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We derive four reduced two-dimensional models that describe, at different spatial scales,

the micromagnetics of ultrathin ferromagnetic materials of finite spatial extent featuring
perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya interaction.
Starting with a microscopic model that regularizes the stray field near the material’s lat-

eral edges, we carry out an asymptotic analysis of the energy by means of Γ-convergence.
Depending on the scaling assumptions on the size of the material domain versus the

strength of dipolar interaction, we obtain a hierarchy of the limit energies that exhibit

progressively stronger stray field effects of the material edges. These limit energies fea-
ture, respectively, a renormalization of the out-of-plane anisotropy, an additional local

boundary penalty term forcing out-of-plane alignment of the magnetization at the edge,
a pinned magnetization at the edge, and, finally, a pinned magnetization and an addi-

tional field-like term that blows up at the edge, as the sample’s lateral size is increased.
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The pinning of the magnetization at the edge restores the topological protection and

enables the existence of magnetic skyrmions in bounded samples.
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convergence.
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1. Introduction and Motivation

With an ever-increasing control and sophistication of nanofabrication techniques,

there is a growing need for a better understanding of the physical phenomena

at the nanoscale that are determined by the material geometry. In today’s nano-

magnetic systems, one typically encounters materials consisting of one or several

quasi-two-dimensional magnetic layers interspersed with non-magnetic layers. The

presence of magnetic/non-magnetic interfaces gives rise to new physical effects that

have the potential to enable the next generation of nanoelectronic devices that

harness both the electric charge and the spin degrees of freedom of electron for

information technologies.65 In the context of such spintronics applications,2, 6, 35

one is particularly interested in creating and manipulating spin configurations that

are endowed with nontrivial topological characteristics, which make them robust

against external influences and noise.69

The basic information unit in a topological spintronic device is the magnetic

skyrmion — a particle-like continuous spin texture with topological degree +1

(under a natural sign convention).13, 30, 31, 58 For this reason, there has been con-

siderable interest in the behavior of skyrmions in confining geometries, both theo-

retically, computationally and experimentally (see, e.g. Refs. 1, 12, 18, 24, 52, 59–62

and 19; this list is certainly not meant to be exhaustive).

However, under confinement, the topological protection of non-collinear spin

textures is a priori lost since the topological degree of the spin configuration on

a bounded domain is generally not well-defined. In this case, a skyrmion-like spin

texture may be continuously deformed into a uniform magnetization state by push-

ing the skyrmion out of the domain through the boundary. A natural solution is

to settle the problem in the framework of curvilinear magnetism. Indeed, mag-

netic thin films with the shape of closed surfaces provide a concrete alternative for

degree-preserving confinements and, thus, toward the realization of chiral magnetic

textures. The literature on this topic has grown very large. We refer the reader to

Refs. 22, 23, 26, 27, 32, 37, 64 and 66, see also the recent monograph,49 for further

reading on the analysis of magnetic skyrmions in curved geometries that are close

in spirit to our interests here. But as soon as one is interested in planar thin films,

further stabilization mechanisms for the magnetic skyrmions in spintronic nanode-

vices would be required that provide a repulsive interaction between the skyrmion

and the device edge.

In this paper, we explore the additional energetic effects appearing at the edges

of two-dimensional ferromagnetic materials of finite spatial extent. Due to the
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significant role played by the stray field in ferromagnetic materials, these effects

are often difficult to predict and cause the emergence of new physical phenomena

driven by the material edges. For example, in soft ferromagnets in the form of

thin films, the additional contribution of the stray field may penalize the normal

component of the magnetization at the film edge,16, 43 causing the appearance of

boundary vortices,39, 44, 46, 54 edge-curling domain walls,47, 48 interior walls,38, 40, 53

etc. (for a review, see Ref. 21). In the current materials for spintronics applica-

tions, additional physical mechanisms contribute at the film edge,56, 57, 61 further

complicating the situation. Therefore, to better understand the energetics of the

material edge, we carry out an asymptotic analysis of the micromagnetic model of

a two-dimensional ferromagnet exhibiting perpendicular magnetic anisotropy and

interfacial Dzyaloshinskii–Moriya interaction (DMI),61 using the techniques of Γ-

convergence. The singularity of the stray field near the film edge in two-dimensional

micromagnetics requires a regularization of the magnetostatic problem near the

edge and gives rise to a hierarchy of reduced models appearing in the limit of the

vanishing stray field interaction strength. This regularization, however, does not

affect in any way the obtained limits, demonstrating the universality of the asymp-

totic behavior of two-dimensional ferromagnets.

We demonstrate that depending on the scaling of the lateral size of a simply

connected ferromagnetic domain with the strength of the effective stray field inter-

action and for suitable renormalizations of the other parameters, there are four

distinct asymptotic regimes in which the stray field acts differently at the domain

edge and in the ferromagnet’s interior. In the first regime reminiscent of the thin

film limit studied by Gioia and James34 (see also Refs. 16, 22 and 25), the edge does

not exert any influence on the magnetization, resulting in a free boundary condition

and a renormalization of the magnetocrystalline anisotropy constant (Theorem 3.1).

In the second regime reminiscent of the one studied by Kohn and Slastikov for soft

ferromagnets43 and characterized by a larger lateral film extent, the edge begins to

exert an additional penalization of the deviation of the magnetization from either

one of the out-of-plane directions (Theorem 3.2). In the third regime at yet larger

film’s lateral extent, the magnetization becomes rigidly pinned to a single out-of-

plane direction at the film edge, while the stray field still contributes locally in

the film’s interior (Theorem 3.3). Finally, in the fourth regime at yet larger film’s

extent, the magnetization is also rigidly pinned at the film’s edge, but a non-local

interaction term appears in the interior, as well as an additional geometry-induced

external field-like term (Theorem 3.4). We note that the third regime corresponds

precisely to the one studied in Ref. 52, where the topological protection of single

Néel skyrmions was shown to be restored in a minimal micromagnetic setting.

The proofs of the main results are rather technical and require a careful asymp-

totic analysis of the stray field close to the film edge. For this purpose, we find it

convenient to reformulate the leading order expansion for the dipolar interaction

energy42 in terms of the gradients of the magnetization. This is then used to com-

pare the contributions of the mollified material edge with that of the trace of the
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magnetization at a fixed material boundary of the limit domain. The proofs proceed

by a divide-and-conquer strategy, in which the different parts of the dipolar inter-

action are progressively isolated and ultimately estimated by the limiting energy

up to error terms that are bounded by a small fraction of the exchange energy.

The Γ-limits are, in turn, proved by suitably combining the different terms in the

energy and passing to the limit directly. We note that considerably finer estimates

are required here to establish our results compared to those needed in Refs. 16, 22,

25, 34 and 43.

1.1. Outline

This paper is organized as follows. In Sec. 2, we introduce the micromagnetic

model of a two-dimensional ferromagnetic film exhibiting perpendicular magne-

tocrystalline anisotropy and an interfacial DMI. Here we also introduce the edge

regularization, which is further derived from first principles in Sec. 2.1, and state

our results informally, so that they can be easily related to the original physical

model. Then, in Sec. 3, we state the precise assumptions and definitions, and pro-

ceed to present the statements of the main results of this paper. The rest of this

paper is devoted to the proofs of the theorems. In Sec. 4, we prove some preliminary

technical results. In Sec. 5, we carry out the necessary asymptotic expansions of the

magnetostatic energy. Finally, in Sec. 6, we complete the proofs of Γ-convergence.

2. The Micromagnetic Model

We start by considering a reduced two-dimensional micromagnetic energy for an

extended ferromagnetic thin film of effective thickness δ > 0, with the lengths

measured in the units of the exchange length ` =
√
A/Kd, where Kd = 1

2µ0M
2
s ,

µ0 is the vacuum permeability, Ms is the saturation magnetization and A is the

exchange stiffness. The magnetization is characterized by a non-dimensional vector

m(x) ∈ R3 at each point x ∈ R2 of the film. We assume that the film exhibits per-

pendicular magnetic anisotropy, interfacial DMI and in the presence of an applied

field perpendicular to the film plane, so that the energy functional E(m) has the

form

E(m) = Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m). (2.1)

Here, in order of appearance, the terms are the exchange, anisotropy, Zeeman, the

DMI and the stray field energies measured in the units of A`δ. As was discussed in

Refs. 4, 5, 42 and 56, in an extended film, where

m : R2 → S2 (2.2)

is sufficiently smooth and goes to, say, m0 = (0, 0,−1) sufficiently fast at infinity,

with the notations

m = (m⊥,m‖), m⊥ : R2 → R2, m‖ : R2 → R, (2.3)



August 26, 2024 18:53 WSPC/103-M3AS 2450038

Reduced energies for thin ferromagnetic films 1865

where m⊥ is the in-plane component and m‖ is the out-of-plane component of m,

respectively, these terms take the following form3, 4:

Eex(m) :=

∫
R2

|∇m|2dx, (2.4)

Ea(m) := Q

∫
R2

|m⊥|2dx, (2.5)

EZ(m) := −2h

∫
R2

(1 +m‖)dx, (2.6)

EDMI(m) := κ

∫
R2

(m‖divm⊥ −m⊥ · ∇m‖)dx, (2.7)

Es(m) := −
∫
R2

|m⊥|2dx+
δ

4π

∫
R2

∫
R2

divm⊥(x) · divm⊥(y)

|x− y|
dxdy, (2.8)

− δ

8π

∫
R2

∫
R2

(m‖(x)−m‖(y))2

|x− y|3
dxdy, (2.9)

where

Q =
Ku

Kd
, κ =

D√
AKd

, h =
H

Ms
, (2.10)

with Q, κ and h being the dimensionless quality factor of the out-of-plane

anisotropy, the dimensionless DMI strength and the dimensionless applied field

strength, corresponding to the dimensional magnetocrystalline anisotropy constant

Ku, DMI strength D normalized per unit volume and the out-of-plane field H,

respectively. Note that κ and h may change sign, while for a perpendicular magnetic

anisotropy material we have Q > 1. Under suitable conditions, the above energy

exhibits local minimizers in the form of the topologically nontrivial magnetization

configurations — magnetic skyrmions.3–5, 7–11, 19, 41, 50, 52

Observe that the stray field energy in (2.9) admits the following representation

with the help of the Fourier transform:

m̂(k) =

∫
R2

e−ik·x(m(x)−m0)dx (2.11)

of m−m0 ∈ C∞c (R2;R3):

Es(m) = −
∫
R2

|m̂⊥(k)|2 dk

(2π)2
+
δ

2

∫
R2

|k · m̂⊥(k)|2

|k|
dk

(2π)2

− δ

2

∫
R2

|k||m̂‖(k)|2 dk

(2π)2
. (2.12)

In particular, the first term on the right-hand side of (2.12), also referred to as

the shape anisotropy term, may be combined with Ea(m) to define an effective

out-of-plane anisotropy with strength Q − 1 (going back to Ref. 68); the second

term on the right-hand side of (2.12) represents the effect of the bulk charges and
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can be seen to be non-negative; and the third term represents the effect of the

surface charges and is non-positive. The Fourier representation in (2.12) also arises

as a relaxation of the energy in (2.9) in the natural class of configurations in which

m−m0 ∈ H1(R2;R3). Notice that by (2.12) and simple interpolation inequalities

the energy E(m) is always well defined in this class (for further details, see Ref. 5).

The expression for the stray field energy in (2.9) or (2.12) may be rigorously

obtained as the leading order terms in the asymptotic expansion of the full micro-

magnetic energy of a three-dimensional ferromagnetic film of thickness δ � 1, with

the errors controlled by the exchange energy at the next order.42 It represents a suit-

ably renormalized dipolar interaction between different spins in an infinitesimally

thin ferromagnetic layer. Care, however, is needed when extending this definition

to samples of finite spatial extent. Indeed, as the stray field energy involves non-

local terms, one cannot simply restrict the integration in (2.9) to a bounded spatial

domain Ωδ ⊂ R2 (whose size may depend on δ), as this would disregard the dipolar

interactions that contribute to the first term in (2.9). A more systematic approach

would instead consist of extending the magnetization m : Ωδ → S2 to the whole

plane by zero outside Ωδ. However, such an approach also presents difficulties, as a

jump discontinuity in m across ∂Ωδ would then generally make the non-local terms

in (2.9) infinite. Thus, a regularization at the scale of the film thickness is necessary

close to the film edge to make sense of the energy in (2.9). Such a regularization

was first introduced in Ref. 17 (see also Ref. 55, for further discussion see Refs. 47

and 48) in the context of reduced thin film energies for soft ferromagnetic materials,

in which the magnetization tends to lie in the film plane.

We note that several regularizations are, in fact, possible that can lead to slightly

different reduced thin film energies. The precise model would inevitably depend on

the specific physics at the film edge, which may be governed by a number of physical

effects such as a different material composition in an as-grown film near the edge,

changes in the crystalline structure near the edge, edge roughness, etc. We point out,

however, that the magnetization, which in the physical space rotates on the scale

of the exchange length that exceeds by an order of magnitude the atomic scale,36

should experience the effect of the edge via some sort of effective boundary terms.

This is indeed confirmed by rigorous studies of the thin film limit of soft-three-

dimensional ferromagnetic layers.43 This paper aims to derive these boundary terms

via Γ-convergence for ferromagnetic films with perpendicular magnetocrystalline

anisotropy that are relevant to the studies of magnetic skyrmions.

