4+00) = s (+00) = 0, n(+00) = 1. Substituting
this expression back to Eq. (22) (with the last term
dropped), we arrive at the following equation:

d?6  dé

T (
One can see that in Eq. (27) all the «- and A-dependence
is absent, so Eq. (25) (with all the tilde quantities of
order 1) in fact determines the scaling of the main
parameters of the traveling spike AS for ¢ <« 1. As
was expected, the AS will have the speed which di-
verges as « — 0. Also, note that the width of the
front of the AS, which is of order a!/2A~1 goes to
zero as @ — (. Thus, the distributions of 6 and 7 in
the front of the ultrafast traveling spike AS will be
given by the “supersharp” distributions (in the sense
that their characteristic length scale is much smaller
than 1) described by Eqs. (26) and (27).

Let us take a closer look at Eq. (27). This equation
has the form of an equation of motion for a particle
with the coordinate 6 and time & in the potential U =
%53 — %é“ with the nonlinear friction with the coeffi-
cient & — 62 /¢. Since the derivative of the friction co-
efficient is positive for all ¢, the friction increases as ¢
grows, so there are no special features associated with
its nonlinearity. For § > 0 the potential U has a max-
imum at 6 = 1 and a minimum at an inflection point
6 = 0. The supersharp distribution of 6 will there-
fore be the heteroclinic trajectory going from 6 = 1
to 6 =0.

1~ o
é— :92> +62-63=0. (27)
C

It is clear that if the friction is not strong enough, the
particle starting from @ = 1 will miss the point 6 = 0
and go to minus infinity, so we must have ¢ > c¢*,
where ¢* is some positive constant of order 1. On the
other hand, it is clear that when ¢ > ¢*, the particle
will always get from & = 1to = 0, so in fact there is
a continuous family of such solutions. Thus, we have
a multiplicity of the front solutions and, therefore, a
selection problem [5]. To answer the question about
the front selection, we need to consider higher-order
corrections to the solution of Eq. (27) coming from
Egs. (22) and (23). According to these equations, for
small § the next order correction will amount to adding
the term —aA~20 to Eq. (27). In this situation the po-
tential U will actually have a maximum at § = 0 and a
minimum at O, ~ ¢ A~2, so only the trajectory with
the minimum velocity ¢ will reach § = 0, whereas
all other trajectories will be stuck at 6 = émin. Thus,
we can conclude that in the limit « — O the selected
front solution in our problem has the velocity ¢ =
¢*. The numerical solution of Eq. (27) shows that the
value of ¢* is ¢* = 0.86. The numerical simulations
of Egs. (12) and (13) confirm these conclusions. The
main parameters of the traveling spike AS, therefore,
are

Omax = Aa™!, ¢ =0.86Aa"1/2. (28)

Note that the numerical solution of Eq. (27) in the
form of the supersharp front differs from éssh = %[l —
tanh(0.50£)] by less than 1%. Also note that the re-
sults given by Eq. (28) precisely coincide with those
obtained by us for the Brusselator [34]. This is due to
the fact that the supersharp distributions in these two
models are described by the same equations.

In the back of the supersharp front the value of 6
goes exponentially to 1, and n goes exponentially to
0 (see Eq. (26)). Note, however, that in writing the
equations describing the supersharp distributions we
neglected the last two terms in Eq. (23). When the
value of 1 decreases, at n ~ «2A~2 the term 6%y
becomes of order 1, and the equations for the super-
sharp distributions cease to be valid. This will happen
at a distance of order /A~ In Aa~! behind the lo-
cation of the supersharp front. We can therefore call
the region of this size right after the front where n
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exponentially decays to some value i, the secondary
region of the supersharp distributions. Since the width
of this region is still much smaller than 1, we can as-
sume that 8 = On,x there. Then, the distribution of 7
in the secondary region of the supersharp distributions
is given by Eq. (23) in which we should drop the last
term, since n < 1 there. We obtain

Nsshy = @2 A2 4 Ceb/e, (29)

where the constant C should be determined by match-
ing to the asymptotics of the supersharp distribution
of n at £ — —oo (this requires an explicit knowledge
of the solution in the supersharp region). As can be
seen from this equation, we have npin = a?A2,

As z passes the secondary region of the supersharp
distributions, 9277 becomes of order 1, and therefore
can be dropped from Eq. (22). Then the activator
and the inhibitor become decoupled, so the charac-
teristic length scale of the variation of 6 significantly
increases. According to Eq. (22), for ¢ > 1 the char-
acteristic length scale of the decay of 6 behind the
supersharp front is of order ¢ ~ Aar~!/2, which is still
much smaller than the length scale of the variation of
n behind the spike (the refractory region), which is
of order @ ¢ (see below). This means that after the
secondary region of the supersharp distributions we
should find the region of the sharp distributions. Ac-
cording to Eq. (22) with the terms d26/dz2 and A6%n
dropped, the solution for 6 in this region will be

Osn(z) =o' A Ve, (30)

where we chose the position of the supersharp front to
be at z = 0 (with the accuracy of «). This expression
for 6, can be substituted back into Eq. (23) to cal-
culate ng. The analysis of this equation then shows
that one can neglect both @~ !¢(dn/dz) and —7 in the
region of the sharp distributions, so ngy and 6y, are
related locally. The resulting expression for the sharp
distribution of 1 takes the following form:

nsn = o AT e R @31

As will be shown in the next paragraph, this equation
is in fact valid only in the part of the sharp distri-
butions region, so we will call it the primary sharp
distribution of 7.

