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Discrete Models of Autocrine Cell Communication in Epithelial Layers
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ABSTRACT Pattern formation in epithelial layers heavily relies on cell communication by secreted ligands. Whereas the
experimentally observed signaling patterns can be visualized at single-cell resolution, a biophysical framework for their
interpretation is currently lacking. To this end, we develop a family of discrete models of cell communication in epithelial layers.
The models are based on the introduction of cell-to-cell coupling coefficients that characterize the spatial range of intercellular
signaling by diffusing ligands. We derive the coupling coefficients as functions of geometric, cellular, and molecular parameters
of the ligand transport problem. Using these coupling coefficients, we analyze a nonlinear model of positive feedback between
ligand release and binding. In particular, we study criteria of existence of the patterns consisting of clusters of a few signaling
cells, as well as the onset of signal propagation. We use our model to interpret recent experimental studies of the EGFR/
Rhomboid/Spitz module in Drosophila development.

INTRODUCTION

Epithelial layers provide a common substrate for pattern

formation in development (Hogan, 1999). In general, cell-to-

cell communication produces spatially nonuniform patterns

in the expression of genes that guide the development of

tissues and organs. The design principles of epithelial

patterning are being formulated only now (Freeman and

Gurdon, 2002). An important family of epithelial patterning

mechanisms relies on secreted chemical signals. Typically,

a ligand released by a group of cells interacts with the

extracellular matrix and cell surface receptors as it spreads

through the tissue. Ligand transport can be integrated with

positive and negative intracellular feedback loops (Freeman,

2000). For example, ligand-receptor binding can stimulate

ligand synthesis and secretion (Freeman and Gurdon, 2002).

Ligand release can be regulated by the occupancy of cell

surface receptors. Receptor occupancy, in turn, may be

determined by the balance between ligand transport, binding,

and degradation; see Fig. 1 D.

Here, we consider a general problem of interaction

between cells arranged in an epithelial layer and commu-

nicating by secreted ligands. The original motivation for

the problem comes from Drosophila egg development

(Spradling, 1993), where pattern formation proceeds in the

follicular epithelium—a layer of columnar epithelial cells

that envelop the oocyte. Follicle cells are much smaller (5–7

mm) than the oocyte (100–300 mm); see Fig. 1 A. Reciprocal

oocyte/follicle cell interactions pattern the eggshell and

establish the embryonic axes (Van Buskirk and Schupbach,

1999). These events rely on the epidermal growth factor

receptor (EGFR), a well-studied receptor tyrosine kinase

(Nilson and Schupbach, 1999; Wells, 1999). EGFRs are

uniformly distributed across the follicular epithelium and are

absent on the oocyte surface (Sapir et al., 1998). EGFR is

activated by ligands secreted from the oocyte and from the

follicle cells themselves. Secreted ligands diffuse in the thin

(\1 mm) gap between the follicle cells and the oocyte; see

Fig. 1 B. Release of EGFR ligands is regulated by the in-

tracellular proteases (Urban et al., 2002). Interestingly, the

expression of these proteases (Rhomboids), is positively

regulated by EGFR signaling (Hsu et al., 2001; Peri et al.,

1999; Sapir et al., 1998; Wasserman and Freeman, 1998); see

Fig. 1 E. To summarize, ligands diffuse in a thin gap between

receptor-covered epithelium and a reflective surface; recep-

tor activation stimulates further ligand release by activating

the expression of the intracellular protease.

Similar signaling/transport arrangements are encountered

later in fruit fly development and in other species, both for

the EGFR and other signaling systems (Doraiswamy et al.,

2000; Freeman and Gurdon, 2002).

The gene expression patterns in developing epithelial

layers can be very fine-grained. In many cases, the width of

the signaling patterns is only a couple of cells (Carmena et al.,

2002; Hatini and DiNardo, 2001; Peri et al., 1999; Ruohola-

Baker et al., 1993; Sapir et al., 1998). What is the appropriate

biophysical description for such systems? There have been

several attempts to use continuum models for the analysis of

such patterns, e.g., those of Lander and co-workers (Lander

et al., 2002), and Shvartsman and co-workers (Shvartsman

et al., 2002). These models assume that the relevant length

scale of the pattern is greater than the size of a single cell.

The validity of such an assumption may be difficult to

reconcile with the fine-grained nature of experimentally

observed signaling patterns. Starting from the work of
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Othmer and Scriven, a number of discrete models for cellular

layers has been proposed (Collier et al., 1996; Meir et al.,

2002; Monk, 1998; Othmer and Scriven, 1971; Owen et al.,

1999, 2000; von Dassow et al., 2000). However, in these

models the form of cell-to-cell couplings has been chosen on

purely phenomenological grounds.

Here, we systematically derive discrete models of cell-

to-cell communication from a mechanistic description of

autocrine and paracrine signaling in epithelial layers. These

models are discrete because they treat each cell individually.

The models are also long-ranged: they use the state of the

entire layer in describing the dynamics of each cell and thus

take into account non-nearest neighbor cell-to-cell inter-

actions. Our derivation is based on the introduction of

coupling coefficients that characterize the communication of

cells by secreted ligands. These coupling coefficients are

directly linked to the biophysical parameters of the transport

problem. Central to our approach is the use of the separation

of timescales between diffusing and intracellular species. We

argue that binding and transport are fast and are therefore

dynamically slaved to the slow intracellular variables when

the intracellular processes involve transcription and protein

synthesis. With the coupling coefficients at hand, we are then

able to formulate discrete models that account for particular

intracellular processes, such as receptor-mediated activation

of ligand release, and study their properties associated with

discreteness.