Our starting point will be the regularization in which for, say, a given m ∈
C∞(R2;S2) we define the physically observable magnetization mδ in the film:

mδ(x) := ηδ(x)m(x) ∀x ∈ R2, (2.13)

where for a bounded open, simply connected set Ωδ with boundary of class C2

representing the film of finite extent we defined a cutoff function

ηδ(x) := η

(
d∂Ωδ(x)

δ

)
, (2.14)
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in which d∂Ωδ is the signed distance from the boundary (cf. (3.4)) and η is a non-

increasing, sufficiently regular function that goes from η(−∞) = 1 to η(+∞) = 0

(see Sec. 3 for details). For a microscopic derivation of this condition, see Sec. 2.1.

Notice that mδ thus defined automatically lies in H1(R2;R3) if m ∈ H1
loc(R2;S2).

We then replace all the instances of m in (2.1) with mδ to define the reduced thin

film energy Eδ(m) := E(mδ).

We next specify the asymptotic regimes in which the obtained energy Eδ can be

significantly simplified. In the first two regimes the limit energy becomes local, with

the edge effects either disappearing or appearing as a boundary term that general-

izes the regime for soft ferromagnetic films identified by Kohn and Slastikov.43 We

will also identify the scalings of the parameters for which the resulting limit energy

still exhibits the terms that are needed to produce skyrmion-type solutions. To this

end, we introduce a small parameter ε > 0 and make all the model parameters, as

well as the domain, depend on ε as follows:

Qε = 1 +
ε|ln ε|
2πγε

α, hε =
ε|ln ε|
2πγε

β, κε =

(
ε|ln ε|
2πγε

)1/2

λ, δε =

(
2πεγε
|ln ε|

)1/2

,

(2.15)

together with

Ωδε := ε−1δεΩ, (2.16)

for some fixed λ > 0, α, β ∈ R and Ω ⊂ R2. Notice that at this point (2.15) and

(2.16) simply represent a reparametrization that imposes a certain dependence on

two parameters, ε and γε (with the dependence of the latter on ε to be speci-

fied), and forces suitable balances between different terms in the energy as ε → 0

depending on the choices of γε.

With the above choices and after some algebra, we have Eδε(m(ε−1δε·)) =

Eε(m) + Cε, where

Eε(m) :=

∫
R2

(η2
ε |∇m|2 + αη2

ε |m⊥|2 − 2βηεm‖)dx

+λ

∫
R2

η2
ε(m‖divm⊥ −m⊥ · ∇m‖)dx

+
γε

2|ln ε|

∫
R2

∫
R2

div (ηεm⊥)(x)div (ηεm⊥)(y)

|x− y|
dxdy

− γε
4|ln ε|

∫
R2

∫
R2

(ηε(x)m‖(x)− ηε(y)m‖(y))2

|x− y|3
dxdy, (2.17)

and the additive constant Cε is independent of m and, therefore, is inconsequential

for the variational problem associated with Eδε . We note that for λ = 0, only a

slightly different version of this type of energy with ε ∼ 1 can be shown to arise

from the full micromagnetic energy of a three-dimensional thin ferromagnetic film

with variable thickness equal to ηε(x), which tapers off at the film edge.63
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Now, with the choice γε → γ as ε → 0 for γ > 0, the limit functional will be

shown to be

F (m) :=

∫
Ω

(|∇m|2 + α|m⊥|2 − 2βm‖)dx+ λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx

+ γ

∫
∂Ω

((m⊥ · n)2 −m2
‖)dH1(σ), (2.18)

where n is the outward unit normal to ∂Ω, and F (m) is defined for m ∈ H1(Ω; S2).

The limit functional sees only the limit domain Ω and in addition to the expected

local terms inside Ω it features a boundary term that penalizes the deviations of

the in-plane component of the magnetization from tangential to ∂Ω, and another

boundary term that favors the out-of-plane component of the magnetization to

be ±1. These terms arise, respectively, as the limits of the next-to-last and the

last term in the definition of Eε in (2.17) due to the logarithmic divergence of the

respective integrals as ε→ 0. We remark that the limit energy with γ = 0 similarly

arises when γε → 0 and ε → 0, a result analogous to a well-known result of Gioia

and James.34

We will also consider two other scaling regimes, which lead to different limit

behaviors. First, we define

E0
ε (m) := Eε(m) + γεH1(∂Ω), (2.19)

where γ is replaced with γε in (2.17), and we will be interested in the limit in which

γε → +∞ as ε→ 0 with α, β and λ, as well as the domain Ω, fixed (note that the

limit γε → 0 is much simpler and is obtained by just setting γ = 0 in (2.18)). When

γε → +∞, we show that for γε = o(|ln ε|) the limit energy for E0
ε is given by

F0(m) :=

∫
Ω

(|∇m|2 + α|m⊥|2 − 2βm‖)dx+ λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx,

(2.20)

specified for all m ∈ H1(Ω; S2) such that m = e3 or m = −e3 on ∂Ω in the sense

of trace. This could be thought of in some sense as the limit case of the energy in

(2.18) with γ =∞, after a suitable renormalization.

Finally, we consider the regime in which for ν > 0 and α, β, λ real we have

Qε = 1 +
ε

2πν
α, hε =

ε

2πν
β, κε =

( ε

2πν

)1/2

λ, δε = (2πεν)
1/2

, (2.21)

once again together with (2.16), which corresponds to the choice of γε = ν|ln ε| in

(2.19). Here we find the following limit energy for E0
ε , up to an additive constant:

Fν(m) :=

∫
Ω

(|∇m|2 + α|m⊥|2 − 2βm‖)dx

+λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx+ ν

∫
Ω

b · ∇m‖dx
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+
ν

2

∫
Ω

∫
Ω

divm⊥(x)divm⊥(y)

|x− y|
dxdy

− ν

2

∫
Ω

∫
Ω

∇m‖(x) · ∇m‖(y)

|x− y|
dxdy,

(2.22)

where we defined the vector field

b(x) :=

∫
∂Ω

m‖(y)n(y)

|x− y|
dy, x ∈ Ω, (2.23)

in which n is the outward unit normal to ∂Ω. This vector field encodes the stray

field effect of the film edge. The energy Fν is defined for all m ∈ H1(Ω;S2) such

that m = e3 or m = −e3 on ∂Ω in the sense of trace. Note that for m = ±e3 on

∂Ω we have b ∈ C∞(Ω) and b(x) diverges logarithmically with distance as x ∈ Ω

approaches ∂Ω. In particular, the term in the energy involving b is under control

by the gradient squared term.

All of the aforementioned statements are made precise within the framework of

Γ-convergence in Sec. 3.

2.1. A microscopic derivation of the reduced

two-dimensional model

As was already mentioned, the precise behavior of the magnetization near the film

edge depends on the detailed physics at the edge of the film. Here we use a particular

model that illustrates how an energy of the form given in (2.17) may be obtained

from a more microscopic description.

To avoid dealing with truly discrete models of ferromagnetism at the atomic

scale, we pick a model that still allows to describe the film as a continuum, but

retains the thermodynamic essence of the ferromagnetic phase and allows to evalu-

ate the additional effects of the film edge. Namely, we consider a mean-field model of

a Heisenberg ferromagnet with a long-range Kac attractive interaction. Such models

have been rigorously derived in the context of theories of phase transitions, going

back to Lebowitz and Penrose for the liquid–gas phase transition45 and Thomp-

son and Silver for the classical Heisenberg magnet.67 Moreover, in the considered

limit the metastable spatially varying states may be understood via minimization

of a free energy functional,33 which in the case of the Heisenberg model with the

interaction kernel Jδ(|x|) takes the form

F(ρ) = −1

2

∫
S2

∫
S2

∫
Ω

∫
Ω

Jδ(|x− y|)(m ·m′)ρ(x,m)ρ(y,m′)dxdydH2(m)dH2

× (m′) + β−1

∫
S2

∫
Ω

ρ(x,m) ln ρ(x,m)dxdH2(m). (2.24)

Here ρ ∈ L1(R2 × S2; [0,∞]) is the probability density to observe a spin at point

x ∈ R2 in the directionm ∈ S2, Jδ ∈ C∞c (R) is a positive, even interaction potential
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such that

supp(Jδ) ⊂ Bδ(0) and

∫ ∞
0

2πrJδ(r)dr = J0 > 0 (2.25)

for a J0 > 0 fixed independently of δ, and β > 0 is the inverse temperature. The

function ρ satisfies the following normalization conditions:∫
S2

ρ(x,m)dH2(m) = 1 if x ∈ Ω, ρ(x,m) = 0 if x ∈ R2\Ω, (2.26)

expressing the fact that the ferromagnet occupies the spatial domain Ω ⊂ R2. For

our purposes, all other terms in the energy, which are all small perturbations to the

Heisenberg exchange, have been neglected. Notice that the parameter δ measures

the finite range of the ferromagnetic coupling and physically corresponds to the

extent of the exchange interaction of several lattice spacings.

The free energy in (2.24) admits a moments closure, allowing to reduce the

minimization problem to that of a functional of the average magnetization (see also

Ref. 28)

m(x) :=

∫
S2

mρ(x,m)dH2(m). (2.27)

For a fixed value of m the entropic term in the free energy is easily seen to be

minimized pointwise by

ρ̄(x,m) = exp(β(µ(x) + λ(x) ·m)), (2.28)

where the functions µ and λ are obtained by enforcing (2.26) and (2.27) with ρ = ρ̄

in Ω:

1 = 4πeβµ
sinh(β|λ|)
β|λ|

, (2.29)

m = 4πeβµ
β|λ| cosh(β|λ|)− sinh(β|λ|)

β2|λ|3
λ. (2.30)

This yields λ = β−1mf(|m|)/|m|, where the function f(s) ≥ 0 is the unique

positive solution of the equation

s = coth f(s)− 1

f(s)
, 0 < s < 1, (2.31)

vanishing at s = 0 and diverging as s → 1−. The plot of f(s) is presented in

Fig. 1(a). Note that f ∈ C∞([0, 1)) and is strictly monotone increasing. Substituting

this back to the entropy term results in∫
S2

ρ̄(x,m) ln ρ̄(x,m)dH2(m) = ln

(
f(|m(x)|)

4π sinh f(|m(x)|)

)
+m(x)f(|m(x)|).

(2.32)
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Thus, for m(x) fixed the free energy satisfies F(ρ) ≥ F̄(m), where

F̄(m) := −1

2

∫
R2

∫
R2

Jδ(|x− y|)m(x) ·m(y)dxdy +
J0

2

∫
R2

|m|2dx

+

∫
R2

Uβ(|m|)dx, (2.33)

with equality holding if and only if ρ(x,m) = ρ̄(x,m). Here the effective potential

Uβ is given by

Uβ(s) := β−1 ln

(
f(s)

4π sinh f(s)

)
+ β−1sf(s)− 1

2
J0 s

2, (2.34)

with the convention that Uβ(0) := −β−1 ln 4π. The plots of Uβ(s) for several values

of β are illustrated in Fig. 1(b).

Notice that the reduced energy in (2.33) may be rewritten in a more convenient

form as

F̄(m) =
1

4

∫
R2

∫
R2

Jδ(|x− y|)|m(x)−m(y)|2dxdy +

∫
R2

Uβ(|m|)dx, (2.35)

which is a vectorial, non-local analog of the classical Cahn–Hilliard functional, since

Uβ has a form of a Mexican hat potential for β > βc := 3J0. It is also easy to see

that in a periodic setting the energy functional F̄ admits a unique minimizerm = 0

whenever β ≤ βc, and a family of minimizers |m| = s0(β) with 0 < s0(β) < 1 for

β > βc (see also Ref. 28). To simplify matters further, we employ the usual gradient

approximation to the non-local term in (2.35) to obtain F̄(m) ' F̄0(m), where

(see also Ref. 29 for a closely related problem)

F̄0(m) :=

∫
Ω

(gδ|∇m|2 + Uβ(|m|))dx, (2.36)

0.0 0.2 0.4 0.6 0.8 1.0

2

4
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8
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Fig. 1. (a) Plot of f(s). (b) Plots of βUβ(s) for the indicated values of β and J0 = 1.
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and gδ := π
4

∫∞
0
r3Jδ(r)dr = O(δ2). The expression in (2.36) is specified for m ∈

H1
0 (Ω;R3), inheriting the zero boundary condition from the assumption thatm = 0

in R2\Ω.

Near the edge of the sample the curvature of the edge is negligible to the leading

order in δ. Hence, the problem of minimizing the energy in (2.36) reduces to a

one-dimensional problem on half-line, i.e. to minimizing the energy

F̄1d
0 (m) :=

∫ ∞
0

(gδ|m′|2 + Uβ(|m|)− Uβ(s0(β)))dx (2.37)

over m ∈ H1
loc(R+;R3) ∩ C(R+

;R3) such that m(0) = 0. An explicit energy-

minimizing profile may be obtained from (2.37), using the polar representation

m(x) = φ(x)u(x), where |u| = 1, for which we get

F̄1d
0 (m) =

∫ ∞
0

(gδ|φ′|2 + Uβ(φ)− Uβ(s0(β)))dx+

∫ ∞
0

gδφ
2|u′|2dx. (2.38)

Thus, the energy F̄1d
0 is minimized by u = const and φ = φδ, where by the Modica–

Mortola trick51 we have

min F̄1d
0 = F̄1d

0 (φδu) = 2

∫ s0(β)

0

√
gδ(Uβ(φ)− Uβ(s0(β)))dφ, (2.39)

∫ φδ(x)

0

dφ√
gδ(Uβ(φ)− Uβ(s0(β)))

= x, u ∈ S2 arbitrary. (2.40)

In particular, we have |m(x)| = φδ(x), where φδ(x) is a monotone increasing func-

tion such that φδ(0) = 0 and φ′δ(0) > 0, and φδ(x) approaches exponentially the

“saturation magnetization” s0(β) for x � δ. Therefore, as a matter of modeling

convenience one could replace the function φδ with that of s0ηδ, where ηδ is defined

in the following section.

