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The problem of nucleation near spinodal is revisited. It is shown that the stan-
dard scaling argument due to Unger and Klein [Phys. Rev. B 29:2698–2708
(1984)] based on neglecting all but the first two terms of the Taylor expansion
of the potential in the free energy functional is only valid below critical dimen-
sion. At critical dimension, the nucleating droplet has a bigger amplitude and a
smaller spatial extent than predicted by the standard scaling argument. In this
case the structure of the droplet is determined in a nontrivial fashion by the next
order term in the expansion of the potential. Above critical dimension, the
amplitude of the nucleating droplet turns out to be too big to justify expanding
the potential in Taylor series, and no universality is to be expected in the shape
and size of the droplet. Both at and above critical dimension, however, the free
energy barrier remains finite, which indicates that the nucleation rate does not
vanish at spinodal as predicted by the standard scaling argument.

KEY WORDS: Non-classical nucleation; spinodal; critical droplet; matched
asymptotics; scaling.

1. INTRODUCTION

First-order phase transitions are dynamical barrier crossing events. (1) This
is why a metastable phase, even though it is not thermodynamically pre-
ferred, may persist over long periods of time before decaying to the stable
phase. Small fluctuations of the metastable phase tend to disappear, and a
fluctuation of critical size—a nucleating droplet—must be created from
which the system can quickly transform to the stable phase. The free



energy of this nucleating droplet determines the rate k of the transforma-
tion via Arrhenius law (for a recent review, see ref. 2):

k=n exp(−DF/kBT). (1)

Here n is a prefactor which contains information about the kinetics of the
system, and DF/kBT is the ratio of the free energy cost of a nucleating
droplet to the thermal energy kBT; (1) is valid when this ratio is large. The
shape of the nucleating droplet gives information about the mechanism of
the transformation. In the simplest situations when classical nucleation
theory applies, the nucleating droplet can be described as an island of the
stable phase which appears within the metastable one, and can therefore be
described in terms of its radius as a single parameter; the size of the
nucleating droplet is such that the free energy gained by creating this
volume of the stable phase balances exactly the free energy spent in sus-
taining the interface of the droplet. (2, 3) In many situations, however, classi-
cal nucleation theory is insufficient because the droplet differs significantly
from an homogeneous island of the new stable phase and requires more
parameters for its description. (1)

Nonclassical nucleation theory, pioneered by Cahn and Hilliard (4) and
based on a mean-field description as briefly summarized in the next para-
graphs, identifies the nucleating droplet as the saddle point of some suit-
ably defined free energy functional. Under appropriate circumstances,
namely near the spinodal point (a point at which the metastable phase
becomes thermodynamically unstable), Cahn and Hilliard, (4) and then
Unger and Klein (5) have concluded that the nucleating droplet displays
universal characteristics. However, some of the conclusions of the spinodal
nucleation theory are paradoxical at and above some critical spatial
dimension (see below). Our purpose is to generalize this theory, obtain the
nucleating droplet near spinodal, and resolve the paradoxes mentioned
above by establishing under which circumstances this droplet is or is not
universal. As in refs. 4 and 5, we proceed within the framework of a simple
mean-field theory based on a free energy functional of Ginzburg–Landau
type, which we briefly summarize first. Note that this type of description
can be systematically derived for long-range Ising models or systems of
particles interacting via a long-range Kac potential after resorting to gra-
dient expansion (see, for example, refs. 6–10). Also note that related ques-
tions may also arise in the context of quantum field theories (see, for
example, ref. 11).

Within mean-field theory, the state of the system undergoing a simple
first-order phase transition is represented by a scalar order parameter f
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defined in the domain W … Rd, together with the free energy functional (see,
for example, ref. 12)

F=F
W

( 1
2 |Nf|2+V(f)) dx. (2)

The first term in (2) penalizes the spatial fluctuations of the order param-
eter, while the second favors to minimize the effective potential V(f)
(which also depends on the control parameters, such as temperature, etc.).
Different phases are then defined as the local minima of V(f); when V(f)
has more than one minimum, the system can sustain more than one phase.
The lowest energy phase is thermodynamically stable, while all the other
phases are metastable.