DESCRIPTION OF THE MATHEMATICAL MODEL

Our model accounts for the coupled dynamics of extracel-

lular ligand, ligand-receptor complexes, and ligand-releasing

proteases in each cell within the epithelial layer. In for-

mulating the model, we assume that the system operates in

the ligand-limited regime and that the free receptors are in

excess. This is supported by experiments in several model

organisms (Freeman and Gurdon, 2002). Following the

standard receptor binding analysis, this approximation

requires that the concentration of ligand is less than the

equilibrium binding constant, kD ¼ koff/kon. With this in

mind, a mechanistic model of transport and signaling in an

idealized epithelium consisting of a two-dimensional pe-

riodic array of identical cells in a single flat layer geometry

takes the following form (Fig. 1, B and D):
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2
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@Y
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@
2
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@Z
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� �
; (1)

@C

@t
¼ konR0

�SS� ðkoff 1 keÞC; �SS ¼ SjZ¼0; (2)

dPi;j

dt
¼ �kpPi;j 1 gpsðCtot

i;j � CTÞ; C
tot

i;j ¼
ð

Ai;j

CdX dY;

(3)

FIGURE 1 (A) The geometry of the problem is

motivated by cell communication in Drosophila

oogenesis. Epithelial cells cover the large oocyte.

EGF receptors are uniformly distributed across the

epithelial layer and are absent on the surface of the

oocyte. (B) Ligands diffuse in a thin gap between

the epithelial layer and a reflective surface. (C) The

two model layers considered in this article—peri-

odic arrays of squares and hexagons. (D) Main

processes in ligand binding and transport. (E)

Ligand binding stimulates ligand release. Receptor

activation leads to the degradation of a factor

inhibiting the transcription of the ligand-releasing

protease. In the absence of inhibition, the protease

is synthesized and generates the secreted ligand.
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Here, S ¼ SðX; Y; Z; tÞ is the concentration of ligand in the

extracellular space, C ¼ CðX; Y; tÞ is the number of ligand-

receptor complexes per unit area on the cell surfaces, Pi,j(t) is

the amount of ligand-releasing protease in the cell with index

i,j (one index for each dimension of the two-dimensional cell

lattice; for concrete indexing schemes in particular cell

geometries, see Appendix), X and Y are the coordinates in the

plane of the epithelial layer, Z is the transverse coordinate,

and t is time. Ctot
i;j is the total number of ligand-receptor

complexes on the surface of cell i,j. D is the diffusion

coefficient of the ligand in the extracellular space, konR0 is

the product of the rate of ligand-receptor forward binding

and the number of receptors per unit area, koff is the ligand-

receptor complex dissociation constant, and ke is the rate of

ligand-induced receptor internalization.

Thus, Eq. 1 models the three-dimensional extracellular

ligand diffusion in the gap of width h between the layer of

cells and an impermeable barrier, whereas Eq. 2 describes

the reversible ligand-receptor binding and the first-order

receptor-mediated endocytosis (Lauffenburger and Linder-

man, 1993), Fig. 1 D. In the dynamic balance for ligand-

receptor complexes, �SS is the ligand concentration at the

receptor-covered cell surfaces.

Similarly, Eq. 3 models the ligand-releasing protease

dynamics in each cell within the epithelial layer. These

dynamics consist of the combination of the first-order

degradation characterized by rate constant kp and a sigmoidal

generation function gpsðCtot
i;j � CTÞ characterized by the

production rate gp and the threshold CT. Such parameteri-

zation lumps a number of processes together and is common

in modeling of regulatory networks (Bolouri and Davidson,

2002; Ferrell, 1997; Smolen et al., 2000). In the following

we choose s(x) to be the Heaviside function, thus assuming

a sharp threshold; our results do not significantly depend on

the precise form of s(x). Furthermore, our first-order

degradation combines the degradation at the mRNA and

protein level. Let us emphasize that this thresholdlike

generation term is a function of the total number of ligand-

receptor complexes Ctot
i;j on the i,jth cell. Therefore, it is

related to the distribution of complexes by the integral over

the area of the i,jth cell surface (Eq. 3). This is supported by at

least one direct measurement (Dyson and Gurdon, 1998).

The boundary condition for Eq. 1 on the surface of the

epithelial layer (Z ¼ 0), which couples the diffusion of the

ligand with its secretion (as a result of intracellular

processes), is given by Eq. 4. It accounts for the reversible

binding and protease-mediated ligand release. The source

term in this boundary condition is spatially nonuniform and

varies from cell to cell across the layer. There are two

contributions to this term: dissociation of ligand-receptor

complexes and protease-mediated ligand release. The latter

is assumed to be uniform over each cell’s surface, which is

expressed by the characteristic function ui,j(X,Y), which is

equal to �1� on the surface of the i,jth cell and �0� elsewhere,

and is regulated by the availability of the ligand-releasing

protease. Ligand release is modeled as first-order with

respect to the protease, with the release rate per cell given by

grPi,j (A is the area of the cell surface). Ligand-precursor, on

which the ligand-releasing protease is acting, is assumed to

be in excess. There is also a no-flux boundary condition at

the impermeable barrier (Z ¼ h) in Eq. 4.

Goals of the article and plan of the analysis

The model describes the coupled dynamics of cells in an

idealized epithelial layer. To characterize these dynamics, we

need to track both the extracellular and intracellular variables

in the system of integrodifferential Eqs. 1–4. We would like

to quantify the spatial extent of cell-to-cell communication

and to analyze the effect of this coupling on the dynamics

of individual cells. As an application, we consider the

consequences of activating ligand release in a small group

of cells within the layer. Such perturbations are implemented

using techniques for tissue-specific gene expression and are

routinely employed in developmental biology (Brand and

Perrimon, 1993; Duffy et al., 1998). Analysis of such

perturbations requires models that can resolve individual

cells. It is our goal to formulate such models.