According to Eq. (31), the value of 1 exponentially
grows behind the region of the sharp distributions, so
at some distance of order a~'/>Alna~'A? one can
no longer neglect the term o« 'cdn/dz in Eq. (23).
If we take this derivative into account, we can solve
Eq. (23), provided that 6 is still given by Eq. (30). The
solution will have the following form:

N2(2) = Sarl (0, e/E00) 0T

20 = Seln2aA™2, (32)

where I"(a, x) is the incomplete gamma function. In
writing the last equation we matched this solution with
the one from Eq. (31) at large z — zo. We will call this
distribution of 1 the secondary sharp distribution.
For yet more negative values of z the distribution of
n approaches n ~ —ac 17 (see Eq. (32)), so the char-
acteristic length scale of the variation of n becomes
of order & ~'¢ > ¢. This means that we enter the re-
fractory tail of the AS where 7 relaxes to ny, that is,
the region of the smooth distributions. For these val-
ues of z the distribution of 6 already relaxed to zero,
so Eq. (23) can be easily solved. To do that we should
recall that up to ¢ < o~ ¢ the region of the sharp dis-
tributions is located at z = 0, and to the leading order
in @ we have (0) = 0. This immediately gives us the
solution for 7 in the region of the smooth distributions

Nem = 1 — %%/, (33)

The entire solution in the form of the ultrafast travel-
ing spike AS is presented in Fig. 3. This figure actu-
ally shows the result of the numerical simulations of
Eqs. (19) and (20) with @ = 1073 and A = 1. One
can see an excellent agreement of this solution with
the distributions obtained above.

Thus, we introduced an asymptotic procedure for
constructing the solution in the form of the traveling
spike AS in the Gray—Scott model in the limit « — O.
This solution is considerably different from the solu-
tions in the form of the traveling ASs in N-systems (see
Section 1). In N-systems the speed and the distribution
of 6 in the AS front are determined only by the equa-
tion for the activator with n = ny in the limit « — 0,
so the speed of the AS cannot exceed the value of or-
der 1[9,11,24,25,62,63]. The distribution of 6 in such
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Fig. 3. Distributions of # and 7 in the ultrafast traveling spike AS: (a) the back of the AS; (b) the front of the AS. Results of the numerical
solution of Eqgs. (19) and (20) with € = 00, @ = 1073, and A = 1. Length is measured in the units of /.

an AS can be separated into two regions: the region of
the sharp distributions, which corresponds to the mov-
ing domain wall whose characteristic size is of order
1, and the region of the smooth distributions, where
the distribution of 0 is slaved by the distribution of
n which varies on the length scale of a1 [11,25,63].
In other words, in the limit « — O there is only one
boundary layer in the solution for 8 (within a single
domain wall) and no singularities in the solution for 7.
In contrast, in the Gray—Scott model the speed and the
amplitude of the ultrafast traveling spike AS become
singular in the limit « — 0. Moreover, there are three
regions with different behaviors for 6 in the ultrafast
traveling AS: the region of the supersharp distribu-
tions, where @ varies on the length scale of «!/2, the
region of the sharp distributions, in which the char-
acteristic length scale of 6 is «~!/2, and the region
of the smooth distributions, where 6 = 0. The latter
happens to be a specific property of the Gray—Scott
model, in more general models the distribution of 6 is
slaved by the distribution of 7 in the smooth distribu-
tions and thus has the characteristic length scale of its
variation of order @ ~1¢ [34]. Moreover, the distribu-
tion of 1 can be separated into five regions where the
asymptotic behavior of 7 is different. In other words,
the solution in the form of the ultrafast traveling spike
AS contains four boundary layers in the limit @ — 0.

3.1.2. Case A ~ a'/?: disappearance of solution
According to the procedure presented above, the
main parameters of the AS, such as the amplitude

and the velocity are determined solely by the super-
sharp distributions of 6 and 5. However, according to
Eq. (28), when A becomes of order al/ 2, the veloc-
ity of the AS becomes of order 1, so the separation
of the distributions of 8 and 7 into the supersharp and
the sharp distributions in the spike becomes invalid.
For these values of A the treatment of the spike region
has to be modified. Note that according to Eq. (28)
we still have Omax ~ o~ /2 > 1 for A ~ «'/2. Let us
introduce the following variables:

6=a'?0, i=n, A=a"124. (34)

In these variables we can write Eqgs. (22) and (23) as
0., + O, + A0’ — 6 = 0, (35)
cii, — 6% =0, (36)

where we neglected the last two terms in Eq. (23).
These equations with the boundary conditions
6(+00) = 0 and n(+00) = 1 can be solved numeri-
cally. Fig. 4(a) shows the solution of these equations
for a particular value of A. One can see that the dis-
tribution of § has the form of an asymmetric spike,
while the distribution of 7 goes from 1 = 1 at plus
infinity to 7 = 7Nyip at minus infinity. The numer-
ical solution of Egs. (35) and (36) shows that the
traveling solution exists only for A > AbT = 3.76.
The numerical solution also shows that for A > A,y
we have nin < 0.05, which decreases with the in-
crease of A, so with good accuracy we can assume
that nmin = 0. Fig. 4(b) shows the dependence c(A)
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Fig. 4. (a) Solution of Egs. (35) and (36) for A =3.76. (b) Dependence ¢(A) obtained from Egs. (35) and (36).

obtained from the numerical solution of Egs. (35)
and (36). Observe that already for A P 1.4AbT the
velocity of the AS agrees with Eq. (28) with accuracy
better than 15%. Behind the spike region (in the re-
gion of the smooth distributions) we will have 6 = 0
and n = 1 — (1 — nmin)e®%/¢. If one assumes that
Nmin = 0, one would arrive once again at Eq. (33).

