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Abstract

This is the first in a series of two papers in which we derive a Γ -expansion for
a two-dimensional non-local Ginzburg–Landau energy with Coulomb repulsion,
also known as the Ohta–Kawasaki model, in connection with diblock copolymer
systems. In that model, two phases appear, which interact via a nonlocal Coulomb
type energy. We focus on the regime where one of the phases has very small volume
fraction, thus creating small “droplets” of the minority phase in a “sea” of the major-
ity phase. In this paper we show that an appropriate setting for Γ -convergence in the
considered parameter regime is via weak convergence of the suitably normalized
charge density in the sense of measures. We prove that, after a suitable rescaling,
the Ohta–Kawasaki energy functional Γ -converges to a quadratic energy functional
of the limit charge density generated by the screened Coulomb kernel. A conse-
quence of our results is that minimizers (or almost minimizers) of the energy have
droplets which are almost all asymptotically round, have the same radius and are
uniformly distributed in the domain. The proof relies mainly on the analysis of the
sharp interface version of the energy, with the connection to the original diffuse
interface model obtained via matching upper and lower bounds for the energy. We
thus also obtain an asymptotic characterization of the energy minimizers in the
diffuse interface model.

1. Introduction

In the studies of energy-driven pattern formation, one often encounters vari-
ational problems with competing terms operating on different spatial scales [25,
26,32,39,50,53,55]. Despite the fundamental importance of these problems to a
multitude of physical systems, their detailed mathematical studies are fairly recent
(see for example [7–11,19,29,48]). To a great extent this fact is related to the
emerging multiscale structure of the energy minimizing patterns and the associated
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difficulty of their description [8,10,16,30,35]. In particular, the popular approach
of Γ -convergence [4] is rendered difficult due to the emergence of more than two
well-separated spatial scales in suitable asymptotic limits (see for example [8–
11,16,30,35,49]).

These issues can be readily seen in the case of the Ohta–Kawasaki model,
a canonical mathematical model in the studies of energy-driven pattern forming
systems. This model, originally proposed in [42] to describe different morphologies
observed in diblock copolymer melts (see for example [3]), is defined (up to a choice
of scales) by the energy functional

E[u] =
∫

Ω

(
ε2

2
|∇u|2 + W (u)

)
dx

+1

2

∫
Ω

∫
Ω

(u(x) − ū)G0(x, y)(u(y) − ū) dx dy. (1.1)

Here, Ω is the domain occupied by the material, u : Ω → R is the scalar order
parameter, W (u) is a symmetric double-well potential with minima at u = ±1, such
as the usual Ginzburg–Landau potential W (u) = 1

4 (1 − u2)2, ε > 0 is a parameter
characterizing interfacial thickness, ū ∈ (−1, 1) is the background charge density,
and G0 is the Neumann Green’s function of the Laplacian, that is, G0 solves

− �G0(x, y) = δ(x − y) − 1

|Ω| ,
∫

Ω

G0(x, y) dx = 0, (1.2)

where � is the Laplacian in x and δ(x) is the Dirac delta-function, with Neumann
boundary conditions. Note that u is also assumed to satisfy the “charge neutrality”
condition

1

|Ω|
∫

Ω

u dx = ū. (1.3)

Let us point out that in addition to a number of polymer systems [15,41,52], this
model is also applicable to many other physical systems due to the fundamental
nature of the Coulombic non-local term in (1.1) [6,17,22,32,37,40]. Because of
this Coulomb interaction, we also like to think of u as a density of “charge”.

The Ohta–Kawasaki functional admits the following “sharp-interface” version:

E[u] = ε

2

∫
Ω

|∇u| dx + 1

2

∫
Ω

∫
Ω

(u(x) − ū)G(x, y)(u(y) − ū) dx dy, (1.4)

where now u : Ω → {−1,+1} and G(x, y) is the screened Green’s function of
the Laplacian, that is, it solves the Neumann problem for the equation [distinguish
from (1.2)]

− �G + κ2G = δ(x − y), (1.5)

where κ := 1/
√

W ′′(1) > 0. Note, also, that in contrast to the diffuse interface
energy in (1.1), for the sharp interface energy in (1.4) the charge neutrality constraint
in (1.3) is no longer imposed. This is due to the fact that in a minimizer of the diffuse
interface energy, the charge of the minority phase is expected to partially redistribute
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Fig. 1. Two-dimensional multi-droplet patterns in systems with Coulombic repulsion: a local
minimizer of the Ohta–Kawasaki energy on a rectangle with periodic boundary conditions;
a local minimizer of the sum of two-point Coulombic potentials on a disk with Neumann
boundary conditions. Taken from [37,45], with permission (Copyright 2002 American Phys-
ical Society; Copyright 2007 World Scientific Publishing Company)

into the majority phase to ensure screening of the induced non-local field (see a
more detailed discussion in the following section).

The two terms in the energy (1.4) are competing: the second term favors u
to be constant and equal to its average ū, but since u is valued in {+1,−1} this
means in effect that it is advantageous for u to oscillate rapidly between the two
phases u = +1 and u = −1; the first term penalizes the perimeter of the interface
between the two phases, and thus opposes too much spreading and oscillation. The
competition between these two selects a length scale, which is a function of ε. In
the diffuse interface version (1.1), the sharp transitions between {u = +1} and
{u = −1} are replaced by smooth transitions at the scale ε > 0 as soon as ε � 1.

In one space dimension, and in the particular case ū = 0 (symmetric phases),
the behavior of the energy can be understood from the work of Müller [35]: the
minimizer u is periodic and alternates between u = +1 and u = −1 at scale
ε1/3 (for other one-dimensional results, see also [44,46,58]). In higher dimensions
the patterns of minimizers are much more complex and are not well understood.
The behavior depends on the volume fraction between the phases, that is, on the
constant ū chosen, and also on the dimension. When ū < 0, we call u = −1
the majority phase and u = +1 the minority phase, and conversely when ū > 0.
In two dimensions, numerical simulations lead to expecting round “droplets” of
the minority phase surrounded by a “sea” of the majority phase (see Fig. 1) for
sufficient asymmetries between the majority and the minority phases (that is, for
ū sufficiently far away from zero) [36,37,42,45]. The situation is less clear for ū
close to zero, although it is commonly believed that in this case the minimizers are
one-dimensional stripe patterns [12,36,37,42].

In all cases, minimizers are intuitively expected to be periodic. However, at
the moment this seems to be very difficult to prove. The only general result in
that direction to date is that of Alberti, Choksi and Otto [1], which proves that the
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energy of minimizers of the sharp interface energy from (1.4) with no screening
[with κ = 0 and the neutrality condition from (1.3)] is uniformly distributed in the
limit where the size of the domain Ω goes to infinity (see also [7,51]). Their results,
however, do not provide any further information about the structure of the energy-
minimizing patterns. Note in passing that the question of proving any periodicity
of minimizers for multi-dimensional energies is unsolved, even for systems of
point particles forming simple crystals (see for example [30,49]), with a notable
exception of certain two-dimensional particle systems with short-range interactions
which somehow reduce to packing problems [43,54,56]. Naturally, the situation
can be expected to be more complicated for pattern forming systems in which
the constitutive elements are “soft” objects, such as, for example, droplets of the
minority phase in the matrix of the majority phase in the Ohta–Kawasaki model.

Here we are going to focus on the two-dimensional case and the situation
where one phase is in strong majority with respect to the other, which is imposed
by taking ū very close to −1 as ε → 0. Thus we can expect a distribution of small
droplets of u = +1 surrounded by a sea of u = −1. In this regime, Choksi and
Peletier analyzed the asymptotic properties of a suitably rescaled version of the
sharp interface energy (1.4) with no screening in [13], as well as (1.1) in [14]. They
work in the setting of a fixed domain Ω , and in a regime where the number of
droplets remains finite as ε → 0. They showed that the energy minimizing patterns
concentrate to a finite number of point masses, whose magnitudes and locations
are determined via a Γ -expansion of the energy [5]. Here, in contrast, we work
in a regime where the number of droplets is divergent as ε → 0. We note that
Γ -convergence of (1.1) to the functional (1.4) with no screening and for fixed
volume fractions was established by Ren and Wei in [46], who also analyzed local
minimizers of the sharp interface energy in the strong asymmetry regime in two
space dimensions [45].

All these works are in the finite domain Ω setting, while we are generally
interested in the large volume (macroscopic) limit, that is, the regime when the
number of droplets tends to infinity. A rather detailed study of the behavior of the
minimizers for the Ohta–Kawasaki energy in macroscopically large domains was
recently performed in [38], still in the regime of ū close to −1. There the two-
dimensional Ohta–Kawasaki energy was considered in the case when Ω is a unit
square with periodic boundary conditions. The interesting regime corresponds to
the parameters ε � 1 and 1 + ū = O(ε2/3| ln ε|1/3) � 1. It is shown in [38]
that under these assumptions on the parameters and some technical assumptions
on W , (1.4) gives the correct asymptotic limit of the minimal energy in (1.1).
Moreover, it is shown that when δ̄ := ε−2/3| ln ε|−1/3(1+ū) becomes greater than a
certain critical constant δ̄c, the minimizers of E in (1.4) consist of O(| ln ε|) simply
connected, nearly round droplets of radius � 31/3ε1/3| ln ε|−1/3, and uniformly
distributed throughout the domain [38]. Thus, the following hierarchy of length
scales is established in the considered regime:

ε � ε1/3| ln ε|−1/3 � | ln ε|−1/2 � 1, (1.6)

where the scales above correspond to the width of the interface, the radius of
the droplets, the average distance between the droplets, and the screening length,
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respectively. The multiscale nature of the energy minimizing pattern is readily
apparent from (1.6).