The dynamics of such a system may be described via the noisy
gradient flow (13)

ft=−M
dF
df

+g(x, t). (3)

Here dF/df is the Frechet derivative of F[f], M is the generalized
mobility (for example, one may have M=1 for continuous ordering or
M=−D for spinodal decomposition in the context of Ginzburg–Landau
theories (12)), and g(x, t) is the noise appropriately defined so that the equi-
librium distribution associated with (3) is formally the Gibbs distribution
proportional to e−F[f]/kBT; note that there are technical difficulties in giving
a precise mathematical meaning to (3) with such a noise. (14) When the noise
is small (i.e., if the thermal energy kBT is much smaller than the typical free
energy barriers in the system), there is metastability: the system remains for
long periods of time in one phase before being driven to another phase by
thermal fluctuations. Motivated by large deviation theory, (15) one then
deduces that the dynamical paths by which the system undergoes a phase
transformation lie within a small tube around the (time-reversed) hetero-
clinic orbit connecting the lowest-lying saddle point of F with the meta-
stable and stable equilibria; this orbit is obtained from the deterministic
(zero noise) version of (3), whereas the saddle point of the free energy
functional (4) is a solution of the Euler–Lagrange equation associated with (2):

Df=VŒ(f), (4)

where D is the d-dimensional Laplacian. The saddle point determines the
shape of the nucleating droplet and also allows to calculate the free energy
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barrier DF and hence the leading order contribution to the nucleation rate
in (1). This is the problem which we shall focus on here, leaving a more
refined analysis leading also to the prefactor n in (1) for the future.

In an extended system, the saddle point associated with the phase
transformation from a higher energy phase to that of lower energy must be
a localized nucleating droplet. Back in ref. 4, Cahn and Hilliard showed
that near spinodal in d=3 the amplitude of the nucleating droplet should
be small; therefore, the droplet can be determined by expanding in Taylor
series the potential in (2) and (4):

V(f)=
b2

2
f2+

b3

3
f3+O(f4). (5)

Here bn are expansion coefficients (generally, depending on the control
parameters) and it is assumed that f=0 is the metastable state out of
which the nucleation takes place. The spinodal corresponds to b2 Q 0+

upon variation of the control parameters as the spinodal is approached.
Generically, when the order parameter does not have any special symme-
tries, the coefficient b3 will not vanish at the spinodal; in this case, the
nucleating droplet can be obtained by neglecting all the terms in the
expansion except the first two. (4)

Unger and Klein generalized these arguments to arbitrary space
dimensions. (5) Using the truncated potential where only the first two terms
at the right hand side of (5) are kept, they observed that the amplitude of
the nucleating droplet decreases, and its spatial extent increases as one
approaches spinodal; they also observed that, below the critical dimension
dc=6, the free energy barrier decreases in this limit, whereas it tends to a
finite constant when d=dc and it blows up above critical dimension,
d > dc. This conclusion is actually paradoxical, since (1) then implies that
the rate of phase transformation vanishes when spinodal is approached,
even though the metastable phase corresponding to f=0 must disappear
at spinodal.

As mentioned earlier, in this paper we revisit the spinodal nucleation
theory (4, 5) and extend it to potentials admitting a more general expansion
than in (5). The precise shape and scaling of the nucleating droplet are
obtained using careful matched asymptotics expansion techniques. In par-
ticular, we establish that the conclusions of standard nucleation theory are
only valid below the critical dimension. At critical dimension, the ampli-
tude of the nucleating droplet is bigger, and its spatial extent smaller, so
that the next term in the Taylor expansion of the potential in (5) must be
accounted for. Furthermore, above critical dimension, the amplitude of the
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nucleating droplet becomes too big to justify Taylor expanding the poten-
tial as in (5). In this case, the nucleating droplet depends more sensitively
on the full shape of V(f) and does not display universal features near spi-
nodal. Both for d=dc and d > dc, however, the free energy barrier remains
finite as one approaches spinodal, which ensures that the nucleation rate
in (1) does not vanish at the spinodal.

