
1 23



1 23

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.



J Nonlinear Sci (2015) 25:1391–1430
DOI 10.1007/s00332-015-9259-4

Orbital-Free Density Functional Theory of
Out-of-Plane Charge Screening in Graphene

Jianfeng Lu1 · Vitaly Moroz2 · Cyrill B. Muratov3

Received: 14 October 2014 / Accepted: 22 May 2015 / Published online: 10 June 2015
© Springer Science+Business Media New York 2015

Abstract We propose a density functional theory of Thomas–Fermi–Dirac–von
Weizsäcker type to describe the response of a single layer of graphene resting on a
dielectric substrate to a point charge or a collection of charges some distance away from
the layer. We formulate a variational setting in which the proposed energy functional
admits minimizers, both in the case of free graphene layers and under back-gating. We
further provide conditions under which those minimizers are unique and correspond
to configurations consisting of inhomogeneous density profiles of charge carrier of
only one type. The associated Euler–Lagrange equation for the charge density is also
obtained, and uniqueness, regularity and decay of the minimizers are proved under
general conditions. In addition, a bifurcation from zero to nonzero response at a finite
threshold value of the external charge is proved.
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1 Introduction

Graphene is a two-dimensional monolayer of carbon atoms arranged into a perfect
honeycomb lattice (Novoselov et al. 2004). It has received a huge amount of attention
in recent years, both as a very promising material for nanotechnology applications and
as a model system with pronounced quantum mechanical properties [for reviews, see
Geim and Novoselov (2007), Castro Neto et al. (2009), Abergel et al. (2010)]. The
current interest in graphene stems from its very unusual electronic properties closely
related to the symmetry and the two-dimensional character of the underlying crystalline
lattice, into which the carbon atoms arrange themselves. A free-standing graphene
layer acts as a semimetal, in which the low energy charge carrying quasiparticles
(electrons and holes) behave to a first approximation as massless fermions obeying a
two-dimensional relativistic Dirac equation (Wallace 1947; Fefferman and Weinstein
2012, 2014). Hence, their kinetic energy is proportional to their quasi-momentum:

εk = ±h̄vF|k|, (1.1)

where vF ! 1 × 108 cm/s is the Fermi velocity, k is the wave vector and “±” stands
for electrons and holes, respectively. This equation is valid for |k| # a−1

0 , where
a0 ! 1.42 Å is the nearest-neighbor distance between the carbon atoms in the grap-
hene lattice [without taking into account the effect of the velocity renormalization
(González et al. 1994; Kotov et al. 2012; Martin et al. 2008; Reed et al. 2010; Sodemann
and Fogler 2012; Yu et al. 2013)].

In contrast to the fermions with nonzero effective mass in the usual metals or
semiconductors, in graphene, the effect of interparticle Coulomb repulsion does not
decrease with increasing carrier density (Kotov et al. 2012). This can already be seen
from simple dimensional considerations: According to (1.1) a single particle whose
wave function is localized into a wave packet of radius∼ r would have kinetic energy
Ekin ∼ h̄vF/r , while the energy of Coulomb repulsion per particle (in CGS units) is
ECoulomb ∼ e2/(εdr), where e > 0 is the elementary charge and εd is the effective
dielectric constant in the presence of a substrate. Thus their ratio α = e2/(εdh̄vF),
which characterizes the relative strength of the Coulombic interaction, is a constant
independent of r , and, furthermore, we have α ! 2.2 for εd = 1, indicating the
nonperturbative role of the Coulombic interaction in the absence of a strong dielectric
background.

The scaling argument above can also be applied to an electron obeying (1.1) in an
attractive potential of a positively charged ion. When the valence Z of the ion increases,
the potential energy Epot ∼ −Ze2/r of the attractive interaction between the electron
and the ion always overcomes the kinetic energy. At the single particle level, this
effect results in nonexistence of single particle ground states for the relativistic Dirac–
Kepler problem (Shytov et al. 2007), which is somewhat similar to the phenomenon
of relativistic atomic collapse (Lieb and Yau 1988). In a more realistic multiparticle
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setting, the situation is more complicated due to strongly correlated many-body effects
involving both the electrons and holes. In fact, exactly how the carriers in graphene
screen a charged impurity is a subject of an ongoing debate, with qualitatively different
predictions for the behavior of the screening charge density and the total electrostatic
potential coming from different theories.

Early studies of screening of the electric field from point charges in graphene go back
to the work of DiVincenzo and Mele (1984), who used a self-consistent Hartree-type
model to analyze the electron response to interlayer charges in intercalated graphite
compounds. They found a surprising result that the screening electron density decays
as 1/r2 (to within an undetermined logarithmic factor), indicating that the screening
charge is considerably spread out laterally within the graphene layer. They also made
a similar conclusion from the analysis of the Thomas–Fermi equations for massless
relativistic fermions and contrasted it with the 1/r3 behavior expected from the image
charge on an equipotential plane in the case of perfect screening. In sharp contrast,
Shung performed an analysis of the dielectric susceptibility of intercalated graphite
compounds using linear response theory (Shung 1986). His calculation implies that in
the absence of doping, only partial screening of an impurity should occur and that the
electron system should behave effectively as a dielectric medium due to the excitation
of virtual electron–hole pairs, which has an effect of renormalizing the value of εd
[see also González et al. (1994), Ando (2006), Hwang and Das Sarma (2007), Kotov
et al. (2012) for further discussions]. He also commented that the nonlinear effects
are of major importance in the screening, which explains the different results he had
for linear response comparing with the Thomas–Fermi result in DiVincenzo and Mele
(1984).

More recently, Katsnelson (2006) computed the asymptotic behavior of the screen-
ing charge density for a charged impurity within the Thomas–Fermi theory of massless
relativistic fermions with a lattice cutoff at short scales. He found that the screening
charge density should behave as 1/(r ln r)2 far from the impurity, refining earlier
results of DiVincenzo and Mele (1984) and demonstrating the importance of nonlin-
ear screening effects in graphene. Fogler et al. (2007) further considered the effect of
an out-of-plane hypercritical charge Z & 1 on the electron system in a graphene layer
and argued for perfect screening (1/r3 behavior of the screening charge density and
constant electrostatic potential in the layer). They also argued for a crossover between
perfect screening in the near field tail, Thomas–Fermi screening [1/(r ln r)2 behavior
of the screening charge density and 1/(r ln r) decay of the electrostatic potential in
the layer] in the far field tail, and partial screening (dielectric response with no screen-
ing charge and 1/r decay of the electrostatic potential) in the very far tail for certain
ranges of Z and α. We also note that a recent result indicates that in the Hartree–Fock
approximation, the relative dielectric constant of graphene is, somewhat surprisingly,
equal to unity in the Hartree–Fock theory, implying that the total induced charge from
a charged impurity in graphene is zero [no partial screening or effectively very weak
screening due to the slow decay; Hainzl et al. (2012)].

The differing conclusions of the above works indicate a very delicate nature of
the problem of screening in graphene [see also the discussion in Kotov et al. (2012)
and further references therein]. One reason is the precise tuning of the kinetic energy,
the Coulombic attraction of electrons to the impurity and the Coulombic repulsion
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between electrons, which is already evident from the scaling argument presented
earlier. Another reason is that the studies mentioned above do not account for the
correlation effects. While it is believed that exchange does not play a significant effect
in graphene, correlations between electrons and holes due to their Coulombic attraction
(excitonic effects) may have an effect on the nature of the response beyond random
phase approximation (Kotov et al. 2012; Abergel et al. 2009, 2010; Martin et al. 2008;
Reed et al. 2010; Sodemann and Fogler 2012; Wang et al. 2012; Yu et al. 2013).
Finally, the third reason is that in view of the crucial role played by nonlinear and
nonlocal effects for charge carrier behavior in graphene, the analysis of the problem,
both mathematical and numerical, becomes rather nontrivial.

Our approach to the problem of screening of point charges by a graphene layer
is via introducing a Thomas–Fermi–Dirac–von Weizsäcker (TFDW) type energy for
massless relativistic fermions and studying the associated variational problem. The
considered energy functional is a variant of an orbital-free density functional the-
ory [for a recent Kohn–Sham-type density functional theory see Polini et al. (2008)]
that models the exchange and correlation effects by renormalizing the corresponding
coefficients of the Thomas–Fermi theory for the system of noninteracting massless
relativistic fermions and introducing a nonlocal analog of the von Weizsäcker term
in the usual TFDW model of a nonrelativistic electron gas (Lieb 1981; Le Bris and
Lions 2005). For simplicity, we begin by treating the problem of the influence of a
single point charge +Ze located at distance d & a0 away from the graphene layer
on the electrons in the layer. It may either correspond to the effect of a charge placed
on a gate separated from the graphene layer by a layer of insulator in the context of
graphene-based nanodevices, or it may correspond to an imbedded charged impurity
or a cluster of impurities within the dielectric substrate. After a suitable rescaling, the
TFDW energy for graphene at the neutrality point in the presence of an impurity takes
the following form:

E0(ρ) = a
∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x + 2
3

∫

R2
|ρ(x)|3/2 d2x

−
∫

R2

ρ(x)
(
1 + |x |2)1/2 d2x + b

2

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| d2x d2 y. (1.2)

Here ρ(x) is the signed particle density, with ρ > 0 corresponding to electrons and
ρ < 0 corresponding to holes, and a ≥ 0 and b ≥ 0 are two dimensionless parame-
ters characterizing the model. Note that in the case of a = 0, we recover the usual
Thomas–Fermi model for graphene. The case of b = 0 would correspond to a model
system of noninteracting massless relativistic fermions in an external potential. The
meaning of each term in (1.2) and the relation to the original physical parameters
are explained in Sect. 2. Let us point out the unusual nonlocal nature of both the
first and the last terms in (1.2). The first term involves the homogeneous H1/2(R2)

norm squared
∫
R2

∣∣∣∇ 1
2 u

∣∣∣
2

d2x of u = ρ/|ρ|1/2, while the last term involves the

homogeneous H−1/2(R2) norm squared of ρ. This is in contrast to the conventional
TFDW models of massive nonrelativistic fermions, in which the first term involves
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the homogeneous H1 norm and the last term involves the homogeneous H−1 norm,
respectively. The difference in the first term has to do with the relativistic charac-
ter of the dispersion relation for quasiparticles in graphene at low energies given by
(1.1), while the difference in the last term reflects the three-dimensional character
of Coulomb interaction and the two-dimensional character of the charge density. We
point out that a von Weizsäcker-type term similar to the first term in (1.2) appeared in
the studies of stability of relativistic matter [see, e.g., Lieb et al. (1996) and references
therein]. We also note that our model is different from the ultrarelativistic Thomas–
Fermi–von Weizsäcker model studied in Engel and Dreizler (1987, 1988), Benguria
et al. (2008), where a local gradient term in the kinetic energy for massless relativistic
fermions in three space dimensions was used. An analogous term for graphene would
have been

∫
R2

∣∣∇ |ρ|1/4
∣∣2

d2x (see Sect. 2 for the explanation of our choice of the
nonlocal term).

The model above is easily generalized to include a collection of point charges or a
localized distribution of charges some distance away from the graphene layer. If

V (x) = −
∫

R3

dµ(y, z)
(
|1 + z|2 + |x − y|2

)1/2 , (1.3)

where µ(y, z) is a finite signed Radon measure with compact support located at z ≥ 0
in R3, e.g., µ(y, z) = ∑N

i=1 ciδ(y − yi )δ(z − zi ) with ci ∈ R, yi ∈ R2 and zi ≥ 0
for all i = 1, . . . , N (ci > 0 would correspond to positive external charges), then the
generalization of the energy in (1.2) reads

E(ρ) = a
∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x

+2
3

∫

R2
(|ρ(x)|3/2 − |ρ̄|3/2) d2x − |ρ̄|1/2 sgn(ρ̄)

∫

R2
(ρ(x)− ρ̄) d2x

+
∫

R2
V (x)(ρ(x)− ρ̄) d2x

+b
2

∫∫

R2×R2

(ρ(x)− ρ̄)(ρ(y)− ρ̄)

|x − y| d2x d2 y. (1.4)

Here we also included the possibility of a net background charge density ρ̄ ∈ R,
which can be easily achieved in graphene via back-gating and subtracted the divergent
contributions of the background charge density to the energy.