We would like to emphasize that even for A ~
al/? « 1, that is, for such a small deviation of the
system from thermal equilibrium, the amplitude of the
AS 1S Opax ~ a2 > 1 and the velocity ¢ ~ 1. In
other words, the AS remains a highly nonequilibrium
object in the system only slightly away from thermal
equilibrium.

3.1.3. Case A ~ a~'/2: oscillatory tail

In the other limiting case A > 1 the behavior of the
secondary sharp distributions in the back of the AS
acquires special features. This is due to the fact that
for A > 1 the phase trajectory 6 () in the phase plain
of 6 and n may pass close to the unstable fixed point
(see Eq. (16)) 6h3 >~ A, npp =~ A2, so the behavior of
the distributions of 6 and n behind the spike becomes
oscillatory. In other words, 6 and n will not be able to
get back to the homogeneous state 6 = 6, and n = ny,

at z = —oo. To see that, let us introduce

b=a'?0, f=a'y,

A=a'?A, =% (37)
C

Then, we can rewrite Eqs. (22) and (23) behind the

spike as follows:
0s + AG%7 — 6 =0, (38)
fie —0%7+1=0, (39)

where we kept only the leading terms. In order for the
solutions of these equations to properly match with
the primary sharp distributions, we must have  ~ ef
and n ~ e~ 2% as & — 400 (see Egs. (30) and (31)).
The numerical solution of Eqgs. (38) and (39) with
these boundary conditions shows that at A> Agr=
0.90 the distributions of # and 7 become oscillatory
behind the spike. Thus, we conclude that the ultrafast
traveling spike AS exists in a wide range Apr < A <
Agr, where App = 3.76a'/2 and Ay = 0.900~ /2.
Notice that the oscillatory behavior of the distributions
of 6 and n behind the spike of the AS is essentially
related to the Hopf bifurcation of the homogeneous
state 6 = 6n3, n = nu3 for 041a71?2 < A < @7 1/2
(see Section 2). On the other hand, for A > a~!/2 this
homogeneous state becomes stable, so in that case the
traveling spike AS transforms to a wave of switching
from one stable homogeneous state to the other.

3.1.4. Justification of the condition € > o'/ and
case o = €

Above we considered the case, in which the in-
hibitor does not diffuse. Let us see how the diffu-
sion of the inhibitor affects the properties of the ul-
trafast traveling spike AS. Since the main parameters

of the AS are determined by the primary supersharp
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distributions, the diffusion of the inhibitor should not
significantly affect these distributions. According to
Eq. (23), the term € 2 d?n/dz? ~ € 2a~' A? is small
compared to the leading terms which are of order
a2A2 (see Eq. (29)) if > a regardless of A. Note
that these estimates remain valid even at A ~ Apr. In
terms of the physical parameters of the problem this
means that the ultrafast traveling AS will be described
by the solution obtained above as long as Dy > Dy.
It is also clear that when o ~ €2, the properties of
the AS will not change qualitatively. An interesting
special case o = €2 which corresponds to the activa-
tor and the inhibitor with equal diffusion coefficients
can be treated in an analogous way (see also [44]).
The resulting equation for the supersharp distributions
will have the form of Eq. (27), but without the nonlin-
ear friction term. This equation can be solved exactly,
giving in this case the velocity ¢ = 1 /ﬁ [44,45],
which is in fact close to the one obtained in the case
of the nondiffusing inhibitor. The explicit expression
for the supersharp distributions in this case are Ogsh =
(1 — tanh(§/2v/2)), nssh = (1 + tanh(£/2v/2)),
and ngny = a?A2 4 e‘f/ﬁ. The rest of the solu-
tion will be the same as in the case ¢ = oo. All
this allows us to conclude that the ultrafast traveling

spike AS in the Gray-Scott model exists when € >
1/2
o/l

3.2. Diffusive inhibitor: € < a'/?

Now let us analyze the second type of the traveling
spike AS which is realized when both ¢ « 1 and
€ < 1, more precisely, when € <« al”? « 1.

3.2.1. Special case ¢ = 0: static spike autosoliton
Observe that according to the general qualitative
theory of ASs, at € < 1 static spike ASs should
be realized in the Gray—Scott model [9—11]. This re-
sult is supported by the analytical and the numeri-
cal studies of the model [40,46-48,73]. For ¢ < 1
there is a strong separation of length scales in the AS
[9-11,16,57,58]. One can separate the spike region
where the distribution of 6 varies on the length scale
of order € and the periphery of the AS where 1 decays
into the homogeneous state 1, = 1 on the length scale

of order 1. Here we will consider only the case €!/2 <
A < 1, for more general results see [40,47,73].