3. Mathematical Setup and Statement of the Main Results

We now give the precise mathematical formulation of the considered problem and

state our main theorems.

3.1. Film geometry

Throughout this paper we assume that Ω ⊂ R2 is a bounded, simply connected

open set with boundary of class C2. We parametrize ∂Ω by a C2 regular curve, and

we denote by

ϕ : s ∈ I∂Ω 7→ ϕ(s) ∈ ∂Ω, I∂Ω := [0,H1(∂Ω)], (3.1)

its positive parameterization by the arc length (extended periodically, if necessary).

We denote by (τ (x),n(x)) ∈ S1 × S1 the respective Frenet frame at x ∈ ∂Ω. The

vector fields τ : ∂Ω→ S1 and n : ∂Ω→ S1 represent, respectively, the unit tangent

vector field to ∂Ω given by τ (ϕ(s)) := ϕ′(s), and the outer unit normal vector field.
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To avoid cumbersome notations, we write τ (s) and n(s) to mean the compositions

τ (ϕ(s)) and n(ϕ(s)) from now on. Clearly, for every s ∈ I∂Ω we have τ (s)·n(s) = 0,

and the Frenet–Serret formulas hold:

τ ′(s) = −κ(s)n(s), (3.2)

n′(s) = κ(s)τ (s), (3.3)

where κ(s) := −ϕ′′(s) ·n(s) stands for the signed curvature of ∂Ω at the point ϕ(s).

Note that since we assume ∂Ω of class C2, the vector fields τ (s) and n(s) are of

class C1(I∂Ω;S1) and κ(s) is a continuous function.

In order to define a cutoff function near the boundary of the ferromagnet, we

first introduce the signed distance function from ∂Ω which assigns positive values

to points in the exterior of Ω and negative values in the interior of Ω:

d∂Ω(x) :=


+ inf
y∈∂Ω

|x− y| if x ∈ R2\Ω,

− inf
y∈∂Ω

|x− y| if x ∈ Ω.
(3.4)

Since Ω is a C2-domain, there exists ε̄ > 0 such that for any 0 < ε < ε̄ the set

Oε := {x ∈ R2 : |d∂Ω(x)| < ε} (3.5)

is in the tubular neighborhood of ∂Ω of radius ε̄, namely in Oε̄ := {x ∈ R2 :

|d∂Ω(x)| < ε̄}. For any 0 < ε < ε̄ we also set O+
ε := {x ∈ R2 : 0 ≤ d∂Ω(x) < ε}.

Since Ω is a simply connected C2 domain, there exists a C1 projection map π :

Oε̄ → ∂Ω such that x = π(x) + d∂Ω(x)n(π(x)) for every x ∈ Oε̄ and

∇d∂Ω(x) = n(π(x)). (3.6)

In particular, |∇d∂Ω(x)| = 1 for every x ∈ Oε̄, and the values of π may be

parametrized by the arclength of ∂Ω. In what follows, we always assume that

0 < ε < ε̄ so that the tubular neighborhood theorem holds.

For any 0 < ε < ε̄ we set Ωε := Ω ∪ O+
ε , which represents the domain in the

plane occupied by the ferromagnetic film, and consider the family of cutoff functions

ηε(x) := η

(
d∂Ω(x)

ε

)
(3.7)

defined by a non-increasing function η ∈ C0,1(R) such that

η(t) ≡ 1 for t ∈ (−∞, 0), η(t) ≡ 0 for t ∈ (1,+∞). (3.8)

We further assume that on (−∞, 1] the function η is continuously differentiable,

but allow η′(t) to jump at t = 1 in accordance with the behavior of |m| at the film

edge observed in Sec. 2.1.

Note that for every ε > 0 we have ηε(x) ≡ 1 whenever d∂Ω(x) ≤ 0 and ηε(x) ≡ 0

when d∂Ω(x) ≥ ε. In other words, ηε is a cutoff function whose support is included



August 26, 2024 18:53 WSPC/103-M3AS 2450038

1874 G. Di Fratta, C. B. Muratov & V. V. Slastikov

in the closure of Ωε (i.e. supp(ηε) ⊆ Ωε) such that ηε ≡ 1 on Ω. We observe the

following identities:

∇ηε(x) =
1

ε
η′
(
d∂Ω(x)

ε

)
n(π(x))

= −|∇ηε(x)|n(π(x)). (3.9)

In particular, ∇ηε ∈ L∞(R2;R2) and supp(∇ηε) ⊆ Ωε\Ω = O+
ε .

3.2. The micromagnetic energy

Given a configuration mε ∈ H1
loc(Ωε;S2), we extend it by zero outside Ωε to define

the magnetization in the whole plane, so that the physically observable magnetiza-

tion is mε(x) = ηε(x)mε(x) for all x ∈ R2, after a rescaling of length from (2.16).

The rescaled cutoff length is now ε� 1 and the domain Ωε has O(1) size, converg-

ing to a fixed domain Ω from outside as ε → 0. As we will see later, the precise

shape of the cutoff function η will prove not to play any role in the limiting behavior

of the energy analyzed in this paper. Further care is needed, however, to specify a

representation of the micromagnetic energy that is well-suited for the analysis of

those limits.

We first need to define a space where the different terms in our micromag-

netic energy are all bounded. To make sure this is the case, we clearly need

that
∫

Ωε
η2
ε |∇mε|2dx < ∞. Therefore, we assume that mε ∈ Hε(R2;S2), where

Hε(R2;S2) stands for the weighted Sobolev (metric) space defined by

Hε(R2;S2) := {mε ∈ L2(R2;R3) : mε
|Ωε ∈ H

1
loc(Ωε,S2),

ηε∇mε
|Ωε ∈ L

2(Ωε),m
ε ≡ 0 in R2\Ωε}. (3.10)

Note that elements of Hε(R2;S2) are identically zero outside of Ωε. We view

Hε(R2;S2) as a metric subspace of Hε(R2), where

Hε(R2) :=
{
uε ∈ L2(R2;R3) ∩ L∞(R2;R3) : uε|Ωε ∈ H

1
loc(Ωε;R3),

ηε∇uε|Ωε ∈ L
2(Ωε;R6),uε ≡ 0 in R2\Ωε

}
. (3.11)

We can similarly introduce the “limit” space

H0(R2;S2) := {m ∈ L2(R2;R3) : m|Ω ∈ H1(Ω,S2),m ≡ 0 in R2\Ω}. (3.12)

We next introduce the notation mε = (mε
⊥,m

ε
‖), where mε

⊥ ∈ R2 and mε
‖ ∈ R

give the components of mε that are perpendicular and parallel to the material easy

axis ±e3, respectively. The non-local contribution from the stray field energy can

then be seen to be proportional to

Wε(m
ε) =

1

2|ln ε|
V(ηεm

ε
⊥)− 1

2|ln ε|
Ṽ(ηεm

ε
‖), (3.13)
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defined for every mε ∈ Hε(R2;S2), with

V(ηεm
ε
⊥) :=

∫
R2

∫
R2

div (ηεm
ε
⊥)(x)div (ηεm

ε
⊥)(y)

|x− y|
dxdy, (3.14)

Ṽ(ηεm
ε
‖) :=

∫
R2

∫
R2

∇(ηεm
ε
‖)(x) · ∇(ηεm

ε
‖)(y)

|x− y|
dxdy. (3.15)

The equivalence of the above expression with the one appearing in (2.17) for smooth

functions can be seen via the Fourier representation. Note that both V and Ṽ are

non-negative, a result that can be easily shown in the Fourier domain by Parseval–

Plancherel identity.

The DMI contribution to the energy is proportional to

Dε(mε) :=

∫
R2

η2
ε(mε

‖divmε
⊥ −mε

⊥ · ∇mε
‖)dx. (3.16)

The remaining terms may be defined analogously. Note that the space Hε(R2;S2)

depends on ε and, therefore, is not well-suited for Γ-convergence arguments.

Therefore, since mε ∈ L2(R2;R3), we can use a penalization to formulate the

Γ-convergence results in L2(R2;R3) with the agreement that the energy is infi-

nite outside Hε(R2;S2). Furthermore, the space L2(R2;R3) also provides a natural

topology for the Γ-convergence.

The simplified micromagnetic energy defined for mε ∈ L2(R2;R3) that disre-

gards the anisotropy and the Zeeman terms takes the form

Gε(mε) :=


∫
R2

η2
ε |∇mε|2dx+ λDε(mε) + γεWε(m

ε) if mε ∈ Hε(R2;S2),

+∞ otherwise,

(3.17)

where the precise dependence of γε on ε will be specified in the sequel for various Γ-

limits. As is common in the studies of Γ-convergence, we will simply write mε →m

as ε→ 0, always tacitly implying that for any sequence of εn → 0 we havemεn →m

as n→∞.

Remark 3.1. We note that the functional Gε in (3.17) provides a mathematically

suitable formulation for the main terms in the energy Eε defined in (2.17) in the

considered topology of Γ-convergence. In particular, we have Gε(mε) = Eε(m
ε)

whenever mε ∈ Hε(R2;S2) with α = 0 and β = 0. Hence throughout the rest of

this paper we formulate our results in terms of the functional Gε and note that

the anisotropy and the Zeeman terms are continuous perturbations to Gε under L2

convergence and hence can be trivially included in the statements of the theorems.

3.3. Main results

In this section, we formulate the main results of this paper. We split our results

into four theorems corresponding to different magnetic regimes previously studied

for ferromagnets with strong in-plane anisotropy.
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The first regime we consider is the analogue of the Gioia and James regime.34

We have the following theorem.

Theorem 3.1. (Free boundary) Let Gε(mε) be defined on L2(R2;R3) by (3.17)

and let γε → 0 as ε→ 0. We define G0(m) on L2(R2;R3) by

G0(m) :=


∫

Ω

|∇m|2dx+ λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx if m ∈ H0(R2;S2),

+∞ otherwise.

(3.18)

Then the following statements hold :

(1) (Compactness) If lim supε→0 Gε(mε) < +∞ then mε → m strongly in

L2(R2;R3) and mε ⇀ m weakly in H1(Ω; S2) for some m ∈ H0(R2;S2) as

ε→ 0 (possibly up to a subsequence).

(2) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m for some

m ∈ H0(R2;S2) strongly in L2(R2;R3) as ε→ 0. Then

lim inf
ε→0

Gε(mε) ≥ G0(m). (3.19)

(3) (Γ-limsup inequality) Let m ∈ H0(R2;S2). Then there exists mε ∈ Hε(R2;S2)

such that mε →m strongly in L2(R2;R3) as ε→ 0 and

lim sup
ε→0

Gε(mε) ≤ G0(m). (3.20)

The second regime we study corresponds to the result of Kohn and Slastikov,43

where in the limit of small thickness, the magnetization prefers to stay in-plane,

and a local boundary contribution corresponding to shape anisotropy replaces the

non-local magnetostatic energy. The limiting behavior we obtain for materials with

perpendicular anisotropy is contained in the following theorem. Here and every-

where below, the values of m ∈ H0(R2;S2) on ∂Ω are understood in the sense of

trace of the Sobolev function m|Ω ∈ H1(Ω; S2).

Theorem 3.2. (Boundary penalty) Let Gε(mε) be defined on L2(R2;R3) by (3.17)

and γε → γ for some γ > 0 as ε→ 0. We define Gγ0 (m) on L2(R2;R3) by

Gγ0 (m) :=



∫
Ω

|∇m|2dx+ λ

∫
Ω

(m‖divm⊥−m⊥ · ∇m‖)dx

+ γ

∫
∂Ω

((m⊥ · n)2 −m2
‖)dH1(x) if m ∈ H0(R2;S2),

+∞ otherwise.

(3.21)
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Then the following statements hold :

(1) (Compactness) If lim supε→0 Gε(mε) < +∞, then mε → m strongly in

L2(R2;R3) and mε ⇀ m weakly in H1(Ω;S2) for some m ∈ H0(R2;S2) as

ε→ 0 (possibly up to a subsequence).

(2) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m strongly in

L2(R2;R3) for some m ∈ H0(R2;S2) as ε→ 0. Then

lim inf
ε→0

Gε(mε) ≥ Gγ0 (m). (3.22)

(3) (Γ-limsup inequality) Let m ∈ H0(R2;S2). Then there exists mε ∈ Hε(R2;S2)

such that mε →m strongly in L2(R2;R3) as ε→ 0 and

lim sup
ε→0

Gε(mε) ≤ Gγ0 (m). (3.23)

The following two results are fundamentally different from what exists in the

micromagnetic literature for in-plane materials. This is due to the fact that they

correspond to magnetic regimes, where the shape anisotropy of the micromagnetic

energy is penalized in the limit and, as a result, the magnetization acquires Dirichlet

conditions at the boundary. For in-plane materials this regime is impossible as

it leads to a singular behavior of the micromagnetic energy due to a topological

obstruction. For materials with perpendicular anisotropy, however, these regimes

provide the micromagnetic energy describing the behavior of magnetic skyrmions

(see Ref. 52) and therefore are of utter importance.