RESULTS

Main approximations

We consider the case when the height of the medium for

ligand diffusion is small relative to the appropriately chosen

dynamic length scale in the problem. In terms of the original

model parameters, this translates into the inequality h � D/

ks, where ks ¼ kekonR0=ðkoff1keÞ characterizes the steady-

state rate of ligand degradation. In this case, the spatial

variation of the ligand field in the z-direction is negligible:

SðX; Y; Z; tÞ ffi SðX; Y; tÞ: This approximation is expected to

be very accurate for the chosen set of geometric and dynamic

parameters.

In addition to reducing the number of spatial dimensions,

we reduce the number of dependent variables. Our argument

is based on the timescale separation between the ligand

dynamics and those of the intracellular protease. In our

description, ligand binding stimulates the transcription of

the ligand-releasing protease. Since this process happens on

a timescale that is longer in comparison to those of binding,

transport, and endocytosis, we can set the time derivatives in

the dynamic balances for extracellular and receptor-bound

ligand to �0�. This approximation imposes the following
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constraints on the timescales: kp � koff1ke and kp � k2
s =D

(see Appendix).

Together with the assumption of the ligand-limited

regime, these approximations lead to the following model:

0 ¼ DDS� 1

h
ksS�

gr

A
+
i;j

ui;jðX; YÞPi;j

 !
; (5)

dPi;j

dt
¼ �kpPi;j 1 gps

ks

ke

ð
Ai;j

SðX; Y; tÞ dX dY � CT

 !
; (6)

where D ¼ @2=@X21@2=@Y2:
Hence, the problem in Eqs. 1–4 is reduced to the equation

for protease dynamics in individual cells coupled to the

steady linear reaction-diffusion equation for extracellular

ligand. The linear problem for the ligand field can be easily

solved for any particular pattern of protease activity. The

resulting instantaneous field, SðX;Y; tÞ; can then be in-

tegrated over the area of each cell to provide arguments for

the protease generation function. This leads to a fully discrete

model for cell communication. In the following, this pro-

gramme is implemented for square and hexagonal cells.

Before that, we rescale the problem and describe the dimen-

sionless groups.

Nondimensionalization

Eqs. 5–6 are rendered dimensionless by the following

transformations,

t[ kpt; x[X=L; y[ Y=L; s[ S=S0; pi;j [Pi;j=P0;

(7)

where

P0 ¼ gp=kp; S0 ¼ grgp=ðAkpksÞ; L ¼ D=ks: (8)

For estimates of the relevant quantities, see Table 1.

Notice that P0 and S0 determine the maximum levels of

protease and ligand concentrations. In fact, these values are

attained when ligand release is at its maximal ‘‘on’’ level

uniformly throughout the layer (pi,j ¼ 1 for all cells).

Associated with these maximum values is the maximum

level of ligand-receptor complexes C0 [ konR0S0=ðke1koffÞ
and the maximum total number of ligand-receptor complexes

per cell, Ctot
0 [C0A (Tables 2 and 4).

After rescaling, the problem takes the following form:

aDs� s1 +
i;j

ui;jðx; yÞpi;j ¼ 0; (9)

dpi;j

dt
¼ �pi;j 1sðstot

i;j � cTÞ; (10)

where stot
i;j [

R
ai;j
sðx; yÞdx dy and the integration is now over

the rescaled cell area a[A=L2: Recall that we chose

sðxÞ ¼ 0 for x\ 0; andsðxÞ ¼ 1 for x$ 0:

There are only two dimensionless groups in the resulting

dimensionless system

a[ hks=D; cT [ aCT=C
tot

0 : (11)

The first group characterizes the balance between ligand

degradation and transport. The second group is the rescaled

threshold in the protease generation function.

To complete the derivation of the discrete model we solve

the transport problem for the extracellular ligand. Since the

problem is linear, the solution can be evaluated as a su-

perposition of fields due to secretion from individual cells.

TABLE 1 Model parameters

Parameter Description Typical value

A Cell surface area 2.5 3 10�7 cm2

Lx Cell width (squares) 5 3 10�4 cm

2Lv Cell width (hexagons) 5 3 10�4 cm

D Ligand diffusivity 1 3 10�7 cm2 s�1

h Height of the

extracellular medium

5 3 10�5 cm

ke Ligand-induced

internalization rate

constant

0.1 min�1

kon Receptor-ligand

association constant

0.1 nM�1 min�1

koff Receptor-ligand complex

dissociation constant

0.1 min�1

kp Protease degradation rate

constant

0.03 min�1

ks ¼ kekonR0/

(ke 1 koff)

Ligand degradation

constant

5 3 10�5 cm s�1

Qs ¼ grgp/kp Rate of ligand release

per cell

500 molecules/cell/min

R0 Number of receptors

per cell

1 3 104 receptors/cell

CT Threshold for activating

the positive feedback

500 complexes/cell

TABLE 2 Model variables

Variable Description

S Ligand concentration

C Ligand-receptor complex surface concentration

Ctot
i;j Total number of complex molecules over the cell

Pi,j Number of active protease molecules per cell

t Time

X,Y Coordinates in the plane of the epithelium

Z Transverse coordinate

s[ S=S0 Dimensionless ligand concentration

c[C=C0 Dimensionless ligand-receptor complex

surface concentration

ctot
i;j [Ctot

i;j =ðC0L
2Þ Dimensionless total number of complex

molecules over the cell ij
pi;j [Pi;j=P0 Dimensionless number of active protease

molecules per cell

t[ tkp Dimensionless time

x[X=L; y[Y=L Dimensionless spatial variable
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Ligand field for a single-cell source

Consider a single ligand-releasing cell placed at the origin of

the epithelial layer ði ¼ 0; and j ¼ 0Þ, secreting the ligands

with the dimensionless rate p0,0 ¼ 1. Then, the resulting

ligand field q(x,y) satisfies:

aDq� q1 u0;0ðx; yÞ ¼ 0; (12)

where u0;0ðx; yÞ ¼ 1 everywhere on the surface of the cell

placed at the origin, and �0� everywhere else. The ligand

fields computed for a particular set of parameters for square

and hexagonal cells are shown in Fig. 2.

