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Abstract

This paper addresses the ill-posedness of the classical Rayleigh variational
model of conducting charged liquid drops by incorporating the discreteness of the
elementary charges. Introducing the model that describes two immiscible fluids
with the same dielectric constant, with a drop of one fluid containing a fixed num-
ber of elementary charges together with their solvation spheres, we interpret the
equilibrium shape of the drop as a global minimizer of the sum of its surface en-
ergy and the electrostatic repulsive energy between the charges under fixed drop
volume. For all model parameters, we establish the existence of generalized mini-
mizers that consist of at most a finite number of components “at infinity”. We also
give several existence and non-existence results for classical minimizers consist-
ing of only a single component. In particular, we identify an asymptotically sharp
threshold for the number of charges to yield existence of minimizers in a regime
corresponding to macroscopically large drops containing a large number of charges.
The obtained non-trivial threshold is significantly below the corresponding thresh-
old for the Rayleigh model, consistently with the ill-posedness of the latter and
demonstrating a particular regularizing effect of the charge discreteness. However,
when a minimizer does exist in this regime, it approaches a ball with the charge
uniformly distributed on the surface as the number of charges goes to infinity, just
as in the Rayleigh model. Finally, we provide an explicit solution for the problem
with two charges and a macroscopically large drop.
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1. Introduction

There has recently been a growing interest in geometric variational problems
featuring a competition of attractive and repulsive interactions [6]. A prototypical
model giving rise to the problems of this kind is the celebrated Gamow’s liquid drop
model of the atomic nucleus [15], in which a competition of the cohesive action of
the surface tension with the Coulombic repulsion gives rise to delicate questions
about the existence and the shape of minimizers, etc. There are now many studies
of this model and its various generalizations and extensions that are too numerous
to list here (for some recent works, see, e.g., [13,31,34] and references therein).

We focus on a closely related problem arising from the classical model in-
troduced by Lord Rayleigh that describes the energetics of a perfectly conducting
charged liquid drop [29] (for the technical details of the model, see Sect. 2). In 1882,
Rayleigh demonstrated that a spherical liquid drop becomes linearly unstable with
respect to asymmetric distortions of its shape when the amount of charge on the
droplet exceeds a critical value called the Rayleigh charge. Such an interfacial in-
stability driven by the electric field was first observed experimentally by Zeleny
[41,42] and subsequently studied by great many authors (see, e.g., [1,9,10,17,21]),
not least because of its important applications to analytical chemistry [16]. Surpris-
ingly, however, the linear stability of the charged drop below the critical charge in
the Rayleigh model was recently shown not to imply stability of a spherical drop
with respect to arbitrarily small perturbations of its shape [33]. In fact, the Rayleigh
model leads to a problem that is variationally ill-posed [18,20,33]. Mathematically,
this is because the regularizing action of the perimeter is not sufficient to control the
electric charges at small scales [19]; Physically, it manifests itself in the formation
of singularities in the form of Taylor cones and jets [12,26,37].

The variational ill-posedness of the above problem indicates that the Rayleigh
model does not contain all the physics that is necessary to describe the equilibrium
shapes of conducting charged drops. Several regularizing mechanisms have, there-
fore, been proposed, including thermal effects that restore existence of minimizers
under certain conditions due to the spreading of the charges into a thin Debye layer
beneath the droplet surface [7,32,33]. Nevertheless, in some situation such as cryo-
genic liquids or nanoscale droplets, in which the thermal motion of free charges is
suppressed, another physical mechanisms may be necessary. One such mechanism
relies on the fundamental discreteness of the electric charges [11,25,26,28]. In this
paper, we explore this possibility in the special case of dielectrically matched fluids,
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in which there is no dielectric contrast between the droplet and its surroundings
(again, see Sect. 2 for technical details).

For a model that keeps track of the positions of individual charges inside the
droplet, we establish existence of generalized minimizers, a suitable notion of min-
imality for this kind of problems that accounts for a possibility of components that
are infinitely far apart, first introduced in [27]. We also establish the regularity and
connectedness of the components of the generalized minimizers. We then proceed
to investigate under which conditions classical minimizers, consisting of only a
single component, are possible in the physically important regime of sufficiently
strong repulsion between the charges in comparison to the surface tension. Here
we establish a sharp existence/non-existence criterion in the case of many charges,
which yields a critical charge for existence that is significantly smaller than the
Rayleigh charge. We also establish some structural information about the locations
of the charges when the minimizers do exist and show that in a suitable continuum
limit within the existence range the minimizer converges in an appropriate sense to
a ball with the charges uniformly distributed on its surface. Lastly, we present an
explicit solution of the variational problem in the case of only two point charges.