The analysis of [38] makes heavy use of the minimality condition for (1.4)
and, in particular, the Euler–Lagrange equation associated with the energy. One is
thus naturally led to asking whether the qualitative properties of the minimizers
established in [38] (roundness of the droplets, identical radii, uniform distribution)
carry over to, for example, almost minimizers of E , for which no Euler–Lagrange
equation is available. More broadly, it is natural to ask how robust the properties
of the energy minimizing patterns are with respect to various perturbations of the
energy, for example, how the picture presented above is affected when the charge
density ū is spatially modulated. A natural way to approach these questions is
via Γ -convergence. However, for a multiscale problem such as the one we are
considering, the proper setting for studying Γ -limits of the functionals in (1.1) or
(1.4) is presently lacking. The purpose of this paper is to formulate such a setting
and extract the leading order term in the Γ -expansion of the energy in (1.1). In our
forthcoming paper [23], we obtain the next order term in the Γ -expansion, using
the method of “lower bounds for 2-scale energies” via Γ -convergence introduced
in [49].

The main question for setting up the Γ -limit in the present context is to choose
a suitable metric for Γ -convergence. This metric turns out to be similar to the
one used for the analysis of vortices in the two-dimensional magnetic Ginzburg–
Landau model from the theory of superconductivity [48]. In fact, the problem under
consideration and its mathematical treatment (here as well as in [23]) share several
important features with the latter [48]. In the theory of superconductivity the role
of droplets is played by the Ginzburg–Landau vortices, which in the appropriate
limits also become uniformly distributed throughout the domain [47]. We note,
however, that the approach developed in [47,48] cannot be carried over directly
to the problem under consideration, since the vortices are more rigid than their
droplet counterparts: the topological degrees of the vortices are quantized and can
only take integer values, while the droplet volumes are not. Thus we also have to
consider the possibility of many very small droplets. Developing a control on the
droplet volumes from above and below is one of the key ingredient of the proofs
presented below, and relies on the control of their perimeter via the energy.

For simplicity, as in [38] we consider the energy defined on a flat torus (a
square with periodic boundary conditions). The metric we consider is the weak
convergence of measures for a suitably rescaled sequence of characteristic functions
associated with droplets (see the next section for precise definitions and statements
of theorems). Then, up to a rescaling, we show that both the energy E from (1.1) and
E from (1.4) Γ -converge to a quadratic functional in terms of the limit measure,
with the quadratic term generated by the screened Coulomb kernel from (1.5)
and the linear term depending explicitly on δ̄ and κ . To be more precise, we will
see that in the regime we study, there are two contributions to the energy which
operate at leading order: one contribution is linear in the density of the droplets
and corresponds to the “self-interaction energy” of each droplet coming from the
perimeter term and from the self-interaction part of the double integral in (1.4), and
the other is a quadratic term corresponding to the interaction between the droplets,
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that is, the rest of the contribution of the double-integral term in (1.4). This setting,
where both terms are of the same order of magnitude, is very similar to the regime
of [47] and [48, Chap. 7] in the context of the magnetic Ginzburg–Landau energy.

We note that the obtained limit variational problem is strictly convex and its
unique minimizer is a measure with constant density across the domain Ω . In
particular, this implies equidistribution of mass and energy for the minimizers of
the diffuse interface energy E in (1.1) in the considered regime. In our companion
paper [23], we further address the mutual arrangement of the droplets in the energy
minimizing patterns, using the formalism developed recently for Ginzburg–Landau
vortices [49]. We also obtain a characterization of the droplet shapes for almost
minimizers of the sharp interface energy E , which, in turn, allows us to make the
same conclusions about minimizers of the diffuse interface energy E for ε � 1,
which is a new result. We can characterize the droplets at the diffuse interface level
because the difference between the zero superlevel set of the minimizers at the
diffuse interface level and the jump set of almost minimizers at the sharp interface
level occurs essentially on the length scale ε (interfacial thickness), which is much
smaller than the characteristic length scale ε1/3| ln ε|−1/3 of the droplets.

Let us mention other closely related systems from the studies of ferromagnetism
and superconductivity, where the role of droplets is played by the slender needle-
like domains of opposite magnetization in a three-dimensional ferromagnetic slab
at the onset of magnetization reversal [27], or superconducting tunnels in a slab of
type-I superconducting material near the critical field [8,11]. It may be possible to
obtain similar Γ -convergence results with respect to convergence of measures in
the plane for those problems. At the same time, we point out that extending our
results to higher dimensions meets with serious difficulties, since in the suitable
limit the droplets in higher-dimensional problems are expected to solve a non-local
isoperimetric problem whose solution is not well characterized at present [28].

Our paper is organized as follows. In Section 2, we introduce the considered
scaling regime and state our main results; in Section 4 we prove the Γ -convergence
result in the sharp interface setting; in Section 5 we prove the results on the char-
acterization of almost minimizers of sharp interface energy; and in Section 6 we
treat the Γ -limit for the case of the diffuse interface energy.

Some notations. We use the notation (uε) ∈ A to denote sequences of functions
uε ∈ A as ε = εn → 0, where A is an admissible class. For a measurable set E ,
we use |E | to denote its Lebesgue measure and |∂ E | to denote its perimeter (in the
sense of De Giorgi). We also use the notation μ ∈ M+(Ω) to denote a non-negative
Radon measure μ on the domain Ω . With a slight abuse, we will often speak of μ as
the “density” on Ω . The symbols H1(Ω), BV (Ω), C(Ω) and H−1(Ω) denote the
usual Sobolev space, space of functions of bounded variation, space of continuous
functions, and the dual of H1(Ω), respectively.

2. Statement of Results

Throughout the rest of the paper the parameters κ > 0, δ̄ > 0 and 	 > 0 are
assumed to be fixed, and the domain Ω is assumed to be a flat two-dimensional
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torus of side length 	, that is, Ω = T
2
	 = [0, 	)2, with periodic boundary conditions.

For every ε > 0 we define

ūε := −1 + ε2/3| ln ε|1/3δ̄. (2.1)

Under this scaling assumption the sharp interface version of the Ohta–Kawasaki
energy [see (1.4)] can be written as

Eε[u] = ε

2

∫
T

2
	

|∇u| dx + 1

2

∫
T

2
	

(u − ūε)(−� + κ2)−1(u − ūε) dx, (2.2)

for all u ∈ A, where

A := BV (T2
	; {−1, 1}). (2.3)

We wish to understand the asymptotic properties of the energy Eε in (2.2) as ε → 0
when all other parameters are fixed. We then relate our conclusions based on the
study of this energy to its diffuse interface version, which under the same scaling
assumptions takes the form

Eε[u] =
∫

T
2
	

(
ε2

2
|∇u|2 + W (u) + 1

2
(u − ūε)(−�)−1(u − ūε)

)
dx, (2.4)

with u ∈ Aε, where

Aε :=
{

u ∈ H1(T2
	) : 1

	2

∫
T

2
	

u dx = ūε

}
. (2.5)

Here the symmetric double-well potential W � 0 needs to satisfy

W (1) = 0, W ′′(1) = 1

κ2 ,

∫ 1

−1

√
2W (u) du = 1, (2.6)

in order for Eε to be compatible with Eε (see further discussion at the beginning
of Section 3 and [38, Section 4] for precise assumptions on W ). We note that the
relation between Eε and Eε does not amount to a straightforward application of the
standard Modica–Mortola argument [33,34], as will be explained in more detail in
Section 2.2. A formal application of the latter to (2.4) would result in an energy
of the type in (2.2), but with the same (that is, unscreened) Coulomb kernel as in
(2.4), which is not Γ -equivalent to Eε. We also note that at the level of the energy
minimizers the relation between the two functionals was established in [38].
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2.1. Sharp interface energy

The sharp interface energy in (2.2) is most conveniently expressed in terms of
droplets, that is, the connected components Ω+

i of the set Ω+ := {u = +1} (see
Lemma 3.1 for technical details). Inserting

u = −1 + 2
∑

i

χΩ+
i
, (2.7)

into (2.2), where χΩ+
i

are the characteristic functions of Ω+
i , expressing the result

via G that solves

− �G(x) + κ2G(x) = δ(x) in T
2
	, (2.8)

expanding all the terms and using the fact that
∫
T

2
	

G(x)dx = κ−2, we arrive at
(see also [38])

Eε[u] = 	2(1 + ūε)2

2κ2 +
∑

i

{
ε|∂Ω+

i | − 2κ−2(1 + ūε)|Ω+
i |

}

+2
∑
i, j

∫
Ω+

i

∫
Ω+

j

G(x − y) dx dy, (2.9)

where we have taken into account the translational symmetry of the problem in
T

2
	 . Moreover, since the optimal configurations for Ω+

i are expected to consist of
droplets of size of order ε1/3| ln ε|−1/3 (see (1.6) and the discussion around), it is
convenient to introduce the rescaled area and perimeter of each droplet:

Ai := ε−2/3| ln ε|2/3|Ω+
i |, Pi := ε−1/3| ln ε|1/3|∂Ω+

i |. (2.10)

Similarly, let us introduce the suitably rescaled measure μ associated with the
droplets:

dμ(x) := ε−2/3| ln ε|−1/3
∑

i

χΩ+
i
(x)dx = 1

2
ε−2/3| ln ε|−1/3(1 + u) dx . (2.11)

Note that by the definitions in (2.10) and (2.11) we have

1

| ln ε|
∑

i

Ai =
∫

T
2
	

dμ, (2.12)

and the energy Eε[u] may be rewritten as

Eε[u] = ε4/3| ln ε|2/3
(

δ̄2	2

2κ2 + Ēε[u]
)

, (2.13)

where

Ēε[u] := 1

| ln ε|
∑

i

(
Pi − 2δ̄

κ2 Ai

)
+ 2

∫
T

2
	

∫
T

2
	

G(x − y)dμ(x)dμ(y). (2.14)
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We now state our Γ -convergence result, which is obtained for configurations
(uε) that obey the optimal energy scaling, that is, when Ēε[uε] remains bounded as
ε → 0. The result is obtained with the help of the framework established in [47],
where an analogous result for the Ginzburg–Landau functional of superconductivity
was obtained. What we show is that the limit functional E0 depends only on the
limit density μ of the droplets (more precisely, on a limit measure μ ∈ M+(T2

	) ∩
H−1(T2

	), see Lemma 3.2 for technical details about such measures). In passing
to the limit, the second term in (2.14) remains unchanged, while the first term is
converted into a term proportional to the integral of the measure. The proportionality
constant is non-trivially determined by the optimal droplet profile that will be
discussed later on. We give the statement of the result in terms of the original
screened sharp interface energy Eε, which is defined in terms of u ∈ A. In the
proof, we work instead with the equivalent energy Ēε, which is defined through
{Aε

i }, {Pε
i } and με corresponding to u = uε [cf. (2.13) and (2.14)].

Theorem 1. (Γ -convergence of Eε) Let Eε be defined by (2.2) with ūε given by
(2.1). Then, as ε → 0 we have that

ε−4/3| ln ε|−2/3 Eε Γ→ E0[μ] := δ̄2	2

2κ2 +
(

32/3 − 2δ̄

κ2

) ∫
T

2
	

dμ

+ 2
∫

T
2
	

∫
T

2
	

G(x − y)dμ(x)dμ(y),

where μ ∈ M+(T2
	) ∩ H−1(T2

	). More precisely, we have

(i) (Lower Bound) Let (uε) ∈ A be such that

lim sup
ε→0

ε−4/3| ln ε|−2/3 Eε[uε] < +∞, (2.15)

let

dμε(x) := 1
2ε−2/3| ln ε|−1/3(1 + uε(x))dx, (2.16)

and let vε satisfy

− �vε + κ2vε = με in T
2
	. (2.17)

Then, up to extraction of a subsequence, we have

με ⇀ μ in (C(T2
	))

∗, vε ⇀ v in H1(T2
	),

as ε → 0, where μ ∈ M+(T2
	) ∩ H−1(T2

	) and v ∈ H1(T2
	) satisfy

− �v + κ2v = μ in T
2
	. (2.18)

Moreover, we have

lim inf
ε→0

ε−4/3| ln ε|−2/3 Eε[uε] � E0[μ].
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(ii) (Upper Bound) Conversely, given μ ∈ M+(T2
	) ∩ H−1(T2

	) and v ∈ H1(T2
	)

solving (2.18), there exist (uε) ∈ A such that for the corresponding με, vε as
in (2.16) and (2.17) we have

με ⇀ μ in (C(T2
	))

∗, vε ⇀ v in H1(T2
	),

as ε → 0, and

lim sup
ε→0

ε−4/3| ln ε|−2/3 Eε[uε] � E0[μ].

We note that the limit energy E0 obtained in Theorem 1 may be viewed as
the homogenized (or mean-field) version of the non-local part of the energy in the
definition of Eε associated with the limit charge density μ of the droplets, plus a
term associated with the self-energy of the droplets. The functional E0 is strictly
convex, so there exists a unique minimizer μ̄ ∈ M+(T2

	)∩ H−1(T2
	) of E0, which

is easily seen to be either μ̄ = 0 for δ̄ � 1
2 32/3κ2, or μ̄ = 1

2 (δ̄− 1
2 32/3κ2) otherwise.

The latter can also be seen immediately from Remark 2.1 below, which gives a local
characterization of the limit energy E0 (see Lemma 3.2).

Remark 2.1. The limit energy E0 in Theorem 1 becomes local when written in
terms of the limit potential v defined in (2.18):

E0[μ] = δ̄2	2

2κ2 +
(

32/3κ2 − 2δ̄
) ∫

T
2
	

v dx + 2
∫

T
2
	

(
|∇v|2 + κ2v2

)
dx . (2.19)

Also, by the usual properties of Γ -convergence [4], the optimal density μ̄ above
is exhibited by the minimizers of Eε in the limit ε → 0, in agreement with [38,
Theorem 2.2]:

Corollary 2.1. Let ūε be given by (2.1) and let (uε) ∈ A be minimizers of Eε

defined in (2.2). Then, letting δ̄c := 1
2 32/3κ2, if με is given by (2.16), as ε → 0 we

have

(i) If δ̄ � δ̄c, then

με ⇀ 0 in (C(T2
	))

∗ and ε−4/3| ln ε|−2/3	−2 min Eε → δ̄2

2κ2 . (2.20)

(ii) If δ̄ > δ̄c, then

με ⇀ 1
2 (δ̄ − δ̄c) in (C(T2

	))
∗ and ε−4/3| ln ε|−2/3	−2 min Eε

→ δ̄c
2κ2 (2δ̄ − δ̄c). (2.21)

In particular, since the minimal energy scales with the area of T
2
	 , it is an extensive

quantity.
We next give the definition of almost minimizers with prescribed limit density,

for which a number of further results may be obtained. These can be viewed, for
example, as almost minimizers of Eε in the presence of an external potential. We
note that in view of the strict convexity of E0, minimizing E0[μ]+ ∫

T
2
	
ϕ(x)dμ(x)
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for a given ϕ ∈ H1(T2
	), one obtains a one-to-one correspondence between the

minimizing density μ and the potential ϕ. It then makes sense to talk about almost
minimizers of the energy Eε with prescribed limit density μ by viewing them as
almost minimizers of Eε + ∫

T
2
	
ϕεdμε, where ϕε = ε2/3| ln ε|1/3ϕ. Also, observe

that almost minimizers with the particular prescribed density μ̄ from Corollary 2.1
are simply almost minimizers of Eε. We give a precise definition below.

Definition 2.1. For a given μ ∈ M+(T2
	) ∩ H−1(T2

	), we will call every recovery
sequence (uε) ∈ A in Theorem 1(ii) almost minimizers of Eε with prescribed limit
density μ.

For almost minimizers with prescribed limit density, we show that, in the limit
ε → 0, most of the droplets, with the exception of possibly many tiny droplets
comprising a vanishing fraction of the total droplet area, converge to disks of radius
r = 31/3ε1/3| ln ε|−1/3. More precisely, we have the following result.

Theorem 2. Let (uε) ∈ A be a sequence of almost minimizers of Eε with prescribed
limit density μ. For every γ ∈ (0, 1) define the set I ε

γ := {i ∈ N : 32/3πγ � Aε
i �

32/3πγ −1}. Then

lim
ε→0

1

| ln ε|
∑

i

(
Pε

i −
√

4π Aε
i

)
= 0, (2.22)

lim
ε→0

1

| ln ε|
∑
i∈I ε

γ

(
Aε

i − 32/3π
)2 = 0, (2.23)

lim
ε→0

1

| ln ε|
∑
i �∈I ε

γ

Aε
i = 0, (2.24)

where {Aε
i } and {Pε

i } are given by (2.10) with u = uε.

Note that we may use the isoperimetric deficit terms present in (2.22) to control
the Fraenkel asymmetry of the droplets. The Fraenkel asymmetry measures the
deviation of the set E from the ball of the same area that best approximates E and
is defined for any Borel set E ⊂ R

2 by

α(E) = min
|E�B|

|E | , (2.25)

where the minimum is taken over all balls B ⊂ R
2 with |B| = |E |, and � denotes

the symmetric difference between sets. Note that the following sharp quantitative
isoperimetric inequality holds for α(E) [20]:

|∂ E | − √
4π |E | � Cα2(E)

√|E |, (2.26)

with some universal constant C > 0. As a direct consequence of Theorem 2 and
(2.12), we then have the following result.
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Corollary 2.2. Under the assumptions of Theorem 2, when
∫
T

2
	

dμ > 0 we have

lim
ε→0

32/3π |I ε
γ |

| ln ε| =
∫

T
2
	

dμ, lim
ε→0

1

|I ε
γ |

∑
i∈I ε

γ

α(Ω+
i ) = 0, (2.27)

where |I ε
γ | denotes the cardinality of I ε

γ .

