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Abstract
We study the properties of domain walls and domain patterns in ultrathin 
epitaxial magnetic films with two orthogonal in-plane easy axes, which we call 
fourfold materials. In these materials, the magnetization vector is constrained 
to lie entirely in the film plane and has four preferred directions dictated by 
the easy axes. We prove the existence of 90� and 180� domain walls in these 
materials as minimizers of a nonlocal one-dimensional energy functional. 
Further, we investigate numerically the role of the considered domain wall 
solutions for pattern formation in a rectangular sample.

Keywords: magnetic domains, thin films, non-local variational problems

Mathematics Subject Classification numbers: 78A30, 35Q60, 82D40

(Some figures may appear in colour only in the online journal)

1.  Introduction

Thin-film ferromagnetic materials have played a central role in information storage technolo-
gies for many years [1–3]. In this context, much attention has been devoted to studying these 
materials by both the physics and mathematics communities [1, 4]. Magnetic storage media 
make use of magnetic domains—regions of uniform magnetization separated by thin transition 
layers called domain walls—to represent bits of information. Typically, thin films possess one 
distinguished in-plane direction along which the magnetization prefers to align; this direc-
tion is referred to as an easy axis, and materials possessing a single easy axis as uniaxial. In 
such a material, this results in two distinct optimal domain orientations, which may be used 
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to store binary information. More recently, more preference has been given to perpendicular 
materials—magnetic storage materials in which the easy axis is in the out-of-plane direction  
[2, 5]. Nevertheless, thin film materials with in-plane anisotropy continue to be important for 
many applications, such as magnetoresistive random access memory [6–10] and spintronics [11].

In this article, we study one-dimensional domain walls in thin ferromagnetic films in which 
the magnetization is strongly penalized from pointing out of the film plane, with two orthogo-
nal in-plane easy axes (and thus four optimal magnetization directions). We refer to these 
materials as ultrathin fourfold films. Such behaviour is, for example, experimentally realized 
in very thin (3–19 monolayers thick) films of epitaxial cobalt and gives rise to unusual magn
etic domain morphologies in which the magnetization vector has a tendency to rotate by inte-
ger multiplies of 90� in the film plane [12, 13].

In order to understand the magnetization behaviour of thin-film materials from a theor
etical point of view, one would like to study the formation of domain patterns, and the struc-
ture of the domain walls which connect them. We start from the Landau–Lifshitz–Gilbert 
(LLG) equation for the dynamics of the magnetization vector tM x,( ), which is of fixed length 

( )| | =t MM x, s and defined on a spatial domain 3⊂Ω R  representing the ferromagnetic body 
under study. The LLG equation for M reads

t

M
M H M M H n M

1
, 0,

2
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α
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∂
∂
= −

+
× + × × ⋅ ∇ | =∂Ω� (1)

where γ is the gyromagnetic ratio, α is the dimensionless Gilbert damping parameter, and H 
is the effective magnetic field. This field is obtained via EH M/δ δ= − , where E M( ) is the 
micromagnetic energy functional:
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Here, A is the exchange constant; K is a crystalline anisotropy constant, with M( )Φ  a scalar 
function describing the anisotropy; and Ha

3∈R  is an external applied magnetic field. The 
terms in the energy may be understood as follows. The first term is the exchange energy, 
which penalizes spatial variations of M; the second is the anisotropy energy, which describes 
the preferred directions for M within a material; the third is the Zeeman energy, which prefers 
M to align with the external field; and the fourth (in which M is extended by zero outside of 
Ω and the derivatives are understood in the distributional sense) is the nonlocal magnetostatic 
energy, which prefers to minimize the distributional divergence of M. See e.g. [1] for further 
details of the micromagnetic model.

We can consider observable static domain patterns as stationary (i.e. with 0
t

M =∂
∂

) solu-

tions of (1), and note that, in this case, equation (1) coincides with the Euler–Lagrange equa-
tion  for E incorporating the pointwise constraint = MM s. This will enable us to employ 
variational techniques to characterize solutions.

We consider a reduction of the micromagnetic theory appropriate for very thin films. Many 
such reductions have been presented before [14–18], corresponding to a variety of regimes 
of the physical parameters in the energy (2). In order to understand the parameter regime we 
study here, we introduce the following quantities:
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respectively called the exchange length, Bloch wall width, and quality factor. In extended 
films, we may take the spatial domain d0,2 ( )Ω = ×R , where d is the film thickness. The 
physical regime we consider is then characterized by the scalings d L�� � , with Ld 12/ ∼� . 
This regime (ultrathin, moderately soft film) is relevant for a variety of materials [19]. In this 
regime, one may introduce the dimensionless thin-film parameter

M d

KL

Ld d

Q

4
,s

2

2
ν

π
= = =

� �
� (4)

which characterizes the strength of the magnetostatic interaction relative to both exchange 
and anisotropy.

One may then formally derive a reduced LLG equation from (1) by considering the limit 
Q 0→  and d 0→  together with O 1( )ν =  fixed [20, 21]. Letting Mm M s/=  and assuming 

m mm , , 01 2( )= , i.e. that m lies entirely within the film plane, after suitable rescalings one 
finds the effective overdamped equation

t

m
m m h.

∂
∂
= − × ×� (5)

Here, h is the effective field obtained now as h m/δ δ= − E , where E is the reduced thin-film 
energy
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and now m : 2 1→R S  is the in-plane magnetization direction field. In what follows, we con-
sider the case of

m m e m e ,1
2

2
2( ) ( ) ( )Φ = ⋅ ⋅� (7)

corresponding to fourfold anisotropy. This type of magnetocrystalline anisotropy is very com-
mon for ultrathin epitaxial films [19]. Ultrathin films with this type of anisotropy has been 
proposed for applications to multi-level magnetoresistive random access memories [22, 23] 
and could be of interest to domain wall based devices [10, 24].