Using the two-dimensional cosine transform, the ligand

field can be found as

qðx; yÞ ¼ 4

p
2

ð‘
0

ð‘
0

Fðv; lÞ
aðv2

1 l
2Þ1 1

cosðvxÞcosðlyÞdv dl:

(13)

Here, F(v,l) is the cosine transform of u0,0 (x,y). See Fig. 6,

A and B, and the discussion in the Appendix. The function

F(v,l) depends both on the shape and the size of the cell.

The expressions for F(v,l) for the square and hexagonal

cells are given in the Appendix.

The formula for the ligand field in Eq. 13 can be used

to evaluate the integrals in the argument of the function

specifying the protease production. Specifically, to evaluate

the rate of protease production by the ij-th cell, we compute

the total amount of ligand over its surface (see Eq. 10). For

a single source of strength p0,0, we have:

s
tot

i;j ¼ p0;0

ð
ai;j

qðx; yÞdx dy[ p0;0Ii;j: (14)

The last expression is a crucial result of this article, as it

defines the coupling coefficients for cell communication

by secreted ligands. Clearly, si,j depend only on the relative

position between the i,jth cell and the source. Thus, the same

formula can be used to compute the ligand generated by an

arbitrary cell.

Cell-to-cell coupling coefficients

The coefficients lead to a number of useful expressions. The

number of ligand-receptor complexes on the surface of the

i,jth cell due to the ligand-releasing cell at the origin can be

found as:

Ctot

i;j ¼
ð

Ai;j

CðX; YÞdX dY ¼ C0L
2

ð
ai;j

sðx; yÞdx dy

¼ C
tot

0 L
2

A
Ii;jp0;0; (15)

where Ctot
0 is the total number of ligand-receptor complexes

on the cell surface when the entire layer is producing ligand

at the maximum rate. Hence, to compute the number of

complexes due to a single cell, one has to multiply this

maximal value ðCtot
0 Þ by the interaction coefficient and divide

the result by the dimensionless cell area ða[A=L2Þ:
Ctot

i;j =C
tot
0 ¼ Ii;j=a:

Using linear superposition, we express the total number of

ligand receptor complexes for an arbitrary pattern of protease

activity:

C
tot

i;j ¼
Ctot

0 L2

A
+
m;n

Ii�m;j�npm;n; (16)

where we used translational symmetry. The analogous

equation holds for the extracellular ligand: stot
ij ¼ +

m;n
Ii�m;j�npm;n: For arrays of square and hexagonal cells these

coefficients are explicitly computed in the Appendix.

Discrete model for cell communication

We now use the coupling coefficients to formulate a discrete

model of cell communication. Substituting the expression for

stot
i;j into the protease balance, we obtain:

dpi;j

dt
¼ �pi;j 1s +

m;n

Ii�m;j�npm;n � cT

 !
: (17)

Hence, the original system of integrodifferential equations

has been reduced to a system of ordinary differential

equations (with explicitly available coupling coefficients).

As a result, we have a dynamical system that describes the

protease dynamics in each cell within the epithelial layer.

The model is long-ranged, inasmuch as the dynamics in each

cell depend on the pattern of protease activity in the entire

layer. The model is fully discrete, since we resolve individual

cells and have ‘‘removed’’ the continuum part of the

problem.

FIGURE 2 The steady-state ligand field due to a single ligand-releasing

cell. (A) Square cells, Lx ¼ 5 3 10�4 cm. (B) Hexagonal cells, 2Lv ¼ 5 3

10�4 cm. Other parameters: h ¼ 5 3 10�5 cm, ke ¼ 0.1 min�1, koff ¼ 0.1

min�1,R0 ¼ 13 104 molecules/cell surface,D¼ 13 10�7 cm2 s�1, kon ¼ 0.1

nM�1 min�1, andQs ¼ 100 molecules/cell/min. The fields were computed by

solving Eq. 12 using an adaptive mesh finite element package (FEMLAB).
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Parametric analysis of coupling coefficients

Given the expressions for the interaction coefficients (see

Appendix), we can examine their dependence on the

biophysical parameters of the original problem. In the case

of EGFR signaling in Drosophila egg development, the cell

area (A) and the height of the gap between the oocyte and

follicle cells (h) have been estimated from microscopic

images: (h ; 0.5 mm, A ; 25 mm2; see Spradling, 1993).

The extracellular diffusivity of the ligand (Spitz) and the

binding/internalization rate constants can be estimated from

the corresponding values in the mammalian EGFR systems.

Using these parameters, we present the dependence of the

coupling coefficients on the ligand diffusivity and the

forward-binding rate constant in Fig. 3. Note that we plot

the coupling coefficients as functions of the distance between

cells. This is done only for convenience in representing

discrete data points; of course in the fully discrete context,

the coupling coefficients are anisotropic (although the degree

of anisotropy proves to be rather small both for square and

hexagonal cells). Similarly, the lines connecting the points in

Fig. 3 are used only to guide the eye.