The remainder of this paper is organized as follows. In Section 2 we
generalize the scaling argument of the classical spinodal nucleation theory
and establish its precise range of validity. In Section 3 we refine the scaling
analysis at and above critical dimension, and resolve the paradoxes
observed in ref. 5. Some concluding remarks are then given in Section 4.
Finally, we devote the appendix to the situation of special physical interest
when d=3 which is relevant for nucleation near a tricritical point.

2. THE STANDARD SCALING ARGUMENT AND ITS RANGE OF

VALIDITY

Here we generalize the arguments of Unger and Klein for the situation
in which at spinodal the first non-zero coefficient in the Taylor expansion
of V(f) is bp, p > 2, with bp < 0 (this assumption is inessential for p odd,
but is needed for p even in order for spinodal nucleation out of the f=0
state to be possible). We also focus on the case of an infinite domain,
W=Rd; the argument can be easily generalized to finite domains provided
they are large enough—see below. After appropriate dimensional reduc-
tion, the free energy in (2) can be written as

F=F
R

d
11

2
|Nf|2+

1
2

ef2 −
1
p

fp+Ṽ(f)2 dx, (6)

where e Q 0+ as the spinodal is approached, and Ṽ(f)=o(fp) as f Q 0.
Rescaling the order parameter and length:

f Q e1/(p − 2)f, x Q e−1/2x, (7)

leads to

F=e
dc − d

2 1F
R

d
11

2
|Nf|2+

1
2

f2 −
1
p

fp2 dx+o(1)2 , (8)

where

dc=
2p

p − 2
, (9)
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is the critical dimension associated with p. In particular, for p=3 (generic
case without symmetries) we have dc=6, (5) and for p=4 (generic case in
the presence of reflection symmetry) we have dc=4, the usual upper criti-
cal dimension of the Ginzburg–Landau theory. (16) Note that from the
mathematical point of view dc is the critical dimension of the continuous
embedding of the Sobolev space H1(W) + Lp(W) with bounded W and is
intimately related to the extremal properties of F. (17)

From (7), it follows that the radial extent of the droplet grows as e−1/2

(the correlation length) and its amplitude decreases as e1/(p − 2) when e Q 0+.
Also, from (8) one can see that for d < dc the free energy cost of the droplet
goes to zero as e (dc − d)/2 when e Q 0+. In other words, for d < dc it becomes
easier for a system to nucleate as the spinodal is approached. Surprisingly,
this argument also suggests that for d > dc the free energy cost associated
with the nucleating droplet goes to infinity as e Q 0+, implying that it
becomes harder for the system to nucleate close to the spinodal (at which
the metastable phase disappears). This conclusion, however, is incorrect,
because the argument above does not apply above critical dimension, as we
show now.

Neglecting the o(1) term in (8) for small e, one obtains the Euler–
Lagrange equation:

Df=f − fp − 1. (10)

Thus, in the vicinity of the spinodal the nucleating droplet may be obtained
from the nontrivial solution of (10) that vanishes at infinity. Where the
scaling argument may fail, however, is that there is no guarantee that (10)
has a nontrivial solution for arbitrary d.

Existence of solutions of Eqs. (4) and (10) was studied in great detail
and leads to a classical variational problem. (17–23) For sufficiently large
bounded domains positive solutions of (10) were proved to exist for any
p > 2 in d [ 2, as well as for d < dc when d \ 3 (see, for example, ref. 17).
Similarly, these solutions were proved to exist under the same assumptions
when W=Rd. (17, 20, 21, 23) In fact, when W=Rd and d \ 3 the obtained solu-
tions have the lowest free energy out of all nontrivial solutions of (10), (19, 23)

so they should indeed correspond to nucleating droplets. These existence
results imply, in particular, that the solution of (10) indeed exists in the
case of the standard spinodal nucleation in d=3, (4, 5, 24) and that in general
the scaling argument presented above holds in d < dc.