We formulate our results in the following theorems corresponding to local and

non-local versions of the micromagnetic energies. Note that everywhere below the

statement m‖ = ±1 on ∂Ω means that either m‖ = 1 on ∂Ω or m‖ = −1 on ∂Ω, in

the sense of trace. In other words, the trace of m is constant on ∂Ω and is equal to

either e3 or −e3.

Our first theorem yields a local limiting micromagnetic energy with the Dirichlet

boundary condition.

Theorem 3.3. (Clamped boundary, local energy) Let Gε(mε) be defined on

L2(R2;R3) by (3.17) with γε →∞ and γε|ln ε|−1 → 0 as ε→ 0. We define G̃0(m)

on L2(R2;R3) by

G̃0(m) :=



∫
Ω

|∇m|2dx

+λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx if m ∈ H0(R2;S2)

and m‖ = ±1 on ∂Ω,

+∞ otherwise.

(3.24)
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Then the following statements hold :

(1) (Compactness) If lim supε→0(Gε(mε) + γεH1(∂Ω)) < +∞ then mε → m

strongly in L2(R2;R3) and mε ⇀ m weakly in H1(Ω;S2) for some m ∈
H0(R2;S2) with m‖ = ±1 on ∂Ω as ε→ 0 (possibly up to a subsequence).

(2) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m strongly in

L2(R2;R3) for some m ∈ H0(R2;S2) with m‖ = ±1 on ∂Ω as ε→ 0. Then

lim inf
ε→0

(Gε(mε) + γεH1(∂Ω)) ≥ G̃0(m). (3.25)

(3) (Γ-limsup inequality) Let m ∈ H0(R2;S2) with m‖ = ±1 on ∂Ω. Then there

exists mε ∈ Hε(R2;S2) such that mε → m strongly in L2(R2;R3) as ε → 0

and

lim sup
ε→0

(Gε(mε) + γεH1(∂Ω)) ≤ G̃0(m). (3.26)

The next theorem provides a new type of a reduced non-local micromagnetic

energy for yet stronger dipolar interaction. To state the theorem, we need to intro-

duce some additional notation. This is due to the fact that in the considered regime

the stray field of the film edge continues to contribute to the limit energy and,

therefore, needs to be properly accounted for. We define the quantity

Dε :=

∫
R2

∫
R2

∇ηε(x) · ∇ηε(y)

|x− y|
dxdy, (3.27)

which will be shown to give, up to the factor of 1
2ν, the leading order behavior of the

energy Gε. In fact, this constant can be seen to be the energy of the ferromagnetic

state m = ±e3χΩ and to the leading order satisfies Dε = 2|ln ε|H1(∂Ω) + O(1)

when ε→ 0, as can be seen from Lemma 4.4.

Theorem 3.4. (Clamped boundary, non-local energy) Let Gε(mε) be defined on

L2(R2;R3) by (3.17) with γε = ν|ln ε| for some ν > 0. We define G̃ν0 (m) on

L2(R2;R3) by

G̃ν0 (m) :=



∫
Ω

|∇m|2dx+ ν

∫
Ω

b · ∇m‖ dx

+λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx

+
ν

2

∫
Ω

∫
Ω

divm⊥(x)divm⊥(y)

|x− y|
dxdy

− ν

2

∫
Ω

∫
Ω

∇m‖(x) · ∇m‖(y)

|x− y|
dxdy

if m ∈ H0(R2;S2)

and m‖ = ±1 on ∂Ω,

+∞ otherwise,

(3.28)



August 26, 2024 18:53 WSPC/103-M3AS 2450038

Reduced energies for thin ferromagnetic films 1879

where b is defined in (2.23). Then the following statements hold :

(1) (Compactness) If lim supε→0(Gε(mε) + ν
2Dε) < +∞ then mε →m strongly in

L2(R2;R3) and mε ⇀ m weakly in H1(Ω;S2) for some m ∈ H0(R2;S2) with

m‖ = ±1 on ∂Ω as ε → 0 (possibly up to a subsequence), where Dε is defined

in (3.27).

(2) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) satisfy mε → m strongly in

L2(R2;R3) for some m ∈ H0(R2;S2) with m‖ = ±1 on ∂Ω as ε→ 0, then

lim inf
ε→0

(
Gε(mε) +

ν

2
Dε

)
≥ G̃ν0 (m). (3.29)

(3) (Γ-limsup inequality) Let m ∈ H0(Ω;S2) with m‖ = ±1 on ∂Ω. Then there

exists mε ∈ Hε(R2;S2) that satisfies mε →m strongly in L2(R2;R3) as ε→ 0

and

lim sup
ε→0

(
Gε(mε) +

ν

2
Dε

)
≤ G̃ν0 (m). (3.30)

The above results provide us with four comprehensive two-dimensional micro-

magnetic models to study the magnetization behavior in ultrathin films with per-

pendicular magnetic anisotropy and DMI. It is also clear that the above results can

be supplemented with anisotropy and Zeeman energies as those are just continuous

perturbations. In particular, this provides a rigorous justification to the formal limit

statements in Sec. 2.

4. Auxiliary Lemmas

Throughout the rest of this paper, unless stated otherwise all the constants in the

statements and the proofs depend only on Ω and η. We begin by providing several

important technical lemmas. The first two lemmas concern pointwise estimates for

the singular integral

fε(x) :=

∫
O+
ε

|∇ηε(y)|
|y − x|

dy. (4.1)

We start with an estimate which for every 0 < ε < ε̄ gives a precise control on

fε(x) when x ∈ Oε, where Oε is defined in (3.5).

Lemma 4.1. There exists ε̄, C > 0 such that for any 0 < ε < ε̄ and x ∈ Oε there

holds

2|ln ε| − C ≤ fε(x) ≤ 2|ln ε|+ C. (4.2)

Proof. Recalling the notations of Sec. 3.1, for any |t| < ε̄, the curve

ϕt : s ∈ I∂Ω 7→ ϕ(s) + tn(s) (4.3)

is a parameterization of the set ∂Ωt := {σ ∈ Oε̄ : d∂Ω(σ) = t}. Since Ω is of class

C2, there exists δ̄ > 0 sufficiently small such that for any 0 < δ < δ̄ there exists a
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curvature-dependent constant 0 < α(δ) < δ for which there holds

H1(π(Oε̄ ∩Bα(δ)(x))) < δ ∀x ∈ Oε̄. (4.4)

In particular, there holds that H1(π(∂Ωt ∩ Bα(δ)(x))) < δ for any |t| < ε̄, and we

can always assume that ε̄ and δ̄ are tuned sufficiently small, so that for any |t| < ε̄

and any 0 < δ < δ̄, the set π(∂Ωt ∩ Bα(δ)(x)) is connected. In this way, the arc

π(∂Ωt ∩ Bα(δ)(x)) can be parameterized through the restriction of ϕ to a suitable

subinterval of I∂Ω. In other words, we assume that δ is sufficiently small so that for

any |t| < ε̄ and any x = ϕt(s0) ∈ Oε̄ one has

∂Ωt ∩Bα(δ)(x) ⊆ ϕt(Iδ(x)), Iδ(x) := [s0 − δ/2, s0 + δ/2]. (4.5)

Now, let ε < ε̄. For what follows, it is convenient to set

κ∂Ω := sup{|κ(σ)| : σ ∈ ∂Ω}, (4.6)

where κ(σ) stands for the curvature of ∂Ω at the point σ ∈ ∂Ω (cf. (3.2)). Clearly,

for any x ∈ Oε and any y ∈ O+
ε \Bα(δ)(x) one has |y − x| ≥ α(δ). We denote by

Sα(ε)(x) the small sector around x ∈ Oε defined by

Sα(δ)(x) := {ϕt(Iδ(x))}|t|<ε. (4.7)

Clearly, Sα(δ)(x) ⊇ Bα(δ)(x) ∩ O+
ε , therefore we can decompose fε(x) as

fε(x) = ψε(x) + gε∂Ω(x), (4.8)

where

ψε(x) :=
1

ε

∫
O+
ε ∩Sα(δ)(x)

|η′(d∂Ω(y)/ε)|
|y − x|

dy (4.9)

and by the coarea formula the remainder term gε∂Ω(x) satisfies the uniform bound

|gε∂Ω(x)| ≤ 1

α(δ)

∫ 1

0

∫
∂Ω

|η′(t)| · |1 + εtκ(σ)|dσdt ≤ cδ,

cδ :=
(1 + ε̄κ∂Ω)H1(∂Ω)

α(δ)
.

(4.10)

It remains to estimate ψε(x). For that we observe that with x = σ + εtn(σ),

|t| < 1, and by the coarea formula we have

ψε(x) =

∫ 1

0

∫
ϕ(Iδ(x))

|η′(r)| 1 + εrκ(ω)

|σ + εtn(σ)− ω − εrn(ω)|
dH1(ω)dr. (4.11)

We estimate the denominator of the integrand as

ω − σ + ε(rn(ω)− tn(σ)) = ϕ(s)− ϕ(s0) + ε(rn(s)− tn(s0))

= (s− s0)τ (s0) + ε(r − t)n(s0)

+ εr(n(s)− n(s0)) +O(|s− s0|2), (4.12)
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where |O(|s−s0|2)| ≤ κ∂Ω(s−s0)2. On the other hand, since 0 < r < 1 and |t| < 1,

and n(s) is Lipschitz continuous with constant κ∂Ω, we also have

|εr(n(s)− n(s0)) +O(|s− s0|2)|

≤ κ∂Ω(ε+ |s− s0|)|s− s0|

≤ κ∂Ω(ε+ |s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|. (4.13)

Hence, combining (4.12) and (4.13) we obtain that for ε̄, δ < 1
2κ
−1
∂Ω and |s− s0| < δ

we have

|ω − σ + ε(rn(ω)− tn(σ))|

≤ (1 + κ∂Ωε+ κ∂Ω|s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|, (4.14)

|ω − σ + ε(rn(ω)− tn(σ))|

≥ (1− κ∂Ωε− κ∂Ω|s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|. (4.15)

Overall, we get that for any x = σ + εtn(σ), |t| < 1, there holds

1− εκ∂Ω

1 + εκ∂Ω

∫ 1

0

|η′(r)|%+
ε

(
ε2

δ2
(r − t)2

)
dr

≤ ψε(x) ≤ 1 + εκ∂Ω

1− εκ∂Ω

∫ 1

0

|η′(r)|%−ε
(
ε2

δ2
(r − t)2

)
dr, (4.16)

with

%±ε

(
ε2

δ2
(r − t)2

)
:=

∫
Iδ(x)

1

(1± a±ε |s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|
ds

(4.17)

=

∫ s0+δ/2

s0−δ/2

1

(1± a±ε |s− s0|)
√

(s− s0)2 + ε2(r − t)2
ds (4.18)

= 2

∫ 1
2

0

1

(1± a±ε δs)
√
s2 + ε2

δ2 (r − t)2
ds, (4.19)

where a±ε = κ∂Ω

1±εκ∂Ω
> 0.

A direct integration yields

%±ε (β) = ρ(β)∓
∫ 1

2

0

2a±ε δs

(1± a±ε δs)
√
s2 + β

ds, (4.20)

where

%(β) := ln

(
1 + 2β +

√
1 + 4β

2β

)
. (4.21)

By inspection, for all β < 1 we have

− lnβ − C ≤ %±ε (β) ≤ − lnβ + C, (4.22)
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for some C > 0 universal. Also note that∫ 1

0

|η′(r)| · |ln (r − t)2|dr ≤ C‖η′‖∞, (4.23)

for some C > 0 universal. Therefore, given (4.22) and (4.23), from the relation

(4.16) we infer the estimate

2|ln ε| − C ≤ ψε(x) ≤ 2|ln ε|+ C, (4.24)

for some C > 0, assuming that ε < δ and that δ < δ̄ is chosen sufficiently

small. The conclusion of the lemma then follows from the previous estimate, (4.8),

and (4.10).

Remark 4.1. We point out that Lemma 4.1 and all the subsequent results, which

rely on Lemma 4.1, remain valid if η(t) is only Hölder continuous at t = 1 (with an

arbitrary Hölder exponent).

We next prove a pointwise bound on the function fε(x) outside Oε.

Lemma 4.2. There exist ε̄, C > 0 depending only on Ω, such that for any 0 < ε < ε̄

and x ∈ Ω\Oε there holds

0 ≤ fε(x) ≤ C
(
1 + |ln(dist(x, ∂Ω))|

)
. (4.25)

Proof. As in the proof of Lemma 4.1, using the coarea formula we infer that for

any x ∈ Ω\Oε and sufficiently small ε there holds

fε(x) =

∫
∂Ω

∫ 1

0

|η′(t)| 1 + εtκ(σ)

|x− σ − εtn(σ)|
dt dH1(σ), (4.26)

where κ(σ) is a curvature at point σ ∈ ∂Ω. Furthermore, we claim that |x − σ −
εtn(σ)| ≥ 1

2 |x − σ| for every x ∈ Ω\Oε, σ ∈ ∂Ω and t ∈ [0, 1], provided that

ε is sufficiently small. To see this, notice that the estimate trivially holds when

|x − σ| ≥ 2ε or when (x − σ) · n(σ) < 0. At the same time, in the opposite case

we can estimate |x− σ| ≤ 2|(x− σ) · τ (σ)| ≤ 2|x− σ − εtn(σ)| for all ε sufficiently

small in view of the regularity of ∂Ω. Thus, we have

0 ≤ fε(x) ≤ 4

∫
∂Ω

1

|x− σ|
dH1(σ) ≤ C

(
1 + |ln(dist(x, ∂Ω))|

)
, (4.27)

for some C > 0 and all ε small enough.