The computation in Fig. 3 probes the spatial operation of

an autocrine system, a mode of cell-to-cell signaling where

cells can both release and recapture the ligand. The spatial

decay of coupling coefficients is controlled by kinetics and

transport. The rate of the decay increases with the forward-

binding rate constant and decreases with the ligand

diffusivity. We find that for the biophysically relevant set

of parameters—the geometry of the egg chamber and the

transport/kinetic rate constants—the interaction coefficients

decay rapidly as a function of the cell-to-cell distance. In

fact, the interaction between the cells separated by more than

3–4 cell diameters is negligible. This is in line with the

conclusions of genetic experiments that can indirectly

estimate the spatial range of ligand action in vivo (Bergmann

et al., 2002; Freeman, 1997; Peri et al., 2002).

The rapid decay of the coupling coefficients can be

exploited in the computational analysis of the discrete

problem, Eq. 17. In simulating the arrays of cells, one has to

evaluate the coupling only between the finite (and small)

number of cells. This greatly simplifies the evaluation of the

right-hand side of Eq. 17.

Analysis of the positive feedback circuit

We now illustrate the use of our model in a number of

computational experiments with the positive feedback

circuit, Fig. 1. Our computations are directly related to the

recent results in Drosophila egg development, reviewed in

Amiri and Stein (2002). In one of the experiments, Peri and

co-workers used genetics to permanently activate the

protease and hence, the ligand release, in a small (2–4)

group of cells within the follicular epithelium (Peri et al.,

2002). The ligand (Spitz) acts on the cognate receptors

(EGFR) on the surfaces of epithelial cells. The authors then

followed the level of expression of the gene controlled by the

receptor (pipe; see Amiri and Stein, 2002). It was found that

pipe was repressed both in the Spitz-releasing cells and in

their neighbors. It is well known that ligand-receptor (EGFR/

Spitz) binding in this system stimulates the expression of the

ligand-releasing protease (Rhomboid) and that the released

ligand (Spitz) can activate the protease in the neighboring

cells; see Fig. 1, B and E. So what prevents the perturbation

from spreading across the cellular layer? What controls

the effect—the strength of ligand release, the extracellular

transport, or the size of the perturbation (the number of cells

constitutively expressing the protease)? Our computations

illustrate how these questions might be addressed within the

presented biophysical framework.

First, we construct stable stationary solutions of the

discrete problem of cell-to-cell communication, Eq. 17. Let

us emphasize that these solutions have no counterparts or

analogs in the continuous reaction-diffusion models with

bistable nonlinearity. For illustrative purposes, we consider

simple three-cell perturbations in the square and hexagonal

lattices, Fig. 4. In experiments, cells within these clusters

expressed the protease independently of ligand-receptor

binding. In terms of our model, this means that the protease

level in these cells is constant. For the Heaviside non-

linearity, the stable level of the protease can have only two

FIGURE 3 Normalized coupling coefficients (Ctot
k =Ctot

0 ,

see text for details) plotted as a function of cell-to-cell

distance, k, defined as the ratio of the Euclidian distance

divided by the cell size. (A) Effect of ligand-receptor

affinity kon (square cells, Lx ¼ 5 3 10�4 cm, D¼ 1 3 10�7

cm2 s�1). (B) Effect of ligand diffusivity D (hexagonal

cells, 2Lv ¼ 5 3 10�4 cm; kon ¼ 0.1 nM�1 min�1). All

other parameters are as in Fig. 2.

Cell Communication in Epithelial Layers 3629

Biophysical Journal 84(6) 3624–3635



values: the ‘‘on’’ state, for which pi,j ¼ 1, and the ‘‘off’’ state,

where pi,j ¼ 0.

The transition between the two states is induced when

the argument of the protease generation function exceeds the

critical value given by CT (Eq. 11). The argument, in turn,

depends on the pattern of protease activity in the entire

cellular layer (see Eq. 17). For the cases shown in Fig. 4, the

condition for the ‘‘off ! on’’ transition (ignition) of one of

the cells next to the original perturbation can be written as:

I0;1ðaÞ1 I1;1ðaÞ1 I�1;1ðaÞ ¼ cT ðFig: 4AÞ;
I1;0ðaÞ1 I�1;1ðaÞ1 I0;1ðaÞ ¼ cT ðFig: 4BÞ:

These conditions are written for the three-cell perturbation

placed at the origin of the cell lattice. For each case, the cell

most susceptible to this transition is marked on the insets of

Fig. 4, A and B. See Appendix for the definition of the

indexing schemes.

In writing the ‘‘ignition’’ condition, we keep the depen-

dence of coupling coefficients on a, the dimensionless group

combining the kinetic and transport properties (refer to the

definition in Table 3). Using this condition, the value of the

critical threshold in the right-hand side can be computed

for every value of a. This defines an upper boundary of

the localized three-cell patterns in Fig. 4, A and B. Thus, the

construction of the stability boundary amounts to evaluating

only a small number of coefficients.

Using the definitions of a and CT (Eq. 11), we translate

these dimensionless groups into the dimensional parameters

of the reaction transport problem in Eqs. 1–4. In Fig. 4 we

plot these boundaries as functions of ligand-release rate and

the ligand-receptor affinity, the two parameters that have

been shown to regulate the operation of autocrine loops in

a number of cell culture EGFR systems. In our computations,

the range of ligand affinity was dictated by the large amount

of binding data available for the EGFR system (Lauffen-

burger and Linderman, 1993; Wiley et al., 2003). The rate of

ligand release suggested by our computations spans the

range attainable in the experiments with cultured autocrine

EGFR-expressing cells (DeWitt et al., 2001; Dong et al.,

1999). At this time, there are no quantitative data on ligand-

release rates in vivo.