In this paper, we establish basic existence results for minimizers of the energy, which
is a slightly generalized version of the one in (1.4), under some general assumptions on
the potential V , which include, in particular, potentials of the form given by (1.3). We
begin by developing a variational framework for the problem and proving a general
existence result among admissibleρ which may possibly change sign, see Theorem 3.1.
We also establish basic regularity and uniform decay properties of these minimizers,
as well as the Euler–Lagrange equation solved by the minimizing profile.

We shall emphasize that sign-changing profiles with finite energy include, in par-
ticular, the profiles for which the Coulomb energy term does not admit an integral
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representation and shall be understood in the distributional sense, even if the profile
is a continuous function (see Example 4.1). Mathematically, this makes the analysis
of the problem particularly challenging. It is an interesting open question whether it
is possible for a sign-changing minimizer to have a Coulomb energy which does not
have an integral representation.

We then turn our attention to minimizers among nonnegative ρ. Here we prove
in Theorem 3.2 the existence of a unique minimizer in the considered class in the
case of strictly positive background charge density ρ̄. Importantly, using a version
of a strong maximum principle for the fractional Laplacian, we also show that these
minimizers are strictly positive and, as a consequence, also satisfy the associated Euler–
Lagrange equation. In the next theorem, Theorem 3.3, we give a sufficient condition
that guarantees that the global minimizer among all admissible ρ, including those
that change sign, is given by the unique positive minimizer obtained in the preceding
theorem.

The remaining two theorems are devoted to the case of zero background charge
density. In Theorem 3.4, we give an existence result for nonnegative minimizers,
alongside with strict positivity and uniqueness. In Theorem 3.5, using a suitable version
of fractional Hardy inequality, we establish a bifurcation result for a particular problem
in which the background potential is given by the electrostatic potential of a point
charge some distance away from the graphene layer. We also illustrate the conclusion
of Theorem 3.5 with a numerical example.

Our paper is organized as follows. In Sec. 2, we discuss the derivation and justifica-
tion of different terms in the energy and connect our model with the physics literature.
In Sect. 3, we state our main results. In Sect. 4, we introduce various notations and
auxiliary lemmas that are used throughout the paper. In Sect. 5, we formulate the
precise variational setting for the minimization problem. Finally, in Sect. 6, we prove
Theorems 3.1 and 3.3, and in Sect. 7, we prove Theorems 3.2, 3.4 and 3.5.

2 Model

Our starting point is the following (dimensional) energy for the graphene layer in the
presence of a single positively charged impurity:

E0(ρ) = CW

∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x + 2
3

CTFD

∫

R2
|ρ(x)|3/2 d2x

− Ze2

εd

∫

R2

ρ(x)

(d2 + |x |2)1/2 d2x + e2

2εd

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| d2x d2 y,

(2.1)

which is a functional defined on a signed particle density ρ(x) in a flat graphene layer of
infinite extent, with the convention that ρ > 0 corresponds to the electron-rich region
and ρ < 0 corresponds to the hole-rich region [for definiteness, in this section, we
assume ρ ∈ C∞c (R2)]. The terms in (2.1) are, in order: the von Weizsäcker-type term
that penalizes spatial variations of ρ, the Thomas–Fermi–Dirac term containing both
the contribution from the kinetic energy of the particles and the Dirac-type contribution
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from exchange and correlations, the interaction term between the particles and the
external out-of-plane point charge +Ze, and the Coulomb self-energy in the presence
of a substrate providing an effective dielectric constant εd.

The energy functional in (2.1) should be viewed as a semiempirical model in which
the constants CW, CTFD and εd are to be fitted to the experimental data for a particular
setup. It is easy to see that for an ideal uniform gas of noninteracting massless rela-
tivistic fermions, the kinetic energy contribution per unit area is given by 2

3 C0
TF|ρ|3/2,

where C0
TF = h̄vF

√
π and the fourfold quasiparticle degeneracy was taken into account

[see for example Katsnelson (2006), Brey and Fertig (2009), Das Sarma et al. (2011),
Zhang and Fogler (2008)].1 We note, however, that in real graphene, the Coulombic
interaction noticeably renormalizes the Fermi velocity (González et al. 1994; Kotov
et al. 2012; Martin et al. 2008; Reed et al. 2010; Sodemann and Fogler 2012; Yu et al.
2013). In practice, the value of C0

TF based on the experimentally observed value of vF
(at the experimental length scale) includes the many-body effects due to Coulombic
interparticle forces. Similarly, for α # 1, the leading order exchange and correlation
contributions per unit area of the ideal uniform gas of massless relativistic fermions
are given by C0

D|ρ|3/2, where C0
D = (c1α − c2α

2)C0
TF and both c1 and c2 weakly

(logarithmically) depend on the ratio of the experimental length scale to a0 (Barlas
et al. 2007; Sodemann and Fogler 2012). Therefore, in the local approximation, the
combined contribution of the kinetic energy and the exchange term would have, to the
leading order in α, the form of the second term in (2.1) with some constant C0

TFD > 0.
This conclusion is also confirmed by recent experimental measurements of inverse
quantum compressibility in graphene (Martin et al. 2008; Yu et al. 2013). Using the
renormalized rather than bare Fermi velocity may then eliminate the need to consider
the additional exchange and correlation terms, at least on the local level. We also note
that in contrast to the usual TFDW models of massive nonrelativistic fermions (Lieb
1981; Le Bris and Lions 2005), in graphene, the local approximation to the exchange
energy does not produce a nonconvex contribution to the energy.

We now explain the origin of the first term in (2.1). Recall that in the usual TFDW
model of massive nonrelativistic fermions the analogous von Weizsäcker term takes the
form CW

∫ ∣∣∇√ρ
∣∣2 d3x , with the constant CW ∼ h̄2/m∗, where m∗ is the effective

mass (recall that for a single parabolic band one has ρ ≥ 0; Lieb 1981; Le Bris and
Lions 2005). The basic rationale for the introduction of such a term is to penalize spatial
variations of ρ, favoring spatially homogeneous ground state density for the system of
noninteracting particles [see also the discussion in Lieb et al. (1996)]. The choice of
the specific form of the integrand is determined by the following three requirements:

1) The energy must scale linearly with ρ.
2) The energy must be the square of a homogeneous Sobolev norm of ρg(|ρ|), for

some positive scale-free function g.
3) The energy must scale as the Thomas–Fermi term under rescalings of x and ρ that

preserve the total number of particles.

1 Note that in Brey and Fertig (2009), Das Sarma et al. (2011) and some other papers in the physics literature,
a factor of sgn(ρ) was mistakenly added to the integrand of the Thomas–Fermi term. The resulting energy
functional is then not bounded from below and is inconsistent with the Thomas–Fermi equation.
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The first requirement above reflects the extensive nature of the contributions of individ-
ual particles. The second requirement reflects the nature of the penalty as a scale-free
quadratic form in the Fourier space. The third requirement is to make the penalty term
consistent with the local kinetic energy contribution coming from the Thomas–Fermi
term.

It is clear that the von Weizsäcker term in the usual TFDW model is the unique
term consistent with all the relations above. Similarly, it is then easy to see that in the
case of massless relativistic fermions, the unique choice of the von Weizsäcker-type
term for graphene is given by the first term in (2.1). Indeed, the first two requirements
above are obviously satisfied, and to check the third one, we see that

∫

R2

∣∣∣∇ 1
2

(√
|κρ(λx)| sgn(κρ(λx))

)∣∣∣
2

d2x =

κλ−1
∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x, (2.2)

and

∫

R2
|κρ(λx)|3/2 d2x = κ3/2λ−2

∫

R2
|ρ(x)|3/2 d2x, (2.3)

for any κ > 0 and λ > 0. Choosing κλ−2 = 1 to ensure that
∫
R2 |κρ(λx)| d2x =∫

R2 |ρ(x)| d2x , we have that the right-hand sides of both (2.2) and (2.3) are rescaled by
the same factor. From the dimensional considerations, we expect to have CW ∼ h̄vF.

Let us also discuss the presence of sgn(ρ) in the definition of the von Weizsäcker-
type term in (2.1). As will be seen below, it imparts the energy with some extra degree of
symmetry and makes the energy functional in (2.1) better behaved mathematically, thus
making it a natural modeling choice. Note that this issue is absent in the conventional
TFDW model, since in the case of massive nonrelativistic fermions ρ corresponds
to the density of a single type of charge carriers and is, therefore, nonnegative. In
any case, when ρ ≥ 0, i.e., when the holes are absent from the consideration, our
von Weizsäcker-type term coincides with one that has appeared in many studies of
relativistic matter and can be further used to bound at least part of the kinetic energy
of electrons from below (Lieb et al. 1996).

Another way to understand the origin of the von Weizsäcker-type term in the energy
is to consider the leading order “gradient” correction to the energy of a uniform system
of noninteracting particles. If

T (ρ) = CW

∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x + 2
3

CTFD

∫

R2
|ρ(x)|3/2 d2x,

(2.4)
is the “kinetic” part of the energy (recall, however, our discussion of the exchange
and correlation effects above), then the excess contribution of the kinetic energy to the
leading order in δρ(x) = ρ(x) − ρ0 (i.e., the second variation δ2T of T around ρ0),
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where ρ0 -= 0 is the uniform background density, is

δ2T = 1
4

CW|ρ0|−1
∫

R2

∣∣∣∇ 1
2 δρ(x)

∣∣∣
2

d2x + 1
4

CTFD|ρ0|−1/2
∫

R2
|δρ(x)|2 d2x, (2.5)

or, in terms of the Fourier transform δρ̂k of δρ(x) is given by

δ2T = 1
2

∫

R2

d2k
(2π)2 Π−1

k |δρ̂k|2, Πk = 2
CTFD|ρ0|−1/2 + CW|ρ0|−1|k| . (2.6)

Here Πk = 2|ρ0|1/2C−1
TFD

(
1− CWC−1

TFD|ρ0|−1/2|k|
)

+ O(|k|2) is the polarizability
operator for our model. In the absence of interactions, this operator should coincide to
the leading order for |k| → 0 with the zero frequency limit of the Lindhard function of
an ideal gas of massless relativistic fermions, and a comparison is, therefore, in order.
The Lindhard function for noninteracting electrons in graphene was first analyzed by
Shung (1986) and was later computed in closed form by many authors (González et al.
1994; Ando 2006; Hwang and Das Sarma 2007) [for a review, see Kotov et al. (2012)].
Restricting the contributions to the polarizability to only the intraband excitations, one
indeed recovers an expression consistent with the expansion of Πk in (2.6). However,
a peculiar feature of graphene is that when both the intraband (perturbations of the
Fermi surface) and the interband (formation of virtual electron–hole pairs) excitations
are considered, the intraband and the interband contributions cancel each other out,
making the total polarizability Π0

k of the noninteracting massless relativistic fermions
independent of k for an interval of |k| around zero (Kotov et al. 2012):

Π0
k = 2|ρ0|1/2

√
π h̄vF

, |k| ≤ 2
√

π |ρ0|. (2.7)

This behavior is due to the cancelation of the contribution from the two bands of
the Dirac cone because of symmetry, as discussed in Hwang and Das Sarma (2007).
It is, however, argued [for example in Ando (2006), Wang et al. (2011)] that the
electron–electron interaction might lead to breaking this symmetry and changing the
asymptotic behavior so that Πk decreases linearly near |k| = 0. Clearly, correlation
effects associated with Coulombic attraction between electrons and holes should result
in a decreased contribution to the polarizability from the interband excitations. This
would be consistent with the TFDW model we are proposing here. Thus we are think-
ing of the first term in (2.1) as a nonlocal contribution of exchange and correlations
to an orbital-free density functional theory beyond the usual local density approxi-
mation. In any case, the model considered here might be viewed as a natural generic
density functional theory model for graphene or two-dimensional massless relativistic
fermions in general.