In uniaxial thin films, the behaviour of 180� domain walls has been extensively studied. 
For simple one-dimensional profiles connecting the two optimal directions, there are two pos-
sibilities: the Bloch wall, in which the magnetization transitions between the optimal domains 
by rotating out of the film plane, and the Néel wall, in which the rotation occurs entirely within 
the plane. Which wall type is energetically preferred depends essentially on how severe the 
penalty for rotating out of plane is, which in turn depends on the film thickness. In the ultrathin 
regime we consider in this article, this penalty is strong enough to simply forbid any out of 
plane component of m, so that the Néel wall profile is the only choice.

Néel walls have been studied for many years, with a degree of controversy (see e.g. [1, 25]).  
More recent micromagnetic studies have led to a good present understanding of the Neel 
wall’s internal structure [1, 4, 26–31], the main features of which (sharp inner core with 
slowly decaying tails) have been verified experimentally [32–34].

Rigorous mathematical studies of the Néel walls began with the work of Garcia-Cervera, 
who studied, both analytically and numerically, the one-dimensional variational problem 
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obtained from the full micromagnetic energy by restricting to profiles which depend only on 
one spatial variable [26, 27]. The same functional was studied by Melcher, who restricted 
the admissible magnetization configurations to those constrained to the film plane, and estab-
lished symmetry and monotonicity of minimizers connecting the two optimal directions [28]. 
Uniqueness of the Néel wall profile and its linearized stability with respect to one-dimensional 
perturbations was treated by Capella, Otto and Melcher [29]. Stability of geometrically 
constrained Néel walls with respect to large two-dimensional perturbations has been demon-
strated asymptotically in [35]. Most recently a comprehensive study of Néel walls under the 
influence of applied magnetic fields was undertaken by Chermisi and Muratov [30]. They 
proved existence, uniqueness, strict monotonicity and smoothness of the wall profile along 
with estimates for its asymptotic decay.

To summarize, in ultrathin uniaxial films the magnetization is effectively constrained to 
lie completely in the film plane, and one encounters 180� Néel walls as the optimal transition 
layer profiles connecting the two uniform states. These are now well understood. Beyond that, 
it is possible to observe stable winding domain walls, in which the magnetization makes a 
number of full 360� rotations (most often just one, though more are possible) [36–38]. This 
type of domain walls has received recent theoretical attention in [39, 40]. A reproducible way 
to inject 360° walls into ferromagnetic nanowires and successful manipulation of such domain 
walls were recently demonstrated experimentally in [41, 42].

In fourfold films with in-plane magnetizations, we can make the following analogies with 
the uniaxial case. In fourfold materials, the 90�-walls are expected to exist as optimal profiles 
connecting two adjacent minima of the potential Φ (e.g. e1+  and e2+ ). This is analogous to 
the 180� Néel walls in uniaxial materials. For a 180�-wall in a fourfold material, the mag-
netization has to connect two nonadjacent minima of Φ while passing directly through a third 
somewhere in between (i.e. connect e1+  and e1− , while passing through e2+ ). Moreover, this 
should occur without the wall simply splitting into two separate 90�-walls. This is analogous 
to the 360�-walls in uniaxial materials.

In this article we extend the methods contained in previous work concerning 180� and 360� 
domain walls in uniaxial materials to the setting of fourfold materials, and prove existence 
results for both 90� and 180� walls in these materials. These walls, despite some apparent anal-
ogies with those found in uniaxial films, have not been previously investigated theoretically.

1.1.  Reduced model for one-dimensional domain walls

Since stationary solutions of (5) coincide with critical points of (6), in order to study stationary 
one-dimensional domain wall profiles, we now seek to derive a 1D variational problem from 
(6) which is appropriate to capture such profiles via minimization.

In what follows we explicitly restrict to stationary profiles, x x t x xm m, , ,1 2 1 2( ) ( )= . It is con-
venient to introduce the in-plane magnetization angle : 2 →θ R R via

m e esin cos .1 2θ θ= − +� (8)

We now assume a one-dimensional profile x x,1 2( ) ( )θ θ ξ=  varying only along the direction 
e e ecos sin1 2β β= +ξ ; we refer to the angle β as the wall orientation. With these assump-
tions, the LLG equation (5) for a stationary 1D profile x( )θ  reduces to

θ θ
ν

θ β θ β= − + + − − −
⎛
⎝
⎜

⎞
⎠
⎟

x
0

1

4
sin 4

2
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d

d
sin ,xx

2

2

1/2

( ) ( )� (9)
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where 
x

d

d

1 22

2( ) /
−  is the negative 1D half-Laplacian (a linear operator from H1( )R , modulo addi-

tive constants, to L2( )R  whose Fourier symbol is k| |). Equation (9) is also the Euler–Lagrange 
equation corresponding to the energy
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where we introduced the homogeneous H1 2( )/ R  (semi-)norm [43]:

u u
x

u x
u x u y

x y
x y

d

d
d

1

2
d d .

Ḣ
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It is not too difficult to see that this energy corresponds to the energy (6) of a 1D profile per 
unit width in the transverse direction.

This model forms the basis of the rest of this article. It is necessary to specialize it further 
to individually examine the two types of wall we study: 90� and 180� walls. To state our main 
results, we need to introduce the following general admissible class of functions for a given 
α∈R:

H H: ,loc
1 1{ ( ) ( )}θ θ η= ∈ − ∈α αA R R

where C ( )η ∈α
∞ R  is a fixed function which satisfies

x
x
x

for , 1 ,
0 for 1, .