In addition to static perturbations, such as those used

by Peri and co-workers (Peri et al., 2002), we can consider

the perturbations that transiently activate ligand release in

a group of cells. What is the outcome of a transient pertur-

bation? Will it decay to zero or persist when the stimulus

is turned off? The condition under which a pattern is

extinguished (i.e., at least one of the cells within the cluster

undergoes the transition to the ‘‘off’’ state) can also be easily

formulated as a simple equation for a small group of

coupling coefficients. For example,

I0;0ðaÞ1 I1;0ðaÞ1 I2;0ðaÞ ¼ cT ðFig: 4AÞ;
I0;0ðaÞ1 I2;�1ðaÞ1 I1;�1ðaÞ ¼ cT ðFig: 4BÞ:

This equation defines the lower boundaries in the two-

parameter diagrams in Fig. 4, A and B.

To study the evolution of a transient localized pertur-

bation, we simulated the dynamical problem with an initial

condition specified by a given pattern of the protease ac-

tivity. For example, Fig. 5 presents three qualitatively differ-

FIGURE 4 Stable localized patterns generated by the

positive feedback. Existence of the localized three-cell

patterns for squares (A) and hexagons (B) as a function of

ligand release rate and ligand-receptor affinity. The shaded

area corresponds to the stable localized pattern. Crossing the

upper boundary ignites the neighboring cells. Crossing the

lower boundary leads to the extinction of the pattern. (C) A

one-dimensional cut (Qs ¼ 300 molecules/cell/min) through

the diagram in A showing the disconnected region of

existence of the localized pattern. Localized patterns are

realized both for low and high ligand-receptor affinities. (D)

Critical rate of ligand release necessary to destabilize the

localized pattern as a function of the number of cells in it,

kon ¼ 0.1 nM�1 min�1. A–D: CT ¼ 500 molecules/cell.

Other parameters are as in Fig. 2.
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ent outcomes resulting from activating ligand release in a

three-cell cluster, Fig. 5 A. The ligand fields presented in

this figure were generated by first solving the discrete model

for the protease pattern, and then using this pattern as the

source term in a linear ligand transport problem. For ligand

affinities and release rates within the domain of existence of

a localized pattern, this perturbation evolves into a stable

signaling pattern that is confined to three cells, Fig. 5 C. This

is in marked difference with the analogous continuous

system, in which a localized perturbation either decays or

results in the onset of signal propagation. Increasing the rate

of ligand release leads to overstepping of the upper stability

boundary, Fig. 5 D. In this case, the localized perturbation

acts as a ‘‘seed’’ for an ignition front that travels outwards,

leaving the cells in the ‘‘on’’ state. This is similar to the

continuous case (Přibyl et al., 2003). For low rate of ligand

release, the transient activation of protease activity induces

only a transient response, Fig. 5 B.

An interesting feature of the two-parameter diagrams in

Fig. 4, A and B, is the presence of a clear minimum in the

dependence of the critical rate of ligand release on the ligand-

receptor binding affinity. In terms of the model, it means that

the domain of parameters for which the particular localized

pattern exists is disconnected. This is illustrated by a one-

dimensional cut through the two-parameter diagram, Fig.

4 C. We verified that overstepping both the left and the right

boundaries in this plot generates an ignition front (see the

discussion above). The nature of these transitions can be

described as follows. For low ligand affinities, binding and

transport cannot generate the number of ligand-receptor

complexes that are necessary for activating the positive

feedback. On the other hand, very high binding affinities

prevent an efficient transport of ligand. This regime cor-

TABLE 3 Dimensionless parameters

Variable Description Typical value

a[ hks=D Damköhler number 2.768 3 10�2

cT [ aCT=C
tot
0 ¼ CTkea=Qs Dimensionless threshold

in the sigmoidal

nonlinearity

tc [ kp=ðkoff þ keÞ Relative timescale of

binding and trafficking

0.15

ts [Dkp=k
2
s Relative timescale of the

ligand transport

1.632 3 10�2

a[A=L2 Dimensionless cell

surface area

TABLE 4 Scaling factors

Variable Description

S0 [ grgp=ðAkpksÞ Ligand concentration

C0 [ grgp=ðAkpkeÞ Ligand-receptor complex surface concentration

Ctot
0 [C0A Total number of complex molecules over a cell

P0 [ gp=kp Number of active protease molecules per cell

L[D=ks The dynamic length scale

FIGURE 5 Response of a cellular layer to a localized

perturbation in protease release. (A) The structure of the

perturbation. B–D, The ligand fields induced by the

perturbation computed for different ligand-release rates.

(B) Qs ¼ 100 molecules/cell/min. Ligand field 40 min after

the perturbation. The perturbation decays. (C) Qs ¼ 200

molecules/cell/min. The perturbation generates a stable

pattern of the same structure. (D) Qs ¼ 300 molecules/cell/

min. The perturbation generates an ‘‘ignition’’ wave (see

text for details). All parameters are as in Fig. 4 A.
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responds to the case, when ligand is degraded before it

is passed on to the neighbors.

Finally, Fig. 4 D demonstrates that the effect of the

localized perturbation is critically affected by the size of

the perturbation. For the examples presented in Fig. 4 D, the

upper stability boundary that was correlated with the

initiation of ‘‘ignition’’ fronts is negatively correlated with

the size of the perturbation. The fact that the stability

boundary strongly depends on the size of the perturbation is

an immediate consequence of the fact that coupling beyond

nearest neighbors is important. Experiments with consti-

tutively active ligand release are frequently limited by the

ability to control the size of the perturbation (Peri et al.,

2002). We suggest that the corresponding results should be

interpreted with care. In particular, for the same values of

binding, signaling, and transport parameters, changing the

size of the perturbation can move the system between the

regimes of localized and long-range signaling.