We finally discuss the rescaling of (2.1) leading to (1.2). Introduce

x̃ = λx, ρ̃(̃x) = κρ(x), Ẽ(ρ̃) = γ E(ρ). (2.8)
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Then the energy functional in (2.1) becomes

1
γ

Ẽ0(ρ̃) = CW

κλ

∫

R2

∣∣∣∇ 1
2

(√
|ρ̃(x̃)| sgn(ρ̃(x̃))

)∣∣∣
2

d2 x̃

+ 2
3

CTFD

κ3/2λ2

∫

R2
|ρ̃(̃x)|3/2 d2 x̃ − Ze2

εdκλ

∫

R2

ρ̃(̃x)

(λ2d2 + |̃x |2)1/2 d2 x̃

+ e2

2εdκ2λ3

∫∫

R2×R2

ρ̃(̃x)ρ̃(ỹ)

|̃x − ỹ| d2 x̃ d2 ỹ. (2.9)

Taking λ = 1/d, κ = (εdCTFDd/e2 Z)2 and γ = ε3
dC2

TFDd/(e2 Z)3, we arrive at (1.2)
(after dropping tildes) with

a = γ CW

κλ
= εdCW

Ze2 , (2.10)

b = γ e2

εdκ2λ3 = Ze4

ε2
dC2

TFD
. (2.11)

Our choice of the rescaling is dictated by the fact that d is the only length scale for the
considered problem, which can be seen from the fact that the parameters a and b of
the rescaled energy are completely independent of d. Also, the units of ρ and E are
now κ−1 and γ−1, respectively.

3 Statement of Results

We start with the energy functional (1.4) for a general background potential V (x),
with parameters a > 0 and b > 0, and background charge ρ̄ ∈ R. Note that since the
energy is invariant with respect to the transformation

ρ →−ρ, ρ̄ →−ρ̄, V →−V, (3.1)

it is sufficient to consider only the case ρ̄ ≥ 0.
We point out from the outset that existence of minimizers for the energy in (1.4)

with a general (smooth, decaying) potential V (x) is not a priori clear, since the term
involving V (x) in (1.4) may not be bounded from below in the natural function classes
in which the other terms in the energy are well defined. Nevertheless, if V (x) is of the
form of (1.3), then it is easy to see that V ∈ H̊1/2(R2) and, hence, the term involving V
in the energy can be controlled by the Coulomb repulsion term. Indeed, by an explicit
computation, we have

(−∆)1/2V (x) = −
∫

R3

|1 + z| dµ(y, z)
(
|1 + z|2 + |x − y|2

)3/2 , (3.2)

implying that (−∆)1/2V (x) is smooth and decays no slower than |x |−3 for the con-
sidered class of measures µ. Therefore, in view of the fact that V (x) is smooth and
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decays no slower than |x |−1, we obtain that

‖V ‖2
H̊1/2(R2)

=
∫

R2
V (−∆)1/2V d2x <∞. (3.3)

In fact, our existence results below only rely on the fact that the estimate in (3.3)
holds. Therefore, throughout the rest of the paper, we generalize the energy in (1.4)
to potentials V ∈ H̊1/2(R2). We note that by fractional Sobolev embedding (Lieb
and Loss 2001, Theorem 8.4; Nezza et al. 2012, Theorem 6.5), these are functions in
L4(R2), so the energy E(ρ) in (1.4) is well defined at least for ρ − ρ̄ ∈ C∞c (R2).

Caution, however, is necessary in order to assign the meaning to the energy in
(1.4) for sufficiently large admissible classes when searching for minimizers, since
the problem is formulated on an unbounded domain and ρ − ρ̄ does not have a sign
a priori. Indeed, even if the natural classes of functions to consider would consist of
ρ ∈ L1

loc(R2), it is not a priori clear if ρ − ρ̄ can be interpreted as a charge density in
the sense of potential theory (i.e., whether dµ = (ρ − ρ̄) d2x can be associated with
a signed measure µ on R2, making the last term in (1.4) meaningful, see Example
4.1). The latter depends on the delicate decay properties of the minimizers and will
be the subject of a separate work (Lu et al. 2015). Here we avoid these difficulties by
introducing the induced electrostatic potential U which solves distributionally

(−∆)1/2U = ρ − ρ̄. (3.4)

We then introduce

E(ρ) := a
∥∥∥sgn(ρ)

√
|ρ| − sgn(ρ̄)

√
|ρ̄|

∥∥∥
2

H̊1/2(R2)

+
∫

R2

(
2
3

|ρ(x)|3/2 − 2
3
|ρ̄|3/2 − |ρ̄|1/2 sgn(ρ̄)(ρ(x)− ρ̄)

)
d2x

+ 〈V, U 〉H̊1/2(R2) + b
2
‖U‖2

H̊1/2(R2)
. (3.5)

Here 〈·, ·〉H̊1/2(R2) and ‖ · ‖H̊1/2(R2) are the inner product and the norm associated with

the Hilbert space H̊1/2(R2), respectively (for details about the function spaces see
Sect. 4.1). It is then easy to see that the definition of E(ρ) in (3.5) agrees with that in
(1.4) when ρ− ρ̄ ∈ C∞c (R2). Note that the second line in (3.5) is always nonnegative
and becomes zero only for ρ = ρ̄.

We now define the following class of functions for which the energy E defined in
(3.5) is meaningful:

Aρ̄ :=
{
ρ − ρ̄ ∈ H̊−1/2(R2) : sgn(ρ)

√
|ρ| − sgn(ρ̄)

√
|ρ̄| ∈ H̊1/2(R2)

}
, (3.6)
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in the sense that E : Aρ̄ → R∪{+∞}. To see that this class consists of functions and
not merely of distributions, define u ∈ H̊1/2(R2) for a given ρ ∈ Aρ̄ as

u := sgn(ρ)
√

|ρ| − sgn(ρ̄)
√

|ρ̄|. (3.7)

Then by fractional Sobolev embedding (Lieb and Loss 2001, Theorem 8.4; Nezza et al.
2012, Theorem 6.5), we have u ∈ L4(R2) and, hence, ρ ∈ L2

loc(R2). In particular, the
integral in the second line in (3.5) is locally well defined.

We begin with a general result on existence of minimizers for E in (3.5) over Aρ̄ .

Theorem 3.1 Let ρ̄ ∈ R, let E be defined by (3.5) with V ∈ H̊1/2(R2), and let
infρ∈Aρ̄

E(ρ) < 0. Then there exists ρ0 ∈ Aρ̄ such that E(ρ0) = infρ∈Aρ̄
E(ρ).

Furthermore, ρ0 -≡ ρ̄, ρ0 ∈ C1/2(R2) ∩ L∞(R2) and ρ0(x) → ρ̄ as |x | → ∞.

We note that the assumption infρ∈Aρ̄
E(ρ) < 0 in Theorem 3.1 is only needed

to produce a non-trivial minimizer. Otherwise by inspection, ρ = ρ̄ is automatically
a minimizer. Thus, existence of minimizers for E over Aρ̄ is guaranteed for every
V ∈ H̊1/2(R2). Also, as a consequence of its minimizing property, the function ρ0(x)

in Theorem 3.1 solves distributionally the Euler–Lagrange equation associated with
E in (3.5):

0 = a(−∆)1/2
(

sgn ρ
√

|ρ|
)

+
√

|ρ|
(

sgn ρ
√

|ρ| − sgn ρ̄
√

|ρ̄| + V + bU
)

. (3.8)

In fact, it is more natural to write (3.8) in terms of the variable u defined in (3.7) (see
Sect. 6.2). Let us also mention that while Hölder regularity holds for general potentials
V from H̊1/2(R2), if ρ changes sign one may not be able to obtain arbitrarily high
regularity of ρ for smooth potentials V like in (1.2), see Remark 6.2.

While the result in Theorem 3.1 gives a very general existence result, it provides only
a few basic properties of the minimizers. In particular, it is not a priori clear whether
ρ0 has a sign, even for the potential due to a single charged impurity appearing in the
definition of E0 in (1.2). This is not merely a technical issue, since in graphene one
generally needs to account for the presence of both electrons and holes, especially at
the neutrality point, i.e., when ρ̄ = 0. It would seem plausible, however, that in certain
situations, the minimizers consist only of the charge carriers of one type. We speculate
that this may indeed be the case for the minimizers of E0 in (1.2) for all values of the
parameters. At least in the asymptotic limits a → 0 or b → ∞, the minimizers of
E0 are expected to be positive. We caution the reader, however, that in general, the
situation is rather delicate, since, even for a negative V with nice decay properties at
infinity, the minimizer might still change sign (Lu et al. 2015).

Motivated by the above observations, for ρ̄ ≥ 0, we introduce an admissible class
consisting of densities ρ ≥ 0, which implies that there are only electrons in the
graphene layer:

A+
ρ̄ :=

{
ρ − ρ̄ ∈ H̊−1/2(R2) : √ρ −

√
ρ̄ ∈ H̊1/2(R2), ρ ≥ 0

}
. (3.9)
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Within this admissible class, we have the following counterpart of Theorem 3.1 in the
case of strictly positive background charge.

Theorem 3.2 Let ρ̄ > 0, let E be defined by (3.5) with V ∈ H̊1/2(R2) and let V -≡ 0.
Then there exists a unique ρ0 ∈ A+

ρ̄ satisfying E(ρ0) = infρ∈A+
ρ̄

E(ρ). Furthermore,

ρ0 -≡ ρ̄, ρ0 > 0, ρ0 ∈ C1/2(R2) ∩ L∞(R2) and ρ0(x) → ρ̄ as |x | → ∞.

One would naturally expect minimizers in Theorem 3.2 to coincide with the one
in Theorem 3.1 in many situations, yet it seems difficult to prove this at the moment.
It is clear, however, that ρ0 from Theorem 3.2 is a local minimizer of E with respect
to smooth perturbations with compact support. As a consequence, these minimizers
solve pointwise the Euler–Lagrange equation associated with the energy, which for
ρ > 0 simplifies to

0 = a(−∆)1/2 (√
ρ
)
+√ρ

(√
ρ −

√
ρ̄ + V + bU

)
. (3.10)

We also note that the assumption of boundedness of V in Theorem 3.2 is needed to
ensure strict positivity of the minimizer, which is required to obtain (3.10). In addition,
positivity of ρ0 implies further regularity under additional smoothness assumptions
on V . In particular, ρ0 ∈ C∞(R2) if V ∈ C∞(R2), see Remark 7.1.

We note that one of the main differences with the result of Theorem 3.1 in the
case of Theorem 3.2 is that there is uniqueness of minimizers, which is due to a kind
of strict convexity of the functional E over A+

ρ̄ . In fact, due to this strict convexity,
one should further expect uniqueness of solutions of (3.10) and, in particular, that the
minimizer ρ0 in Theorem 3.2 is radially symmetric, if so is the potential V (Lu et al.
2015).

Remark 3.1 It is easy to see from (3.5) that if V ≡ 0, the unique minimizer of E over
Aρ̄ is ρ = ρ̄. At the same time, if ρ̄ > 0 and ρ = ρ̄ is a minimizer of E over Aρ̄ , by
(3.10), we have V ≡ 0 and, hence, there are no other minimizers. This and the fact
that A+

ρ̄ ⊂ Aρ̄ also implies that if ρ̄ > 0, V ∈ H̊1/2(R2) and V -≡ 0, then by Theorem
3.2 and the above discussion, we also have infρ∈Aρ̄

E(ρ) < 0, i.e., the assumptions
of Theorem 3.1 are satisfied.

Even though we do not know whether in general the minimizers of E over Aρ̄

are positive, in the case of ρ̄ > 0, we are able to prove that this is indeed the case
for potentials V which are, in some sense, “small”. The smallness of the potential is
expressed in terms of the magnitude of its H̊1/2(R2) norm. Our result is given by the
following theorem.

Theorem 3.3 Let ρ̄ > 0, let E be defined by (3.5) with V ∈ H̊1/2(R2) and let
V -≡ 0. Then there exists a constant C > 0 depending only on a, b and ρ̄ such that
if ‖V ‖H̊1/2(R2) ≤ C, then the unique minimizer ρ0 > 0 of E over A+

ρ̄ in Theorem 3.2
coincides with the minimizer of E over Aρ̄ in Theorem 3.1.

We note that in the parameter regime of Theorem 3.3, the minimizer ρ0 > 0 does
not deviate much from ρ̄ > 0. In particular, if ‖V ‖H̊1/2(R2) → 0, one expects to
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recover, to the leading order, the solution of (3.10) linearized around ρ = ρ̄, which
expresses the linear response of the system to the perturbation by the potential V and
describes screening of the external charge by free electrons in the graphene layer.
A more detailed analysis of this phenomenon will be carried out in the forthcoming
paper (Lu et al. 2015). Note that within the Thomas–Fermi-type models of the usual
electron systems, screening was studied mathematically in Lieb and Simon (1977)
for the Thomas–Fermi model and in Cancès and Ehrlacher (2011) for the Thomas–
Fermi–von Weizsäcker model.