On the other hand, the variational argument fails for d \ dc. In fact, in
this case it can be shown that there are no nonzero solutions to (10) in
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d \ 3. (18, 23) To see this, we use the identity due to Pokhozhaev, which the
solutions of (10) decaying appropriately at infinity must satisfy: (17, 18, 23)

d − 2
2

F
R

d
|Nf|2 dx+

d
2

F
R

d
f2 dx −

d
p

F
R

d
fp dx=0. (11)

This identity is obtained from (10) upon multiplication by x · Nf and a
number of integrations by parts. Next we calculate the integral of fp by mul-
tiplying (10) by f, integrating by parts, and combining it with (11) to obtain

F
R

d
f2 dx+

d − dc

d
F

R
d

|Nf|2 dx=0. (12)

For d \ dc both terms at the left hand-side are positive and this equation
cannot be satisfied with a nonzero f. Therefore, the scaling argument pre-
sented above fails to predict the parameters of the nucleating droplet in this
situation, and a more subtle analysis of the free energy functional in (2) is
necessary.

Notice also that the arguments above can be generalized to a finite
domain W provided the radial size of W is much larger than the size of the
nucleating droplet, which is O(e−1/2) from (7) (see also ref. 20). In particu-
lar, (12) is modified by including a boundary term which does not help to
satisfy this equation. (17)

3. A REFINED SCALING ANALYSIS

When (10) has no nontrivial solutions, the natural generalization is to
take into account the next term in the expansion of the potential V(f)
in (6) and check two things. First, that the corresponding Euler–Lagrange
equation does indeed have a solution in this case; second, that this solution
has a sufficiently small amplitude so that truncation of the series expansion
of V(f) is justified. At critical dimension, it turns out that both require-
ments can be satisfied, as shown next. Above critical dimension, however,
only the first requirement can be satisfied: the solution of the correspond-
ing Euler–Lagrange equation exists, but it is too big in amplitude to justify
Taylor expanding V(f) in (2). In this case, the full potential must be
accounted for, and the droplet profile near spinodal is non-universal.

To see this, let us explicitly include the next-order term in the expan-
sion of the free energy from (6) which is stabilizing for positive values of f.
After a suitable dimensional reduction, (2) can be written as

F=F
R

d
11

2
|Nf|2+

1
2

ef2 −
1
p

fp+
1
q

fq+V̂(f)2 dx, (13)
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where q > p and we have again assumed than W=Rd (which is fine as long
as the radial size of the spinodal droplet remains much smaller than that
of W). Here V̂(f)=o(fq) as f Q 0; we will first neglect this term in the
manipulations below, then verify whether it gives a negligible contribution
to the saddle point of (13) (which, as mentioned earlier, will turn out to be
true for d=dc, but not for d > dc).

Neglecting V̂(f), we arrive at the following canonical Euler–Lagrange
equation describing the nucleating droplet

Df=ef − fp − 1+fq − 1. (14)

The first thing to note with this equation is that it leads to an identity
similar to (12) but which may now be satisfied in any dimension. Indeed,
the Pokhozhaev identity for (14) reads

d − 2
2

F
R

d
|Nf|2 dx+

ed
2

F
R

d
f2 dx −

d
p

F
R

d
fp dx+

d
q

F
R

d
fq dx=0. (15)

Using (14) multiplied by f and integrated yields (compare with (12))

e F
R

d
f2 dx+

d − dc

d
F

R
d

|Nf|2 dx=
dc(q − p)

pq
F

R
d

fq dx. (16)

Since q > p, the right hand-side is positive whenever the last integral in (16)
is positive, and unlike (12) this identity does not imply f=0.

Let us now get back to (14). The existence of positive solutions of (14)
was studied in great detail by many authors. (17, 19, 21–23) In particular, it
follows from the results of Berestycki and Lions that a positive solution of
(14) exists for all d \ 3, as long as e is small enough. (21) Moreover, this
solution is radially-symmetric, monotonically decreasing with asymptotic
exponential decay, and has the lowest free energy out of all possible posi-
tive solutions of (14). (19, 23) A straightforward extension of the argument of
refs. 19 and 23 also shows that for q even this solution is in fact the lowest
free energy saddle point solution out of all solutions of (14) and therefore is
the correct nucleating droplet.

So, we look for a radially symmetric solution of (14) centered around
a point which can be taken as the origin with no loss of generality, i.e., we
consider

fœ+
d − 1

r
fŒ=ef − fp − 1+fq − 1, (17)
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augmented by the boundary conditions fŒ(0)=f(+.)=0. We treat the
cases d=dc and d > dc separately; the case d=3, which is of special phy-
sical interest is also treated in more detail in the appendix. We also note
that the calculations presented below were checked and confirmed by direct
numerical solution of (17).