CONCLUSIONS

We have developed discrete models of cell-to-cell com-

munication in epithelial layers. In analyzing autocrine and

paracrine signals, we consider the molecules, the feedback

loops, and the geometry of cell-to-cell communication that

are conserved across species (Casci and Freeman, 1999).

EGFR system serves as a paradigm for autocrine/paracrine

tissue regulation, and in multiple developmental and path-

ological contexts EGFR is controlled by the positive feed-

back loop discussed in this article (Wells, 1999). Indeed, the

EGFR/Ras/MAPK-mediated feedback from ligand binding

to ligand release operates in many mammalian systems

(Dent et al., 1999; Doraiswamy et al., 2000; Gechtman

et al., 1999; Montero et al., 2002). At this time all models of

EGFR system are formulated at the level of a single cell

(Wiley et al., 2003). Our work is aimed at the development of

mechanistic models at the tissue level.

One of our main results is the derivation of cell-to-cell

coupling coefficients as a function of geometric, cellular, and

molecular parameters of the ligand transport problem. These

coefficients provide a quantitative framework for the analysis

of cell-to-cell interactions by diffusing ligands in epithelial

layers. Our explicit expressions for the coupling coefficients

obtained for particular geometries can be used to estimate

the range of cell communication in epithelial layers. Note,

however, that our approach—‘‘removing’’ the continuum

part of the problem by slaving it to intracellular variables

through the introduction of cell-to-cell coupling coefficients

—is not limited to periodic arrays of cells of simple shapes and

can be applied to arbitrary cell arrangements.

In addition to the general analysis of autocrine signals in

epithelial layers, we have analyzed a discrete and nonlinear

model of the positive feedback between ligand release and

binding. In particular, we found a class of stable stationary

solutions in the form of clusters of a few signaling cells. The

existence of these solutions is due to the essential dis-

creteness of the considered system. These results can be ap-

plied to the EGFR signaling in Drosophila oogenesis. This

is possible due to the well-characterized ‘‘geometry’’ of cell

communication in this problem, and to the availability of

molecular and cellular data for the EGFR system. The results

on localized patterns can be used to analyze the patterned

states generated by the localized activation of ligand release

in the follicular epithelium (Pai et al., 2000; Peri et al., 2002).

While this work has been primarily motivated by the

EGFR-mediated cell communication, recent advances in cell

biology of developmental signaling pathways enable the for-

mulation of mechanistic models for other systems. Recent

data on ligand-receptor affinity in the Wingless pathway can

be combined with the spatially resolved measurements of

Wingless transport (Dubois et al., 2001; Lloyd et al., 2002;

Pfeiffer et al., 2002). This provides a good incentive for the

development of transport models that could account for the

processes of intracellular ligand trafficking (Entchev et al.,

2001; Seto et al., 2002).

The rapid decay of coupling coefficients suggested by our

computations is in line with the conclusions of experimental

studies of the EGFR system, both in vitro and vivo. We sug-

gest that, in epithelial layers, many autocrine and paracrine

networks may be operating in the regime of ‘‘almost’’ next-

nearest neighbor coupling. If, as a result of future quantita-

tive experiments, this turns out to be the case, then modeling

of epithelial layers might draw from a large body of math-

ematical results available for lattice dynamical systems; see

Cahn et al., 1998; Chow et al., 1998 for example.

Our approach has a number of limitations. While the

ligand-limited regime and the ‘‘thin-fin’’ approximation are

likely to hold for a large number of developmental contexts,

special care has to be paid to assessing the validity of the

assumption about the separation of the timescales corre-

sponding to binding and transport and the intracellular var-

iables. New methods have to be developed for the regime

when this condition is not satisfied. In addition, we assumed

that the generation of the ligand-releasing protease is a

thresholdlike function of the current level of ligand-receptor

complexes. More complex parameterizations of this de-

pendence can be considered. We verified numerically that

similar results are obtained if one uses a sufficiently sharp

Hill function for the sigmoidal nonlinearity.

Another important issue that needs to be addressed is the

effect of the noise on the signaling patterns due to the low

number of molecules involved. In fact, a simple calculation

shows that for realistic parameters (see Table 1) the number of

ligand molecules over a single cell must be of order unity for

the ligand-limiting regime to be realized. This must be

reconciled with the use of the continuous approximation for

ligand diffusion (Eq. 1). Let us point out, however, that the

relevant quantity for the signaling patterns here is the number

of ligand-receptor complexes per cell Ctot
i;j ; which acts as an

input to the protease production. In contrast to the number of
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ligands, the number of complexes turns out to be large; for

realistic parameters, Ctot
i;j ; 103. This is essentially due to the

fact that the average lifetime of the ligand-receptor complexes

;(ke 1 koff)
�1 is much longer than the timescale of ligand-

receptor binding ;h/ks (see Table 1). Therefore, for these

values of Ctot
i;j the effect of the fluctuations in the number of

extracellular ligands will be averaged over times ;(ke 1

koff)
�1 and to the leading order can be neglected. In this sense,

Eq. 1 should be viewed as the equation for the probability

density of finding a ligand molecule in a given infinitesimal

volume element. We have performed preliminary Monte

Carlo simulations that confirm these statements.

The combination of kinetic models with the detailed

information about the subcellular structures has been very

successful in the analysis of intracellular events (Slepchenko

et al., 2002). We argue that a similar approach is critical for

the analysis at the tissue level. A rapidly growing number of

well characterized developmental systems makes this

approach both necessary and feasible (Freeman and Gurdon,

2002).