( )   ( )
  ( )

⎧
⎨
⎩

η
α

=
∈ −∞ −
∈ +∞α

It is easy to see that the definition of the admissible class αA  does not depend on the specific 
choice of ηα [30]. Also, by Morrey’s theorem we may always assume that if θ∈ αA , then 

C L( ) ( )θ∈ ∩ ∞R R  and that xlim 0x ( )→ θ =+∞  and xlimx ( )→ θ α=−∞ .
In the following, we will look for minimizers of the one-dimensional domain wall energy βE  

in the admissible classes αA  with 2/α π=  and α π=  to study 90� and 180� walls, respectively.

2.  Main results

We are now in a position to state the main results of this work. The first result below concerns 
90�-walls, and provides existence of these as energy minimizing configurations. These profiles 
only exist for a particular orientation 4/β π= −  (modulo 2/π  rotations). Furthermore, we are 
able to extract further information on the profiles including uniqueness, smoothness, and strict 
monotonicity.

Theorem 1 (90°-walls: existence, uniqueness, regularity and strict monotonicity).  For 
4/β π= −  and each 0ν> , there exists a minimizer of the energy ( )θβE  over the admissible 

class 2/πA . The minimizer is unique (up to translations), strictly decreasing with range equal 
to 0, 2( / )π , and is a smooth solution of (9) satisfying the limit conditions

x xlim 0, lim 2.
x x

( ) ( ) /
→ →

θ θ π= =
+∞ −∞� (12)

Moreover, if : 0, 20 → ( / )( )θ πR  is the minimizer of 4( )/ θπ−E  over 2/πA  satisfying 0 40 ( ) /( )θ π= , 
then x x20 0( ) / ( )( ) ( )θ π θ= − − .
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The choice of the admissible class 2/πA  serves to enforce the asymptotic behavior in (12). 
We note that for other wall orientations β the wall would carry a net line ‘charge’ and, hence, 
the last term in the one-dimensional wall energy (10) would always be infinite on 2/πA .

The next result is similar to the first, but concerning 180�-walls. Again the orientation of 
the walls is restricted, this time to 0β =  (modulo 2/π  rotations). Many of the properties of 90� 
walls follow here, though uniqueness of the profile is not presently clear.

Theorem 2 (180°-walls: existence, regularity and strict monotonicity).  For 0β =  and 
each 0ν> , there exists a minimizer of the energy ( )θβE  over the admissible class πA . The 
minimizer is strictly decreasing with range equal to 0,( )π , and is a smooth solution of (9) 
satisfying the limit conditions

x xlim 0, lim .
x x

( ) ( )
→ →

θ θ π= =
+∞ −∞� (13)

Moreover, if : 0,0 → ( )( )θ πR  is the minimizer of 0( )θE  over πA  satisfying 0 20 ( ) /( )θ π= , then 
x x0 0( ) ( )( ) ( )θ π θ= − − .

Similarly to the case of 90°-walls, the choice of the admissible class πA  ensures the condi-
tions (13) at infinity, and for other choices of wall orientation there is a net line charge as well.

The remainder of this article is structured as follows. In section 3, we present proofs of the 
results given above, using primarily variational methods. In section 4, we conduct a numerical 
study of 1D domain walls in fourfold materials using 1D simulations, and perform 2D simula-
tions of a rectangular film element to observe static magnetization configurations involving 
these walls. Finally in section 5 we conclude and suggest some further extensions to this work.

3.  Proofs of main results

The following section is devoted to motivating the statements of theorems 1 and 2, and pre-
senting their proofs.

3.1.  �90  walls: proof of theorem 1

Let us begin by motivating the precise statement of the theorem. Firstly we note that in princi-
ple, the result one would like to obtain is existence of a solution to (9) which satisfies (without 
loss of generality) the conditions

x xlim 0, lim 2,
x x

( ) ( ) /
→ →

θ θ π= =
+∞ −∞� (14)

and is in some sense physical, i.e. having finite energy per unit length of the domain wall. Let 
us recall the energy per unit length in (10) for a 1D wall of orientation β. In explicit terms, it 
reads

∫

∫ ∫

θ θ θ

ν
π

θ β θ β

= | | +

+
− − −

−

′β
R

R R

⎜ ⎟
⎛
⎝

⎞
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x y

x y
x y

1

2

1

4
sin 2 d

8

sin sin
d d .

2 2

2

2

( )

( ( ( ) ) ( ( ) ))
( )

�

(15)

We would like to choose an admissible class of minimizers corresponding to 90� transition 
layers with finite energy which connect two of the global minima of βE  (given by x N 2( ) /θ π=  
for any N∈Z). Without loss of generality, we can consider profiles satisfying (14). For 
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H loc
1 ( )θ∈ R  the local part of the energy is locally well-defined. In order that the nonlocal term 

be finite for such profiles, we must constrain the wall orientation β appropriately so as to avoid 
incurring a net magnetic charge across the wall. To accomplish this we take 4/β π= − .

The 1D 90�-wall energy may be expressed as

∫θ θ θ
ν

θ π= | | + + +′π−
R R
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⎛
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⎞
⎠E x
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2

1

4
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4
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˙
2

1/2( ) ∥ ( )∥
( )� (16)

and the Euler–Lagrange equation associated to 4/π−E  is now given formally by
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4
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2
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d
sin /4 ,xx

2

2

1/2
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with limit conditions (14).
The motivation for the statement of theorem 1 should now be clear. We present a slightly 

abbreviated proof of this result; much of the machinery follows directly from the work of 
Chermisi and Muratov [30] concerning Néel walls in uniaxial materials. Thus we refer the 
reader to their work when proving certain steps, and focus here on aspects which are signifi-
cantly different.