We now focus on the main situation of physical interest, in which the layer is
at the neutrality point. In particular, we wish to investigate how a graphene layer
reacts to external charges in the presence of a supply of electrons from a lead at
infinity. Fixing ρ̄ = 0, we know that under the assumptions of Theorem 3.1, there
is a nontrivial minimizer in the class A0. As we already mentioned, we do not know
whether this minimizer also belongs to A+

0 , even for a potential defined in (1.3) with
a positive measure µ. Nevertheless, if we restrict the admissible class to A+

0 , we have
the following analog of Theorem 3.2.

Theorem 3.4 Let ρ̄ = 0, let E be defined by (3.5) with V ∈ H̊1/2(R2), and
let infρ∈A+

ρ̄
E(ρ) < 0. Then there exists a unique ρ0 ∈ A+

ρ̄ satisfying E(ρ0) =
infρ∈A+

ρ̄
E(ρ). Furthermore, ρ0 > 0, ρ0 ∈ C1/2(R2) ∩ L∞(R2) and ρ0(x) → 0 as

|x | → ∞.

Let us point out that, in contrast to Theorem 3.2, the condition that V -≡ 0 is
not sufficient for existence of nontrivial minimizers in Theorem 3.4. In fact, it can
be shown, following the arguments in the proof of Theorem 3.3, that for sufficiently
small values of ‖V ‖H̊1/2(R2), the energy E in (1.4) cannot have nontrivial minimizers.
We illustrate this point by considering the case of the energy E0 in (1.2), which is also
of particular interest because of its physical significance. Defining

ac := Γ 2 ( 1
4

)

2Γ 2
( 3

4

) , (3.11)

where Γ (x) is the Gamma function and ac ≈ 4.3769 is the inverse of the Hardy
constant for the operator square root of the negative Laplacian (Frank et al. 2008,
Remark 4.2), we have the following result for the generalization of the energy E0 in
(1.2).

Theorem 3.5 Let ρ̄ = 0 and let E be defined by (3.5) with

V (x) = − 1
(1 + |x |2)1/2 . (3.12)

Then:

(i) If a ≥ ac, then ρ0 = 0 is the unique minimizer of E over A0.
(ii) If a < ac, then there exists a minimizer ρ0 -≡ 0 of E over A+

0 .
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Thus, for a sufficiently large [or, equivalently, for the impurity valence Z sufficiently
small or the effective dielectric constant εd sufficiently large, see (2.10)], there can be
no bound states between the charge carriers in graphene and a single charged impurity.
In other words, this implies a surprising result that for a ≥ ac the charged impurity
elicits no response from the electrons in the graphene layer (within the considered
density functional theory). The bifurcation at a = ac is determined by a fine bal-
ance between the first term in the energy and the potential term, which has the same
asymptotics when |x | → ∞ as the Hardy potential for (−∆)1/2.

Note that the statement of Theorem 3.5 obviously remains true if A+
0 is replaced

with A0. Also note that the magnitude of b does not play any role for existence versus
nonexistence of nontrivial minimizers in this case. At the same time, as we will show
in the forthcoming paper (Lu et al. 2015), both the values of a and b, together with
the (finite) L1 norm of the minimizer ρ0 ∈ A+

0 determine the algebraic rate of decay
of ρ0(x) as |x | → ∞. Specifically, we expect

ρ0(x) ∼ 1
|x |2s , |x | → ∞, (3.13)

where s ∈ (1, 2) is the unique solution of the algebraic equation

2aΓ
( s+1

2

)
Γ

( 2−s
2

)

Γ
( 1−s

2

)
Γ

( s
2

) = 1− b
2π
‖ρ0(x)‖L1(R2), (3.14)

which is formally obtained by linearizing (3.10) with respect to
√

ρ, using the leading
order asymptotics of V and U in the far field and looking for distributional solutions
in the form appearing in (3.13). This prediction is confirmed by the results of the
numerical solution of (3.10). Figure 1 shows the solution of (3.10) for a = 1 and b = 1
[we refer to Lu et al. (2015) for further details], for which we found ‖ρ0‖L1(R2) ! 6.95
and ρ0(x) ! 0.28|x |−2.2 for |x | & 1. This agrees well with (3.14). Thus, in contrast
to previous studies, our model predicts a nontrivial dependence of the algebraic decay
rate of the positive mininimizers on the parameters. Note that since for s ∈ (1, 2)

the term multiplying a in (3.14) is negative, we have ‖ρ0(x)‖L1(R2) > 2πb−1. In the
original physical variables, it means that the total charge induced in the graphene layer
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Fig. 1 The minimizer ρ0 in Theorem 3.5 for a = 1 and b = 1, plotted on a linear (a) and logarithmic (b)
scale
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exceeds in absolute value the external out-of-plane charge. Note that this is similar
to what is observed in the Thomas–Fermi–von Weizsäcker model of a single atom
(Benguria et al. 1981).

4 Preliminaries

4.1 Functional Setting

Recall that the homogeneous Sobolev space H̊1/2(R2) can be defined as the completion
of C∞c (R2) with respect to the Gagliardo’s norm

‖u‖2
H̊1/2(R2)

:= 1
4π

∫∫

R2×R2

|u(x)− u(y)|2
|x − y|3 d2x d2 y. (4.1)

By Plancherel’s identity (cf. Frank et al. 2008, Lemma 3.1), on C∞c (R2) the
‖ · ‖H̊1/2(R2)—norm admits an equivalent Fourier representation

‖u‖2
H̊1/2(R2)

=
∫

R2

∣∣∣ |k|1/2 ûk

∣∣∣
2 d2k

(2π)2 , ûk =
∫

R2
eik·x u(x) d2x, (4.2)

which suggests the notation

‖u‖2
H̊1/2(R2)

=:
∫

R2

∣∣∣∇ 1
2 u(x)

∣∣∣
2

d2x, (4.3)

which we often use in this paper. By the fractional Sobolev inequality (Lieb and Loss
2001, Theorem 8.4; Nezza et al. 2012, Theorem 6.5)

‖u‖2
H̊1/2(R2)

≥ √π ‖u‖2
L4(R2)

, ∀u ∈ C∞c (R2). (4.4)

In particular, the space H̊1/2(R2) is a well-defined space of functions and

H̊1/2(R2) ⊂ L4(R2). (4.5)

The space H̊1/2(R2) is also a Hilbert space, with the scalar product associated with
(4.1) given by

〈u, v〉H̊1/2(R2) := 1
4π

∫∫

R2×R2

(u(x)− u(y))(v(x)− v(y))

|x − y|3 d2x d2 y. (4.6)

The dual space to H̊1/2(R2) is denoted H̊−1/2(R2). According to the Riesz represen-
tation theorem, for every F ∈ H̊−1/2(R2), there exists a uniquely defined potential
v ∈ H̊1/2(R2) such that

〈v, ϕ〉H̊1/2(R2) = 〈F, ϕ〉 ∀ϕ ∈ H̊1/2(R2), (4.7)
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where 〈F, ·〉 : H̊1/2(R2)→ R denotes the bounded linear functional generated by F .
Moreover,

‖v‖H̊1/2(R2) = ‖F‖H̊−1/2(R2), (4.8)

so the duality (4.7) is an isometry. The potential v ∈ H̊1/2(R2) satisfying (4.7) is
interpreted as the weak solution of the linear equation

(−∆)1/2v = F in R2. (4.9)

Recall that for functions u ∈ C∞(R2) ∩ L1(R2, (1 + |x |)−3 d2x), the fractional
Laplacian (−∆)1/2 can be defined as

(−∆)1/2u(x) = 1
4π

∫

R2

2u(x)− u(x + y)− u(x − y)

|y|3 d2 y (x ∈ R2). (4.10)

Note that the second-order Taylor expansion of function u yields that the strong sin-
gularity of the integrand at the origin is removed, and (4.10) can be understood as
a converging Lebesgue integral, see Nezza et al. (2012, Lemma 3.2). Of course, the
weighted second-order differential quotient in (4.10) coincides with a more stan-
dard definition of (−∆)1/2 as a pseudodifferential operator, in the sense that for all
u ∈ C∞c (R2),

̂(
(−∆)1/2u

)
k = |k|ûk, (4.11)

cf. Nezza et al. (2012, Proposition 3.3). In particular, this makes the definition of
(−∆)1/2 in (4.10) consistent with the notation used in (4.9).

Note that if u ∈ C∞c (R2) then (−∆)1/2u ∈ C∞(R2), but is not compactly supported
and in fact,

(−∆)1/2u = O(|x |−3) as |x | → ∞, (4.12)

see Maz’ja and Havin (1972, Lemma 1.2). In particular, this shows that the operator
(−∆)1/2 could be extended by duality to the weighted space L1(R2, (1+|x |)−3 d2x),
that is for u ∈ L1(R2, (1 + |x |)−3 d2x),

〈
(−∆)1/2u, ϕ

〉
=

∫

R2
u(x)(−∆)1/2ϕ(x) d2x ∀ϕ ∈ C∞c (R2) (4.13)

and this definition agrees with (4.10) in the case u ∈ C∞c (R2), see Silvestre (2007,
p. 73). Clearly, H̊1/2(R2) ⊂ L1(R2, (1 + |x |)−3 d2x). In particular, this implies that
for v ∈ H̊1/2(R2),

〈v, ϕ〉H̊1/2(R2) =
∫

R2
v(x)(−∆)1/2ϕ(x) d2x ∀ϕ ∈ C∞c (R2). (4.14)
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When f ∈ C∞c (R2), the left inverse to (−∆)1/2 is represented by the Riesz poten-
tial, i.e., if u is the weak solution of (−∆)1/2u = f then u admits the integral
representation

u(x) = (−∆)−1/2 f (x) = 1
2π

∫

R2

f (y)

|x − y| d2 y, (4.15)

see Maz’ja and Havin (1972, Lemma 1.3). Such integral representation could be
extended to a wider class of functions and (signed) measures, cf. Maz’ja and Havin
(1972, Lemma 1.8, 1.11). In particular, taking f = δ(x), we obtain that 1/(2π |x |) is
the fundamental solution of (−∆)1/2. We emphasize, however, that not every potential
of a linear functional f ∈ H̊−1/2(R2) admits an integral representation (4.15). Simi-
larly, not every linear functional f ∈ H̊−1/2(R2) admits an integral representation of
the norm in terms of the Coulomb energy. If f ∈ L1

loc(R2) satisfies

∫∫

R2×R2

| f (x)|| f (y)|
|x − y| d2x d2 y < +∞. (4.16)

then f ∈ H̊−1/2(R2) in the sense that

〈 f, ϕ〉 :=
∫

R2
f (x)ϕ(x) d2x (4.17)

is a bounded linear functional on H̊1/2(R2) and the norm of 〈 f, ·〉 is expressed in terms
of the Coulomb energy

‖ f ‖2
H̊−1/2(R2)

= 1
2π

∫∫

R2×R2

f (x) f (y)

|x − y| d2x d2 y, (4.18)

see, e.g., Maz’ja and Havin (1972, pp. 96–97). In particular, from Sobolev inequality
(4.4), we conclude by duality that

L4/3(R2) ⊂ H̊−1/2(R2) (4.19)

and (4.18) is valid for every f ∈ L4/3(R2). But at the same time, one could construct
a sequence of sign-changing functions { fn} ⊂ C∞c (R2) such that { fn} is a Cauchy
sequence in H̊−1/2(R2), but { fn} does not converge a.e. to a measurable function or
more generally, to a (signed) measure on R2. See Armitage (1975), Rempel (1976) or
Landkof (1972, Theorem 1.19), du Plessis (1970, p. 97) for other relevant examples
which go back to Cartan (1945, Remark 13 on p. 87). Below we present a different
example which involves smooth functions, rather than measures like in Cartan’s type
examples.