APPENDIX

Dimensionless model

Upon rescaling Eqs. 1–4 according to Eqs. 7 and 8, we obtain:

ts

@s

@t
¼ @

2
s

@x
2 1

@
2
s

@y
2 1

@
2
s

@z
2 ; g

@s

@z
� s

� �����
z¼0

¼ �ð1 � gÞc� g+
i;j

ui;jðx; yÞpi;j;
@s

@z

����
z¼a

¼ 0; (A1)

where a ¼ hks=D; g ¼ ke=ðkoff1keÞ; ts [Dkp=k
2
s : According to this

equation, for a ¼ h=L � 1, the variation of s in the z-direction is negligible.

Hence, sðx; y; y; tÞ ’ �ssðx; y; tÞ: Using this fact and averaging Eq. A1 over

the vertical coordinate, we get, approximately,

ts

@�ss

@t
¼ @

2�ss

@x
2 1

@
2�ss

@y
2 1

1

a

@s

@z

����
a

0

:

Combining this with the rescaled versions of Eqs. 2 and 3 and using the

boundary conditions in Eq. A1, we get

ts

@s

@t
¼ @

2
s

@x
2 1

@
2
s

@y
2 �

1

ag
s� ð1 � gÞc� g+

i;j

ui;jðx; yÞpi;j

 !
;

(A2)

tc

@c

@t
¼ s� c; (A3)

dpi;j

dt
¼ �pi;j 1s

ð
ai;j

sðx; yÞdx dy� cT

 !
; (A4)

where c[C=C0: Eqs. A2–A4 contain four dimensionless parameters:

a; ts; tc; and cT: For the thin-fin approximation in Eq. A1, a (i.e., ratio of

the geometrical and the dynamical length) has to be small. This condition is

satisfied for the typical parameter set used in the model analysis (see Table 3).

Furthermore, the relative timescales of extracellular ligand and ligand-

receptor complexes are small: tc � 1 and ts � 1; see Table 3. The steady-

state approximation for these variables leads to Eqs. 9 and 10 (in the original

scaling).

Coupling coefficients for square cells

Now we compute the coupling coefficients Im;n for square cells of size Lx.

Let F(v,l), be the cosine transform of u0,0(x,y):

Fðv; lÞ ¼ sinðvl=2Þsinðll=2Þ
vl

; (A5)

where l ¼ Lx/L is the dimensionless cell width (see Fig. 6 A). The coupling

coefficients can then be found via integration of Eqs. 13 and 15. After

tedious but straightforward algebra, we obtain:

Im;n[

ð‘
0

ð‘
0

16cosðlnlÞcosðlmvÞsin
2ðll=2Þsin

2ðlv=2Þ
p

2
l

2
v

2ðaðl2
1v

2Þ11Þ
dvdl;

(A6)

where m and n are the position indices that determine the locations of the

m,nth cells in the lattice (see Fig. 6 C).

Coupling coefficients for hexagonal cells

For the hexagonal cells with dimensionless width 2v ¼ 2Lv/L, the cosine

transform F(v,l) of u0,0 is given by

where r ¼ 2v=
ffiffiffi
3

p
is the side of the hexagon (see Fig. 6 B).

From Eq. 14, the interaction coefficient is Im;n [
R

am;n
qðx; yÞdx dy; where

the function q(x,y) is defined by Eq. 13. To compute the coupling

coefficients, we integrate this expression over the m,nth cell. This requires

evaluating the integral
R

am;n
cosðvxÞcosðlyÞdx dy: With the indexing scheme

(see Fig. 6 D), the position of cell centers on the hexagonal lattice is given by

x¼mv; y¼ 3rn13rm=2: (A8)

Then, after a straightforward calculation the integral
R

am;n
cosðvxÞ

cosðlyÞdx dy; for the m,nth cell, can be written as:

Fðv;lÞ ¼ 2vðlrðcosðlrÞ � cosðlr=2ÞcosðvvÞÞ þ 2nv sinðlr=2ÞsinðvvÞÞ
4n

2
lv

2 � r
2
l

3 ; (A7)

ð
am;n

cosðvxÞcosðlyÞdx dy ¼ 8v cosð3ðmþ 2nÞrl=2ÞcosðmvvÞðrlðcosðrlÞ � cosðrl=2ÞcosðvvÞÞ þ 2vv sinðrl=2ÞsinðvvÞÞ
4v

2
lv

2 � r
2
l

3 :

(A9)
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This expression can be substituted into Eqs. 13 and 14. After a long

calculation, the coupling coefficients become:

General comments

The integrals given by Eqs. A6 and A10 can be easily computed

numerically. We have used adaptive integration routines in Mathematica

and MATLAB for this purpose. The computation of a single coefficient

takes several seconds on a very modest PC. Given the fact that coupling

coefficients decay rather quickly as a function of the lattice indices, the

vector field for the discrete problem is constructed very efficiently. In the

current form, the coupling coefficients depend on the dimensionless cell

size (l, or v and r) and a ¼ ksh=D; a dimensionless parameter inherited

from the original three-dimensional problem. By rescaling the variables of

integration in the final expressions (Eqs. A6 and A10), that

Im;n ¼ af m; n; l=
ffiffiffi
a

pð Þ: Thus, up to a constant, the integrals in A6 and

A10 depend on a single dimensionless parameter l=
ffiffiffi
a

p
: Returning to the

dimensional parameters, we find that l=
ffiffiffi
a

p
is equal to the cell size, l (or v

and r), normalized by the length scale for ligand variations along the

surface
ffiffiffiffiffiffiffiffiffiffiffiffi
Dh=ks

p
: The original cell communication system operates in

a discrete regime when the ratio of these length scales is [1. The cells are

essentially uncoupled for very large values of l=
ffiffiffi
a

p
. Small values of

l=
ffiffiffi
a

p
correspond to the continuum regime.
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