It is convenient to first record some preliminary lemmas.

Lemma 1 (Restriction of rotations).  Let 2/θ∈ πA . Then there exists 2
˜ /θ ∈ πA  such that 

0, 2˜( ) [ / ]⊂θ πR  and 4 4( ˜) ⩽ ( )/ /θ θπ π− −E E .

Proof.  We let : 0, 2T → [ / ]θ πR  be defined, for k∈Z, by
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and the fact that ( ) ( )θ π θ π+ = +sin /4 sin /4T .� □

Given this lemma, we may restrict the admissible class to those 2/θ∈ πA  also satisfying 
0, 2( ) [ / ]⊂θ πR . It is then useful to define a function H: 0, 4 1→ [ / ] ( )ρ π ∈R R , corresponding 

to each θ in this restricted class, via

x
x x

x x
if 0, 4 ,

2 if 4, 2 .
( ) ( )   ( ) [ / )

/ ( )   ( ) [ / / ]
⎧
⎨
⎩

ρ
θ θ π
π θ θ π π

=
∈

− ∈� (18)

It is clear that ρ satisfies 4 4( ) ( )/ /ρ θ=π π− −E E . One then has the following lemma:
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Lemma 2 (Coercivity).  Let 2/θ∈ πA  be such that 0, 2( ) [ / ]⊂θ πR  and let ρ be defined as in 
(18). Then

ρ ρ
ν

ρ π+ +π− R R
E

1

4 4
sin /4 .H H/4

2
˙

2
1 1/2( ) ⩾ ∥ ∥ ∥ ( )∥( ) ( )

Proof.  The bound follows immediately from the fact that, since x 0, 4( ) [ / ]ρ π∈  for all x∈R, 
one has

x x xcos 1 2 , sin 2 ,( ) ⩾ / ( ) ⩾ ( )/ρ ρ ρ

and the identity sin 2 4 sin cos2 2 2ρ ρ ρ= .� □

The following lemma provides useful properties for candidate minimizers.

Lemma 3 (Rearrangement).  Let 2/θ∈ πA  with 0, 2( ) [ / ]⊂θ πR . Then C ; 0, 2o ( [ / ])θ π∃ ∈ R  
satisfying o

4 4( ) ⩽ ( )/ /θ θπ π− −E E  and the following properties:
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θ
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θ
π
θ= = = = − −
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and oθ  is non-increasing.

Proof.  The proof here is similar to that of lemma 4 in [30]. Let : 0, 4→ [ / ]ρ πR  be defined 
as in (18) and let ρ∗ denote its symmetric decreasing rearrangement. By standard properties of 
rearrangements (as in [30]) we have firstly that

x xsin 2 d sin 2 d .2 2∫ ∫ρ ρ=∗

R R
� (19)

Secondly,
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Using this, along with lemma 3 in [30], we see that
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From [43, Lemma 7.17], we have
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Thus, combining (19)–(21), we obtain

.4 4 4( ) ⩽ ( ) ( )/ / /ρ ρ θ=π π π−
∗

− −E E E

Finally, defining C ; 0, 2o ( [ / ])θ π∈ R  via

x
x x

x x
if 0

2 if 0,
o( )

( )   ⩾
/ ( )  

⎧
⎨
⎩

θ
ρ
π ρ

=
− − <

∗

∗� (22)

it is clear that o
4 4( ) ( )/ /θ ρ=π π− −

∗E E , and that oθ  satisfies the properties given in the  
lemma.� □
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We now turn to the proof of theorem 1.
Step 1: Existence. Take a minimizing sequence n 2{ } /⊂θ πA . By translation-invariance and 

lemmas 1 and 3 we may assume

C x x; 0, 2 , 0 4, 2 ,n n n n( [ / ]) ( ) / ( ) / ( )θ π θ π θ π θ∈ = = − −R
and nθ  are non-increasing. For each n, define : 0, 4n → [ / ]ρ πR  as in (18). From lemma 2 we 
have

u C
1

4 4
,n H n H

2
˙

2
1 1 2∥ ∥ ∥ ∥ ⩽( ) ( )/ρ

ν
+ <∞R R

where u sin 4 sin 4n n( / ) ( / )ρ π π= + − . We may then extract a subsequence (not relabelled) 
such that the following weak convergences hold:

H u u Hin , in ,n n
1 1 2( ) ( )/ρ ρ⇀ ⇀R R

Moreover, by compact embedding of the spaces H1( )R  and H1 2( )/ R  into Lloc
2 ( )R , we have, upon 

extraction of a further subsequence:

u u Land strongly in and a.e. in .n n loc
2→ →   ( )  ρ ρ R R

Therefore, we have u sin 4 sin 4( / ) ( / )ρ π π= + −  a.e. in R. Then, using Fatou’s lemma applied 
to the second term in the definition of the energy and lower semicontinuity of homogeneous 
H1( )R  and H1 2( )/ R  norms, one obtains weak lower semicontinuity of 4( )/ ρπ−E  with respect to 
the weak convergences considered. Passing to the limit n →∞, we thus obtain

lim inf lim inf .
n

n
n

n4 4 4( ) ⩽ ( ) ( )/
→

/
→

/ρ ρ θ=π π π−
∞

−
∞

−E E E

Given such a ρ, we construct a function : 0, 20 → [ / ]( )θ πR  as in (22), that has the properties

x x x0 4, 2 , lim 0,
x

0 0 0 0( ) / ( ) / ( ) ( )( ) ( ) ( )
→

( )θ π θ π θ θ= = − − =
+∞

and 0( )θ  is non-increasing. Since 4 4
0( ) ( )/ /

( )ρ θ=π π− −E E , we then conclude that 0( )θ  is a 
minimizer.