As an immediate consequence of Lemmas 4.1 and 4.2 we have the following

result.

Lemma 4.3. There exist ε̄, C > 0 such that for every 0 < ε < ε̄ and every x ∈ Ωε
there holds

|fε(x)| ≤ C
(
1 + |ln(ε+ dist(x, ∂Ω))|

)
. (4.28)

In particular, for every p ≥ 1 there is Cp > 0 such that ‖fε‖Lp(Ωε) ≤ Cp.

We will also need a sharp estimate for the quantity Dε introduced in (3.27).
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Lemma 4.4. There exist ε̄, C > 0 such that for every 0 < ε < ε̄ there holds

2|ln ε|H1(∂Ω)− C ≤ Dε ≤ 2| ln ε|H1(∂Ω) + C. (4.29)

Proof. Observe that for all ε̄ sufficiently small we have

Dε =

∫
O+
ε

∫
O+
ε

|∇ηε(x)||∇ηε(y)|
|x− y|

dxdy − 1

2

∫
O+
ε

∫
O+
ε

|∇ηε(x)| |∇ηε(y)|

× |n(x)− n(y)|2

|x− y|
dxdy, (4.30)

with an abuse of notation n(x) := n(π(x)) for x ∈ O+
ε . Notice that by the C2

regularity of ∂Ω the second integral in (4.30) is uniformly bounded when ε → 0,

as n(x) is Lipschitz continuous. At the same time, by the coarea formula and

Lemma 4.1 the first integral in (4.30) is∫
O+
ε

∫
O+
ε

|∇ηε(x)| |∇ηε(y)|
|x− y|

dxdy

=

∫
O+
ε

|∇ηε(x)|fε(x)dx

=

∫ 1

0

∫
∂Ω

|η′(t)|fε(σ + εtn(σ))(1 + εtκ(σ))dH1(σ)dt

= 2|ln ε|H1(∂Ω) +O(1), (4.31)

as ε→ 0, which implies the statement of the lemma.

The next key technical lemma provides a comparison of an integral involving

∇ηε tested against a bounded Sobolev function with that of the same integral

evaluated on the trace of that Sobolev function on ∂Ω.

Lemma 4.5. There exist constants ε̄, c > 0 such that for every 0 < µ < 1 there

holds

1

c

∫
O+
ε

|∇ηε(x)||u(x)− u(π(x))|dx ≤ µ‖u‖L∞(O+
ε ) + |lnµ|‖ηε∇u‖L1(O+

ε ), (4.32)

for any u ∈ L∞(O+
ε ) ∩W 1,1

loc (Ωε).

Proof. Again, with the usual abuse of notation n(x) := n(π(x)), we have x =

π(x) + d∂Ω(x)n(x) for every x ∈ O+
ε . Moreover, as noted in (3.9), we have that

|∇ηε(x)| = 1

ε
|η′(d∂Ω(x)/ε)|. (4.33)

Therefore, taking the precise representative of u, by its differentiability on the lines

π(x) = y for H1-a.e. y ∈ ∂Ω and monotonicity of η(t) we have

|(u(x)− u(π(x)))∇ηε(x)| = |u(π(x) + d∂Ω(x)n(x))− u(π(x))||∇ηε(x)|
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≤ |∇ηε(x)| ·
∫ d∂Ω(x)

0

|∂t[u(π(x) + tn(x))]|dt

≤ |η
′(d∂Ω(x)/ε)|
εη(d∂Ω(x)/ε)

∫ d∂Ω(x)

0

η(t/ε)|∇u(π(x) + tn(x))|dt.

(4.34)

For 0 < λ < 1 we decompose O+
ε as O+

ε = O+
λε∪(O+

ε \O+
λε) and focus separately

on O+
λε and O+

ε \O+
λε. Starting with O+

λε, we observe that both π(x) and n(x) are

constant along the normal direction, so by (4.33), (4.34) and the coarea formula we

infer that∫
O+
λε

|∇ηε(x)||u(x)− u(π(x))|dx

≤
∫
O+
λε

|η′(d∂Ω(x)/ε)|
εη(d∂Ω(x)/ε)

(∫ λε

0

η(t/ε)|∇u(π(x) + tn(x) ) |dt

)
dx

=

∫ λ

0

∫
∂Ω

|η′(h)|
η(h)

(∫ λε

0

η(t/ε)|∇u(σ + tn(σ) ) |dt

)
× |1 + εhκ(σ)|dH1(σ)dh

≤ 3|ln η(λ)|
∫ λε

0

∫
∂Ω

η(t/ε)|∇u(π(x) + tn(x) ) ||1 + tκ(σ)|dH1(σ)dt, (4.35)

provided ε̄ < 1
2κ
−1
∂Ω. Thus∫

O+
λε

|∇ηε(x)||u(x)− u(π(x))|dx

≤ 3|ln η(λ)|
∫ λε

0

∫
∂Ω

ηε(t)|∇u(π(x) + tn(x) ) ||1 + tκ(σ)|dH1(σ)dt

= 3|ln η(λ)| · ‖ηε∇u‖L1(O+
λε)
. (4.36)

On the other hand, for the part on O+
ε \O+

λε, we have, again by (4.33) and coarea

formula, that ∫
O+
ε \O+

λε

|∇ηε(x)||u(x)− u(π(x))|dx

=
1

ε

∫
O+
ε \O+

λε

|η′ (d∂Ω(x)/ε)||u(x)− u(π(x))|dx

≤ 4|∂Ω|
(∫ 1

λ

|η′(t)|dt
)
‖u‖L∞(O+

ε )

= 4|∂Ω|η(λ)‖u‖L∞(O+
ε ). (4.37)
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Overall, combining the estimates (4.36) and (4.37), we get that

1

c

∫
O+
ε

|∇ηε(x)||u(x)− u(π(x))|dx ≤ η(λ)‖u‖L∞(O+
ε ) + |ln η(λ)| ‖ηε∇u‖L1(O+

ε ),

(4.38)

for some c > 0. The previous estimate holds for every 0 < λ < 1. Since η(λ) maps

[0, 1] surjectively onto [0, 1], setting λ := η−1(µ) we get that for every µ ∈ (0, 1)

there holds:

1

c

∫
O+
ε

|∇ηε(x)||u(x)− u(π(x))|dx ≤ µ‖u‖L∞(O+
ε ) + |lnµ|‖ηε∇u‖L1(O+

ε ), (4.39)

which proves the L1-estimate (4.32).

Our next lemma gives a bound that will be useful to estimate the interior

contribution of the bulk charges to the micromagnetic energy. Note that for u ∈
H1(Ω;R2) a straightforward interpolation estimate between the H̊−1/2 norm of

divu and the L2 norms of u and ∇u would have held true if u vanished at the

boundary of Ω. However, the presence of a nonzero trace on ∂Ω requires some

additional care due to a logarithmic failure of this interpolation. A counterexample

to the latter is provided by u, which is equal to the outward unit normal at the

projection point to the boundary of Ω multiplied by a cutoff function making u

zero at distances greater than δ from ∂Ω (for a related phenomenon, see Ref. 20).

Lemma 4.6. There exists a constant C > 0 depending only on Ω such that for any

δ ∈ (0, 1
2 ) and any u ∈ H1(Ω;R2) there holds∫

Ω

∫
Ω

divu(x)divu(y)

|x− y|
dxdy ≤ δ‖∇u‖2L2(Ω) + Cδ−1‖u‖2L2(Ω) + C|ln δ| ‖u‖2L2(∂Ω).

(4.40)

Proof. For a non-negative cutoff function ω ∈ C∞(R) satisfying ω(t) = 1 for all

t ≤ 1 and ω(t) = 0 for all t ≥ 2, we write

1

|x− y|
= Gδ(x− y) +Hδ(x− y), (4.41)

where Hδ(x) := |x|−1ω(c|x|/δ) with c > 0 to be fixed shortly and Gδ(x) := |x|−1(1−
ω(c|x|/δ)). For the contribution of Hδ, by Young’s inequality for convolutions we

have∣∣∣∣∫
Ω

∫
Ω

Hδ(x− y)divu(x)divu(y)dxdy

∣∣∣∣ ≤ 2‖Hδ‖L1(R2)‖∇u‖2L2(Ω) ≤ δ‖∇u‖
2
L2(Ω),

(4.42)

for a suitable choice of c > 0 depending only on ω. For the contribution of the

even function Gδ, we integrate by parts and apply the Cauchy–Schwarz inequality
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to obtain∫
Ω

∫
Ω

Gδ(x− y)divu(x)divu(y)dxdy

=

∫
Ω

∫
Ω

u(x) · ∇2
xyGδ(x− y)u(y)dxdy

− 2

∫
Ω

∫
∂Ω

(u(y) · n(y))u(x) · ∇xGδ(x− y)dH1(y)dx

+

∫
∂Ω

∫
∂Ω

(u(x) · n(x))(u(y) · n(y))Gδ(x− y)dH1(x)dH1(y)

≤ max
y∈Ω
‖∇2Gδ(· − y)‖L1(Ω)‖u‖2L2(Ω) + max

y∈∂Ω
‖Gδ(· − y)‖L1(∂Ω)‖u‖2L2(∂Ω)

+ 2 max
y∈∂Ω

‖∇Gδ(· − y)‖1/2L1(Ω) max
y∈Ω
‖∇Gδ(· − y)‖1/2L1(∂Ω)‖u‖L2(Ω)‖u‖L2(∂Ω)

≤ Cδ−1‖u‖2L2(Ω) + C|ln δ|‖u‖2L2(∂Ω) + Cδ−1/2|ln δ|1/2‖u‖L2(Ω)‖u‖L2(∂Ω),

(4.43)

for some C > 0 depending only on Ω. The conclusion follows by combining (4.42)

and (4.43), after an application of Young’s inequality.

As a corollary to this lemma, we have the following result for vector fields that

are uniformly bounded.

Lemma 4.7. Let δ > 0, and for ε > 0 let uε ∈ H1(Ω;R2) with |uε| ≤ 1 in Ω.

Then there exists a constant C > 0 depending only on Ω such that∫
Ω

∫
Ω

divuε(x)divuε(y)

|x− y|
dxdy ≤ δ‖∇uε‖2L2(Ω) +

C

δ
. (4.44)

Moreover, if uε ⇀ u weakly in H1(Ω) as ε→ 0 then∫
Ω

∫
Ω

divuε(x)divuε(y)

|x− y|
dxdy

ε→0−−−→
∫

Ω

∫
Ω

divu(x)divu(y)

|x− y|
dxdy (4.45)

and ∫
∂Ω

∫
Ω

divuε(x)(uε(y) · n(y))

|x− y|
dxdH1(y)

ε→0−−−→
∫
∂Ω

∫
Ω

divu(x)(u(y) · n(y))

|x− y|
dxdH1(y). (4.46)

Proof. The estimate in (4.44) is an immediate corollary to Lemma 4.6. To prove

(4.45), we first note that since |x|−1 ∗divu belongs to L2(Ω) by Young’s inequality

for convolutions, it is enough to prove that the left-hand side of (4.45) goes to zero

when uε ⇀ 0 weakly in H1(Ω) as ε→ 0. However, the latter is true by (4.40) in view

of boundedness of ‖∇u‖L2(Ω), strong convergence of u to zero in L2(Ω) and L2(∂Ω)
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by compact Sobolev and trace embeddings, and arbitrariness of δ > 0. Similarly,

since the integral over ∂Ω on the right-hand side of (4.46) defines a function of x

that belongs to L2(Ω) by the last inequality in (4.27), it is enough to show (4.46)

when uε ⇀ 0 weakly in H1(Ω) as ε → 0. The latter follows via an application of

the Cauchy–Schwarz inequality:∣∣∣∣∫
∂Ω

∫
Ω

divuε(x)(uε(y) · n(y))

|x− y|
dxdH1(y)

∣∣∣∣
≤
(∫

∂Ω

∫
Ω

(uε(y) · n(y))2

|x− y|3/2
dx dH1(y)

)1/2

×
(∫

∂Ω

∫
Ω

|divuε(x)|2

|x− y|1/2
dxdH1(y)

)1/2

≤ C‖∇uε‖L2(Ω)‖uε · n‖L2(∂Ω) → 0, (4.47)

as ε→ 0, by the compact trace embedding, where C > 0 depends only on Ω.

5. Analysis of the Magnetostatic Energy

In this section, we carry out an analysis of the magnetostatic energy which con-

tains two propositions describing the behavior of the nonlocal terms in the stray

field energy Wε (cf. (3.13)), corresponding to the in-plane and out-of-plane mag-

netization components. We will then use these results to prove our main theorems

formulated in Sec. 3.