3.1. Universal Droplet at Critical Dimension

Different terms in (17) dominate in different ranges of r which, at
d=dc, leads to a singular perturbation problem and therefore requires a
rather subtle asymptotic analysis in the limit e Q 0+. The analysis proceeds
in a number of steps below.

Outer Layer Solution. For large r (in the outer layer, to be specified
later), when the amplitude of the droplet decays to zero, the first term in
the right-hand side dominates. Based on this assumption, one arrives at the
outer layer equation for f=fout:

f'

out+
d − 1

r
f −

out=efout, (18)

whose exact solution that decays at infinity is

fout(r)=br1 − d
2Kd

2 − 1(e1/2r), (19)

where b > 0 is a constant to be fixed later by matching, and Kd
2 − 1(z) is the

modified Bessel function of the second kind. Using the properties of
Kd

2 − 1(z), one has

fout(r) ’ bC 1d − 2
2

2 2
d − 4

2 e
2 − d

4 r2 − d when e1/2r ° 1, (20)

fout(r) ’ bp1/22−1/2e−1/4r
1 − d

2 e−e
1/2r when e1/2r ± 1, (21)

where C(z) is the Gamma-function; here and below, f ’ g indicates that
f/g Q 1 in the appropriate limit.

Inner Layer Solution. For small r (in the inner layer, to be specified
later), i.e., in the core of the nucleating droplet where its amplitude is
maximal, the second term at the right-hand side must dominate. Based on
this assumption (to be checked a posteriori) and using (9), one arrives at
the equation for f=fin in the inner layer:

f'

in+
d − 1

r
f −

in=−f
d+2
d − 2
in . (22)
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This equation has a continuous one-parameter family of positive solutions
decaying at infinity:

fin(r)=aj(r/r0), ar
d − 2

2
0 =1, (23)

where j is explicitly given by (see, e.g., ref. 23)

j(r)=1`d(d − 2)

1+r2
2

d − 2
2

, (24)

and the second equation in (23) expresses the obvious scaling symmetry
of (22). The values of a and r0 characterize the amplitude and radial size of
the solution, respectively.

As can be seen from (23) and (24), when r increases the solution of
(22) behaves as

fin(r) ’
(d(d − 2))

d − 2
4

a
r2 − d when r ± r0. (25)

Comparing (20) with (25), one concludes that

b=
2

4 − d
2 (d(d − 2) e)

d − 2
4

aC 1d − 2
2

2
, (26)

and it only remains to fix the constant a. This is done using (16) by
evaluating various integrals consistent with the inner-outer expansion
above; the different integrals are dominated either by fout or fin, and this is
what selects a particular inner solution out of the continuous family in (23).
Notice also that it is here that the term fq − 1 in (14) matters for our refined
scaling analysis.

Matching. For d=dc the second term at the left hand-side of (16)
vanishes, and we are left with the following two terms. First, we obtain

e F
R

d
f2 dx ’ ˛2p `3 e1/2a−2 when d=3,

8p2ea−2 ln r−2
0 e−1 when d=4,

epd/2(d(d − 2))
d − 2

2 C 1d − 4
2

2 a2rd
0

C(d − 2)
when d > 4,

(27)
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as e Q 0+. The integral is dominated by fout for d=3, the tail of fin for
d=4, and by fin for d > 4. Note that for completeness we included the
results for arbitrary d \ 3; within the context of the expansion (5) p is an
integer, so the relevant situations here are: dc=3, 4, 6, see (9).

Second, we have

F
R

d
fq dx ’

pd/2(d(d − 2))
q(d − 2)

4 C 1dq − d − 2q
2

2 aqrd
0

C 1d − 2
2

q2
(28)

as e Q 0+; this integral is dominated by fin. Therefore, comparing (27)
and (28), we conclude from (16) that

a=˛R
4e1/2qC 1q

2
2

3
q−2

4 p1/2(q−6) C 1q−3
2

2
S

1
q−4

when d=3

1 qC(q) e ln e−1

8
q−2

2 (q−2) C(q−2)
2

1
q−2

when d=4,

(d(d−2))
2−d

4 R 2eqC 1d−4
2

2C 1d−2
2

q2

(qd−2q−2d) C(d−2) C 1qd−2q−d
2

2
S

1
q−2

when d > 4.