This result generalizes the one in [38], where it was found that in the case of
the minimizers all the droplets are uniformly close to disks of the optimal radius
r = 31/3ε1/3| ln ε|−1/3. What we showed here is that this result holds for almost all
droplets in the case of almost minimizers, in the sense that in the limit almost all
the mass concentrates in the droplets of optimal area and vanishing isoperimetric
deficit. We note that the density μ is also the limit of the number density of the
droplets, up to a normalization constant, once the droplets of vanishing area have
been discarded.

The result that almost all droplets in almost minimizers with prescribed limit
density have asymptotically the same size, even if the limit density is not constant
in T

2
	 , appears to be quite surprising, since in this regime the self-interaction energy,

which governs the droplet shapes, and partly their sizes, is exactly of the same order
as the droplet mutual interaction energy, as was already mentioned at the end of
Section 1. In addition, the other terms governing the droplets extracted in (2.14) (the
perimeter and interaction with the background uniform charge) are equally strong.
This result would hold, for example, for minimizers of the energy in the presence of
a non-uniform potential, that is, with a term 1

2ε2/3| ln ε|1/3
∫
T

2
	
ϕ(x)u(x) dx added

to Eε in (2.2) (see also the paragraph before Definition 2.1). It means that while
the density of the energy minimizing droplets would be dependent on ϕ, their
radii would not. We note that this observation is consistent with the expectation
that quantum mechanical charged particle systems form Wigner crystals at low
particle densities [24,32,57]. Let us point out that the Ohta–Kawasaki energy Eε

bears resemblance with the classical Thomas–Fermi–Dirac–Von Weizsäcker model
arising in the context of density functional theory of quantum systems (see for
example [30–32]).

2.2. Diffuse Interface Energy

We now turn to relating the results obtained so far for the screened sharp inter-
face energy Eε to the original diffuse interface energy Eε. On the level of the min-
imal energy, the asymptotic equivalence of the energies in the considered regime,
namely, that for every δ > 0

(1 − δ) min Eε � min Eε � (1 + δ) min Eε (2.28)

for ε � 1 was established in [38, Theorem 2.3]. The main idea of the proof in
[38] is for a given function uε ∈ Aε to establish an approximate lower bound for
Eε[uε] in terms of (1 − δ)Eε[ũε] for some ũε ∈ A, with δ > 0, which can be
chosen arbitrarily small for ε � 1. The matching approximate upper bound is then
obtained by a suitable lifting of the minimizer uε ∈ A of Eε into Aε.
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r

1.0

0.5

0.5

1.0

u

Fig. 2. A qualitative form of the u-profile for a single droplet from the Euler–Lagrange
equation associated with E . The horizontal line shows the level corresponding to ū. Charge
is transferred from the region where u < ū (depletion shown in green) to the region where
u > ū (excess shown in orange). At the sharp interface level the corresponding profile is
given by sgn(u), whose average charge is not equal to ū

Here we show that the procedure outlined above may also be applied to almost
minimizers of Eε in a suitably modified version of Definition 2.1 involving Eε,
using almost minimizers of Eε for comparisons. We note right away, however, that
it is not possible to simply replace Eε with Eε in Definition 2.1. The reason for this
is the presence of the mass constraint in the definition of the admissible class Aε

for Eε. This implies, for example, that any sequence of almost minimizers (uε) ∈
Aε of Eε must satisfy 	−2

∫
T

2
	

dμε = 1
2 δ̄, while, according to Corollary 2.1, for

sequences of almost minimizers (uε) ∈ A of Eε we have 	−2
∫
T

2
	

dμε → μ̄ �= 1
2 δ̄.

This phenomenon is intimately related to the effect of screening of the Coulombic
potential from the droplets by the compensating charges that move into their vicinity
[37]. For a single radially symmetric droplet the solution of the Euler–Lagrange
equation associated with Eε has the form shown in Fig. 2, which illustrates the gap
between the “prescribed” total charge at the diffuse interface level and the total
charge at the sharp interface level.

In order to be able to extract the limit behavior of the energy, we need to
take into consideration the redistribution of charge discussed above and define
almost minimizers with prescribed limit density that belong to Aε and for which
the screening charges are removed from the consideration of convergence to the
limit density. Hence, given a candidate function uε ∈ Aε, we define a new function

uε
0(x) :=

{
+1, uε(x) > 0,

−1, uε(x) � 0,
(2.29)

whose jump set coincides with the zero level set of uε. This introduces a nonlinear
filtering operation that eliminates the effect of the small deviations of uε from ±1
in almost minimizers on the limit density (compare also with [27]). The measure
με

0 associated with the droplets is now defined via

dμε
0 := 1

2ε−2/3| ln ε|−1/3(1 + uε
0(x))dx . (2.30)
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We can follow the ideas of [38] to establish an analog of Theorem 1 for the
diffuse interface energy. To avoid many technical assumptions, we formulate the
result for a specific choice of W (u) = 9

32 (1 − u2)2 and κ = 1/
√

W ′′(1) = 2
3

(see the discussion at the beginning of Section 3). A general result may easily be
reconstructed. Also, we make a technical assumption to avoid dealing with the case
lim supε→0 ‖uε‖L∞(T2

	)
> 1, when spiky configurations in which |uε| significantly

exceeds 1 in regions of vanishing size may appear. We note that this condition is
satisfied by the minimizers of Eε [38, Proposition 4.1].

Theorem 3. (Γ -convergence of Eε) Let Eε be defined by (2.4) with W (u) = 9
32 (1−

u2)2 and ūε given by (2.1). Then, as ε → 0, we have that

ε−4/3| ln ε|−2/3Eε Γ→ E0[μ] := δ̄2	2

2κ2

+
(

32/3 − 2δ̄

κ2

) ∫
T

2
	

dμ + 2
∫

T
2
	

∫
T

2
	

G(x − y)dμ(x)dμ(y),

where μ ∈ M+(T2
	) ∩ H−1(T2

	) and κ = 2
3 . More precisely, we have

(i) (Lower Bound) Let (uε) ∈ Aε be such that lim supε→0 ‖uε‖L∞(T2
	)

� 1 and

lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] < +∞, (2.31)

and let με
0(x) be defined by (2.29) and (2.30).

Then, up to extraction of subsequences, we have

με
0 ⇀ μ in (C(T2

	))
∗,

as ε → 0, where μ ∈ M+(T2
	) ∩ H−1(T2

	). Moreover, we have lim supε→0
‖uε‖L∞(T2

	)
= 1 and

lim inf
ε→0

ε−4/3| ln ε|−2/3Eε[uε] � E0[μ].

(ii) (Upper Bound) Conversely, given μ ∈ M+(T2
	)∩ H−1(T2

	), there exist (uε) ∈
Aε such that lim supε→0 ‖uε‖L∞(T2

	)
= 1 and for με

0 defined by (2.29) and
(2.30), we have

με
0 ⇀ μ in (C(T2

	))
∗,

as ε → 0, and

lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] � E0[μ].

Based on the result of Theorem 3, we have the following analog of Corollary 2.1
for the diffuse interface energy Eε.

Corollary 2.3. Let ūε be given by (2.1) and let (uε) ∈ Aε be minimizers of Eε

defined in (2.4) with W (u) = 9
32 (1 − u2)2. Then, letting κ = 2

3 and δ̄c := 1
2 32/3κ2,

if uε
0 and με

0 are defined via (2.29) and (2.30), respectively, as ε → 0 we have
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(i) If δ̄ � δ̄c, then

με
0 ⇀ 0 in (C(T2

	))
∗, and ε−4/3| ln ε|−2/3	−2 min Eε → δ̄2

2κ2 . (2.32)

(ii) If δ̄ > δ̄c, then

με ⇀ 1
2 (δ̄ − δ̄c) in (C(T2

	))
∗, and ε−4/3| ln ε|−2/3	−2 min Eε

→ δ̄c
2κ2 (2δ̄ − δ̄c). (2.33)

In addition, we have the following analog of Theorem 2, which, in particular, applies
to minimizers of the diffuse interface energy Eε.

Theorem 4. Let (uε) ∈ Aε be a recovery sequence as in Theorem 3(ii) and let∫
T

2
	

dμ > 0. Then there exists a set of finite perimeter Ω+ such that if Ω+
i are its

connected components, then the conclusion of Theorem 2 holds with {Aε
i } and {Pε

i }
given by (2.10), and

lim
ε→0

|Ω+�{uε > 0}|
|Ω+| = 0. (2.34)

Theorem 4 essentially says that the zero superlevel set of uε from every recovery
sequence of Theorem 3 may be well approximated in the L1 sense by a union of
of droplets that are, in turn, close to disks of radius r = 31/3ε1/3| ln ε|−1/3 for
ε � 1. The L1 error arises because we do not have control on the perimeter of
every superlevel set of uε. At the same time, the choice of the zero superlevel set
of uε in the definition of the truncated version uε

0 of uε in (2.29) was arbitrary. We
could equivalently use the superlevel set {uε > c} for any c ∈ (−1, 1) fixed. Also,
we point out that the conclusions of Corollary 2.2 remain true for Ω+ in Theorem
4 under the assumptions of Theorem 3.