We start by proving the following proposition for the non-local term due to the

in-plane component of the magnetization. Note that here we need a stronger result

than that of the type proved for the three-dimensional micromagnetic energy by

Kohn and Slastikov in Ref. 43 in order to go beyond the regime studied there (see

Theorems 3.3 and 3.4).

Proposition 5.1. There exist ε̄, C > 0 such that if 0 < ε < ε̄ and mε ∈ Hε(R2;S2),

then the magnetostatic energy for the in-plane component (cf. (3.14))

V(ηεm
ε
⊥) =

∫
R2

∫
R2

div (ηεm
ε
⊥)(x)div (ηεm

ε
⊥)(y)

|x− y|
dxdy (5.1)

satisfies

|V(ηεm
ε
⊥)− VΩ×Ω(mε

⊥) + 2V∂Ω×Ω(mε
⊥)− 2|ln ε| ‖mε

⊥ · n‖2L2(∂Ω)|

≤ Cε(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

) + C‖mε
⊥ · n‖L2(∂Ω)(1 + ‖ηε∇mε

⊥‖L2(Ωε)), (5.2)

where Cε → 0 as ε→ 0, and

VΩ×Ω(mε
⊥) :=

∫
Ω

∫
Ω

divmε
⊥(x) divmε

⊥(y)

|x− y|
dy dx, (5.3)

V∂Ω×Ω(mε
⊥) :=

∫
∂Ω

∫
Ω

(n ·mε
⊥)(σ) divmε

⊥(y)

|σ − y|
dy dH1(σ). (5.4)
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Proof. As is common in the analysis of the limiting behaviors of non-local energy

functionals, we decompose V into the sum of several terms and estimate each term

separately.

First, expanding the divergence and exploiting the symmetry in the x, y vari-

ables, we write V(uε) =: I1 + 2I2 + I3, where

I1 :=

∫
R2

∫
R2

∇ηε(x) ·mε
⊥(x)∇ηε(y) ·mε

⊥(y)

|x− y|
dxdy, (5.5)

I2 :=

∫
R2

∫
R2

∇ηε(y) ·mε
⊥(y)ηε(x)divmε

⊥(x)

|x− y|
dxdy, (5.6)

I3 :=

∫
R2

∫
R2

ηε(x)divmε
⊥(x)ηε(y)divmε

⊥(y)

|x− y|
dxdy. (5.7)

Note that I1, I2, I3 depend on ε but we suppress this for ease of notation. We then

have

left-hand side of (5.2) ≤ |I3 − VΩ×Ω(mε
⊥)|+ 2|V∂Ω×Ω(mε

⊥) + I2| (5.8)

+ |I1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)|, (5.9)

and we proceed by estimating the terms on the right-hand side of the previous

relation.

Step 1. Estimate of I3 − VΩ×Ω(mε
⊥). We split this term as I3 − VΩ×Ω(mε

⊥) =

2L2 + L3, where

L2 :=

∫
Ω

∫
O+
ε

ηε(x)divmε
⊥(x)divmε

⊥(y)

|x− y|
dxdy, (5.10)

L3 :=

∫
O+
ε

∫
O+
ε

ηε(x)divmε
⊥(x)ηε(y)divmε

⊥(y)

|x− y|
dxdy. (5.11)

To estimate L2 and L3, we use Young’s inequality for convolutions∫
R2

|f(x)||(g ∗K)(x)|dx ≤ ‖f‖p‖g‖s‖K‖r (5.12)

with p = r = 4
3 and s = 2. Observing that since Ω is bounded, there exists

a ball U centered at the origin such that x − y ∈ U for every x, y ∈ Ωε and

‖| · |−1‖Lr(U) ≤ C we obtain that L2 ≤ C‖ηεdivmε
⊥‖Lp(O+

ε )‖ηεdivmε
⊥‖L2(Ωε),. But

by Hölder’s inequality there holds ‖ηε∇mε
⊥‖Lp(O+

ε ) ≤ ‖ηε∇mε
⊥‖L2(Ωε)|O+

ε |1/4 ≤
Cε1/4‖ηε∇mε

⊥‖L2(Ωε), for some constant C > 0, provided ε is small enough. Hence

L2 ≤ Cε1/4‖ηε∇mε
⊥‖2L2(Ωε)

. (5.13)

The very same estimate is true for |L3| and, therefore, we conclude that for every

ε sufficiently small there holds

|I3 − VΩ×Ω(mε
⊥)| ≤ 2|L2|+ |L3| ≤ Cε1/4‖ηε∇mε

⊥‖2L2(Ωε)
, (5.14)

for some positive constant C > 0 and all ε small enough.
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Step 2. Estimate of V∂Ω×Ω(mε
⊥) + I2. Our aim here is to show that

|V∂Ω×Ω(mε
⊥) + I2| ≤ Cε(1 + ‖ηε∇mε

⊥‖2L2(Ωε)
), (5.15)

for some Cε > 0 such that Cε → 0 as ε→ 0. To estimate V∂Ω×Ω(mε
⊥) + I2, we use

the fact that suppR2 ∇ηε ⊆ O+
ε and |mε

⊥| ≤ 1 in Ωε to obtain (cf. (3.9))

−I2 =

∫
O+
ε

∫
Ωε

|∇ηε(y)|(n(y) ·mε
⊥(y))ηε(x)divmε

⊥(x)

|x− y|
dxdy (5.16)

=: M1 +M2, (5.17)

with

M1 :=

∫
O+
ε

∫
Ωε

|∇ηε(y)|(n ·mε
⊥)(π(y))ηε(x)divmε

⊥(x)

|x− y|
dxdy, (5.18)

M2 :=

∫
O+
ε

∫
Ωε

|∇ηε(y)|[(n ·mε
⊥)(y)− (n ·mε

⊥)(π(y))]ηε(x)divmε
⊥(x)

|x− y|
dxdy.

(5.19)

Clearly, we have

|V∂Ω×Ω(mε
⊥) + I2| ≤ |V∂Ω×Ω(mε

⊥)−M1|+ |M2|, (5.20)

and we want to show that

|M2| ≤ Cε(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

) and

|V∂Ω×Ω(mε
⊥)−M1| ≤ Cε(1 + ‖ηε∇mε

⊥‖2L2(Ωε)
),

(5.21)

with Cε → 0 as ε→ 0. To estimate M2, we use Young’s inequality for convolutions

(5.12) to obtain

M2 ≤ ‖| · |−1‖Ls(U)‖|∇ηε|[(n ·mε
⊥)(·)− (n ·mε

⊥)(π(·))]‖Lp(O+
ε )

×‖ηεdivmε
⊥‖L2(Ωε), (5.22)

for some p, s ≥ 1 such that 1
p + 1

s = 3
2 . We take p := 1 + α and s := 2 1+α

1+3α with

α > 0 sufficiently small so that 1 < s < 2. Then

M2 ≤ C‖|∇ηε|[(n ·mε
⊥)(·)− (n ·mε

⊥)(π(·))]‖L1+α(O+
ε )‖ηε∇m

ε
⊥‖L2(Ωε), (5.23)

with some C > 0 depending only on Ω and s such that ‖| · |−1‖Ls(U) ≤ C.

We conclude by showing that

Aε := ‖|∇ηε|[(n ·mε
⊥)(·)− (n ·mε

⊥)(π(·))]‖L1+α(O+
ε ) (5.24)

is small, which guarantees that the limit relation in (5.21) holds. Indeed, using

interpolation inequality ‖f‖L1+α ≤ ‖f‖θL1‖f‖1−θL1+2α with α > 0, θ = 1
2(1+α) and

1− θ = 1+2α
2(1+α) , we immediately obtain

Aε ≤ ‖|∇ηε|[(n ·mε
⊥)(·)− (n ·mε

⊥)(π(·))]‖θ
L1(O+

ε )
‖2∇ηε‖1−θL1+2α(O+

ε )
. (5.25)
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Now, recalling that η′ ∈ L1+2α(0, 1) for some α small enough depending on q, we

get that

‖∇ηε‖1−θL1+2α(O+
ε )
≤ Cε2θ−1. (5.26)

Also, using Lemma 4.5 with µ = ε and Cauchy–Schwarz inequality we obtain

‖|∇ηε|[(n ·mε
⊥)(·)− (n ·mε

⊥)(π(·))]‖L1(O+
ε )

≤ C(ε+ |ln ε||O+
ε |1/2‖ηε∇mε

⊥‖L2(Ωε))

≤ C ′ε1/2|ln ε|(1 + ‖ηε∇mε
⊥‖L2(Ωε)), (5.27)

for some C,C ′ > 0 and all ε small enough. Now, combining the two previous

estimates we obtain that

Aε ≤ Cε
5θ
2 −1|ln ε|θ(1 + ‖ηε∇mε

⊥‖L2(Ωε))
θ

≤ C ′ε1/8(1 + ‖ηε∇mε
⊥‖L2(Ωε)), (5.28)

for α sufficiently small, recalling that θ → 1
2 as α→ 0. Thus by Young’s inequality

we have

M2 ≤ Cε1/8(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

), (5.29)

which implies the first estimate in (5.21).

It remains to estimate the quantity |V∂Ω×Ω(mε
⊥) −M1|. For that we split it

further as M1 =: N1 +N2, where

N1 :=

∫
O+
ε

∫
Ωε

|∇ηε(y)|(n ·mε
⊥)(π(y))divmε

⊥(x)

|x− y|
dxdy, (5.30)

N2 :=

∫
O+
ε

∫
O+
ε

|∇ηε(y)|(n ·mε
⊥)(π(y))ηε(x)divmε

⊥(x)

|x− y|
dxdy, (5.31)

and given that |V∂Ω×Ω(mε
⊥)−M1| ≤ |V∂Ω×Ω(mε

⊥)−N1|+ |N2| we aim at showing

that

|V∂Ω×Ω(mε
⊥)−N1| ≤ Cε(1 + ‖ηε∇mε

⊥‖2L2(Ωε)
) and

|N2| ≤ Cε(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

),
(5.32)

with some Cε → 0 as ε → 0. The bound (5.32) will prove the second estimate in

(5.21).

We can estimate N2 as

|N2| ≤
∫
O+
ε

fε(x)ηε(x)|divmε
⊥(x)|dx, (5.33)

where fε is defined in (4.1). Now we apply Lemma 4.1, the Cauchy–Schwarz and

Young’s inequalities to obtain that for ε sufficiently small we have

|N2| ≤ (2|ln ε|+ C)

∫
O+
ε

ηε(x) |divmε
⊥(x)|dx
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≤ C ′|ln ε| |O+
ε |1/2‖ηε∇mε

⊥‖L2(Ωε)

≤ C ′′ε1/2|ln ε|(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

),

(5.34)

for some C,C ′, C ′′ > 0, yielding the second relation in (5.32).

To estimate |V∂Ω×Ω(mε
⊥)−N1|, we observe that

|V∂Ω×Ω(mε
⊥)−N1| =

∣∣∣∣∫
Ω

divmε
⊥(x)ρε(x)dx

∣∣∣∣ (5.35)

with

ρε(x) :=

∫
O+
ε

|∇ηε(y)|(n ·mε
⊥)(π(y))

|x− y|
dy −

∫
∂Ω

(n ·mε
⊥)(σ)

|x− σ|
dH1(σ). (5.36)

Using the coarea formula, we infer that for any x ∈ Ω there holds

ρε(x) =

∫
∂Ω

∫ 1

0

(n ·mε
⊥)(σ)|η′(t)|

(
1 + εtκ(σ)

|x− σ − εtn(σ)|
− 1

|x− σ|

)
dt dH1(σ),

(5.37)

and by Lebesgue’s dominated convergence theorem we have ρε(x)→ 0 as ε→ 0 for

every x ∈ Ω, Furthermore, by |mε
⊥| ≤ 1 and Lemma 4.3 we have

|ρε(x)| ≤ fε(x) +

∫
∂Ω

1

|x− σ|
dH1(σ) ≤ C

(
1 + |ln(dist(x, ∂Ω))|

)
, (5.38)

for some C > 0 and all ε small enough.

From (5.38) and the pointwise convergence of ρε to zero as ε → 0, one can

conclude by Lebesgue’s dominated convergence theorem that ‖ρε‖L2(Ω) → 0 when

ε→ 0. Therefore, by the Cauchy–Schwarz and Young’s inequalities we obtain

|V∂Ω×Ω(mε
⊥)−N1| ≤ Cε(1 + ‖ηε∇mε

⊥‖2L2(Ωε),
) (5.39)

for some Cε > 0 such that Cε → 0 when ε→ 0. This concludes the proof of (5.32)

and, therefore, of (5.15).

Step 3. Estimate of |I1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)|. By adding and subtracting

mε
⊥(π(x)) to mε

⊥(x), we rewrite I1 as I1 = J1 + 2J2 − J3, where

J1 :=

∫
O+
ε

∫
O+
ε

∇ηε(x) ·mε
⊥(π(x))∇ηε(y) ·mε

⊥(π(y))

|x− y|
dxdy, (5.40)

J2 :=

∫
O+
ε

∫
O+
ε

∇ηε(x) · [mε
⊥(x)−mε

⊥(π(x))]∇ηε(y) ·mε
⊥(y)

|x− y|
dxdy, (5.41)

J3 :=

∫
O+
ε

∫
O+
ε

∇ηε(x) · [mε
⊥(x)−mε

⊥(π(x))]∇ηε(y) · [mε
⊥(y)−mε

⊥(π(y))]

|x− y|
dxdy.