Let us assume that the value of 5 inside the spike
(on the length scale of €) is close to a constant. This is
a reasonable assumption as long as n >> € in the spike
since the characteristic length scale of the variation of
n is 1. Let us denote this constant value of 7 as ;.
Then, Eq. (22) with ¢ = 0 and n = 5 can be solved
exactly. Its solution has the form,

(X . 3
6(x) = Oy, cosh™> <Z) with = 2 (40)
On the other hand, the distribution of 6 given by
Eq. (40) acts in Eq. (23) as a §-function, so away from
the spike the distribution of 7 is given by

) = 1 3¢
x)=1-—
n A2

S

e Ml 41)

Now, matching this solution for n(x) with the con-
dition that n(0) = ng, we obtain the following expres-
sions:

3A A?
-1
A} A}
where
Ap = V12€. (43)

Note that these results were also obtained in [46] by
applying Melnikov analysis to Eqs (22) and (23). Sim-
ilar results for a simplified version of the Gray—Scott
model were obtained in [51].

From Eq. (43) one can see that at A < A, the solu-
tion in the form of the spike AS does not exist. When
A > Ay there are two solutions: the one correspond-
ing to the plus sign has larger amplitude and the one
corresponding to the minus sign has smaller ampli-
tude. As was shown by Kerner and Osipov [9-11], the
solutions that have smaller amplitude are always un-
stable, so the only interesting solution corresponds to
the plus sign in Eq. (42). This solution is precisely the
static spike AS. As can be seen from Eqgs. (40) and
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Fig. 5. Qualitative form of the traveling spike AS at €2 < « <eforc~1(a)and c > 1 (b).

(41), the distribution of the activator in the AS indeed
has a form of the spike whose characteristic width is
of order €, and the distribution of the inhibitor varies
on the much larger length scale of order 1. Also, ac-
cording to Eq. (42), the amplitude of the spike at A
close to Ap is of order €~ 1/2 >> 1 (and can in fact
have huge values as € gets smaller) and grows as the
value of A increases. These features fundamentally
differ the AS forming in A-systems from the AS in N-
systems.

Recall that in the derivation we neglected the vari-
ation of the inhibitor inside the spike. Since the char-
acteristic length of the variation of 75 is of order 1,
this means that the value of n = 5y in the center of
the AS must be much greater than €. According to
Eq. (42), this is indeed the case as long as A < 1, so
the solution obtained above is a good approximation
to the actual solution in this case. Note that in the case
A ~ 1 a modified asymptotic procedure may be used
to obtain the solution in the form of the static spike
AS for € « 1 [40,47,48,73]. This asymptotic proce-
dure shows that the AS exists only for A < Ay = 1.35
in this limit. For A > A, the static spike AS starts to
split in the Gray—Scott model [40,47,48,73].

3.2.2. Casec#0

Now we will show that when € <« 1 and o« small
enough, in addition to the static spike AS there are
solutions in the form of the traveling spike AS which
propagates with constant velocity whose magnitude
isc2l/t.

Since € « 1, it is natural to separate the distribu-
tions of 6 and 7 into sharp and smooth distributions.
In the spike region we introduce the scaled vari-
ables which will describe the sharp distribution (inner

solution),
0 =0, i=en. (44)
In terms of these variables, Egs. (22) and (23) become
6. 4 cb. + A’ —6 = 0, (45)
ez = 677 = 0, (46)

where we assumed that € < o!/? and 625 > 1 in the
spike and kept only the leading terms. According to
Eq. (46), the asymptotic behavior of 7 at large |z]| is

f~Kiz, 27— Foo, 47

where x4 are some constants. Therefore, the distribu-
tions of 6 and 7 in the spike will qualitatively have
the form as shown in Fig. 5.

It is convenient to introduce the following variables:

5= =il (48)
Then, Eq. (46) can be written as
ez =60 — ch,. (49)

Because of the translational invariance, we have the
freedom to choose the position of the spike. We will
do it in such a way that the maximum of 4 is located
at z = 0, that is, we have Q_Z (0) = 0. Also, according
to Eq. (49), we can add an arbitrary function a + bz
to its solution, so we may replace n — 1 + 15 + k2,
where 75 and « are arbitrary constants, and require that
17(0) = n,(0) = 0, so the function 7(z) is completely
determined by 6(z). In view of all this, Eq. (45) be-
comes

O 4 O, + A%0%(ls +kz+71—0) -6 =0. (50)
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According to Eq. (47), we have 1,(+00) = k+ — k.
This implies that 7, (4+00) — 1;(—00) = k4 —k_. In-
tegrating Eq. (49) over z, we obtain an integral repre-
sentation of this condition,

+00o _
f 0dz = k4 —k_. (629
—00

By a similar integration, the value of « is determined
as

0
KZK_+/ 0dz. (52)
—0o0

To study the solutions of Egs. (49) and (50), we
use the mechanical analogy. Eq. (50) can be consid-
ered as an equation of motion for a particle of unit
mass with the coordinate # and time z in the poten-
tial U = —%9_2 + %A2f;59_3 - JTA29_4 in the presence
of friction, with the friction coefficient ¢, and an ex-
ternal time-dependent force —A2%0%[kz + n(z)]. For
ils > 2A~! the potential has two maxima at § = 0
and = G_m, and a minimum in between. The parti-
cle slides down from the maximum of the potential at
@ = 0 and after an excursion toward 8 = Opax < Om
at z = 0 returns to # = 0. Notice that since by def-
inition 7(0) = 1,(0) = 0, the value of 7 should be
rather small in the spike region, so one could think
of the second term in —A26%[kz + 7(z)] as a small
perturbation.