3. Some Auxiliary Lemmas

In this section we collect some technical results that are needed in the proofs
of our theorems. Before proceeding to those results, however, let us first show
that the assumption in (2.6) that needs to be imposed on W in order to have Γ -
equivalence between Eε and Eε defined in (2.2) and (2.4), respectively, and, hence,
the conclusion of Theorem 3 (see also [38]), is not restrictive. Indeed, given the
definition of Eε in (2.4), introduce a rescaling:

W = λ2W̃ , 	 = λ	̃, ε = λ2ε̃. (3.1)

Then it is easy to see that if ũ(x) := u(λx), then Eε[u] = λ4Ẽ ε̃[ũ], where Ẽ ε̃ is
obtained from (2.4) by replacing all the quantities with their tilde equivalents. In
particular, choosing λ = 3/(2

√
2) we can relate the original Ohta–Kawasaki energy

Ẽ ε̃, which has W̃ (u) = 1
4 (1−u2)2 [42], to the energy appearing in the statement of

Theorem 3. The choice of W satisfying (2.6) simply avoids many extra constants
appearing in the statements of results.
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As was already mentioned, the energy Eε may be alternatively written in terms
of the level sets of u. Indeed, when Eε[u] < +∞, the set Ω+ := {u = +1} is
a set of finite perimeter (for precise definitions and the terminology used below,
see [2]). We then have the following result about decomposing Ω+ into measure
theoretic connected components Ω+

i , which in view of the scaling of the upper
bound on energy will be shown to hold for all sufficiently small ε > 0. Note that
the latter assumption implies that each connected component on the torus has the
same geometric structure as do connected components of sets of finite perimeter
in the whole plane, thus excluding a possibility of stripe-like components winding
around the torus and, hence, justifying the use of the word “droplet”. We will also
make repeated use of the basic fact that the diameter of a connected component is
essentially controlled by its perimeter (that is, modulo a set of measure zero).

Lemma 3.1. Let Ω+ ⊂ T
2
	 be a set of finite perimeter, and assume that |Ω+| �

1
160	2 and |∂Ω+| � 1

10	. Then Ω+ may be uniquely decomposed (up to negligible
sets) into an at most countable union of connected sets Ω+

i of positive measure,
which, after a suitable translation and extension to R

2, are essentially bounded and
whose essential boundaries ∂ MΩ+

i are (up to negligible sets) at most countable
unions of Jordan curves that are essentially disjoint. Furthermore, we have

ess diam Ω+
i � 1

2
|∂Ω+

i |. (3.2)

Proof. Let Ω+
# be the periodic extension of Ω+ from T

2
	 to R

2, and let K R :=
(−R, R)2. Then for every R ∈ (	, 3

2	), the set Ω+
# ∩ K R ⊂ R

2 is a set of finite
perimeter, and we have

|∂(Ω+
# ∩ K R)| � 9|∂Ω+| + H1(Ω̊+

# ∩ ∂K R). (3.3)

On the other hand, by the co-area formula we have
∫ 3

2 	

	

H1(Ω̊+
# ∩ ∂Kt )dt = |Ω+

# ∩ K 3
2 	\K	| � 8|Ω+|. (3.4)

Therefore, there exists R ∈ (	, 3
2	) such that H1(Ω̊+

# ∩∂K R) � 16	−1|Ω+|. Using

the assumptions of the Lemma, we then conclude that H1(Ω̊+
# ∩ ∂K R) � 1

10	 and
by (3.3) we have |∂(Ω+

# ∩ K R)| � 	.
We now apply the results of [2, Corollary 1 and Theorem 8] to the set Ω+

# ∩ K R

to obtain its decomposition into connected components and denote by Ω+
i those

components for which |Ω+
i ∩K 1

2 	| > 0. In turn, by [2, Theorem 7 and Lemma 4] and
noting that in view of [2, Proposition 6(ii)] it is sufficient to consider only simple sets
(see [2, Definition 3]), we have that Ω+

i satisfy (3.2). Therefore, from our estimate
on |∂(Ω+

# ∩ K R)| we conclude that |Ω+
i ∩ K 3

2 	\K	| = 0, and so |∂Ω+
i | does not

have contributions from ∂K R . Together with the assumptions of the Lemma, this
then implies that each Ω+

i is essentially contained, after a suitable translation, in
K 1

4 	. Finally, identifying all translates of Ω+
i by ±	 in either coordinate direction

with the connected components of Ω+ in T
2
	 , we obtain the desired decomposition

of Ω+ ⊂ T
2
	 for which (3.2) also holds in the case of the perimeter relative to T

2
	 .
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In the context of Γ -convergence, the sets Ω+
i may be viewed as a suitable

generalization of the droplets introduced earlier in the studies of energy minimizing
patterns [38]. Note, however, that the sets Ω+

i lack the regularity properties of the
energy minimizers in [38] and may, in general, be fairly ill-behaved (in particular,
they do not have to be simply connected). Nevertheless, they are fundamental for
the description of the low energy states associated with Eε and, in particular, will
be shown to be close, in some average sense, to disks of prescribed radii for almost
minimizers of energy.

We now discuss the precise nature of the limit measures appearing in our analy-
sis. We say that μ ∈ M+(T2

	) ∩ H−1(T2
	), if the non-negative Radon measure μ

has bounded Coulombic energy, that is, if
∫

T
2
	

∫
T

2
	

G(x − y) dμ(x) dμ(y) < ∞. (3.5)

Our notation is justified by the following fundamental properties of such measures.

Lemma 3.2. Let μ ∈ M+(T2
	) and let (3.5) hold. Then

(i) μ can be extended to a bounded linear functional over H1(T2
	).

(ii) If

v(x) :=
∫

T
2
	

G(x − y) dμ(y), (3.6)

then v ∈ H1(T2
	). Furthermore, v solves

− �v + κ2v = μ, (3.7)

weakly in H1(T2
	), and

∇v(x) =
∫

T
2
	

∇G(x − y) dμ(y), (3.8)

in the sense of distributions.
(iii) If v is as in (ii), we have κ2

∫
T

2
	
v dx = ∫

T
2
	

dμ and

∫
T

2
	

∫
T

2
	

G(x − y) dμ(x) dμ(y) =
∫

T
2
	

(
|∇v|2 + κ2v2

)
dx . (3.9)

Proof. We first show that v defined in (3.6) has distributional first derivatives in
L2(T2

	). Introduce H(x) > 0 defined for all x ∈ T
2
	 by

H(x) := 1

2π

∑
n∈Z2

e−κ|x−n	|

|x − n	| , (3.10)

whose Fourier coefficients are easily seen to be

Ĥ(k) :=
∫

T
2
	

eik·x H(x) dx = 1√
κ2 + |k|2 , k ∈ 2π	−1

Z
2. (3.11)
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Indeed, H(x) may be viewed as the trace H̃(x, 0) of the solution of

− �H̃(x) + κ2 H̃(x) = 2
∑

n∈Z2×{0}
δ(x − n	), x ∈ R

3, (3.12)

which is given by the same formula as in (3.10). Denoting by H̃k(z) the Fourier
coefficients of H̃(x, z) in x ∈ T

2
	 , from (3.12) one obtains that H̃k(z) solves

− H̃ ′′
k (z) + (κ2 + |k|2)H̃k(z) = 2δ(z), (3.13)

whose explicit solution is H̃k(z) = e−z
√

κ2+|k|2/
√

κ2 + |k|2.
From (3.11) and the equation satisfied by G, one immediately concludes that

G(x) =
∫

T
2
	

H(x − y)H(y) dy. (3.14)

Furthermore, by direct inspection one can see that

|∇G(x)| � C H(x) ∀x ∈ T
2
	, (3.15)

for some C > 0. In addition, defining

b(x) :=
∫

T
2
	

H(x − y) dμ(y), (3.16)

by Tonelli’s theorem and (3.14), we have

∫
T

2
	

b2dx =
∫

T
2
	

∫
T

2
	

∫
T

2
	

H(x − z)H(y − z) dμ(x) dμ(y) dz

=
∫

T
2
	

∫
T

2
	

G(x − y) dμ(x) dμ(y), (3.17)

and, hence, by (3.5) we have b ∈ L2(T2
	). Therefore, if

h(x) :=
∫

T
2
	

∇G(x − y) dμ(y), (3.18)

then by (3.15) and (3.16) it is well defined, and we have h ∈ L2(T2
	; R

2) as well.
Now, testing (3.6) with ∇ϕ, where ϕ ∈ C∞(T2

	), yields

−
∫

T
2
	

∇ϕ(x)v(x) dx = −
∫

T
2
	

∫
T

2
	

∇ϕ(x)G(x − y)dμ(y)

=
∫

T
2
	

ϕ(x)h(x) dx, (3.19)
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which is justified by Fubini’s theorem, in view of the fact that h ∈ L2(T2
	; R

2).
Hence ∇v = h ∈ L2(T2

	; R
2) distributionally, proving (3.8). To prove that v ∈

H1(T2
	), observe that by Tonelli’s theorem∫

T
2
	

v2dx =
∫

T
2
	

∫
T

2
	

∫
T

2
	

G(x − z)G(y − z) dμ(x) dμ(y) dz

� C

(∫
T

2
	

dμ

)2

, (3.20)

for some C > 0. On the other hand, since by maximum principle G(x) � c > 0
for all x ∈ T

2
	 , we conclude that

c

(∫
T

2
	

dμ

)2

�
∫

T
2
	

∫
T

2
	

G(x − y) dμ(x) dμ(y). (3.21)

Therefore, by (3.5) we have that μ is bounded in the sense of measures, and so
from (3.20) it follows that v ∈ L2(T2

	) as well.
We may next show that (3.7) holds distributionally by testing v in (3.6) with

−�ϕ+κ2ϕ ∈ C∞(T2
	) and integrating by parts. Then, to conclude the proof of the

lemma, we test (3.7) with ϕ ∈ C∞(T2
	) and apply the Cauchy–Schwarz inequality

to obtain∣∣∣∣∣
∫

T
2
	

ϕ dμ

∣∣∣∣∣ =
∣∣∣∣∣
∫

T
2
	

(
∇ϕ · ∇v + κ2ϕv

)
dx

∣∣∣∣∣ � C‖v‖H1(T2
	)

‖ϕ‖H1(T2
	)

, (3.22)

for some C > 0. This yields (i), and, hence, (3.7) also holds weakly in H1(T2
	).