Step 2: Regularity. Since 0( )θ  is a minimizer, it must also be a weak solution to (17). That 
is, 0( )ψ θ=  is a weak solution of the equation

( ) ( ) ( )″ψ ψ ψ π+ + + =a x b xcos 2 cos /4 0,� (23)

where a x sin 21

2
0( ) ( )θ=  and b x sin 4

x2

d

d

1 22

2( )( ) ( / )
/

θ π= − +ν . It is easy to see from monoto-

nicity of x0 ( )( )θ  and the limit conditions (14) that a x L2( ) ( )∈ R . Moreover, since

− = ∀ ∈ R
R R

⎛
⎝
⎜

⎞
⎠
⎟

x
u

du

dx
u H

d

d
,

L L

2

2

1/2 2 2
1

2
2

( )
( ) ( )

� (24)

and since [ ( )] ( )( ) ′θ π+ ∈ RLsin /40 2 , we may see that b x L2( ) ( )∈ R , as well. Examining 
(23), we may then conclude that Lxx

0 2( )( )θ ∈ R , and thus that Hx
0 1( )( )θ ∈ R . Furthermore, 

Morrey’s theorem then tells us that C Lx
0 ( ) ( )( )θ ∈ ∩ ∞R R , and so C0 1( )( )θ ∈ R . Going 

a step further, we differentiate a(x) and b(x) to get θ θ θ=′a x sin 2 cos 2 x
0 0 0( ) ( ) ( ) ( )  and 

( )( ) [( ( )) ]( )θ π= − +′ νb x sin /4
x x2

d

d

1/2
0

2

2 . Clearly ∈′ Ra x L2( ) ( ), so a H1( )∈ R .
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We would like to show the same for b(x). Applying (24) to u sin 4 x
0( ( / ))( )θ π= + , this 

then amounts to having to show that u Lx
2( )∈ R  (we already know that u L2( )∈ R ). We have 

u sin 4 cos 4 sin 4x xx xx x
0 0 0 0 2 0( ( / )) ( / ) ( ) ( / )( ) ( ) ( ) ( ) ( )θ π θ θ π θ θ π= + = + − + . Applying the inter-

polation inequality as in [29]:

,x L x L x L
0 0 1 2 0 1 24 2∥ ∥ ⩽ ∥ ∥ ∥ ∥( )

( )
( )

( )
/ ( )

( )
/θ θ θ <∞∞R R R

one may then conclude that ∈′ Rb x L2( ) ( ). Again, from (23), this gives Hxx
0 1( )( )θ ∈ R  and thus 

C Lxx
0 ( ) ( )( )θ ∈ ∩ ∞R R , implying that C0 2( )( )θ ∈ R  is a classical solution to (17). These argu-

ments may then be bootstrapped to conclude that C0 ( )( )θ ∈ ∞ R .
Step 3: Strict monotonicity. The proof here is similar to that in [30]. From the previous 

steps we know that 0x
0 ⩽( )θ  on R and C0 ( )( )θ ∈ ∞ R . We claim that in fact 0x

0( )θ <  on R. First, 
as in [29], we show 0 0x

0 ( )( )θ < : if we assume 0 40 ( ) /( )θ π=  and 0 0x
0 ( )( )θ = , then uniqueness 

of solutions for the initial value problem implies x 40 ( ) /( )θ π=  identically, contradicting the 
limit conditions (14).

Next, we show 0x
0( )θ <  on +R . Assume there exists an x*  >  0 such that this is false: i.e. 

x 0x
0 ( )( )θ =∗ . This, together with the non-increasing property of x0 ( )( )θ  we already have, 

implies that x 0xx
0 ( )( )θ =∗  as well. Differentiating the Euler–Lagrange equation and evaluat-

ing at x*, we then have

x x g x
2

cos 4 ,xxx
0 0( ) ( ( ) / ) ( )( ) ( )θ

ν
θ π= +∗ ∗ ∗

where we defined

g x
x

x
d

d
cos 4 .

2

2

1 2
0( ) ( ( ) / )

/
( )

⎛
⎝
⎜

⎞
⎠
⎟ θ π= − +

Computing g(x*) directly, using the integral representation of 
x

d

d

1 22

2( ) /
−  and noticing that by 

the assumption on x* the obtained integral converges, we find

g x
x y y y

x y x y
y

1 4 cos 4
d .x

0

0 0

2 2
( ) ( ) ( ( ) / )

( ) ( )

( ) ( )

∫π
θ θ π

= −
+

− +

∞ ∗

∗ ∗

Since 0x
0 ⩽( )θ  on R, with the inequality strict on a set of positive measure, we see that g(x*)  >  0. 

Moreover, we know that cos 4 00( / )( )θ π+ >  on +R , and hence x 0xxx
0 ( )( )θ >∗ , implying that 0( )θ  

is locally increasing at x*. This is a contradiction. Strict monotonicity on R follows from the 
fact that x x20 0( ) / ( )( ) ( )θ π θ= − −  as proved in step 1.