Example 4.1 Define

ua(x1, x2) = a1/2 exp(−|x |2) cos(ax1). (4.20)
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Then, using Fourier transform, we can calculate that

‖ua‖2
H̊−1/2(R2)

=
√

2
8

π3/2ae−
a2
2

(
e

a2
4 I0

(
1
4 a2

)
+ 1

)
, (4.21)

where I0(z) is the modified Bessel function of the first kind. Taking the limit a →∞,
one gets

lim
a→∞ ||ua ||2

H̊−1/2(R2)
= π

4
. (4.22)

A Cauchy sequence in H̊−1/2(R2) that fails to converge to a signed measure can then
be constructed as

un(x1, x2) =
n∑

k=1

ek/4 exp
(
−|x |2

)
cos

(
ek x1

)
. (4.23)

Since this series is dominated in H̊−1/2(R2) by a geometric series, it converges in
H̊−1/2(R2). But clearly it does not converge to a signed measure.

4.2 Hardy–Littlewood–Sobolev and Hölder Estimates

We recall the well-known Hardy–Littlewood–Sobolev (Stein 1970, Theorem 1 in Sec-
tion V.1.2) and Hölder estimates on the Riesz potentials of functions in L p(R2).
Surprisingly, we were not able to find a concise reference to Hölder estimate, although
the result is standard. Instead, we refer to García-Cuerva and Gatto (2004, Theorem
5.2) where the estimate is obtained in an abstract framework of fractional integral
operators.

Lemma 4.1 Let f ∈ Ls(R2) for some s ∈ (1, 2) and

v(x) = 1
2π

∫

R2

f (y)

|x − y| d2 y (x ∈ R2). (4.24)

Then v ∈ Lt (R2) with 1
t = 1

s − 1
2 and

‖v‖Lt (R2) ≤ C‖ f ‖Ls (R2), (4.25)

for some C > 0 depending only on s. Furthermore, if f ∈ Ls(R2) ∩ L1(R2, (1 +
|x |)−1 d2x) for some s > 2, then v ∈ L∞(R2) ∩ C1− 2

s (R2) and

|v(x)− v(y)| ≤ C‖ f ‖Ls (R2)|x − y|1− 2
s ∀x, y ∈ R2, (4.26)

for some C > 0 depending only on s.
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Remark 4.1 The assumption f ∈ L1(R2, (1 + |x |)−1 d2x) in the second part of the
lemma is a necessary and sufficient condition which ensures that |v(x)| < +∞ a.e.
in R2, assuming that the operator in (4.24) is understood in the (Lebesgue) integral
sense, c.f. Landkof (1972, (1.3.10) on p. 61). Observe that by Hölder inequality, all
the assumptions of the second part of Lemma 4.1 are satisfied, if f ∈ Ls(R2) for all
s ∈ [s1, s2] for some 1 < s1 < 2 < s2 <∞.

4.3 Interior Regularity

We are going to show that although (−∆)1/2 is a nonlocal operator, the interior reg-
ularity of solutions of (4.9) does not depend on the behavior of the right-hand side at
infinity. The proof of this basic fact can be found in Silvestre (2007, Proposition 2.22).
Here, however, we give a quantitative version of the above statement.

Lemma 4.2 Let f ∈ L1
loc(R2), let p ≥ 1 and let u ∈ L p(R2) be such that

〈u, ϕ〉H̊1/2(R2) =
∫

R2
f (x)ϕ(x) d2x ∀ϕ ∈ C∞c (R2). (4.27)

Assume that f = 0 on B2R(0) for some R > 0. Then u ∈ C∞(B̄R(0)) and for every
n ≥ 0

‖∇nu‖L∞(BR(0)) ≤ C R−n− 2
p ‖u‖L p(R2) (4.28)

for some C > 0 depending only on n and p.

Proof Let ηR(x) = η(|x |/R), where η ∈ C∞(R) is a smooth cut-off function such that
η(x) = 1 for all |x | > 2, η(x) = 0 for all |x | < 3

2 , and 0 ≤ η ≤ 1. Given ϕ ∈ C∞c (R2)

supported on BR(0), let ψ ∈ H̊1/2(R2) be a weak solution of (−∆)1/2ψ = ϕ. By
(4.15), we have

ψ(x) = 1
2π

∫

R2

ϕ(y)

|x − y| d2 y, (4.29)

and, in particular, ψ ∈ C∞(R2). Then (1 − ηR)ψ ∈ C∞c (R2) and is supported on
B2R(0). Testing (4.27) with (1− ηR)ψ and taking into account (4.14), we obtain

0 = 〈u, (1− ηR)ψ〉H̊1/2(R2) =
∫

R2
u(x)(−∆)1/2

(
(1− ηR)ψ

)
(x) d2x

=
∫

BR(0)
u(x)ϕ(x) d2x −

∫

R2
u(x)(−∆)1/2(ηRψ)(x) d2x . (4.30)
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Inserting the definition of (−∆)1/2 from (4.10) and changing the order of integration
in the last integral in (4.30) yields

∫

R2
u(x)(−∆)1/2(ηRψ)(x) d2x

= 1
8π2

∫

R2
u(x)

∫

R2
|y|−3

∫

BR(0)

(
2ηR(x)

|x − z| −
ηR(x + y)

|x + y − z| .

− ηR(x − y)

|x − y − z|

)
ϕ(z) d2z d2 y d2x

= 1
8π2

∫

BR(0)

∫

R2

(∫

R2
|y|−3

(
2ηR(x)

|x − z| −
ηR(x + y)

|x + y − z|

− ηR(x − y)

|x − y − z|

)
d2 y

)
u(x)ϕ(z) d2x d2z

=
∫

BR(0)

∫

R2
JR(x, z)u(x)ϕ(z) d2x d2z, (4.31)

where for x ∈ R2 and z ∈ BR(0), we introduced

JR(x, z) := 1
8π2

∫

R2
|y|−3

(
2ηR(x)

|x − z| −
ηR(x + y)

|x + y − z| −
ηR(x − y)

|x − y − z|

)
d2 y. (4.32)

Observe that

JR(x, z) = (−∆)
1/2
x jR(x, z), jR(x, z) := 1

2π

ηR(x)

|x − z| . (4.33)

Clearly, jR(x, z) = 0 for x ∈ B3R/2(0) and jR ∈ C∞
(
R2 × B̄R(0)

)
, with

∣∣∇n
z jR(x, z)

∣∣ ≤ cn(R + |x − z|)−(n+1), (4.34)
∣∣∣∇2

x∇n
z jR(x, z)

∣∣∣ ≤ cn R−2(R + |x − z|)−(n+1) (4.35)

for all n ≥ 0 and some cn > 0 (unless stated otherwise, all constants in this proof
depend only on n and the choice of η). Then

∣∣∇n
z JR(x, z)

∣∣ ≤ 1
8π2

∫

R2
|y|−3

∣∣∣2∇n
z jR(x, z)−∇n

z jR(x + y, z)

− ∇n
z jR(x − y, z)

∣∣∣ d2 y

= 1
8π2

∫

BR(0)
|y|−3

∣∣∣2∇n
z jR(x, z)− ∇n

z jR(x + y, z)− ∇n
z jR(x − y, z)

∣∣∣ d2 y

+ 1
8π2

∫

R2\BR(0)
|y|−3

∣∣∣2∇n
z jR(x, z)− ∇n

z jR(x + y, z)− ∇n
z jR(x − y, z)

∣∣∣ d2 y
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≤ 1
8π2

∥∥∥∇2
x∇n

z jR(·, z)
∥∥∥

L∞(R2)

∫

BR(0)

|y|−1 d2 y

+ 1
2π2

∥∥∇n
z jR(·, z)

∥∥
L∞(R2)

∫

R2\BR(0)
|y|−3 d2 y

≤ Cn R−n−2, (4.36)

for some Cn > 0. In particular, for any x ∈ R2, JR(x, ·) ∈ C∞(B̄R(0)).
We next prove that for some cn > 0, we have

∣∣∇n
z JR(x, z)

∣∣ ≤ cn

Rn−1(R3 + |x |3) ∀x ∈ R2, ∀z ∈ B̄R(0). (4.37)

For |x | ≤ 4R, the estimate follows from (4.36). Now assume |x | ≥ 4R. Then ηR(x) =
1, and since 1/(2π |x |) is the fundamental solution for (−∆)1/2, we have for |z| ≤ R

1
8π2

∫

R2
|y|−3

(
2

|x − z| −
1

|x + y − z| −
1

|x − y − z|

)
d2 y = 0. (4.38)

Using this fact, we can rewrite

JR(x, z) = 1
8π2

∫

R2

1− ηR(x − y)

|x − y − z| |y|−3 d2 y + 1
8π2

∫

R2

1− ηR(x + y)

|x + y − z| |y|−3 d2 y

= 1
8π2

∫

R2

1
|y − z|

(
1− ηR(y)

|x − y|3 + 1− ηR(y)

|x + y|3
)

d2 y

=: 1
8π2

∫

R2

1
|y − z|h R(x, y) d2 y. (4.39)

Notice that for fixed x with |x | ≥ 4R, h R(x, ·) ∈ C∞c (R2) and its support is contained
in B2R(0). Therefore,

∣∣∇n
z JR(x, z)

∣∣ ≤ 1
8π2

∫

B2R(0)

1
|y − z|

∣∣∣∇n
y h R(x, y)

∣∣∣ d2 y. (4.40)

For y ∈ B2R(0) and |x | ≥ 4R, we have the estimate
∣∣∣∇n

y h R(x, y)
∣∣∣ ≤ Cn R−n |x |−3 for

some Cn > 0. Therefore,

|∇n
z JR(x, z)| ≤ Cn

Rn|x |3
∫

B2R(0)

1
|y − z| d2 y ≤ C ′n

Rn−1|x |3 , (4.41)

for some C ′n > 0.
Finally, taking into account (4.30), we conclude that for almost every z ∈ B̄R(0),

we have

u(z) =
∫

R2
JR(x, z)u(x) d2x, (4.42)
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and, since (4.37) leads to ‖∇n
z JR(·, z)‖

L
p

p−1 (R2)
≤ C R−n−2/p for some C > 0

depending only on n, p and the choice of η, the statement of the lemma follows
by Hölder inequality. :;

5 Variational Setting

5.1 A Representation of the Energy Functional

Recall that for a given ρ ∈ Aρ̄ , we define u by

u := sgn(ρ)
√

|ρ| − sgn(ρ̄)
√

|ρ̄| (5.1)

and set ū := √|ρ̄| sgn ρ̄. Then u ∈ H̊1/2(R2) in view of the definition of Aρ̄ . Since
sgn(ρ)

√|ρ| = u + ū, we can define

∫

R2

∣∣∣∇ 1
2

(√
|ρ(x)| sgn(ρ(x))

)∣∣∣
2

d2x :=

1
4π

∫∫

R2×R2

|(u(x) + ū)− (u(y) + ū)|2
|x − y|3 d2x d2 y = ‖u‖2

H̊1/2(R2)
, (5.2)

which justifies and clarifies the notation used in Sects. 1–3 of the paper.
Throughout the rest of the paper we assume, without loss of generality, that ρ̄ ≥ 0,

and, hence, ū ≥ 0 [see (3.1)]. Denote

S(u) := |u + ū|(u + ū)− |ū|ū =
{

2ūu + u2, u ≥ −ū,

−u2 − 2ūu − 2ū2, u < −ū,
(5.3)

and

Φ(u) := 2
3

(
|u + ū|3 − |ū|3

)
− ūS(u) =

{ 2
3 u3 + ūu2, u ≥ −ū,

− 2
3 u3 − ūu2 + 2

3 ū3, u < −ū.
(5.4)

The graphs of Φ(u) and S(u) for ū = 1 are presented in Fig. 2. Clearly S, Φ ∈ C1(R)

and both functions are smooth functions of u ∈ R except at u = −ū. Moreover,

c
(

ū|u|2 + |u|3
)
≤ Φ(u) ≤ C

(
ū|u|2 + |u|3

)
(u ∈ R), (5.5)

c
(

ū|u| + |u|2
)
≤ S(u) sgn(u) ≤ C

(
ū|u| + |u|2

)
(u ∈ R), (5.6)

for some universal C > c > 0. Therefore, for u ∈ C∞c (R2), the energy E(u) can be
written as (with a slight abuse of notation, we use the same letter to denote both the
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Fig. 2 a Plot of Φ(u) and b plot of S(u) for ū = 1

energy as a function of ρ and that as a function of u in the rest of the paper)

E(u) = a‖u‖2
H̊1/2(R2)

+
∫

R2
Φ(u(x)) d2x

+
∫

R2
V (x)S(u(x)) d2x + b

2

∫∫

R2×R2

S(u(x))S(u(y))

|x − y| d2x d2 y. (5.7)

Given u ∈ H̊1/2(R2), (4.5) and (5.6) imply that S(u) ∈ L2
loc(R2). Then for all ϕ ∈

C∞c (R2), we can define

〈S(u), ϕ〉 :=
∫

R2
S(u(x))ϕ(x) d2x . (5.8)

We say S(u) ∈ H̊−1/2(R2), if the linear functional 〈S(u), ·〉 defined in (5.8) is bounded
by a multiple of ‖ϕ‖H̊1/2(R2). In that case, 〈S(u), ·〉 is understood as the unique continu-

ous extension of (5.8) to H̊1/2(R2). Note that S(u) ∈ H̊−1/2(R2) does not necessarily
imply that S(u)w ∈ L1(R2) for every w ∈ H̊1/2(R2). In other words, 〈S(u), ·〉 does
not always admit an integral representation on H̊1/2(R2), as observed by Brezis and
Browder (1979) in the context of H1(RN ).