Finally, to obtain (iii), we interpret μ in (3.7) as an element of H−1(T2
	) and test

(3.7) with either 1 or v itself.

Remark 3.1. It is not difficult to extend the proof of Lemma 3.2 to the case of
measures with finite Coulombic energy defined on a sufficiently regular domain
Ω with either Dirichlet or Neumann boundary conditions for the potential. In this
case the role of H would be played by the kernel of the Neumann-to-Dirichlet map
for the operator −� + κ2 extended to Ω × R

+.

Observe that, for the nontrivial minimizers, we know from [38] that Ēε =
O(1), Ai = O(1) and Pi = O(1) (and even more precisely Ai � 32/3π and Pi �
2 · 31/3π ), the number of droplets is N = O(| ln ε|), and μ closely approximates
the sum of Dirac masses at the droplet centers with weights of order | ln ε|−1. If,
on the other hand, the considered configurations only obey an energy bound under
the optimal scaling, then the same estimates turn out to hold for the droplets on
average. The precise result is stated in the following lemma.

Lemma 3.3. Let (uε) ∈ A, let lim supε→0 Ēε[uε] < +∞, and let {Aε
i }, {Pε

i } and
με be given by (2.10) and (2.11) with u = uε. Then

lim sup
ε→0

1

| ln ε|
∑

i

Pε
i < +∞, lim sup

ε→0

1

| ln ε|
∑

i

Aε
i < +∞, (3.23)
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and

lim sup
ε→0

∫
T

2
	

dμε < +∞. (3.24)

Proof. By (2.12) and the positivity of Pε
i , we obtain the result, once we prove

(3.24). To prove the latter, we simply note that if
∫
T

2
	

dμε � 2δ̄/(cκ2), where c is

the same as in (3.21), then by (2.12) we have from the definition of Ēε in (2.14):

Ēε[u] � −2δ̄

κ2

∫
T

2
	

dμε + 2c

(∫
T

2
	

dμε

)2

� c

(∫
T

2
	

dμε

)2

, (3.25)

which yields (3.24).

4. Proof of Theorem 1

Throughout all the proofs below, the values of Aε
i and Pε

i are always the rescaled
areas and perimeters, defined in (2.10), of the connected components Ω+

i of Ω+ =
{u = +1} for a given u = uε, as in Lemma 3.3. The presentation is clarified by
working with the rescaled energy Ēε defined by (2.14) rather than Eε directly. We
begin by proving Part i) of Theorem 1, the lower bound.

4.1. Proof of Lower Bound, Theorem 1 (i)

Step 1. Estimate of Ēε in terms of Aε
i and Pε

i .
First, for a fixed γ ∈ (0, 1) we define a truncated rescaled droplet area:

Ãε
i :=

{
Aε

i , if Aε
i < 32/3πγ −1

(32/3πγ −1)1/2|Aε
i |1/2 if Aε

i � 32/3πγ −1,
(4.1)

and the isoperimetric deficit

I ε
def := 1

| ln ε|
∑

i

(
Pε

i −
√

4π Aε
i

)
� 0, (4.2)

which will be used throughout the proof. The purpose of defining the truncated
droplet area in (4.1) will become clear later.

We start by writing με = ∑
i με

i , with

dμε
i (x) := ε−2/3| ln ε|−1/3χΩ+

i
(x)dx, (4.3)

where Ω+
i are the connected components of Ω+ = {uε = +1}, and the index ε

was omitted from Ω+
i to avoid cumbersome notation. For small enough ε this is

justified by Lemma 3.1, in view of the fact that for some C > 0 we have

|∂Ω+| � ε−1 Eε[uε] � Cε1/3| ln ε|2/3, (4.4)
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so |∂Ω+
i | � 	 whenever ε � 1. In particular, (3.2) holds for Ω+

i when ε is
sufficiently small.

For a fixed ρ > 0 we introduce the “far field truncation” Gρ ∈ C∞(T2
	) of the

Green’s function G:

Gρ(x − y) := G(x − y)φρ(|x − y|) ∀(x, y) ∈ T
2
	 × T

2
	, (4.5)

where φρ ∈ C∞(R) is a monotonically increasing cutoff function such that
φρ(t) = 0 for all t < 1

2ρ and φρ(t) = 1 for all t > ρ. Then, for sufficiently
small ε we have |∂Ω+

i | � ρ in view of (4.4), and from (2.14) and (3.2) we obtain

Ēε[uε] � I ε
def + 1

| ln ε|

(∑
i

√
4π Aε

i − 2δ̄

κ2 Aε
i

)

+2
∑

i

∫∫
G(x − y)dμε

i (x)dμε
i (y)

+2
∫∫

Gρ(x − y)dμε(x)dμε(y), (4.6)

where we have used (3.2) and the positivity of G (cf. for example [38]), and here
and everywhere below we omit T

2
	 × T

2
	 as the domain of integration for double

integrals to simplify the notation.
We recall that the Green’s function for −� + κ2 on T

2
	 can be written as

G(x − y) = − 1
2π

ln |x − y| + O(|x − y|) [38]. With the help of this fact, together
with (4.4) and (3.2), for ε sufficiently small we have the following estimate for the
self-interaction energy:

Ēε
self : = 2

∑
i

∫∫
G(x − y)dμε

i (x)dμε
i (y)

� − 1

π

∑
i

∫∫
(ln |x − y| + C) dμε

i (x)dμε
i (y).

= − 1

π | ln ε|2
∑

i

∫
Ω

+
i

∫
Ω

+
i

(
ln(ε1/3| ln ε|2/3|x − y|) + C

)
dx̄ d ȳ, (4.7)

for some C > 0 independent of ε, where in (4.7) we have rescaled coordinates
x̄ = ε−1/3| ln ε|1/3x, ȳ = ε−1/3| ln ε|1/3 and introduced the rescaled versions Ω

+
i

of Ω+
i . Expanding the logarithm in (4.7) and using (3.23) and (3.2), we obtain that

Ēε
self can be bounded from below as follows:

Ēε
self � 1

| ln ε|
∑

i

|Aε
i |2

×
(

1

3π
− C

(
ln | ln ε|
| ln ε|

)
− 1

π |Aε
i |2| ln ε|

∫
Ω

+
i

∫
Ω

+
i

ln |x − y| dx dy

)
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� 1

| ln ε|
∑

i

|Aε
i |2

(
1

3π
− C

(
ln | ln ε|
| ln ε|

)
− 1

π | ln ε| ln Pε
i

)

� 1

| ln ε|
∑

i

|Aε
i |2

(
1

3π
− C

(
ln | ln ε|
| ln ε|

))
, (4.8)

for some C > 0 independent of ε (which changes from line to line).
Now observe that the term in parentheses appearing in the right-hand side of

(4.8) is positive for ε sufficiently small. Using this and the fact that Aε
i � Ãε

i , from
(4.8), we obtain

Ēε
self � 1

| ln ε|
∑

i

| Ãε
i |2

(
1

3π
− C

(
ln | ln ε|
| ln ε|

))
, (4.9)

where C > 0 is a constant independent of ε. It is also clear from the definition of
Ãε

i that there exists a constant c > 0 such that

| Ãε
i |2 � cAε

i . (4.10)

Combining this inequality with (4.9) and choosing any η > 0, for ε small enough
we have η > Cc ln | ln ε|

| ln ε|2 and, therefore, from (4.6) we obtain

Ēε[uε] � I ε
def + 1

| ln ε|
∑

i

(√
4π Aε

i −
(

2δ̄

κ2 + η

)
Aε

i + 1

3π
| Ãε

i |2
)

+2
∫∫

Gρ(x − y)dμε(x)dμε(y). (4.11)

Step 2. Optimization over Aε
i .