(29)

Similarly, the leading order contribution to the free energy cost DF of the
nucleating droplet can be obtained from (13) and (14) (multiplied by f and
integrated by parts; the obtained integral is dominated by fin)

DF ’
1
d

F
R

d
fp

in dx=
pd/2d

d − 2
2 (d − 2)d/2 C 1d

2
2

C(d)
, (30)

which indicates that DF becomes independent of e as e Q 0+. These results
for a few choices of p and q are shown in Table I. A more detailed matched
asymptotics analysis of the case p=6 and q=8 is also presented in the
appendix.

Validation. We now validate the assumptions used to obtain these
results. First, the separation of the solution into the inner and outer layers
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Table I. Scaling of the Droplet Amplitude, a, Its Radial Size, r0, and Its Free Energy

Cost DF in the Limit e Q 0+ for p=3, 4, 6 and d=dc.

dc p q a r0 DF

3 6 8 e1/8 e−1/4 p2
`3/4

4 4 6 (e ln e−1)1/4 (e ln e−1)−1/4 8p2/3
6 3 4 e1/2 e−1/4 192p3/5

is justified if the characteristic length scale r0 of the inner solution is much
smaller than that of the outer: r0 ° e−1/2. From (29) and (23) we obtain
that

r0=˛O(e− 1
q − 4) when d=3,

O((e ln e−1)− 1
q − 2) when d=4,

O(e− 2
(q − 2)(d − 2)) when d > 4.

(31)

It is not difficult to see from this that the assumption r0 ° e1/2 is always
satisfied: case d=3 is verified by direct inspection, and for d \ 4 observe
that in view of (9) we have (apart from inessential logarithmic terms)
e1/2r0=O(e (q − p)/(2(q − 2))) ° 1, since q > p. Based on this, one also sees that
the outer solution fout must be valid in the

outer layer=˛ r: erq − 4 ± 1 when d=3
r: e ln e−1rq − 2 ± 1 when d=4,
r: e2r (q − 2)(d − 2) ± 1 when d > 4,

(32)

whereas the inner solution fin must be valid in the

inner layer={r: er2 ° 1}. (33)

Naturally, a matching layer r0 ° r ° e−1/2 where both solution are valid
necessarily exists.

Second, we need to check that various terms that were dropped in (18)
and (22) are indeed negligible. It is easy to see from (29) that both fin ° 1
and fout ° 1 in the domains of their validity, so the term fq − 1 is small
compared to fp − 1 both in the inner and the outer layers. Note that this also
justifies neglecting V̂(f) in (13). To see when the term ef becomes impor-
tant, we estimate the value rc for which ef and fp − 1 are of the same order.
Using (25), for d=3 we obtain rc=O(e−(q − 2)/(4(q − 4))), so it is easy to see
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that indeed r0 ° rc ° e−1/2 for q > 6. Similarly, for d \ 4 we obtain (apart
from the possible logarithmic terms), using (9), (25), and (31), that
r0=O(e−(p − 2)/(2(q − 2))) and rc=O(e−(q+p − 4)/(4(q − 2))), and it is easy to see that
for q > p we again have r0 ° rc ° e−1/2.

We conclude that at critical dimension the radial extent of the
nucleating droplet increases and its amplitude decreases in accordance with
universal equations (29) and (31) as e Q 0+. These scalings are different
from the ones in (7); they show that the size of the droplet grows much
slower as e Q 0+, and its amplitude also remains substantially larger than
below critical dimension.

3.2. Breakup of Universality above Critical Dimension

The above analysis simplifies when d > dc because (17) leads to a
regular perturbation problem as e Q 0+. Indeed, Berestycki and Lions have
proven that (17) has a nontrivial solution with the right decay at infinity
even if the term ef is set to zero; (23) this solution, whose large r behavior is
in fact given by (25), is the leading order approximation to the solution
with the term ef included, which indicates that both the amplitude of the
droplet and its radial extension are O(1) in the limit as e Q 0+. This is con-
firmed by the identity (16) in which the first term at the left hand-side is
always a small correction (except in d=3 where it is possible to show that
it is O(1); this does not affect the argument) and to leading order (O(1) in
e) the second term at the left-hand side balances the right-hand side. This
also implies that the free energy barrier reaches a finite constant value in
this limit, so the nucleation rate does not have to vanish as e Q 0+.