5.2 Class H

Introduce the class

H :=
{

u ∈ H̊1/2(R2) : S(u) ∈ H̊−1/2(R2)
}

. (5.9)

As discussed in Sect. 5.1, this is an equivalent way of writing the class Aρ̄ . Given
u ∈ H, Riesz’s representation theorem uniquely defines a potential US(u) ∈ H̊1/2(R2)

such that

〈US(u), ϕ〉H̊1/2(R2) = 〈S(u), ϕ〉 ∀ϕ ∈ H̊1/2(R2). (5.10)
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In particular, from the Sobolev embedding (4.5) combined with (5.5), we obtain the
following inclusions:

{u ∈ H : E(u) < +∞} ⊂ L4(R2) ∩ L2(R2) if ū -= 0, (5.11)

{u ∈ H : E(u) < +∞} ⊂ L4(R2) ∩ L3(R2) if ū = 0. (5.12)

Remark 5.1 In fact, using a fractional extension of the Brezis–Browder argument in
Brézis and Browder (1979), one can establish stronger inclusions:

H ⊂ L4(R2) ∩ L2(R2) if ū -= 0, (5.13)

H ⊂ L4(R2) ∩ L3(R2) if ū = 0. (5.14)

We refer to the forthcoming work (Lu et al. 2015) for the details. Moreover, these
inclusions are, in some sense, optimal. To see the optimality of (5.13), choose u ∈
C∞c (B1(0)), a vector e ∈ R2 with |e| = 1 and for N ∈ N let

uN (x) := 1√
N

N∑

k=1

u
(
x + k exp(N )e

)
. (5.15)

It is standard to check [cf. (4.12) for the H̊1/2-term and Ruiz (2010, p. 363) for the
Coulomb term] that

‖uN‖H̊1/2(R2) ! ‖S(uN )‖H̊−1/2(R2) ! C, (5.16)

while

‖uN‖L p(R2) = O
(

N
1
p− 1

2
)

. (5.17)

We conclude that the sequence {uN } is not bounded in L p(R2) for any p < 2. To
check the optimality of (5.14), instead of (5.15) one can use an appropriately rescaled
family of functions uN , similar to those in Ruiz (2010, Proof of Theorem 1.5).

6 Proof of Theorems 3.1 and 3.3

6.1 Existence of a Minimizer

If V ∈ H̊1/2(R2) then we can rewrite E in terms of u and the associated potential
US(u) as

E(u) = a‖u‖2
H̊1/2(R2)

+
∫

R2
Φ(u(x)) d2x + 〈V, US(u)〉H̊1/2(R2) + b

2
‖US(u)‖2

H̊1/2(R2)
.

(6.1)
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In particular, it is easy to see that

− 1
2b
‖V ‖2

H̊1/2(R2)
≤ inf

u∈H
E(u) ≤ 0. (6.2)

We are going to prove that E attains a minimizer on H.

Proposition 6.1 If V ∈ H̊1/2(R2) then there exists u0 ∈ H such that E(u0) =
infu∈H E(u).

Proof Consider a minimizing sequence {un} ⊂ H and the corresponding sequence of
potentials {US(un)} ⊂ H̊1/2(R2) from (5.10). Clearly,

sup
n
‖un‖2

H̊1/2(R2)
≤ C, (6.3)

sup
n
‖US(un)‖2

H̊1/2(R2)
≤ C, (6.4)

Hence, we may extract subsequences, still denoted by {un} and {US(un)} such that

un ⇀ u0 in H̊1/2(R2), (6.5)

US(un) ⇀ v0 in H̊1/2(R2), (6.6)

for some u0, v0 ∈ H̊1/2(R2). Using a fractional version of Rellich–Kondrachov the-
orem (Nezza et al. 2012, Corollary 7.2) we conclude that

un → u0 in L p
loc(R

2) for all 1 ≤ p < 4, (6.7)

and, upon extraction of another subsequence, that un(x) → u0(x) for a.e. x ∈ R2.
Using (6.7), (5.6) and strong continuity of S as a Nemytskii operator from L p

loc(R2)

into Lq
loc(R2) with q ≤ p/2 (cf. Struwe 1990, Theorem C.1), we also conclude that

S(un)→ S(u0) in Lq
loc(R

2) for all 1 ≤ q < 2. (6.8)

Using (5.10), (5.8) and (6.8), similarly to an argument in the proof of Ruiz (2010,
Proposition 2.4) for every fixed ϕ ∈ C∞c (R2) we obtain

〈v0, ϕ〉H̊1/2(R2) ← 〈US(un), ϕ〉H̊1/2(R2) = 〈S(un), ϕ〉

=
∫

R2
S(un(x))ϕ(x) d2x →

∫

R2
S(u0(x))ϕ(x) d2x . (6.9)

Therefore,

〈v0, ϕ〉H̊1/2(R2) =
∫

R2
S(u0(x))ϕ(x) d2x, ∀ϕ ∈ C∞c (R2). (6.10)
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Note that 〈v0, ·〉H̊1/2(R2) is a bounded linear functional on H̊1/2(R2), since v0 ∈
H̊1/2(R2). Therefore, S(u0) ∈ H̊−1/2(R2). In particular, this means that u0 ∈ H
and

v0 = US(u0). (6.11)

We conclude that

E(u0) = a‖u0‖2
H̊1/2(R2)

+
∫

R2
Φ(u0(x)) d2x

+〈V, US(u0)〉H̊1/2(R2) + b
2
‖US(u0)‖2

H̊1/2(R2)
≤ lim inf

n→∞ E(un). (6.12)

This follows from the weak lower semicontinuity of the norm ‖ · ‖H̊1/2(R2), continuity

of the linear functional 〈V, ·〉H̊1/2(R2) on H̊1/2(R2), and from the nonnegativity of the
function Φ which allows to apply Fatou lemma in the integral term which contains Φ.

:;

6.2 Euler–Lagrange Equation

In order to derive the Euler–Lagrange equation for E , we first establish three auxiliary
lemmas.

Lemma 6.1 Let u ∈ H and h ∈ C∞c (R2). Then u + th ∈ H for every t ∈ R.

Proof Since obviously u + th ∈ H̊1/2(R2), it remains to prove that S(u + th) ∈
H̊−1/2(R2). Consider F(x) := S(u(x) + th(x)) − S(u(x)). Clearly, F has compact
support, and by (5.6), we have F ∈ L2(R2). Therefore, we also have F ∈ L4/3(R2),
and, hence, by (4.19) the functional

〈F, ϕ〉 :=
∫

R2
(S(u(x) + th(x))− S(u(x)))ϕ(x) d2x (ϕ ∈ C∞c (R2)) (6.13)

can be continuously extended to the whole of H̊1/2(R2). Thus S(u + th) − S(u) ∈
H̊−1/2(R2), and since S(u) ∈ H̊−1/2(R2) by assumption, this completes the proof. :;

Lemma 6.2 Let u ∈ H and h ∈ C∞c (R2). Then S′(u)h ∈ H̊−1/2(R2) ∩ L4(R2), and
for every ϕ ∈ H̊1/2(R2),

lim
t→0

1
t
〈S(u + th)− S(u), ϕ〉 =

∫

R2
S′(u(x))h(x)ϕ(x) d2x . (6.14)

Proof Note that
S′(u) = 2|u + ū|, (6.15)

and, hence, S′(u) ∈ L4
loc(R2) by (4.5). Therefore, in view of the fact that h ∈ C∞c (R2),

we have S′(u)h ∈ L4(R2)∩ L4/3(R2) and, again, by (4.19), this implies that S′(u)h ∈
H̊−1/2(R2).
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At the same time, by the argument in the proof of Lemma 6.1, we have an integral
representation

〈S(u + th)− S(u), ϕ〉 =
∫

R2

(
S(u(x) + th(x))− S(u(x))

)
ϕ(x) d2x (6.16)

for every ϕ ∈ H̊1/2(R2). Using (6.16) and the mean value theorem, for some θ(t, ·) ∈
L∞(R2) with ‖θ(t, ·)‖L∞ ≤ 1, we obtain

1
t
〈S(u + th)− S(u), ϕ〉 = 1

t

∫

R2

(
S(u(x) + th(x))− S(u(x))

)
ϕ(x) d2x

=
∫

R2
S′

(
u(x) + tθ(t, x)h(x)

)
h(x)ϕ(x) d2x, (6.17)

where the latter integral converges, since S′(u + tθ(t, ·)h) ∈ L4
loc(R2) in view of

(6.15) and (4.5). Then (6.14) follows by the Lebesgue dominated convergence. :;

Lemma 6.3 Let u ∈ H and h ∈ C∞c (R2). Then

lim
t→0

1
t

(
‖US(u+th)‖2

H̊1/2(R2)
− ‖US(u)‖2

H̊1/2(R2)

)
= 2

∫

R2
US(u)(x)S′(u(x))h(x) d2x .

(6.18)

Proof Since S(u + th) ∈ H̊−1/2(R2) by Lemma 6.1, the potential US(u+ht) ∈
H̊1/2(R2) is well defined. Then using (5.10), we obtain

‖US(u+th)‖2
H̊1/2(R2)

− ‖US(u)‖2
H̊1/2(R2)

= 2〈S(u + th)− S(u), US(u)〉 + 〈S(u + th)− S(u), US(u+th)−S(u)〉. (6.19)

Similarly to (6.17), for some θ(t, ·) ∈ L∞(R2) with ‖θ(t, ·)‖L∞ ≤ 1, we obtain

1
t

∣∣〈S(u + th)− S(u), US(u+th)−S(u)〉
∣∣

= 1
t

∣∣∣∣

∫

R2

(
S(u(x) + th(x))− S(u(x))

)
US(u+th)−S(u)(x) d2x

∣∣∣∣

≤ C‖S′(u + tθ(t, ·)h)h‖L4/3(R2)‖US(u+th)−S(u)‖H̊1/2(R2), (6.20)

for some C > 0 independent of t . Since h is compactly supported, by Lebesgue
dominated convergence, we conclude that

‖S′(u + tθ(t, ·)h)h‖L4/3(R2) → ‖S′(u)h‖L4/3(R2) as t → 0, (6.21)

‖S(u + th)− S(u)‖L4/3(R2) → 0 as t → 0. (6.22)
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From (4.8), we note that U : H̊−1/2(R2) =→ H̊1/2(R2) is an isometry. Then (6.22)
and (4.19) imply that

‖US(u+th)−S(u)‖H̊1/2(R2) → 0 as t → 0. (6.23)

Using (6.14), we obtain

lim
t→0

1
t

(
2〈S(u + th)− S(u), US(u)〉 + 〈S(u + th)− S(u), US(u+th)−S(u)〉

)

= 2
∫

R2
S′(u(x))h(x)US(u)(x) d2x . (6.24)

Hence, the assertion follows via (6.19). :;
Proposition 6.2 Let V ∈ H̊1/2(R2). Then E at every u ∈ H admits a directional
derivative with respect to test functions h ∈ C∞c (R2). Furthermore, the derivative is
given by

d
dt

E(u + th)

∣∣∣∣
t=0

= 2a〈u, h〉H̊1/2(R2) +
∫

R2
Φ ′(u(x))h(x) d2x

+
∫

R2
V (x)S′(u(x))h(x) d2x + b

∫

R2
US(u)(x)S′(u(x))h(x) d2x .