Focusing on the second term in the right-hand side of (4.11), we define

f (x) := 2
√

π√
x

+ 1

3π
x, (4.12)

and observe that f is strictly convex and attains its minimum of 32/3 at x = 32/3π ,
with

f ′′(x) = 3
√

π

2x5/2
. (4.13)

We claim that we can bound the second term in the right-hand side of (4.11) from
below by the sum I + I I + I I I of the following three terms:

I = 1

| ln ε|
(

32/3 − 2δ̄

κ2 − η

)∑
i

Aε
i

+ 1

| ln ε|
∑

Aε
i >32/3πγ −1

32/3(3−1γ −1 − 1)Aε
i , (4.14)
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I I = 1

| ln ε|
γ 5/2

4π2 · 32/3

∑
Aε

i <32/3πγ

Aε
i (Aε

i − 32/3π)2, (4.15)

I I I = 1

| ln ε|
γ 7/2

4π

∑
32/3πγ�Aε

i �32/3πγ −1

(Aε
i − 32/3π)2. (4.16)

Before proving this, observe that defining

Mε := Ēε[uε] − 1

| ln ε|
(

32/3 − 2δ̄

κ2 − η

)

∑
i

Aε
i − 2

∫∫
Gρ(x − y)dμε(x)dμε(y), (4.17)

we have from (4.11) and (4.14)–(4.16) that if I ε
γ is as in Theorem 2, then

Mε � c1

| ln ε|
∑
i /∈I ε

γ

Aε
i

+ c2

| ln ε|
∑
i∈I ε

γ

(Aε
i − 32/3π)2 + I ε

def � 0 ∀γ ∈ (
0, 1

3

)
, (4.18)

for some constants c1, c2 > 0 depending only on γ . ��
We now argue in favor of the lower bound based on (4.14)–(4.16). First observe

that by (4.1) we have for all Aε
i � 32/3πγ −1:

√
4π Aε

i + 1

3π
| Ãε

i |2 −
(

2δ̄

κ2 + η

)
Aε

i

�
(

32/3 − 2δ̄

κ2 − η

)
Aε

i + 32/3(3−1γ −1 − 1)Aε
i . (4.19)

When Aε
i < 32/3πγ −1, which corresponds to both (4.15) and (4.16), we use the

convexity of f and (4.13):

√
4π Aε

i + 1

3π
| Ãε

i |2 −
(

2δ̄

κ2 + η

)
Aε

i = Aε
i

(
2
√

π√
Aε

i

+ 1

3π
Aε

i − 2δ̄

κ2 − η

)

= Aε
i

(
f (Aε

i ) − 2δ̄

κ2 − η

)

�
(

32/3 − 2δ̄

κ2 − η

)
Aε

i + 1

2
Aε

i f ′′(32/3πγ −1)(Aε
i − 32/3π)2, (4.20)

where the last line follows from the second order Taylor formula for f (x) about
x = 32/3π and the fact that f ′′(x) is decreasing. Combining (4.17), (4.19) and
(4.20) yields Mε � I + I I + I I I .
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Now using (4.17) and (4.18) with γ sufficiently small, we deduce that

Ēε[uε] � 1

| ln ε|
(

32/3 − 2δ̄

κ2 − η

) ∑
i

Aε
i + 2

∫∫
Gρ(x − y)dμε(x)dμε(y).

(4.21)

Step 3. Passage to the limit.
We may now conclude from (2.13)–(2.15), (2.17), (3.7), (3.9) and (3.23) that

lim sup
ε→0

∫
T

2
l

(|∇vε|2 + κ2|vε|2)dx < +∞, (4.22)

while (με) are bounded in the sense of measures from (3.24). Consequently, up to
a subsequence

vε ⇀ v in H1(T2
	), (4.23)

με ∗
⇀ μ in C(T2

	), (4.24)

where

− �v + κ2v = μ (4.25)

holds in the distributional sense. Now passing to the limit in (4.21) and recalling
(2.12), we obtain

lim inf
ε→0

Ēε[uε] �
(

32/3 − 2δ̄

κ2 − η

) ∫
dμ + 2

∫∫
Gρ(x − y)dμ(x)dμ(y),

(4.26)

using continuity of Gρ . On the other hand, we have Gρ(x − y) → G(x − y)

monotonically from below for each x �= y as ρ → 0. Moreover, since μ satisfies
(3.5), the set {(x, y) ∈ T

2
	 × T

2
	 : x = y} is μ ⊗ μ-negligible. An application of

monotone convergence theorem then yields

lim inf
ε→0

Ēε[uε] �
(

32/3 − 2δ̄

κ2

) ∫
dμ + 2

∫∫
G(x − y)dμ(x)dμ(y), (4.27)

upon sending ρ → 0 and then η → 0.
We now argue in favor of the corresponding upper bound in Theorem 1. The

construction resembles quite closely that of the vortex construction in [47] for the
two dimensional Ginzburg–Landau functional and, indeed, we borrow several ideas
from that proof and occasionally refer the reader to that paper for details.
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4.2. Proof of the Upper Bound, Theorem 1 (ii)

As in the proof of the lower bound, we set dμε
i (x) as in (4.3), so that με = ∑

με
i .

If
∫
T

2
	

dμ = 0, there is nothing to prove. Otherwise, using a mollification with a
strictly positive mollifier, we can always approximate the measure μ by a measure
with a smooth strictly positive density and retrieve a recovery sequence by a standard
diagonal argument. Hence, without loss of generality, in this section we assume that

dμ(x) = g(x)dx, c � g � C, (4.28)

for some C > c > 0.

Step 1. Construction of the configuration.
We claim that for ε sufficiently small it is possible to place a total of N (ε) disjoint
spherical droplets, where

N (ε) = 1

32/3

| ln ε|
π

μ(T2
	) + o(| ln ε|), (4.29)

with centers {ai } in T
2
	 and radius

r = 31/3ε1/3| ln ε|−1/3, (4.30)

and satisfying for all i �= j

d(ε) := min |ai − a j | � C√
N (ε)

, (4.31)

for some constant C > 0 depending only on μ. Indeed, given μ satisfying (4.28),
for ε sufficiently small, we can partition T

2
	 into disjoint squares {Ki } of side length

ηε > 0 (hereafter simply denoted η), satisfying

| ln ε|−1/2 � η � 1. (4.32)

In each Ki we place

NKi (ε) =
⌊

1

32/3

| ln ε|
π

μ(Ki )

⌋
(4.33)

points ai (here m = �x� denotes the smallest integer m � x) satisfying (4.31) and,
in addition,

dist (ai , ∂Ki ) � C√
N (ε)

, N (ε) :=
∑

i

NKi . (4.34)

As argued in [47], our ability to do this follows from the estimate

cη2 � μ(Ki ) � Cη2, (4.35)

which follows from (4.28) together with (4.32). We finally define our configuration
uε by setting the connected components Ω+

i of Ω+ = {uε = +1} to be balls of
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radius r from (4.30) centered at ai , that is, Ω+
i := Br (ai ). We set uε = −1 in the

complement of these balls.
With these choices we have

Ēε[uε] = 2π · 31/3 N (ε)

| ln ε| − 2π · 32/3 N (ε)δ̄

| ln ε|κ2 + 2
∫∫

G(x − y)dμε(x)dμε(y)

= 2

31/3 μ(T2
	) − 2δ̄

κ2 μ(T2
	) + 2

∫∫
G(x − y)dμε(x)dμε(y) + o(1).

(4.36)

The main point of the rest of the proof is to show that the integral term in (4.36)
converges to

∫∫
G(x − y)dμ(x)dμ(y) + 3−1/3

∫
dμ, with the non-trivial last term

coming from the self-interaction of the droplets. To prove that these are the only
contributions to the limit energy, we need to use the fact that the droplets do not
concentrate too much as ε → 0.

Step 2. Convergence of the configurations.
Defining με as before, it is clear from the construction that

με ⇀ μ in (C(T2
	))

∗. (4.37)

Fix ρ > 0 sufficiently small (depending only on κ and 	) and consider Gρ(x − y)

defined as in (4.5). By the continuity of Gρ in T
2
	 we have

lim
ε→0

∫∫
Gρ(x − y)dμε(x)dμε(y) =

∫∫
Gρ(x − y)dμ(x)dμ(y). (4.38)

Now, let Iρ be the collection of indices (i, j) such that 0 < |ai − a j | < ρ. Then
for ε small enough we can write

∫∫ (
G(x − y) − Gρ(x − y)

)
dμε(x)dμε(y)

�
N (ε)∑
i=1

∫∫
G(x − y)dμε

i (x)dμε
i (y) +

∑
(i, j)∈Iρ

∫∫
G(x − y)dμε

i (x)dμε
j (y)

� 1

6π | ln ε|
N (ε)∑
i=1

|Aε
i |2

+C ln | ln ε|
| ln ε| + C ′

| ln ε|2
∑

(i, j)∈Iρ

Aε
i Aε

j

∣∣∣ln dist (Ω+
i ,Ω+

j )

∣∣∣ , (4.39)

for some C, C ′ > 0 independent of ε or ρ, where Aε
i = 32/3π and we have

expanded the Green’s function as in (4.7) in the proof of the lower bound. Now,
for k = 1, 2, . . . , Kρ(ε), with Kρ(ε) := �ρ/d(ε)�, let I k

ρ ⊂ Iρ be disjoint sets
consisting of all indices (i, j) such that kd(ε) � |ai −a j | < (k+1)d(ε). Since by the
result on optimal packing density of disks in the plane [18] we have |I k

ρ | � ck N (ε)



Two-dimensional Ohta–Kawasaki energy 607

for some universal c > 0 (here again |I k
ρ | denotes the cardinality of I k

ρ ), in view of
(4.29) it holds that

1

| ln ε|2
∑

(i, j)∈Iρ

Aε
i Aε

j

∣∣∣ln dist (Ω+
i ,Ω+

j )

∣∣∣ � C N (ε)

| ln ε|2
Kρ(ε)∑
k=1

k| ln(kd(ε))|

� 2C N (ε)

| ln ε|2d2(ε)

∫ ρ

d(ε)

t | ln t |dt � C ′
( | ln d(ε)|

| ln ε| + ρ2| ln ρ|
)

� 2C ′ρ2| ln ρ|,
(4.40)

for some C, C ′ > 0 independent of ε or ρ, when ε and ρ are sufficiently small.
Therefore, from (4.30) and (4.39) we obtain

lim sup
ε→0

∫∫ (
G(x − y) − Gρ(x − y)

)
dμε(x)dμε(y) � 2−1 · 3−1/3 + o(ρ).