(5.42)
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In writing the previous relations, we exploited that supp∇ηε ⊆ O+
ε . Also, to avoid

cumbersome notations we use the same symbol to denote both mε
⊥ and its trace

mε
⊥|∂Ω on ∂Ω. When we write mε

⊥(π(x)) we mean mε
⊥|∂Ω(π(x)).

Observe that

|I1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)| ≤ |J1 − 2|ln ε|‖mε

⊥ · n‖2L2(∂Ω)|+ |J2|+ |J3|, (5.43)

and we first want to estimate J2 and J3. Using the estimate in Lemma 4.1, we

obtain that as soon as ε is small enough, there holds

|J2| ≤
∫
O+
ε

∫
O+
ε

|∇ηε(x)||∇ηε(y)||mε
⊥(x)−mε

⊥(π(x))|
|x− y|

dxdy

=

∫
O+
ε

fε(x)|∇ηε(x)||mε
⊥(x)−mε

⊥(π(x))|dx

≤ 3|ln ε|
(∫
O+
ε

|∇ηε(x)||mε
⊥(x)−mε

⊥(π(x))|dx
)
. (5.44)

Applying the L1-type estimate in Lemma 4.5 with µ = ε, we infer that

|J2| ≤ C|ln ε|(ε+ |ln ε|‖ηε∇mε
⊥‖L1(O+

ε )), (5.45)

for some C > 0. Using the Cauchy–Schwarz and Young’s inequalities, we then

obtain

|J2| ≤ C|ln ε|(ε+ |ln ε| |O+
ε |1/2‖ηε∇mε

⊥‖L2(Ωε),)

≤ C ′ε1/2|ln ε|2(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

), (5.46)

for some C ′ > 0 and all ε small enough. In the same way, we obtain

|J3| ≤ 2C ′ε1/2|ln ε|2(1 + ‖ηε∇mε
⊥‖2L2(Ωε)

), (5.47)

for all ε small enough. Hence, from (5.43), (5.46) and (5.47) we get that

|I1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)|

≤ |J1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)|+ Cε1/2|ln ε|2(1 + ‖ηε∇mε

⊥‖2L2(Ωε)
), (5.48)

for all ε small enough.

It remains to estimate |J1−2|ln ε|‖mε
⊥ ·n‖2L2(∂Ω)|. We proceed by decomposing

J1 as J1 := K1 +K2 with

K1 :=

∫
O+
ε

∫
O+
ε

|n(π(x)) ·mε
⊥(π(x))|2

|x− y|
|∇ηε(x)||∇ηε(y)|dxdy, (5.49)

K2 :=

∫
O+
ε

|∇ηε(x)|n(π(x)) ·mε
⊥(π(x))

×
∫
O+
ε

|∇ηε(y)|n(π(y)) ·mε
⊥(π(y))− n(π(x)) ·mε

⊥(π(x))

|x− y|
dydx, (5.50)
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and we show that

|J1 − 2|ln ε|‖mε
⊥ · n‖2L2(∂Ω)| ≤ |K1 − 2|ln ε|‖mε

⊥ · n‖2L2(∂Ω)|+ |K2|

≤ C(1 + ‖ηε∇mε
⊥‖L2(Ω))‖mε

⊥ · n‖L2(∂Ω), (5.51)

for some C > 0 and all ε small enough.

We estimate K2 to obtain

|K2| ≤
∫
O+
ε

∫
O+
ε

|mε
⊥(π(y)) · n(π(y))−mε

⊥(π(x)) · n(π(x))|
|π(x)− π(y)|

× |n(π(x)) ·mε
⊥(π(x))| |π(x)− π(y)|

|x− y|
|∇ηε(x)||∇ηε(y)|dxdy. (5.52)

Since ∂Ω is of class C2 and compact, the projection map π : Oε̄ → ∂Ω is uniformly

Lipschitz for sufficiently small ε̄. Thus, there exists a constant Cπ > 0 such that

|π(x)− π(y)| ≤ Cπ|x− y| ∀x, y ∈ Oε̄, (5.53)

and passing to the curvilinear coordinates we obtain

|K2| ≤ Cπ

∫
O+
ε

∫
O+
ε

|mε
⊥(π(y)) · n(π(y))−mε

⊥(π(x)) · n(π(x))|
|π(x)− π(y)|

·

· |n(π(x)) ·mε
⊥(π(x))||∇ηε(x)||∇ηε(y)|dxdy (5.54)

≤ 2Cπ

∫ 1

0

∫ 1

0

|η′(s)||η′(t)|
∫
∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ)−mε

⊥(σ) · n(σ)|
|µ− σ|

·

· |n(σ) ·mε
⊥(σ)|dH1(µ)dH1(σ)dsdt, (5.55)

provided ε̄ is small enough.

Since ‖η′‖L1(0,1) = 1, using the Cauchy–Schwarz inequality we obtain

|K2| ≤ C

∫
∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ)−mε

⊥(σ) · n(σ)|
|µ− σ|

|n(σ) ·mε
⊥(σ)|dH1(µ)dH1(σ)

≤ C ′
(∫

∂Ω

|n(σ) ·mε
⊥(σ)|2dH1(σ)

) 1
2

×
(∫

∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ)−mε

⊥(σ) · n(σ)|2

|µ− σ|2
dH1(µ)dH1(σ)

) 1
2

≤ C ′′‖mε
⊥ · n‖H1/2(∂Ω)‖mε

⊥ · n‖L2(∂Ω), (5.56)

for some C,C ′, C ′′ > 0 and all ε small enough. Finally, using |mε
⊥| ≤ 1 and the

trace embedding theorem, we obtain

|K2| ≤ C(1 + ‖ηε∇mε
⊥‖L2(Ωε))‖m

ε
⊥ · n‖L2(∂Ω). (5.57)

Lastly, we show that

|K1 − 2|ln ε
∣∣∣∣∫
∂Ω

(mε
⊥(σ) · n(σ))2dH1(σ)

∣∣∣∣ ≤ C‖mε
⊥ · n‖L2(∂Ω). (5.58)
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Indeed, using the coarea formula and recalling the definition of fε in (4.1), we have

K1 =

∫
∂Ω

|n(σ) ·mε
⊥(σ)|2

(∫ 1

0

|η′(t)|fε(σ + εtn(σ))(1 + εtκ(σ))dt

)
dH1(σ).

(5.59)

Therefore, using the asymptotics of fε(σ+εtn(σ)) given in Lemma 4.1 and the fact

that |mε
⊥| ≤ 1, we infer (5.58). Combining (5.57) and (5.58), we get (5.51). Finally,

combining it with (5.48), (5.9) (5.14), and (5.15) we get the desired estimate (5.2).

This concludes the proof.

Proposition 5.2. There exist ε̄, C > 0 such that if 0 < ε < ε̄ and mε ∈ Hε(R2;S2),

then the magnetostatic energy for the out-of-plane component (cf. (3.15))

Ṽ(ηεm
ε
‖) =

∫
R2

∫
R2

∇(ηεm
ε
‖)(x) · ∇(ηεm

ε
‖)(y)

|x− y|
dxdy (5.60)

satisfies∣∣∣∣Ṽ(ηεm
ε
‖)− ṼΩ×Ω(mε

‖) + 2Ṽ∂Ω×Ω(mε
‖)−Dε + 2|ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ)

∣∣∣∣
≤ Cε(1 + ‖ηε∇mε

‖‖2L2(Ωε)
) + C‖mε

‖ + 1‖1/2L2(∂Ω)‖m
ε
‖ − 1‖1/2L2(∂Ω)

× (1 + ‖ηε∇mε
‖‖L2(Ωε)), (5.61)

where Cε → 0 as ε→ 0, Dε is defined in (3.27), and

ṼΩ×Ω(mε
‖) :=

∫
Ω

∫
Ω

∇mε
‖(x) · ∇mε

‖(y)

|y − x|
dydx, (5.62)

Ṽ∂Ω×Ω(mε
‖) :=

∫
Ω

∫
∂Ω

∇mε
‖(x) · n(σ)mε

‖(σ)

|σ − x|
dH1(σ)dx. (5.63)

Proof. We begin by writing Ṽ in the form similar to that of the non-local term in

Proposition 5.1:

Ṽ(ηεm
ε
‖) =

2∑
i=1

∫
R2

∫
R2

div (ηεm
ε
‖ei)(x)div (ηεm

ε
‖ei)(y)

|x− y|
dxdy. (5.64)

Proceeding exactly as in Steps 1–3 in the proof of Proposition 5.1, we obtain

|Ṽ(ηεm
ε
‖)− J̃1 − ṼΩ×Ω(mε

‖) + 2Ṽ∂Ω×Ω(mε
‖)| ≤ Cε(1 + ‖ηε∇mε

‖‖2L2(Ωε)
), (5.65)

where Cε → 0 as ε→ 0 and

J̃1 :=

∫
O+
ε

∫
O+
ε

∇ηε(x) · ∇ηε(y)mε
‖(π(x))mε

‖(π(y))

|x− y|
dxdy. (5.66)

To account for the nonzero limiting boundary data for mε
‖, we represent J̃1 in

the following way:

J̃1 =

∫
O+
ε

∫
O+
ε

∇ηε(x) · ∇ηε(y)(mε
‖(π(x))− 1)(mε

‖(π(y)) + 1)

|x− y|
dxdy +Dε, (5.67)
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where we recalled the definition of Dε from (3.27) and noted that the terms linear

in mε
‖ cancel upon expansion of the integral due to the symmetry of the kernel. We

denote by J̄1 the first integral in the above expression (i.e. J̄1 := J̃1−Dε) and split

it in a similar way to what we did for J1 in Proposition 5.1. Specifically, we set

J̄1 := K̃1 + K̃2, where

K̃1 :=

∫
O+
ε

∫
O+
ε

|mε
‖(π(x))|2 − 1

|x− y|
|∇ηε(x)||∇ηε(y)|dxdy, (5.68)

K̃2 :=

∫
O+
ε

|∇ηε(x)|(mε
‖(π(x))− 1)n(π(x))

·
∫
O+
ε

|∇ηε(y)|
n(π(y))(mε

‖(π(y)) + 1)− n(π(x))(mε
‖(π(x)) + 1)

|x− y|
dydx.

(5.69)

By the same arguments used in the proof of Step 3 in Proposition 5.1 to estimate

K2, we then obtain the estimate

K̃2 ≤ C(1 + ‖ηε∇mε
‖‖L2(Ωε))‖m

ε
‖ − 1‖L2(∂Ω), (5.70)

for some C > 0 and all ε small enough.

Alternatively, writing K̃2 in the following equivalent way:

K̃2 =

∫
O+
ε

|∇ηε(x)|(mε
‖(π(x)) + 1)n(π(x))

·
∫
O+
ε

|∇ηε(y)|
n(π(y))(mε

‖(π(y))− 1)− n(π(x))(mε
‖(π(x))− 1)

|x− y|
dydx,

(5.71)

we infer

K̃2 ≤ C(1 + ‖ηε∇mε
‖‖L2(Ωε))‖m

ε
‖ + 1‖L2(∂Ω), (5.72)

and taking the geometric mean of (5.70) and (5.72), we obtain

K̃2 ≤ C(1 + ‖ηε∇mε
‖‖L2(Ωε))‖m

ε
‖ + 1‖1/2L2(∂Ω) ‖m

ε
‖ − 1‖1/2L2(∂Ω), (5.73)

for some C > 0 and all ε small enough.

Finally, the estimate for K̃1 can be obtained in the same way we derived the

estimate for K1 in Step 3 of the proof of Proposition 5.1, together with a Cauchy–

Schwarz inequality, to obtain

|K̃1 − 2|ln ε
∣∣∣∣∫
∂Ω

(|mε
‖|2 − 1)dH1(σ)

∣∣∣∣ ≤ C‖mε
‖ + 1‖1/2L2(∂Ω)‖m

ε
‖ − 1‖1/2L2(∂Ω). (5.74)

Combining all of the above estimates, we obtain the result.

6. Proof of Γ-convergence

In this section, we provide the proof of our main theorems. Since the proofs of

Theorems 3.1 and 3.3 follow essentially verbatim those of Theorems 3.2 and 3.4,
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respectively, we only give the proofs of the latter. Theorems 3.1 and 3.3 may in fact

be thought of as the limiting cases of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. Without loss of generality we may suppose that γε = γ.

(i) (Compactness) We first prove the compactness result. Let us assume that

Gε(mε) ≤ C for some constant C > 0 independent of ε. We recall that (cf. (3.17))

Gε(mε) = ‖ηε∇mε‖2L2(Ωε)
+ λDε(mε) +

γ

2|ln ε|
V(ηεm

ε
⊥)− γ

2|ln ε|
Ṽ(ηεm

ε
‖).

(6.1)

First, note that, up to a constant term, we can absorb the DMI energy λDε(mε)

into the Dirichlet energy. Indeed, since |m| = 1 a.e. in Ωε and |ηε| ≤ 1, by the

Cauchy–Schwarz and Young’s inequalities for every 0 < ε < ε̄ and every δ > 0

there holds

|Dε(mε)| ≤
∫

Ωε

|mε
‖divmε

⊥ −mε
⊥ · ∇mε

‖||ηε|dx

≤ C‖ηε∇mε‖L2(Ωε) ≤
δ

2
‖ηε∇mε‖2L2(Ωε)

+
C2

2δ
, (6.2)

for some ε̄, C > 0 that depend only on Ω. Therefore, without loss of generality, we

can assume from the very beginning that

‖ηε∇mε‖2L2(Ωε)
+

γ

|ln ε|
V(ηεm

ε
⊥)− γ

|ln ε|
Ṽ(ηεm

ε
‖) ≤ C (6.3)

for some constant C > 0 independent of ε.