(6.25)

Proof Follows from Lemmas 6.1–6.3 and (5.4). :;
Remark 6.1 The corresponding Euler–Lagrange equation is then in the distributional
sense

0 = 2a(−∆)1/2u + Φ ′(u) + V S′(u) + bUS(u)S′(u). (6.26)

Observing that Φ ′(u) = uS′(u) and S′(u) = 2|u + ū|, we rewrite (6.26) in the form

0 = a(−∆)1/2u + |u + ū|
(
u + V + bUS(u)

)
. (6.27)

6.3 Regularity

Using the Euler–Lagrange equation for E , we shall establish additional regularity of
the minimizers.

Lemma 6.4 Assume that V ∈ H̊1/2(R2). Let u ∈ H be such that E(u) =
inf ũ∈H E(ũ). Then u ∈ C1/2(R2) ∩ L∞(R2) and u(x) → 0 as |x | → ∞.

Proof Since u ∈ H is a minimizer of E , it satisfies the Euler–Lagrange equation
(6.27) distributionally. Denote

F(x) := −a−1|u(x) + ū|
(
u(x) + V (x) + bUS(u)(x)

)
, x ∈ R2. (6.28)
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If F ∈ Ls(R2) for some 1 < s < 2 then

u(x) = 1
2π

∫

R2

F(y)

|x − y| d2 y ∈ Lt (R2),
1
t

= 1
s
− 1

2
, (6.29)

see Lemma 4.1. So we can apply the bootstrap argument in an attempt to improve the
Lt –regularity of u.

First, we consider the case ū = 0. Then u ∈ L p(R2) for all p ∈ [3, 4], by (5.12).
Since V, US(u) ∈ L4(R2), we conclude that

u2 ∈ Ls(R2) ∀s ∈
[ 3

2 , 2
]
, (6.30)

uV, uUS(u) ∈ Ls(R2) ∀s ∈
[ 12

7 , 2
]
. (6.31)

Then
F ∈ Ls(R2) ∀s ∈

[ 12
7 , 2

]
, (6.32)

and therefore, by (6.29) and (5.12)

u ∈ Lt (R2), ∀t ≥ 3. (6.33)

Iterating once more, we deduce that

F ∈ Ls(R2) ∀s ∈
[ 12

7 , 4
)
. (6.34)

Then by Lemma 4.1 and Remark 4.1, we obtain

u ∈ C1− 2
s (R2) ∩ Lt (R2), ∀t ∈ [3,∞], ∀s ∈ (2, 4) . (6.35)

In particular, this means that in (6.34), we can take s = 4. Applying Lemma 4.1 once
again with s = 4, we finally deduce that

u ∈ C1/2(R2) ∩ Lt (R2), ∀t ∈ [3,∞]. (6.36)

Next consider the case ū -= 0. Then u ∈ L p(R2) for all p ∈ [2, 4], by (5.11). Since
V, US(u) ∈ L4(R2), we conclude that

u2 ∈ Ls(R2) ∀s ∈
[
1, 2

]
, (6.37)

uV, uUS(u) ∈ Ls(R2) ∀s ∈
[ 4

3 , 2
]
, (6.38)

ūV, ūUS(u) ∈ L4(R2). (6.39)

Hence
F = F1 + F2, F1 ∈ L4(R2), F2 ∈ L2(R2), (6.40)

and we do not gain at this point any additional regularity because of the lack of decay
at infinity coming from ūV and ūUS(u). Since the Riesz potential in (6.29) could be
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applied (as an integral operator) only to functions in Ls(R2) with s < 2, the previous
bootstrap procedure fails on the whole of R2. Instead, we will use a localized version
based on Lemma 4.2.

Given arbitrary R > 0, we represent

u = u R + h R, u R := u R,1 + u R,2, (6.41)

where

u R,1(x) := 1
2π

∫

B2R(0)

F1(y)

|x − y| d2 y, u R,2(x) := 1
2π

∫

B2R(0)

F2(y)

|x − y| d2 y. (6.42)

Since χB2R(0)F1 ∈ Ls(R2) for any s ∈ [1, 4], by Hölder inequality, we conclude that

‖u R,1‖L∞(BR(0)) ≤ CR‖F1‖L4(R2), (6.43)

for some CR > 0 depending only on R (here and in the rest of the proof, we suppress
the dependence of all the constants on a, b and ρ̄). Similarly, since χB2R(0)F2 ∈ Ls(R2)

for any s ∈ [1, 2], by Lemma 4.1, we have u R,2 ∈ Lt (R2) for all t > 2. Furthermore,
by Hölder inequality, we obtain

‖u R,2‖Lt (BR(0)) ≤ CR,t‖F2‖L2(R2), (6.44)

for some CR,t > 0 depending only on R and t . At the same time, the function
h R := u − u R solves

〈h R, ϕ〉H̊1/2(R2) =
∫

R2\B2R(0)
F(x)ϕ(x) d2x ∀ϕ ∈ C∞c (R2). (6.45)

Therefore, by Lemma 4.2, we have h R ∈ W 1,∞(BR(0)), with ‖h R‖L∞(BR(0)) ≤
CR‖u‖L4(R2) for some CR > 0 depending only on R. Thus, we have u ∈ Lt (BR(0))

for any t > 2, with the norm controlled by constant depending only on R, t , ‖u‖L4(R2),
‖V ‖L4(R2) and ‖US(u)‖L4(R2). Furthermore, by possibly increasing the value of the
constant, we can make the same conclusion about ‖u‖Lt (B2R(0)). Bootstrapping this
information, we then obtain that χB2R(0)F2 ∈ Ls(R2) with any s ∈ [1, 4), and,
again, by Hölder inequality this implies that u R,2 ∈ L∞(BR(0)), with the norm
controlled by ‖u‖L4(R2), ‖V ‖L4(R2) and ‖US(u)‖L4(R2), and the constant depending
only on R. Combining this with the L∞-bounds on u R,1 and h R , we then conclude that
‖u‖L∞(BR(0)) ≤ CR for some constant CR > 0 depending only on R and ‖u‖L4(R2),
‖V ‖L4(R2) and ‖US(u)‖L4(R2). Furthermore, since the obtained estimates for fixed
R > 0 are translationally invariant, we arrive at the conclusion that u ∈ L∞(R2).

The fact that u ∈ L∞(R2) implies that F ∈ L4(R2). Noting that χB2R(0)F ∈
Ls(R2) for any s ∈ [1, 4], by Lemma 4.1 and Remark 4.1 we then have

|u R(x)− u R(y)| ≤ C‖F‖L4(R2)|x − y|1/2 ∀x, y ∈ R2, (6.46)

123

Author's personal copy



1422 J Nonlinear Sci (2015) 25:1391–1430

for some universal C > 0. On the other hand, since ‖h R‖W 1,∞(BR(0)) → 0 as R →∞,
fixing x and y and passing to the limit, we conclude that

|u(x)− u(y)| ≤ C‖F‖L4(R2)|x − y|1/2 ∀x, y ∈ R2, (6.47)

and, hence,
u ∈ C1/2(R2) ∩ Lt (R2) ∀t ∈ [2,∞]. (6.48)

Finally, it is standard to see that u ∈ Cα(R2)∩ L p(R2) for some α ∈ (0, 1] and some
p ≥ 1 implies that u(x) → 0 as |x | → ∞. :;

Remark 6.2 The regularity of minimizers of E can be improved under additional
smoothness assumptions on V . For instance, assume that V ∈ H̊1/2(R2)∩C1/2(R2).
Taking into account that S(·) is a C1–mapping and using Lemma 4.2, similarly to the
arguments in the proof of Lemma 6.4, one can show that US(u) ∈ C1/2(R2)∩ L∞(R2)

as well. Then the expression |u(x) + ū|
(
u(x) + V (x) + bUS(u)(x)

)
in the right hand

side of (6.28) is a bounded, C1/2–Hölder continuous function, and we can conclude
that u ∈ C1,1/2(R2) by Silvestre (2007, Proposition 2.8). Furthermore, if we assume
that V ∈ H̊1/2(R2)∩Cα(R2) for some α ∈ ( 1

2 , 1), then repeating a similar argument
once again we can see that u ∈ C1,α(R2).

Note, however, that if u ∈ C1,α(R2), but u + ū changes sign then |u + ū|, and,
hence, the whole right-hand side of (6.28), is merely a locally Lipschitz function of
x regardless of the smoothness of V . Thus, generally speaking, local regularity of u
can not be improved beyond C1,α(R2).

6.4 Proof of Theorem 3.3

Let u ∈ H be such that E(u) = inf ũ∈H E(ũ). Clearly, E(u) ≤ 0. In particular,

a‖u‖2
H̊1/2(R2)

+ 〈V, US(u)〉H̊1/2(R2) + b
2
‖US(u)‖2

H̊1/2(R2)
≤ 0. (6.49)

Applying Cauchy-Schwarz inequality and then the fractional Sobolev inequality (4.4),
we conclude that

1
2b
‖V ‖2

H̊1/2(R2)
≥ a‖u‖2

H̊1/2(R2)
≥ a

√
π ‖u‖2

L4(R2)
. (6.50)

Similarly, by (6.49) and Cauchy–Schwarz inequality, we have

2‖V ‖H̊1/2(R2) ≥ b‖US(u)‖H̊1/2(R2) ≥ π1/4b ‖US(u)‖L4(R2). (6.51)

Next assume that the inequality opposite to the one in the statement of the theorem
holds, namely that ‖u‖L∞(R2) ≥ ū. Choose x∗ ∈ R2 such that |u(x∗)| ≥ 1

2‖u‖L∞(R2).
Then |u + ū| ≤ 2‖u‖∞. Using the same notations as in the proof of Lemma 6.4, by
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(6.28), (6.50), (6.51) and (4.4), we have

‖F‖L4(R2) ≤ C‖u‖L∞(R2)‖V ‖H̊1/2(R2), (6.52)

for some C > 0 depending only on a and b. Therefore, by (6.47) for any R > 0, we
can write

oscBR(x∗)u ≤ C‖u‖L∞(R2)‖V ‖H̊1/2(R2) R1/2, (6.53)

again, for some C > 0 depending only on a and b.
Now, set

R = c

‖V ‖2
H̊1/2(R2)

, (6.54)

where c > 0 is a constant depending only on a and b chosen in such a way that
oscBR(x∗)u ≤ 1

4‖u‖L∞(R2). Then

‖u‖4
L4(R2)

≥
∫

BR(x∗)
u4 d2x ≥ π R2

256
‖u‖4

L∞(R2)
≥ C‖u‖4

L∞(R2)
‖V ‖−4

H̊1/2(R2)
, (6.55)

for some C > 0 depending only on a and b, which yields

‖u‖L4(R2)‖V ‖H̊1/2(R2) ≥ C‖u‖L∞(R2) ≥ Cū. (6.56)

In view of (6.50), we then conclude that

‖V ‖H̊1/2(R2) ≥ C, (6.57)

for some C > 0 depending only on a, b and ρ̄, which completes the proof.

7 Proof of Theorems 3.2, 3.4 and 3.5

7.1 Proof of Theorems 3.2 and 3.4

We introduce the function class

H+ := {u ∈ H : u ≥ −ū} , (7.1)

which is an equivalent way of writing the class A+
ρ̄ . To study the variational problem

for E on H+, let us define another energy functional E+, given by (6.1) in which the
functions Φ(u) and S(u) are replaced by Φ+(u) and S+(u), respectively. The latter
are obtained from the former by a reflecion around u = −ū from the range u ≥ −ū
to u ≤ −ū (see Fig. 3 and compare with Fig. 2):

S+(u) := S(|u + ū| − ū) = 2ūu + u2, (7.2)

Φ+(u) := Φ(|u + ū| − ū) = 2
3
(|u + ū|3 − ū3)− ūS+(u). (7.3)

123

Author's personal copy



1424 J Nonlinear Sci (2015) 25:1391–1430

3 2 1 0 1
1.0

0.5

0.0

0.5

1.0

1.5

2.0

u
3 2 1 0 1

3

2

1

0

1

2

u

S

(a) (b)

Fig. 3 a Plot of Φ+(u) and b plot S+(u) for ū = 1

We also introduce the function class

H̃ :=
{

u ∈ H̊1/2(R2) : S+(u) ∈ H̊−1/2(R2)
}

, (7.4)

which is the analog of Aρ̄ in the context of E+(u). Thus, the energy functional E+(u),
defined for all u ∈ H̃, is given by

E+(u) := a‖u‖2
H̊1/2(R2)

+
∫

R2
Φ+(u(x)) d2x + 〈V, US+(u)〉H̊1/2(R2)

+b
2
‖US+(u)‖2

H̊1/2(R2)
. (7.5)

Note that, by construction, if u ∈ H+ then u ∈ H̃ and E(u) = E+(u).
Analogous to Proposition 6.1, we have

Proposition 7.1 If V ∈ H̊1/2(R2), then there exists u0 ∈ H+ such that E+(u0) =
inf

u∈H̃
E+(u). Furthermore, E(u0) = inf

u∈H+
E(u).