In the presence of friction the external time-dependent

force acting in Eq. (50) must be such that it accel-
erates the particle at some portion of the trajectory.
According to Eq. (49) and the fact that 6, < 0 for
z > 0, we have 1 > 0 for those values of z. Since the
values of k relevant to our analysis are positive (see
below), in the portion of the trajectory where z > 0
the external force does accelerate the particle. All the
kinetic energy that is gained by the particle during this
part of the motion must be dissipated by the friction
force, so that the particle arrives at § = 0 with zero
velocity. This defines the precise value of the friction
coefficient ¢ as a function of 75 and «. Recall that in
addition the distribution #(z) must satisfy the integral
condition in Eq. (51), so in fact we are not free to
choose the value of 75. Thus, for given values of x4+
there may exist only a discrete set of the velocities c.

Away from the spike 6 is zero, and 7 is described
by the smooth distributions (outer solutions). If we
introduce the variable { = €z, we can write Eq. (23)
in the form,

nee + B lene + 1=y =0, (53)

where 8 = «a/e. We should choose such a solution
of this equation that correctly matches with the sharp
distribution in the spike. To do that, we use the fact
that to order € the value of n(0) = 0, so the smooth
distribution of 7 is

() =1—exp(—«+?), (54)
where

¢+ /2 +4p?

o= SV (55)
and one should take x4 if { > 0, or k_ otherwise.
Note that for 8 ~ 1 and ¢ ~ 1 we have k1 ~ 1. From
Eq. (54) one can see that when ¢ approaches the spike
region, we have n ~ k+{ = ex+z. This means that
we should use the values of x4 given by Eq. (55) in
solving the inner problem given by Egs. (49)—(52).

3.2.3. Case € A> < a < €A: bifurcation of the static
and traveling autosolitons

Egs. (50)—(52) are difficult to deal with and in gen-
eral can only be treated numerically. Such a treatment
was performed by Reynolds et al. [40,73], who also de-
rived these equations in a different context. The prob-
lem can be significantly simplified in the case A < 1.
In this case there is a small factor of A2 multiply-
ing a number of terms in Eq. (50). It can be partially
compensated by choosing 7j; ~ A™2 > 1. If we ne-
glect the other terms containing A% and put ¢ = 0
in Eq. (50), we can solve this equation (together with
Eq. (51)) exactly. The result is

6o(z) = % cosh™? (%) :
6

ns = m (56)

Note that according to Egs. (52) and (56), we may put
k= (ky +k-)/2=c/2B.
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The equation describing the small deviations 86 =
6 — Gy due to the order A? terms that were dropped
in the derivation of Eq. (56) can be obtained by the
linearization of Eq. (50) around . Assuming that ¢ <
1 and retaining only the term that gives the nontrivial
contribution to ¢, we get

) -

[—;—Zz — 2A%i0 + 1] 80 = A%03kz + c%. (57
The operator in the left-hand side of this equation has
an eigenvalue zero, corresponding to the translational
mode 80 = dfy/dz. Therefore, in order for Eq. (57) to
have a solution, its right-hand side must be orthogonal
to this translational mode. The operator in Eq. (57) is
self-adjoint, so in order to get the solvability condition
for this equation, we should require that the integral
of its right-hand side multiplied by dfy/dz be equal
to zero. With the use of Eq. (56), this gives us the
velocity ¢ as a function of xt

c= %Az(Ker — K%). (58)

To determine the velocities that are actually realized
in the traveling spike AS, we need to take into account
the matching conditions that are given by Egs. (55).
With the use of these equations, Eq. (58) becomes

132 A2
c=28 E—l, Br=" (59)

Since in the derivation of this equation we assumed
that ¢ < 1, it will be valid only for § <« A. Note that
similar results were recently obtained in the geometric
analysis of pairs of interacting pulses [49,50].

Two observations can be made from Eq. (59). First,
at some 8 = Br(A) (or at some A = Ar(B)) the ve-
locity of the AS becomes zero. Since this happens for
B~ A% and @ > €2, we have €1/2 « A « 1, so there
is also a solution with ¢ = 0 (see Section 3.2.1). The
presence of a point where the velocity of the traveling
solution goes to zero therefore signifies a bifurcation
of the static AS. Second, according to Eq. (59) the ve-
locity of the obtained solution is a decreasing function
of A (or an increasing function of g). In contrast, we
would expect the velocity of the traveling spike AS to
be an increasing function of the excitation level A.