Let us emphasize, however, that the Euler–Lagrange equation in (17)
is associated with the free energy where the term V̂(f) in (13) is absent; yet,
neglecting this term is illegitimate if f is O(1) as e Q 0+. In other words, for
d > dc, one needs to solve the full equation (4) even in the limit of e Q 0+ to
obtain the actual shape of the droplet and the value of the free energy
barrier. It is important to note that, since the argument based on Taylor
expanding the potential V(f) is inconsistent, it automatically implies that
both the amplitude of the droplet, its radial extension, and its free energy
are O(1) in the limit as e Q 0+ provided only that

Df=ef+VŒ(f), (34)

has a nontrivial solution when e=0 (here V(f)=V(f) − e
2 f2, so V(f)=

o(f2d/(d − 2)) as f Q 0, and it is assumed that V has no minimum at zero,
consistent with f=0 becoming thermodynamically unstable as e Q 0+);
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yet, the specific properties of the nucleating droplet near spinodal depend
on the details of the full potential V(f) (or V(f)) and are non-universal.

4. CONCLUDING REMARKS

To summarize, we have re-examined the problem of nucleation near
spinodal within the general framework of the expansion (13). We found
that the properties of nucleating droplets differ qualitatively below, at, and
above critical dimension, given by (9). Below critical dimension a simple
scaling argument which takes into account only the first two terms in the
expansion in (13) and generalizes the arguments of Unger and Klein (5)

predicts that the size of the droplet grows as the correlation length and its
amplitude decreases when spinodal is approached; the free energy cost of
such a droplet decreases also. In this case the characteristics of the droplet
are universal and are given by the scaling in (7) and (8).

On the other hand, at critical dimension the situation changes. In this
case the simple scaling argument fails because the Euler–Lagrange equation
for the reduced problem no longer has non-trivial solutions. The scaling
argument, however, can be modified by including the next-order term in
the expansion and leads to a set of unusual exponents describing the main
characteristics of the nucleating droplet (see (29) and (31)). As spinodal is
approached, the size of the droplet grows and the amplitude shrinks, but
much slower than below critical dimension. Thus, the properties of the
nucleating droplets at critical dimension again turn out to be universal, but
with a different set of exponents. Note that in this situation the asymptotic
shape of the nucleating droplet, as well as the height of the free energy
barrier, can be computed analytically.

Finally, above critical dimension the Taylor expansion used in (13)
breaks down because both the size and the amplitude of the nucleating
droplet remain of order 1 even right at spinodal. Therefore, in this case one
needs to solve the Euler–Lagrange equation (4) for the full problem, so the
properties of the droplet will depend on the details of the potential and will
therefore be non-universal. Let us point out, however, that in all these cases
the free energy barrier associated with the droplet does not diverge, imply-
ing that the nucleation rate never vanishes at spinodal. This resolves the
apparent paradox of the scaling argument in ref. 5.

APPENDIX: NUCLEATION NEAR TRICRITICAL POINT

Here we present a more detailed investigation of the nucleating droplet
in the physically relevant case when d=3, with p=6 and q=8 in the limit
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e Q 0+. In this case the canonical Euler–Lagrange equation describing a
radially symmetric nucleating droplet is

fœ+
2
r

fŒ=ef − f5+f7. (35)

Below we obtain a formal asymptotic series expansion for the solution of
(35) using matched asymptotics (see, for example, refs. 25 and 26); this
analysis is complimentary to the leading order analysis presented in
Section 3.

Before proceeding any further, we note that the situation correspond-
ing to (35) can in fact be easily realized in practice near tricritical point.
Indeed, for the order parameter with the reflection symmetry only the even
powers of f will enter the expansion in (5). Near tricritical point both b2

and b4 are of order e ’ (T − Tc)/Tc, where Tc is the tricritical temperature.
In this case for small f the fourth-order term in (5) is uniformly smaller
than the second-order term and therefore can be neglected. Then, if the f6

term in (13) is destabilizing, b6 < 0, (otherwise we are dealing with a second-
order or weakly first-order phase transition at Tc) and the next term (q=8)
in the expansion is stabilizing, b8 > 0, we have precisely the situation
discussed in Section 3.