Proof Observe first that for any u ∈ H̃, we have |u + ū| − ū ∈ H+ ⊂ H̃, and by
(4.1), we have

‖|u + ū| − ū‖2
H̊1/2(R2)

= 1
4π

∫∫

R2×R2

||u(x) + ū| − |u(y) + ū||2
|x − y|3 d2x d2 y

≤ 1
4π

∫∫

R2×R2

|u(x)− u(y)|2
|x − y|3 d2x d2 y = ‖u‖2

H̊1/2(R2)
.

(7.6)

Hence,
E+(|u + ū| − ū) ≤ E+(u). (7.7)

Therefore, for a minimizing sequence {un} of E+ in H̃, we can consider {ũn} :=
{|un + ū| − ū} ⊂ H+, which is also a minimizing sequence. The existence of a
minimizer then follows from the proof of Proposition 6.1 by changing S, Φ to S+, Φ+
in that proof.
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Finally, E+(u) = E(u) for u ∈ H+, since S+(u), Φ+(u) coincide with S(u), Φ(u)

for u ≥ −ū. Therefore, the minimizer u0 of E+ (taken to be in H+) also minimizes
E over H+. :;

It is also clear that any minimizer of E over H+ is also a minimizer of E+ over
H̃. The advantage of considering E+ is to remove the constraint u ≥ −ū in H+. In
particular, we can derive the Euler–Lagrange equation of E+ for a minimizer u ∈ H+,
observing that the arguments in Sect. 6.2 apply verbatim to the functional E+ (by
replacing S and Φ with S+ and Φ+, respectively). If u ∈ H+ is a minimizer of E+, it
then satisfies the Euler–Lagrange equation given in the distributional sense by

0 = a(−∆)1/2u + |u + ū| (u + V + bUS+(u)). (7.8)

Note that since u ≥ −ū, the absolute value can be omitted and S+(u) coincides with
S(u) in the above equation. Using the Euler–Lagrange equation, we shall establish
additional properties for the minimizer.

Lemma 7.1 Assume V ∈ H̊1/2(R2). Let u ∈ H+ be such that E(u) = inf ũ∈H+ E(ũ).
Then u ∈ C1/2(R2)∩L∞(R2), u(x) → 0 as |x | → ∞ and u(x) > −ū for all x ∈ R2.

Proof The regularity follows verbatim from the proof of Lemma 6.4. Also, since u ∈
L∞(R2), we have S(u) ∈ L4(R2), and we can again repeat the arguments in the proof
of Lemma 6.4, now applied to (5.10), to establish that US(u) ∈ C1/2(R2) ∩ L∞(R2)

as well.
Now, since u satisfies (7.8) and u ≥ −ū, we have that w := u + ū ≥ 0 satisfies

0 = a(−∆)1/2w + V w + w(u + bUS(u)). (7.9)

Note that by the argument at the beginning of the proof, we have w ∈ L∞(R2) and

|u + bUS(u)| ≤ c, (7.10)

for some c > 0 and a.e. x ∈ R2. Decompose V = V+ − V−, where V+ and V− are
the positive and the negative part of V , respectively. Then

a(−∆)1/2w + V+w + cw = V−w + (c − (u + bUS(u)))w ≥ 0. (7.11)

Since V+ ∈ H̊1/2(R2) ⊂ L4(RN ), the potential V+ +c belongs to the local Kato class
K1/2

loc with respect to (−∆)1/2, i.e., for every ball B ⊂ R2, we have

lim
ε→0

sup
x∈R2

∫

Bε(x)

(V+(y) + c)χB(y)

|x − y| d2 y = 0, (7.12)

see Kaleta and Lörinczi (2012, Definition 2.1) or Carmona et al. (1990, Section III
and Theorem III.1(iii)). Then standard methods of semigroup theory (see, e.g., Reed
and Simon 1978, Section XIII.12) can be used to show that a(−∆)1/2 + V+ + c
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defines a self-adjoint positive-definite linear operator in L2(R2) (Kaleta and Lörinczi
2012, Theorem 2.1). Moreover, the Green’s function GV+

a,c(x, y) : R2 × R2 → R
of a(−∆)1/2 + V+ + c is well defined and strictly positive (cf. Kaleta and Lörinczi
2012, Lemma 2.1(4) and Section 2.4). In addition, since V+ ≥ 0, the Green’s func-
tion GV+

a,c(x, y) is dominated by the Green’s function Ga,c(|x − y|) of the operator
a(−∆)1/2 + c, so that we have

0 < GV+
a,c(x, y) ≤ Ga,c(|x − y|) for all x, y ∈ R2. (7.13)

The function Ga,c(r) is given explicitly by

Ga,c(r) := c
4a2

(
2a
πcr

− HHH0

(cr
a

)
+ Y0

(cr
a

))
, (7.14)

where HHH0(z) is the Struve function, Y0(z) is the Bessel function of the second kind,
which can be obtained using Fourier transform. Moreover, Ga,c obeys (Felmer et al.
2012, Theorem 3.3 and Lemma 4.1)

Ga,c(r) ∼
{

r−1, r # 1,

r−3, r & 1,
(7.15)

and, therefore, we have GV+
a,c ∈ L4/3(R2) ∩ L1(R2). Denoting the right-hand side of

(7.11) by g(x) ≥ 0, since g ∈ L4(R2) + L∞(R2), we then have distributionally and
a.e. in R2

w(x) =
∫

R2
GV+

a,c(x, y)g(y) d2 y. (7.16)

This implies that w is strictly positive. :;

Remark 7.1 Note that unlike minimizers in H (see Remark 6.2), further regularity of
minimizers u ∈ H+ is expected under additional smoothness hypothesis on V . For
example, if we assume that V ∈ H̊1/2(R2) ∩ C∞(R2) then u ∈ C∞(R2). Indeed,
if u ∈ Ck,α(R2) for some k ≥ 1 and w := u + ū > 0 then w

(
u + V + bUS(u)

)
∈

Ck,α(R2). Thus, differentiating the Euler–Lagrange equation in (7.9) with respect to
x and applying (Silvestre 2007, Proposition 2.8), we conclude that u ∈ Ck+1,α(R2).
This argument can be iterated infinitely many times, we omit the details.

Finally, we show that the minimizer of E on H+ is unique. It is more convenient
to rewrite the energy functional using ρ as the variable, as in the uniqueness proof for
the usual Thomas–Fermi–von Weizsäcker model (Lieb 1981). We write

E(ρ) = a
∥∥∥
√

ρ −
√

ρ̄
∥∥∥

2

H̊1/2(R2)
+

∫

R2
Φ

(√
ρ(x)−

√
ρ̄
)

d2x

+〈V, US(
√

ρ−√ρ̄)〉H̊1/2(R2) + b
2

∥∥∥US(
√

ρ−√ρ̄)

∥∥∥
2

H̊1/2(R2)
. (7.17)
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Note that
S(
√

ρ −
√

ρ̄) = ρ − ρ̄, (7.18)

and is, therefore, linear in ρ, and

Φ(
√

ρ −
√

ρ̄) = 2
3

(
ρ3/2 − ρ̄3/2

)
−

√
ρ̄(ρ − ρ̄) (7.19)

is strictly convex in ρ. Hence, the last three terms in E(ρ) given by (7.17) are convex
on A+

ρ̄ . Moreover, even though
√

ρ is a concave function of ρ, the following lemma
shows that ‖√ρ−√ρ̄‖2

H̊1/2(R2)
is convex, and the energy E(ρ) is strictly convex. The

uniqueness of the minimizer then follows.

Lemma 7.2 The set A+
ρ̄ is convex. Furthermore, the functional E(ρ) defined in (7.17)

is strictly convex on A+
ρ̄ , i.e., for every ρ0, ρ1 ∈ A+

ρ̄ , ρ0 -= ρ1, and every t ∈ (0, 1),
there holds

E(tρ0 + (1− t)ρ1) < t E(ρ0) + (1− t)E(ρ1). (7.20)

Proof Denote ρt = tρ0 + (1− t)ρ1. From Lieb et al. (1996, Theorem 7.13), it follows
that

√
ρt −

√
ρ̄ ∈ H̊1/2(R2) and

∥∥∥
√

ρt −
√

ρ̄
∥∥∥

2

H̊1/2(R2)
≤ t

∥∥∥
√

ρ0 −
√

ρ̄
∥∥∥

2

H̊1/2(R2)
+ (1− t)

∥∥∥
√

ρ1 −
√

ρ̄
∥∥∥

2

H̊1/2(R2)
.

(7.21)
Also, clearly ρt − ρ̄ ∈ H̊−1/2(R2) and ρt ≥ 0. Hence, ρt ∈ A+

ρ̄ , implying that A+
ρ̄ is

a convex set. The strict convexity of E(ρ) then follows from the strictly convexity of
Φ in the second term in E(ρ). :;

7.2 Proof of Theorem 3.5

For u ∈ H+, we have E(u) = E+(u), where E+ is defined in (7.5) with the specific
choice ū = 0:

E+(u) = a‖u‖2
H̊1/2(R2)

+ 2
3

∫

R2
|u(x)|3 d2x

−
∫

R2

|u(x)|2
(
1 + |x |2)1/2 d2x + b

2

∥∥∥U|u|2
∥∥∥

2

H̊1/2(R2)
. (7.22)

In view of Theorem 3.4, in order to prove Theorem 3.5, it is sufficient to show that:

(i) If a ≥ ac, then E(u) > 0 for every nonzero u ∈ H,
(i i) If a < ac, then infu∈H+ E+(u) < 0.

Claim (i) follows directly from the fractional Hardy’s inequality

ac‖u‖2
H̊1/2(R2)

≥
∫

R2

|u(x)|2
|x | d2x, (7.23)
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which is valid for all u ∈ H̊1/2(R2) with the optimal constant ac = Γ 2(1/4)
2Γ 2(3/4)

, see
Frank et al. (2008, Remark 4.2).

Claim (i i) is a consequence of the following.

Lemma 7.3 Let c < ac. Then there exists uc ∈ C∞c (R2) such that uc ≥ 0 and

c‖uc‖2
H̊1/2(R2)

<

∫

R2

|uc(x)|2
(
1 + |x |2)1/2 d2x . (7.24)

Indeed, let a < ac. Then, using Lemma 7.3 with some c ∈ (a, ac), for all sufficiently
small t > 0, we obtain

E+(tuc) < −(c − a)t2‖uc‖2
H̊1/2(R2)

+2t3

3

∫

R2
|uc(x)|3 d2x + bt4

2

∥∥∥U|uc|2
∥∥∥

2

H̊1/2(R2)
< 0. (7.25)

We conclude that infu∈H+ E+(u) < 0, which proves Claim (i i).
We are only left to prove Lemma 7.3.

Proof Let u ∈ C∞c (R2) be such that

c‖u‖2
H̊1/2(R2)

−
∫

R2

|u(x)|2
|x | d2x ≤ −1 (7.26)

(cf. Frank et al. 2008, Remark 4.2), where one can choose u ∈ C∞c (R2) as a suitable
approximation of |x |−1/2). For λ > 0, set uλ(x) = u(x/λ). Then

c‖uλ‖2
H̊1/2(R2)

−
∫

R2

|uλ(x)|2
(
1 + |x |2)1/2 d2x =

λ

(

c‖u‖2
H̊1/2(R2)

−
∫

R2

|u(y)|2
(
λ−2 + |y|2)1/2 d2 y

)

≤ −λ

2
, (7.27)

for all sufficiently large λ > 0, in view of (7.26) and the monotonicity of the mapping
λ =→ (λ−2 + |y|2)−1/2. :;
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