Let us consider an iterative map that takes c, substi-
tutes it to Eq. (55) with the fixed x4 +«_, calculates «
and uses Eq. (58) to give the new value of c. This map
should mimic the stability of the AS. Indeed, since the
distribution of the inhibitor is controlled by the acti-
vator, a distribution of 6 that is close to a solution of
Eq. (50) with a given ¢ should produce a distribution
of 1 which is close to that in Eq. (54) with Eq. (55),
which will in turn affect 8. Clearly, those ¢ given by
Eq. (59) (or ¢ = 0) are fixed points of this map. How-
ever, an analysis of this map shows that an arbitrarily
small deviation of ¢ from that given by Eq. (59) will
lead to the unlimited growth of ¢ if the deviation is
positive, or to zero if the deviation is negative. In other
words, the fixed point given by Eq. (59) is unstable.
Also, one can easily see that for A < A7 the fixed
point at ¢ = 0 is stable for A < Ar (or 8 > B7) and
unstable otherwise. This means that the solution with
nonzero velocity we found above and the static solu-
tionat A > Ar or 8 < Br should be unstable. There-
fore, the stable traveling solutions should have the ve-
locity ¢ 2 1 and may exist both when A < A7 and
A > Ar. Also, when A > Ar, the solutions with ¢ =
0 should be unstable, so the static spike AS sponta-
neously transforms into the traveling spike AS, whose
speed ¢ 2 1. These conclusions are also supported by
the numerical simulations of Egs. (19) and (20).

3.2.4. Case a K €A: ultrafast traveling autosoliton

Above we considered the situation in which ¢ < 1.
Let us now study another possibility: ¢ > 1. In this
case the distribution of § will become strongly asym-
metric (see Fig. 5(b)). Indeed, according to Eq. (50),
we will have § ~ e at z — +o0 and 6 ~ ¥/ at
z — —oo. In other words, we can once again sepa-
rate the distributions of # and 7 into the regions of
the supersharp distributions (in the front of the spike)
and the sharp distributions (in the back of the spike).
In the region of the supersharp distributions the su-
persharp front will have the width of order c~! « 1.
Let us introduce & = cz. Then, we can write Eq. (49)
integrated over & and Eq. (50) as

Ot + 0 + ¢ 2A%0% (s +71—0) =0, (60)
7_7?; = _9_ + Q_max, (61)
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Fig. 6. Qualitative form of the dependence c(A) (a) and the dependence c(f) (b) for the traveling spike AS.

where we retained only the leading terms and moved
the point where 6 attains its maximum value to minus
infinity (this amounts to putting k = 0 in Eq. (60)
and redefining the boundary condition for 7 to be
1n(—00) = ng(—00) = 0). One can see that by rescal-
ing 6 and 7 with Oy all the A- and Opax-dependence
from Egs. (60) and (61) can be absorbed into c. These
equations have a solution in the form of a supersharp
front connecting & = 0 ahead of the front with § =
Omax behind the front only when ijs = Opax. In this
case we have ng(+00) = Omax (see Eq. (61)), what
corresponds to k_ = 0 and x4 = cf~'. According
to Eq. (55), these values of x4+ can only be realized
when ¢ > B, with Omax = ﬂ_l. Note that the fact that
Ns = G_max behind the supersharp front means that 5
exponentially decays to zero at § — —oo.

The numerical solution of Egs. (60) and (61) shows
that the velocity of the supersharp front is

c=1224p7". (62)

Since by assumption ¢ > 1, we must have f < A.
Recall that in the derivation we also assumed that ¢ >
B. According to Eq. (62), this leads to 8% < A. Since,
as we will show in Section 3.2.5, the solution in the
form of the traveling AS exists only when 8 < 1,
this condition is always satisfied when 8 <« A. Note
that the numerical solution of Egs. (60) and (61) in
the form of the supersharp front differs from Oy, =
111 — tanh(0.44¢)] by less than 0.5%.

In the region of the sharp distributions the charac-
teristic length scale of the variation of § is ¢, so we can
neglect the term 6., in Eq. (50). Recalling that 77 = 0
in this region, we can write the solution of this equa-
tion that represents the sharp distribution of 6 behind

the supersharp front as fg, = Omaxe?/¢, where we as-
sumed that the supersharp front is located at z = 0.

When the value of A is decreased, the velocity of
the unstable traveling solution grows and the velocity
of the stable traveling solution decreases until they
reach the value of order 1 when the approximations
used in deriving the above equations become invalid.
According to Eq. (62), this will happen at A ~ 8, so
at some A = Apr ~ B the solution in the form of
the traveling spike AS will disappear. Therefore, the
velocity of the traveling spike AS as a function of A
or B should have the form as shown in Fig. 6.

For B < 1 the traveling AS exists at A 2 8. On the
other hand, for these values of 8 the static spike AS re-
mains stable up to the values of A ~ 8 172 (see Eq. (59)
and the discussion below). Therefore, for 8 < A <
B'/? the static spike AS will coexist with traveling.

3.2.5. Case A~¢ ! a < €: oscillatory tail

When the speed of the traveling spike AS increases,
the behavior of the distributions of 6 and # in the back
of the AS changes in the way similar to the case of
the ultrafast traveling spike AS (Section 3.1.3). For
large enough values of A the sharp distributions in the
back of the spike become oscillatory. To see that let
us introduce the variables,

2, g=2%, (63)
C

where c is given by Eq. (62). Then, keeping only the
leading terms, we can write Egs. (22) and (23) in the
region of the sharp distributions as follows:

O + AG%7 — G =0, (64)
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To match the solutions of these equations with the
supersharp distributions we must have n — 0 for § —
+00, 50 0 ~ ef and 7j ~ e~ for large £. Similarly,
in order for the distributions of 6 and 7 to properly
match with the smooth distributions, for § — —oo we
must have 5(—00) = 0 and e = —B (see Eq. (55)
with ¢ > 1). With these boundary conditions Eqs. (64)
can then be solved numerically. As a result, we find
the values of B = B, as a function of A at which the
behavior of the distributions of 6 and 7 in the back
of the spike changes to oscillatory. The dependence
Ba(A) is plotted in Fig. 7. From this figure one can
also see that the solution in the form of the traveling
spike AS exists only at 8 < B, ~ 1.6. The analysis
of Eqgs. (64) and (65) also shows that for A> B3/?
the second derivative of 77 in Eq. (65) can be dropped,
so the problem reduces to that given by Eqgs. (38) and
(39) with A replaced by AB'/2. Therefore, for large
enough values of A we should have 84 ~ 0.81A72.
The numerical simulations of Eqs. (19) and (20) show
that the onset of the oscillatory behavior in the back
of the spike in the traveling spike AS results in the
splitting of the AS as it moves [47].

3.2.6. Case a ~ €, A ~ 1: qualitative considerations

So far, we concentrated on the situations in which
either c <« 1 or ¢ > 1. We gave an argument that only
the solutions with ¢ > 1 should be stable and can be

realized only if 8 < 1 and 8 <« A (Section 3.2.4).
As was shown in Section 3.2.5, in the case A > 1
the solution in the form of the traveling spike AS will
exist only if B < B, ~ 1. It is clear that qualitatively
these conclusions can also be made when both A ~ 1
and B ~ 1, what corresponds to ¢ ~ 1. In this case the
AS will not be able to propagate at A < Apr ~ 1 and
will transform into the static AS. On the other hand,
for A > Agr ~ 1 the traveling spike AS will start
splitting. When the value of S is increased, the value
of Apr will grow and the value of A;r will decrease,
so at some 8 = f, the solution in the form of the
traveling spike AS will disappear. This conclusion is
supported by the numerical simulations of Egs. (19)
and (20), with the value of B, found to be very close
to the one obtained in the preceding paragraph.

Let us give some heuristic arguments for explain-
ing the reasons for stopping the traveling spike AS at
A < Apr or splitting at A > Ayr. Consider Egs. (49)
and (50), using the mechanical analogy. Let us see
what happens as the value of A decreases when ¢ ~ 1.
In this case the external force —A20 (kz + 7) acceler-
ating the particle on the way from fpax to 0 becomes
smaller (see Eq. (50)), while the friction force remains
the same. When the value of A becomes small enough,
the dissipation will exceed the acceleration, so the par-
ticle will not be able to reach § = 0 and the solution
traveling with constant velocity will disappear. On the
other hand, as long as A, < A < Ay, where A, is the
point where the solution in the form of the static spike
AS disappears and A, the point where the static spike
AS starts splitting [47,48], the static solution will ex-
ist, so the traveling AS will be able to stop and trans-
form into static when the value of A is decreased.

According to the definition of 0, when z is close to
zero, the time-dependent external force is dominated
by —A260%kz, which is positive in some interval zo <
z < 0. This means that the particle is accelerated by
this force before it stops at 0 = Omax. If the value of
A is big enough and the friction coefficient ¢ ~ 1,
the forces from the potential U and the friction may
not be enough to stop the particle before it reaches
the maximum of the potential at 6 = 6n. Then, if
the particle moves past 6y, it will keep on moving
toward plus infinity and will never be able to return to
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6 = 0. This means that the solution in the form of the
traveling spike AS must disappear at some A = Agr ~
1. Notice that the same argument can be applied to the
static AS at A = Ay, so this bifurcation point should
indeed correspond to the onset of splitting. For further
discussion of splitting of the traveling pulses see also
[49,50,52].

4. Numerical simulations

The numerical simulations of Egs. (19) and (20)
confirm the conclusions of Section 3 about the exis-
tence of the traveling spike ASs. A sufficiently strong
localized stimulus applied to one boundary of the sys-
tem of large but finite size in the homogeneous state
results in the formation of a traveling spike AS. The
properties as well as the behavior of this AS mainly
depend on the relationship between « and €.

Fig. 8(a) shows the distributions of 6 and 7 in the
form of an ultrafast traveling spike AS for € = oo,
a = 0.05, and A = 2. The speed of this AS was found
to be ¢ = 7.3, which agrees within 5% with that of
Eq. (28). Also, the shape of the traveling spike AS is
in agreement with the predictions of Section 3.1.

Fig. 8(b) shows the distributions of # and 7 in the
form of the traveling spike AS with the diffusion pre-
cursor. It shows the result of the numerical solution of
Egs. (19) and (20) for ¢ = 0.05, « = 0.05 and A = 2.
The speed of this AS was found to be ¢ = 1.26, much
smaller than the speed of the ultrafast traveling AS