Step 4: Uniqueness (up to translations). Let 1( )θ  and 2( )θ  be two distinct minimizers. After 
suitable translations these satisfy 0 0 41 2( ) ( ) /( ) ( )θ θ π= = . Define u sin 4( / )θ π= + . We may 
write the energy 4/π−E  in terms of u as E u4( ) ( )/ θ =π−E , where

E u
u

u
x u x u

x
u x

1

2 1
d

1

2

1

2
d

4

d

d
dx

2

2
2

2 2

2

1 2

( )
/

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫ ∫

ν
=

−
+ − + −

R R R

Then define

θ
π

π
=

+ −

− + <

−

−

⎜ ⎟

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x

u x u x x

u x u x x

sin
1

2
/4 if 0,

3 /4 sin
1

2
if 0,

1 1 2

1 1 2

˜( )
( ( ) ( ))   ⩾

( ( ) ( ))  

( ) ( )

( ) ( )
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where u sin 41 1( / )( ) ( )θ π= +  and u sin 42 2( / )( ) ( )θ π= + . Note that u usin 4 1

2
1 2( ˜ / ) ( )( ) ( )θ π+ = + , 

and is symmetric decreasing.
Arguing as in [30], we have

2
.x

x x2
1 2 2 2

( ˜ ) ⩽
( ) ( )( ) ( )

θ
θ θ+

Then, since the last two terms in E(u) above are strictly convex in u (at least, for u , 11

2
[ ]∈ , 

which is equal to the possible range of values of u that we have here), we have that

2
,4

4
1

4
2

( ˜) ( ) ( )
/

/
( )

/
( )

θ
θ θ

<
+

π
π π

−
− −E
E E

which contradicts the minimality of 1( )θ  and 2( )θ . This concludes the proof of theorem 1.

Remark 1.  It should be possible to use the arguments of [31] to prove that the minimizers in 
theorem 1 are the unique monotone 90� wall profiles, i.e. that the minimizers are the unique, 
up to translations, monotone critical points of the energy 4/π−E  in 2/πA .

3.2.  �180  walls: proof of theorem 2

Similarly to the above analysis of 90�-walls, we would first like to write down a 1D wall 
energy for 180�-walls and define an appropriate admissible class for minimizers. We assume, 
without loss of generality, a profile connecting the optimal uniform states θ π=  at −∞ and 

0θ =  at +∞. The appropriate wall orientation to avoid net charge is given by 0β = . The 1D 
wall energy is thus expressed as

( ) ∥ ∥
( )∫θ θ θ

ν
θ= | | + +′

R R
⎜ ⎟
⎛
⎝

⎞
⎠E x

1

2

1

4
sin 2 d

4
sin ,

H0
2 2

˙
2

1/2� (25)

with the admissible class for minimizers given by πA . The Euler–Lagrange equation associ-
ated to 0E  is given by

x
0

1

4
sin 4

2
cos

d

d
sin ,xx

2

2

1 2/⎛
⎝
⎜

⎞
⎠
⎟θ θ

ν
θ θ= − + + −� (26)

with limit conditions

x xlim 0, lim .
x x

( ) ( )
→ →

θ θ π= =
+∞ −∞� (27)

We now turn to the proof of theorem 2. Much of the proof follows by direct analogy with 
the previous section. Indeed, following the proof of theorem 1, it is easy to see that lemmas 
1 and 3 generalize trivially such that we can immediately restrict the admissible class to non-
increasing θ∈ πA  satisfying 0,( ) ( )θ π=R  along with the properties

x x0
2

, .( ) ( ) ( )θ
π

θ π θ= = − −� (28)

Note that we do not prove uniqueness here; the methods used to prove uniqueness for 90�-walls 
in the previous section do not apply due to the fact that the anisotropy energy is nonconvex 
as a function of u sin θ=  for some values of θ which, in this case, the profile must take. The 
question of uniqueness of minimizers for this problem remains open.

Lemma 2, however, does not generalize to this case. This is again due to the same issue of 
nonconvexity that causes problems for uniqueness. In order to obtain compactness in H1( )R  
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for the minimizing sequence, we have to prove a bound on the L2( )R  norm of ρ, this time 
defined as

x
x x

x x
if 0, 2 ,
if 2, ,

( ) ( )   ( ) [ / )
( )   ( ) [ / ]

⎧
⎨
⎩

ρ
θ θ π
π θ θ π π

=
∈

− ∈� (29)

such that once again 0 0( ) ( )θ ρ=E E . Physically, the issue with compactness which has occurred 
here can be interpreted as the question of whether it is energetically preferable for the 180� 
transition layer to split into two well-separated 90�-walls (which would result in the minimiz-
ing sequence weakly converging to 2/π , which is clearly outside of the admissible class) or 
whether the full transition occurs mostly over a finite interval.

It is clear that the local part of the energy (25) is unchanged by having an arbitrarily large 
region with 2/θ π= . Below, we show that this is not possible due to the nonlocal term (a simi-
lar argument was used in the analysis of existence of 360� walls in uniaxial materials [40]). 
Indeed, for θ in the above class, there exist two numbers 0  <  a  <  b such that a 3( ) /θ π=  and 

b 6( ) /θ π= . From the anisotropy term alone, we get that b  −  a remains bounded above by a 
multiple of the energy. Using the known symmetry of θ (i.e. that x xsin sin( ) ( )θ θ− = ), the 
nonlocal term in the energy (25) is proportional to

I
x y

x y

x y

x y
x y

sin sin sin sin
d d .