(4.41)

Finally, combining (4.41) with (4.36) and (4.38), upon sending ε → 0, then ρ → 0
and applying the monotone convergence theorem, we have

lim
ε→0

Ēε[uε] �
(

32/3 − 2δ̄

κ2

) ∫
dμ + 2

∫∫
G(x − y)dμ(x)dμ(y), (4.42)

as required. The fact that vε ⇀ v follows from (4.37) and the uniform bounds just
demonstrated on the terms involving the Green’s function in (4.36), from which it
follows that (2.18) is satisfied distributionally. ��

5. Proof of Theorem 2

In the proof of Section 4, we have in fact established Theorem 2, which is clear
by (4.18). Indeed, we have for a sequence of almost minimizers (uε),

lim
ε→0

Eε[uε] − E0[μ] = 0. (5.1)

Observing that Mε defined in (4.17) does not contribute to E0[μ], we have estab-
lished that Mε → 0 as ε → 0 for any γ < 1

3 and, as a consequence, we obtain
(2.22)–(2.24) for, say, γ = 1

6 . Then it is easy to see from the definition of I ε
γ that

the statement of the Theorem, in fact, holds for any γ ∈ (0, 1). ��

6. Proof of Theorem 3

We now turn to the proof of Theorem 3 extending the result of Theorem 1 for the
sharp interface energy Eε to the diffuse interface energy Eε. The proof proceeds by
a refinement of the ideas of [38, Section 4] to establish matching upper and lower
bounds for Eε in terms of Eε for sequences with bounded energy.
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Step 1. Approximate lower bound.
In the following, it is convenient to rewrite the energy (2.4) in an equivalent form

Eε[uε] =
∫

T
2
	

(
ε2

2
|∇uε|2 + W (uε) + 1

2
|∇vε|2

)
dx,

−�vε = uε − ūε,

∫
T

2
	

vεdx = 0. (6.1)

Fix any δ ∈ (0, 1) and consider a sequence (uε) ∈ Aε such that lim supε→0
‖uε‖L∞(T2

	)
� 1 and Eε[uε] � Cε4/3| ln ε|2/3 for some C > 0 independent of ε.

Then we claim that

lim sup
ε→0

‖uε‖L∞(T2
	)

= 1, lim
ε→0

‖vε‖L∞(T2
	)

= 0. (6.2)

Indeed, for the first statement we have from the definition of Eε in (2.4) that

|Ωδ
0 | � Cε4/3| ln ε|2/3δ−2, Ωδ

0 := {−1 + δ � uε � 1 − δ}, (6.3)

for some C > 0 independent of ε. Hence, in particular, lim supε→0 ‖uε‖L∞(T2
	)

� 1,
proving the first statement of (6.2). To prove the second statement in (6.2), we note
that by standard elliptic theory (see, for example, [21, Theorem 9.9]), we have
‖vε‖W 2,p(T2

	)
� C ′ for any p > 2 and some C ′ > 0 independent of ε and, hence,

by Sobolev embedding, ‖∇vε‖L∞(T2
	)

� C ′′ for some C ′′ > 0 independent of ε as
well. Therefore, applying Poincaré’s inequality, we obtain

Cε4/3| ln ε|2/3 � Eε[uε] � C ′
∫

T
2
	

|vε|2dx � C ′′‖vε‖4
L∞(T2

	)
, (6.4)

for some C ′, C ′′ > 0 independent of ε, yielding the claim.
In view of (6.2), for small enough ε we have ‖uε‖L∞(T2

	)
� 1 + δ3 and

‖vε‖L∞(T2
	)

� δ3, and by the assumption on energy, we may further assume that

Eε[uε] � δ12. Therefore, by [38, Proposition 4.2] there exists a function ũε
0 ∈ A

such that

Eε[uε] � (1 − δ1/2)Eε[ũε
0]. (6.5)

In particular, (ũε
0) satisfies the assumptions of Theorem 1, and, therefore, upon

extraction of subsequences we have μ̃ε
0 ⇀ μ ∈ M+(T2

	)∩ H−1(T2
	) in (C(T2

	))
∗,

where

dμ̃ε
0(x) := 1

2ε−2/3| ln ε|−1/3(1 + ũε
0(x))dx . (6.6)

Furthermore, recalling that by construction the jump set of ũε
0 is either contained

in Ωδ
0 or empty, see the proof of [38, Lemma 4.1], from (6.3) we have

‖ũε
0 − uε

0‖L1(T2
	)

� Cε4/3| ln ε|2/3δ−2, (6.7)
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where uε
0 is given by (2.29), for some C > 0 independent of ε. Comparing (6.7)

with (6.6), we then see that με
0 ⇀ μ in (C(T2

	))
∗, as well. The result of part (i) of

Theorem 3 then follows by the arbitrariness of δ > 0 via a diagonal process. ��
Step 2. Approximate upper bound.
First note that if μ = 0, we can choose uε = ūε. Indeed, we have ε−4/3| ln ε|−2/3

Eε[ūε] = 	2W (ūε) = 	2 δ̄2

2κ2 +o(1) and ūε → −1. On the other hand, if
∫
T

2
	

dμ > 0,
we can construct the approximate upper bounds for a suitable lifting of the recovery
sequences in the proof of Theorem 1(ii) to Aε. Let (ũε

0) ∈ A be a recovery sequence
constructed in Section 4.2. This sequence consists of circular droplets of the optimal
radius r = 31/3ε1/3| ln ε|−1/3 � ε1/2 and mutual distance d � C | ln ε|−1/2 �
ε1/2, for some C > 0 independent of ε. In addition, since

Eε[ũε
0] = ε

2

∫
T

2
	

|∇ũε
0| dx+2

∫
T

2
	

(
|∇ṽε|2+κ2|ṽε|2

)
dx �Cε4/3| ln ε|2/3, (6.8)

where ṽε(x) = ∫
T

2
	

G(x − y)(ũε
0(y)− ūε)dy, for some C > 0 independent of ε, by

the argument of (6.4) one can see that limε→0 ‖ṽε‖L∞(T2
	)

= 0. Therefore, for any

δ ∈ (0, 1) and ε > 0 sufficiently small we have ‖ṽε‖L∞(T2
	)

� δ and Eε[ũε
0] � δ5/2.

We can then apply [38, Proposition 4.3] to obtain a function uε ∈ Aε such that

Eε[uε] � (1 + δ1/2)Eε[ũε
0]. (6.9)

Furthermore, by the construction of uε (see [38, Eqs. (4.31)–(4.33)]) and arbitrari-
ness of δ > 0, we also have lim supε→0 ‖uε‖L∞(T2

	)
= 1, and

‖ũε
0 − uε

0‖L1(T2
	)

� Cε4/3| ln ε|2/3, (6.10)

for some C > 0 independent of ε, where uε
0 is given by (2.29), and we used (6.8).

Hence με
0 ⇀ μ = limε→0 μ̃ε

0 in (C(T2
	))

∗. The result of part (ii) of Theorem 3
again follows by arbitrariness of δ > 0 via a diagonal process. ��
Remark 6.1. It is possible to chose δ = εα for α > 0 sufficiently small in the
arguments of the proof of Theorem 3. Therefore, given a sequence of minimizers
(uε) ∈ Aε of Eε and the corresponding sequence (uε

0) ∈ A of minimizers of Eε,
one has

ε−4/3| ln ε|−2/3Eε[uε] = ε−4/3| ln ε|−2/3 Eε[uε
0] + O(εα), (6.11)

for some α � 1, as ε → 0.

7. Proof of Theorem 4

Let (uε) be a sequence from Theorem 3(ii). Arguing as in Step 1 of the proof
of Theorem 3, for every δ > 0 sufficiently small there exists a sequence (ũε

0) ∈ A
such that (6.5) holds, the jump set of ũε

0 is contained in {−1+δ � uε � 1−δ}, and
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if μ̃ε
0 is defined via (6.6), then μ̃ε

0 ⇀ μ in (C(T2
	))

∗. On the other hand, applying
the result of Theorem 1(i), we obtain

E0[μ] � lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε]

� (1 − δ1/2) lim sup
ε→0

ε−4/3| ln ε|−2/3 Eε[ũε
0]

� (1 − δ1/2) lim inf
ε→0

ε−4/3| ln ε|−2/3 Eε[ũε
0] � (1 − δ1/2)E0[μ]. (7.1)

Therefore, in view of arbitrariness of δ > 0, we conclude that (ũε
0) is a sequence

of almost minimizers of Eε with prescribed density μ by a diagonal process. As a
consequence, Theorem 2 applies to (ũε

0). Moreover, by (6.7) and the fact that

lim
ε→0

ε−2/3| ln ε|−1/3|{uε > 0}| =
∫

T
2
	

dμ > 0, (7.2)

we obtain (2.34). ��
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