1
150 200

discussed in the preceding paragraph. The shape of the
slower traveling spike AS agrees with that found in
the asymptotic theory (see Section 3.2). Fig. 9 shows
the dependence of the AS speed ¢ on A at different
values of o obtained from the numerical solution of
Egs. (19) and (20) with € = 0.05. Note that the curves
c(A) in Fig. 9 terminate at sufficiently large values of
A. This is due to the fact that when the value of A
exceeds a certain critical value which depends on «,
the traveling AS starts splitting as it moves. This is in
agreement with the predictions of Section 3.2.5 about
the disappearance of the solution in the form of the
traveling AS due to the onset of the oscillations in the
back of the spike for sufficiently large values of A.
Two ultrafast traveling ASs without the diffusion
precursors moving towards each other annihilate. A
much more diverse situation is realized in the case
€? < a < e when the traveling spike AS with the dif-
fusion precursor exist. Here the ASs moving towards
each other can annihilate before colliding or bounce
off each other and start traveling in the opposite di-
rection as a result of the interaction via the diffusion
of the inhibitor (a diffusion precursor). Also, as was
shown in Section 3.2.3, the static spike AS may spon-
taneously transform into traveling when the value of
« is decreased. This phenomenon was studied by Os-
ipov and Severtsev in [51] in a simplified version of
the Gray—Scott model and is observed in our simula-
tions of Egs. (19) and (20) as well. Since for € = 0.05
the value of Ay at which the static spike AS starts
splitting is Ay = 1.49 [47], there exists a parameter
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Fig. 8. Two types of traveling spike AS: case € > «!/? (a) and € ~ « (b). Results of the numerical solution of Egs. (12) and (13). In (a)
L =0, «a =0.05, A =2, length is measured in the units of /. In (b) € = 0.05, o« = 0.05, A = 2, length is measured in the units of L.
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9 T

Fig. 9. Dependences c(A) for the traveling spike AS at different values of « obtained from the numerical solution of Egs. (19) and (20)

with € = 0.05.

region where it is possible to excite both the static and
the traveling ASs simultaneously. According to Fig. 9,
when the value of A becomes sufficiently close to A4,
the speed of the traveling spike AS may go to zero
for a range of . When ¢ = 0.05, this happens when
0.03 < o < 0.06. According to the simulations, at
€ = 0.05 and A = 1.34 the bifurcation of the static
and the traveling ASs changes from subcritical to su-
percritical, so at higher values of A their coexistence
is no longer possible.

5. Conclusion

In conclusion, we have asymptotically constructed
solutions in the form of the traveling spike ASs in
the Gray—Scott reaction—diffusion model of an auto-
catalytic chemical reaction. We found that the travel-
ing spike ASs exist in the Gray—Scott model in a wide
range of the system’s parameters and can be excited
even in the system only weakly away from thermal
equilibrium.

The properties of the traveling spike ASs in the
Gray-Scott model are mainly determined by the ratio
of the diffusion coefficients of the activator and the
inhibitor. When the inhibitor does not diffuse (or, more
precisely, when a < €2), the ultrafast traveling spike

ASs without the diffusion precursor are realized at
a'/2 < A < a~1/2 These ASs have large amplitude
Omax ~ Aa~! and speed ¢ ~ Aa~!/2 > 1. When the
inhibitor diffusion coefficient is much greater than that
of the activator (or, more precisely, when € <« a <
€) the traveling spike ASs with the diffusion precursor
are realized at ae ™! < A < o~!/2. The amplitude of
these ASS Omax ~ Aa~! is also large and the speed
c~ Aea™! 2 1. Also, in this case the solutions in the
form of the static spike ASs, which are a special case
of the traveling wave solutions with speed ¢ = 0, are
realized. We found that in a wide parameter region the
traveling spike ASs can coexists with static.

We would like to emphasize that the properties of
the traveling spike ASs in the Gray—Scott model dif-
fer fundamentally from those of the traveling ASs in
N-systems, such as the FitzHugh—Nagumo model, for
example. In N-systems the traveling ASs have the form
of broad pulses with sharp fronts and backs. Their am-
plitude is determined by the nullcline of the activa-
tor and cannot exceed the value of order 1. Similarly,
their speed is bounded by a value of order 1 and is de-
termined by the value of the inhibitor in the front of
the AS. In contrast, in the Gray—Scott model the trav-
eling ASs have the form of spikes, whose amplitude
depends on the ratio of the time scales of the activator
and the inhibitor and can have huge values. Also, the
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speed of these ASs is typically greater than the value
of order 1 and can become much greater than that of
the ASs forming in N-systems.

Let us point out that the difference between the form
of the traveling spike ASs in the Gray—Scott model
and the FitzZHugh—Nagumo-type models is the conse-
quence of the difference in the shape of the activa-
tor nullcline in these systems. This suggests that by
adding an extra term that determines the shape of the
nullcline one can effectively control the type of the
traveling ASs forming in the system. Specifically, in
the Gray—Scott model one can introduce an extra term
—B6? in the right-hand side of Eq. (19). Then, by
changing the parameter B from O to a value of or-
der 1 one can continuously go from a A-system to
an N-system. In doing so, one can change the speed
of the traveling spike ASs by several orders of mag-
nitude! Thus, by changing the form of the activator
nullcline one can exercise a sensitive control over the
traveling wave solutions. This may be an important
adaptive mechanism in biological systems.

Doelman et al. [46] performed an analysis of
the static spike ASs in the Gray—Scott model using
Melnikov analysis. In [46] Doelman et al. made a
statement that the traveling spike ASs do not exist
in the Gray—Scott model. While this statement is
correct in the parameter region o ~ €2G=A/G=H)
A~ 2U0=-B)/@4=P) withe « 1 and 0 < B < 1 stud-
ied by them, it is not true in general. Indeed, in our
paper we found two different types of the traveling
spike ASs. The more so, we found coexistence of the
traveling spike ASs with static.
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