0 0

2

2

2

2

( ( ) ( ))
( )

( ( ) ( ))
( )

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫

θ θ θ θ
=

−
−

+
−
+

∞ ∞
� (30)

We can estimate I from below by neglecting the interval (a, b) from the integrals. Defining

f x y
x y

x y

x y

x y
,

sin sin sin sin
0,

2

2

2

2
( ) ( ( ) ( ))

( )
( ( ) ( ))

( )
⩾θ θ θ θ

=
−
−

+
−
+

� (31)

we have

I f x y x y f x y x y f x y x y, d d 2 , d d , d d .
a a a

b b b0 0 0
⩾ ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫+ +

∞ ∞ ∞
� (32)

We may then estimate the cross term as follows:

f x y x y C
x y x y

x y C
b a

b a
, d d

1 1
d d ln ,

a

b

a

b0 0 2 2
( ) ⩾

( ) ( )
⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠∫ ∫ ∫ ∫ −

+
+

=
+
−

∞ ∞

for some universal C  >  0.
One can see that the nonlocal term forces both a and b to be bounded by a multiple of the 

energy. Then, in order to get a bound on L2∥ ∥ ( )ρ R , we can use the following bounds on the 
anisotropy energy

C x x
1

4
sin 2 d

1

4
sin 2

1

4
sin 2 d .

b

b
0

0

2

0

2 2⩾ ( ) ⩾ ∫ ∫ ∫ρ θ θ θ= +
∞ ∞

E� (33)

For the second term, we have x 0, 6( ) [ / ]θ π∈  for x b,[ )∈ ∞ , such that cos 3 2⩾ /θ  and 
sin 3 2⩾ /θ θ . Using the identity sin 2 4 cos sin2 2 2θ θ θ=  we then have

x
1

4
sin 2

9

16
d .

b b

2 2⩾∫ ∫θ θ
∞ ∞

� (34)
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Additionally,

x Cd .
b

0

2 ⩽∫ θ� (35)

since we know b is finite and 0,( ) [ ]⊂θ πR . We can then conclude that the transition from 
2/θ π=  to 0θ =  as x increases takes place over a finite distance from x  =  0, and that

C,L2∥ ∥ ⩽( )ρ R� (36)

for some C  >  0 depending on 0( )θE .
One then has, for a minimizing sequence n( )ρ , that Cn H1∥ ∥ ⩽( )ρ R  and Csin n Ḣ1 2∥ ∥ ⩽( )/ρ R , 

for some C  >  0 and all n∈N. One can then extract weakly convergent subsequences, and the 
proof of existence of minimizers, along with the regularity and strict monotonicity, follow in 
precisely the same fashion as in the proof of theorem 1.

4.  Numerical study

In order to assess the role played by the one-dimensional domain wall solutions constructed 
in the preceding sections for the domain patterns in two-dimensional films, we use a finite-
difference scheme to solve the overdamped Landau–Lifshitz–Gilbert equation  (5), coupled 
with optimal-grid-based methods to compute the stray field. The algorithm is fully discussed 
in the work of Muratov and Osipov [21].

4.1.  One-dimensional simulations

We first aim to solve (5) in 1D to obtain the wall profiles corresponding to our existence results 
in the previous section. We evolve the equation above, beginning from initial conditions which 
approximate the domain wall profile in question, until a steady state is reached. Figure 1 below 
displays 90� wall profiles for 1, 5ν =  and 50 (upper panels), and their corresponding tails in 
log–log coordinates (lower panels). Figure 2 displays the analogous plots for 180� walls.

Examining figures 1 and 2, one can observe that the 90� and 180� wall profiles behave in 
much the same manner as ν is increased. Additionally, the tails all display algebraic decay 
proportional to 1/x2 far from the core, as was proved to be the case for 180� Néel walls in 
uniaxial materials [30]. This decay sets in further away from the core as ν is increased, and 
is clearly preceded for large ν (e.g. in the plots for 50ν = ) by a logarithmic crossover region 
between the core and the algebraic tails, as is well known for Néel walls in uniaxial materials 
[1, 27, 28]. We can conclude that these wall profiles show effectively the same behaviour as 
Néel walls in uniaxial materials. Finally, in figure 2, for 1ν =  one can see that the 180� wall is 
starting to separate into two 90� walls. This is due to the fact that at 0ν =  only the 90� walls 
exist, while for 0ν>  the 180� wall is stabilized purely by the magnetostatic interaction.

4.2. Two-dimensional simulations

We now solve (5) on a spatial domain L L0, 0,x y[ ] [ ]Ω = ×  with the edges of the domain 
aligned with the easy axes of the material. We have effectively just three parameters in the 
model: L L,x y and ν. Each of these has the same intuitive effect on the energy: increasing 
domain size or ν increases the strength of the magnetostatic interaction, relative to anisotropy 
and exchange.
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In the figures below we display stationary configurations (remanent states) for a range of 
domain sizes and values of ν. Physically, the fixed parameters we use correspond to those of 
an epitaxial cobalt film, where ν can be thought of as the suitably rescaled film thickness. The 
parameters (recall the definitions in equation (3)) are given approximately by 3.37≈�  nm, 
Q 0.08≈ , and thus L 12≈  nm and ν represents the film thickness in nanometers [22].

Starting from 3 different initial states, we can isolate 4 distinct stationary solutions, as fol-
lows. In figure 3 below we observe the well known ‘C’ (panel (a)) and ‘S’ (panel (b)) states. 
These states are close to monodomain states, but with edge domains appearing along the short 
edges of the sample to appease the magnetostatic energy at the boundary. This energy term 
prefers the magnetization to align tangent to the boundary wherever possible. These states 
result in magnetically charged regions close to the short edges, but with zero energy density 
in the bulk of the sample. There are necessarily half boundary vortices, which also carry 
charge, in two of the corners. The C state has lower energy than the S state. In both panels, the 
size of the sample is given (in units of L) by L L8, 16x y= =  (the figures are to scale), with 

5ν = . In panel (b), the initial condition for the simulation was a monodomain with 3/θ π= ; 
in panel (a), we took 2/θ π=  in the lower half of the sample and 2/θ π= −  in the upper half. 
In the figures, the color indicates the value of x y,( )θ , and the vectors show the corresponding 
magnetization field.