By positivity of V(ηεm
ε
⊥), we may, furthermore, drop this term from (6.3). On

the other hand, from Proposition 5.2, Lemma 4.4 and the estimates

ṼΩ×Ω(mε
‖) ≤

∫
Ω

∫
Ω

|∇mε
‖(x)|2

|x− y|
dy dx ≤ C ′‖ηε∇mε‖2L2(Ωε)

, (6.4)

Ṽ∂Ω×Ω(mε
‖) ≤

∫
Ω

∫
∂Ω

|∇mε
‖(x)

|x− σ|
dH1(σ) dx ≤ C ′′‖ηε∇mε‖L2(Ωε), (6.5)

for some C ′, C ′′ > 0 depending only on Ω that follow from the Cauchy–Schwarz

inequalities, we immediately obtain the existence of a positive constant C > 0 such

that for all sufficiently small ε there holds

(1− γCε) ‖ηε∇mε‖2L2(Ωε)
≤ C, (6.6)

for some Cε > 0 such that Cε → 0 as ε→ 0.

From (6.6) we conclude that for ε sufficiently small we can uniformly bound mε

in H1(Ω;S2) and, therefore, up to a subsequence, there exists m ∈ H1(Ω; S2) such

that

mε →m strongly in L2(Ω;R3), (6.7)

∇mε ⇀ ∇m weakly in L2(Ω;R2×3), (6.8)
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mε
‖ → m‖ strongly in Lp(∂Ω) for p ≥ 1, (6.9)

mε
⊥ →m⊥ strongly in Lp(∂Ω;R2) for p ≥ 1, (6.10)

as ε → 0. Moreover, since |mε| = 1 on Ωε we also have ηεm
ε → 0 strongly in

L2(R2\Ω;R3). Hence, we infer that if m is extended by zero outside Ω then

mε →m strongly in L2(R2;R3). (6.11)

In particular, we have m ∈ H0(R2;S2).

(ii) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) and m ∈ H0(R2;S2) be such

that mε → m strongly in L2(R2;R3) as ε → 0. We may further assume that

lim infε→0 Gε(mε) < +∞, since otherwise the statement is trivially true. Hence,

using the compactness statement (maybe passing to a subsequence) we have

mε ⇀ m weakly in H1(Ω;R3), and using Propositions 5.1 and 5.2, together with

Lemma 4.4 and the lower semicontinuity of the Dirichlet energy on Ω and the

compactness of trace embedding of functions in H1(Ω) into L2(∂Ω) we obtain

lim inf
ε→0

Gε(mε) ≥
∫

Ω

|∇m|2dx+ λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx

+ γ

∫
∂Ω

((m⊥ · n)2 −m2
‖)dH1(σ) = G0(m). (6.12)

(iii) (Γ-limsup inequality) Let m ∈ H0(R2;S2) be such that G0(m) < +∞. Take

ε̄ > 0 sufficiently small and extend m to m̃ ∈ H1(Ωε̄,S2), e.g. by setting m̃(x) :=

m(x−2d∂Ω(x)n(π(x))). For every ε < ε̄ we now define mε = m̃ in Ωε and mε = 0

outside Ωε. It is clear that mε ∈ Hε(R2;S2) and mε → m strongly in L2(R2;R3)

as ε → 0. Moreover, using Propositions 5.1 and 5.2, Lemma 4.4 and the strong

convergence of mε to m in H1(Ω;R3), we have mε → m in L2(∂Ω;R3) and can

pass to the limit in the magnetostatic energy term. Finally, using the fact that∫
Ωε

η2
ε |∇mε|2dx =

∫
O+
ε

η2
ε |∇m̃|2dx+

∫
Ω

|∇m|2dx
ε→0−−−→

∫
Ω

|∇m|2dx, (6.13)

we obtain

lim sup
ε→0

Gε(mε) = G0(m). (6.14)

This completes the proof.

Proof of Theorem 3.4. (i) (Compactness) We first prove the compactness result.

Let us assume that Gε(mε) + ν
2Dε ≤ C for some constant C > 0 independent of ε.

We recall that now Gε reads as (cf. (3.17) with γε = ν|ln ε|)

Gε(mε) = ‖ηε∇mε‖2L2(Ωε)
+ λDε(mε) +

ν

2
V(ηεm

ε
⊥)− ν

2
Ṽ(ηεm

ε
‖). (6.15)

As in the proof of Theorem 3.2, up to a constant term, we can absorb the DMI

energy λDε(mε) into the Dirichlet energy and drop the V(ηεm
ε
⊥) term due to
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its positivity. Therefore, without loss of generality, we can assume from the very

beginning that

‖ηε∇mε‖2L2(Ωε)
− νṼ(ηεm

ε
‖) + νDε ≤ C, (6.16)

for some constant C > 0 independent of ε.

Next, aiming to invoke Proposition 5.2, we write

−ν(Ṽ(ηεm
ε
‖)−Dε) = ν(2Ṽ∂Ω×Ω(mε

‖)− ṼΩ×Ω(mε
‖) + 2|ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ))

− ν(Ṽ(ηεm
ε
‖)−Dε − ṼΩ×Ω(mε

‖) + 2Ṽ∂Ω×Ω(mε
‖)

+ 2|ln ε|
∫
∂Ω

(1− |mε
‖|2)dH1(σ)), (6.17)

from which by Proposition 5.2 it follows that

−ν(Ṽ(ηεm
ε
‖)−Dε) ≥ −C − C ′‖ηε∇mε

‖‖L2(Ωε) − Cε‖ηε∇m
ε
‖‖2L2(Ωε)

+ 2ν|ln ε|
∫
∂Ω

(1− |mε
‖|2)dσ + ν(2Ṽ∂Ω×Ω(mε

‖)

− ṼΩ×Ω(mε
‖)), (6.18)

where Cε → 0 as ε → 0 and C,C ′ > 0 are independent of ε. Now, from (6.5) and

Young’s inequality it is clear that for any δ > 0 we have

ν|Ṽ∂Ω×Ω(mε
‖)| ≤ δ‖ηε∇mε

‖‖2L2(Ωε)
+ Cν2δ−1, (6.19)

for some C > 0 depending only on Ω. Also, applying Lemma 4.7 to uε = mε
‖ei,

i = 1, 2, one obtains that for any δ > 0 there holds

ν|ṼΩ×Ω(mε
‖)| ≤ δ‖ηε∇mε

‖‖2L2(Ωε),
+ Cν2δ−1, (6.20)

again, for some C > 0 depending only on Ω. Based on the above estimates and

another application of Young’s inequality in (6.18) we deduce that for any 0 < ε < ε̄

and any δ > 0 there holds

−ν(Ṽ(ηεm
ε
‖)−Dε) ≥ −(4δ + Cε)‖ηε∇mε

‖‖2L2(Ωε)
− C(1 + ν2δ−1)

+ 2ν|ln ε|
∫
∂Ω

(1− |mε
‖|2)dH1(σ), (6.21)

for some C > 0 depending only on Ω. Therefore, we can absorb the term

−ν(Ṽ(ηεm
ε
‖) − Dε) into the Dirichlet energy by choosing δ sufficiently small uni-

versal, and for any 0 < ε < ε̄ there holds

1

2
‖ηε∇mε

‖‖2L2(Ωε)
+ 2ν|ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ) ≤ C, (6.22)
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for some C > 0 independent of ε. This gives us (as in the proof of Theorem 3.2)

the existence of m ∈ H0(R2;S2) and a subsequence such that

mε →m strongly in L2(R2;R3), (6.23)

∇mε ⇀ ∇m weakly in L2(Ω;R2×3), (6.24)

|mε
‖| → 1 strongly in Lp(∂Ω) for any p ≥ 1, (6.25)

mε
⊥ → 0 strongly in Lp(∂Ω;R2) for any p ≥ 1. (6.26)

Hence, upon a further subsequence, we have |mε
‖| → 1 a.e. in ∂Ω. In fact, since

the trace of the limit belongs to VMO(∂Ω) and takes only values ±1, it is in fact

constant a.e. on ∂Ω.14, 15

In what follows, without loss of generality, we assume that mε
‖ → 1 strongly in

Lp(∂Ω), p ≥ 1, i.e. that the limit configuration m satisfies the boundary condition

m = e3 a.e. on ∂Ω.

(ii) (Γ-liminf inequality) We consider the energy functional

Gε(mε) +
ν

2
Dε = ‖ηε∇mε‖2L2(Ωε)

+ λDε(mε) +
ν

2
Dε +

ν

2
V(ηεm

ε
⊥)− ν

2
Ṽ(ηεm

ε
‖)

(6.27)

and will prove a lim inf inequality for this functional. Let mε ∈ Hε(R2;S2) sat-

isfy mε → m strongly in L2(R2;R3) as ε → 0. We may assume that lim infε→0

(Gε(mε) + ν
2Dε) < +∞, otherwise the statement is trivially true. Hence (maybe

after passing to a subsequence) we may assume that

lim inf
ε→0

Gε(mε) +
ν

2
Dε = lim

ε→0
Gε(mε) +

ν

2
Dε < +∞. (6.28)

Using the compactness result and the implied convergence, by the lower semiconti-

nuity of the norm and the weak-strong argument we immediately obtain

lim inf
ε→0

‖ηε∇mε‖2L2(Ωε)
≥ ‖∇m‖2L2(Ω),

lim
ε→0

λDε(mε) = λ

∫
Ω

(m‖divm⊥ −m⊥ · ∇m‖)dx.
(6.29)

Therefore, the Γ-liminf inequality is proved once we show that

lim inf
ε→0

(ν
2
Dε +

ν

2
V(ηεm

ε
⊥)− ν

2
Ṽ(ηεm

ε
‖)
)

≥ ν

2
VΩ×Ω(m⊥)− ν

2
ṼΩ×Ω(m‖) + νṼ∂Ω×Ω(m‖). (6.30)

For that, we consider separately the convergence of the terms due to the in-plane

and the out-of-plane components.

The in-plane magnetostatic contribution. As a direct consequence of Propo-

sition 5.1, Lemma 4.7 and the convergence in (6.24), (6.26), we obtain

ν

2
V(ηεm

ε
⊥)− ν|ln ε|

∫
∂Ω

(mε
⊥ · n)2dH1(σ)

ε→0−−−→ ν

2
VΩ×Ω(m⊥). (6.31)
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The out-of-plane magnetostatic contribution. As a direct consequence of

Proposition 5.2, Lemma 4.7 and the convergence in (6.24), (6.9), we obtain

ν

2
(Ṽ(ηεm

ε
‖)−Dε) + ν|ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ)

ε→0−−−→ ν

2
ṼΩ×Ω(m‖)− νṼ∂Ω×Ω(m‖). (6.32)

Proof of (6.30). Combining (6.31) and (6.32) we get

ν

2
Dε +

ν

2
V(ηεm

ε
⊥)− ν

2
Ṽ(ηεm

ε
‖)

≥ ν

2
V(ηεm

ε
⊥)− ν|ln ε|

∫
∂Ω

(mε
⊥ · n)2dH1(σ)

− ν

2
(Ṽ(ηεm

ε
‖)−Dε)− ν|ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ)

ε→0−−−→ ν

2
VΩ×Ω(m⊥)− ν

2
ṼΩ×Ω(m‖) + νṼ∂Ω×Ω(m‖). (6.33)

Therefore, using the definition of the vector field b(x) (see (2.23)) we obtain

lim inf
ε→0

(
Gε(mε) +

ν

2
Dε

)
≥ G̃0(m). (6.34)

(iii) (Γ-limsup inequality) We proceed as in the proof of Theorem 3.2. Let m ∈
H0(Ω;S2) be such that G̃0(m) < +∞ and, without loss of generality, m = e3 on

∂Ω. We take ε̄ > 0 and extend m to m̃ ∈ H1(Ωε̄,S2) by setting m̃ = e3 in Ωε̄\Ω.

For every ε < ε̄ we now define mε = m̃ in Ωε and mε = 0 outside Ωε. It is clear

that mε ∈ Hε(R2;S2) and satisfies mε → m strongly in L2(R2;R3) as ε → 0.

Moreover, due to the fact that mε = m in H1(Ω; S2), we have mε = e3 on ∂Ω.

Noting that in this case the inequality in (6.33) is actually an equality, and using

the fact that∫
Ωε

η2
ε |∇mε|2dx =

∫
O+
ε

η2
ε |∇m̃|2dx+

∫
Ω

|∇m|2dx =

∫
Ω

|∇m|2dx, (6.35)

we obtain

lim sup
ε→0

(
Gε(mε) +

ν

2
Dε

)
= G̃0(m). (6.36)

This completes the proof.

Remark 6.1. An examination of the proof of Theorem 3.4 shows that

|ln ε|
∫
∂Ω

(mε
⊥ · n)2dH1(σ)→ 0, |ln ε|

∫
∂Ω

(1− |mε
‖|2)dH1(σ)→ 0, (6.37)

as ε→ 0 for any sequence of minimizers mε of Gε.
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