To study (35) it is convenient to introduce a new variable u=rf and
rewrite this equation as

uœ − eu+r−4u5 − r−6u7=0, (36)

with boundary conditions

u(0)=u(+.)=0. (37)

Motivated by the arguments in Section 3, we separate u into the inner and
outer solutions, with

uin(r)=e−1/8(v0(e1/4r)+e1/4v1(e1/4r)+e1/2v2(e1/4r)+ · · · ), (38)

and

uout(r)=e−1/8(w0(e1/2r)+e1/4w1(e1/2r)+e1/2w2(e1/2r)+ · · · ). (39)

Introducing the fast and slow variables

r=e1/4r, R=e1/2r, (40)
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respectively, expanding the nonlinearity, and collecting the terms with the
like powers of e1/4, we obtain a hierarchy of equations for v’s:

v'

0 +r−4v5
0=0, (41)

v'

1 +5r−4v4
0v1 − r−6v7

0=0, (42)

...

and w’s:

w'

0 − w0=0, (43)

w'

1 − w1=0, (44)

w'

2 − w2+R−4w5
0=0, (45)

...

with the boundary conditions

v0(0)=0, v1(0)=0,... (46)

w0(+.)=0, w1(+.)=0,... . (47)

Observe that for bounded v0 the solutions of (41), (42), etc., behave
like

vn ’ an+bnr as r Q +.. (48)

This, together with the same behavior of wn as R Q 0+ obtained from the
usual Taylor expansion, translates to the following matching conditions
(recall (40)):

b0=0, a0=w0(0), b1=w −

0(0),... . (49)

The obtained hierarchy of equations can be solved exactly. Below we
compute the leading order terms and show that they agree with the results
of Section 3. Let us start with (41). This is a particular case of the Emden–
Fowler equation which can be integrated in quadratures (see, for example,
ref. 27; see also Section 3). The solution of (41) that satisfies the first of (46)
has the form

v0=
31/4c0r

`1+c4
0r2

, with a0=31/4c−1
0 , b0=0, (50)
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where c0 is an arbitrary (positive) constant that arises due to the scaling
symmetry of (41). Then, the solution w0 of (43) that satisfies the second
condition in (49) is

w0=31/4c−1
0 e−R. (51)

Next, (42) can be solved by the method of variation of parameters. To
do that, we need to know the two linearly independent solutions v (1) and
v (2) of the homogeneous part of (42), with v0 given by (50). One such solu-
tion can in fact be easily obtained by noting that differentiation of (41)
with v0 given by (50) with respect to c0 gives the homogeneous equation
(42) with v1=dv0/dc0. Then, using reduction of order, we obtain

v (1)=
r(1 − c4

0r2)

`(1+c4
0r2)3

, v (2)=
1 − 6c4

0r2+c8
0r4

`(1+c4
0r2)3

. (52)

Substituting these into the formula of variation of parameters for (42) and
using the second of (46), we obtain

v1=
33/4c0[19c2

0r − 3c6
0r3 − 3(1 − 6c4

0r2+c8
0r4) arc tan(c2

0r)]

64 `(1+c4
0r2)3

+c1v (1), (53)

where c1 is an arbitrary constant and

a1=−
c1

c2
0

, b1=−
37/4pc3

0

128
. (54)

Now, using the third of (49), we fix the value of c0:

c0=2 1 64
27p2

21/8

. (55)

The constant c1 carries over to the equation for w1 through the matching
condition; it is then fixed analogously in the equation for v2. This proce-
dure can be continued to all orders.

As they should, the results above agree with those of Section 3. In
particular, the explicit expressions for the droplet amplitude and free
energy cost are asymptotically

f(0) ’ u −

in(0)=2 164e

3p2
21/8

, DF ’
4p

3
F

.

0
r−4v6

0 dr=
p2

`3

4
. (56)
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