In figure 4, we see instead states consisting of an arrangement of 90� and 180� domain 
walls, with interesting phenomena appearing at the lower boundary. In both figures, one has 
L L32, 64x y= = , and the simulations were initialized with 0θ =  in the right half of the sam-
ple and θ π=  in the left half. In panel (a), 5ν = ; in panel (b), 10ν = .

Figure 1.  Computed 1D 90° wall profiles for ν = 1, 5 and 50. Upper panels show the 
wall profiles near the transition layer. Lower panels show the corresponding decay in 
the tails, plotted in log–log coordinates. Red line segments in the lower panels indicate 
an algebraic decay of /θ∼ x1 2.
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Figure 2.  Computed 1D 180° wall profiles for ν = 1, 5 and 50. Upper panels show the 
wall profiles near the transition layer. Lower panels show the corresponding decay in 
the tails, plotted in log–log coordinates. Red line segments in the lower panels indicate 
an algebraic decay of /θ∼ x1 2.

Figure 3.  C-state (panel (a)) and S-state (panel (b)). Domain size in both panels is 
= =L L8, 16x y , with ν = 5.
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In the top halves of both panels, one observes the same phenomenology. There is a 180�-wall 
aligned vertically in the center of sample, which splits into two 90�-walls, which then ter-
minate at the top corners. This arrangement separates the top half of the sample into three 
domains with orientations along the easy directions 0, 2/θ π= , and π, which also coincide 
with the orientations of the edges. The arrangements are strongly reminiscent of the so-called 
Landau states [1]; we refer to them as half-Landau states.

It is simple to understand why the transition from an edge-domain state to a half-Landau 
state is preferred as the relative strength of the magnetostatic interaction increases, just by 
considering the top halves of the figures. The half-Landau states are in principle charge free 
(in the top half), while the edge-domains are not. Thus, while sacrificing some exchange 
energy in order to form the domain walls, the magnetostatic energy is reduced.

In principle as mentioned above, according to the theory of section 3, each of the domain 
walls in the half-Landau state should be individually charge-free. While this is true of the 
180�-wall in the center, it is not quite true of the 90� walls here. Indeed, their orientations are 
not quite at 45� to the easy axes, and so they are each slightly charged (in opposite senses). 
Since the stray-field energy of such walls would diverge logarithmically as the size of the 
domain increased, we would expect that in the large-domain limit, they would converge to a 
45� orientation.

Let us now discuss the lower edges of the two half-Landau states pictured in figure 4. 
Firstly, we note that in the model we consider, the magnetization is prevented from forming 
the full Landau state, since in this state there would necessarily be a magnetic vortex included 
in the sample, and these are of infinite energy in our 2D model. Indeed, admissible magnetiza-
tion states in this model must have topological degree zero (i.e. be continuously deformable to 
the uniform state); a vortex has degree one, as does a Landau state.

Figure 4.  Half-Landau states. Domain size in both panels is = =L L32, 64x y . In panel 
(a), ν = 5 and the configuration has boundary vortices in the lower corners. In panel 
(b), ν = 10 and we see a configuration with 2 boundary vortices as a bound pair in the 
center of the lower boundary.

R G Lund and C B Muratov﻿Nonlinearity 29 (2016) 1716



1732

In panel (a) of figure 4, we have 5ν = . On the lower boundary, the magnetization is aligned 
with 2/θ π= —the same as the top boundary. There are boundary vortices (quarter vortices) 
of opposite charges in the lower corners, and what appear to be two oppositely charged 90� 
‘boundary domain walls’ joining the bulk domains on the left and right to the boundary ori-
entation. In panel (b), the magnetization on the lower boundary is instead aligned mostly with 

2/θ π= − , antiparallel to the magnetization at top boundary, and performs a full 2π rotation in 
the center of the lower edge (i.e. there is a bound pair or boundary vortices there), such that the 
whole configuration has degree zero. Additionally, the transition layers at the lower boundary 
look closer in structure to edge domains than to 1D boundary walls.

In panel (a), the charge on the lower boundary is spread out across the whole edge while 
the exchange energy is confined close to the edge in the boundary walls. Conversely in panel 
(b), the charge on the boundary is focused at the bound pair of boundary vortices in the center, 
while the exchange energy is more spread out across the edge domains. For larger ν, it thus 
appears energetically preferable to concentrate the charge in a smaller region.

5.  Conclusions and further work

We have proven existence results concerning 90� and 180� domain walls, viewed as minimiz-
ers of the 1D domain wall energy, in thin film ferromagnets with fourfold in-plane aniso
tropy. Moreover we are able to learn a lot of information about these structures, including 
strict monotonicity, smoothness, and, in the case of 90�-walls, as well as uniqueness. Further 
problems here include proving uniqueness (or not) of the 180�-wall, and studying walls with 
more winding such as 360�-walls, or materials with more exotic crystalline anisotropy (see, 
e.g. [44]). We also presented numerically computed 1D wall profiles corresponding to our 
existence results, and magnetization configurations for rectangular samples of fourfold mat
erials, which feature slightly charged walls in the bulk and charged walls at the boundary. This 
investigation poses possible questions about domain walls in regimes where the penalty for 
walls having net charges is relaxed such that charged walls, both in the bulk and at the bound-
ary may be allowed in the large domain limit, and it would be interesting to study the Γ-limit 
of such a 2D thin film energy. Additionally, there is the question of existence of ‘boundary 
walls’ in the thin-film regime considered in this article: this will be addressed elsewhere [45].
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