Our paper is organized as follows. In Sect. 2, we introduce the model considered
in this paper and discuss the relevant parameter ranges. In Sect. 3, we state the
main results of our paper. In Sect. 4, we present the proof of Theorem 3.2 that
gives existence of generalized minimizers. In Sect. 5, we present the proofs of
the existence result of Theorem 3.3, the non-existence result of Theorem 3.4, and
the asymptotic characterization of minimizers with many charges in Theorem 3.5.
Lastly, in Sect. 6 we present the analysis of the two-charge problem that yields
Theorem 3.6. This section also gives an explicit characterization of the energy
minimizers.

2. Model

We consider a system consisting of two immiscible fluids with matched di-
electric constants, i.e., both fluids have the relative dielectric constant equal to εd .
Because of this, we do not need to worry about the shape dependent dielectric
polarization of the liquid drop in the presence of charges, which would otherwise
considerably complicate the analysis [7]. In what follows, we simply refer to the
first fluid of finite volume surrounded by the second ambient fluid as the liquid drop.
A notable example of such a fluid system is liquid helium in equilibrium with its
vapor, which has been used to investigate the phenomenon of Wigner crystalliza-
tion of charges at the liquid–vapor interface and is known to undergo charge-driven
interfacial instabilities [2,22,23,38]. More recently, charge-containing helium nan-
odroplets have been considered as a host medium for a variety of applications in
molecular spectroscopy and quantum chemistry [5].

At the level of the continuum, the equilibrium shape of a charged, perfectly
conducting liquid drop may be investigated with the help of a model that goes back
over 140 years to Lord Rayleigh [29]. In this model, an equilibrium drop is viewed
as a minimizer (at least local) of the energy
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E(�) := σ P(�) + Q2

2C(�)
, (2.1)

where � ⊂ R
3 is the set occupied by the drop that carries the charge Q, with the

volume of the drop |�| = m. Here, σ is the surface tension of the liquid interface,
P(�) is the perimeter of the set � defined by

P(�) := sup

{∫
�

∇ · φ(y) dy : φ ∈ C1
c (R

3; R
3), |φ| ≤ 1

}
, (2.2)

which is a suitable measure-theoretic generalization of the surface measure for
smooth sets, and C is the electrostatic capacity defined by

C−1(�) := inf
μ(�)=1

∫
�

∫
�

1

4πε0εd |x − y| dμ(x) dμ(y), (2.3)

where ε0 is the permeability of vacuum, and the minimization is carried out over
probability measures μ supported on �. However, as was already mentioned, this
model was recently shown to be variationally ill-posed [18,33]. Thus, a regular-
ization of the electrostatic problem is necessary to enable existence of even local
energy minimizers in the natural classes of liquid configurations.

In this paper, we appeal to the discrete nature of electric charges as a possible
physical regularizing mechanism [11,25,26,28], while ignoring the entropic effects
associated with thermal agitation of the charges (appropriate for nanoscale droplets
or cryogenic fluids). This amounts to restricting the measures appearing in (2.3) to
those associated with N point charges,

μ = 1

N

N∑
i=1

δxi , (2.4)

where xi ∈ R
3 are the positions of the charges and δxi are the Dirac delta-measures

centered at xi . Note that in doing so we must exclude the self-interaction of charges.
Setting x �= y in the integral in (2.3) then yields the following expression for the
energy:

EN (�, X) := σ P(�) + e2

8πε0εd

∑
i �= j

1

|xi − x j | . (2.5)

Here the set � ⊂ R
3 again denotes the domain occupied by the liquid drop, the

discrete set X = ∪N
i=1{xi } ⊂ R

3 specifies the positions of N point charges, and e
is the elementary charge (positive), so that |Q| = Ne. For simplicity, we assume
a single species of monovalent ions dissolved in the liquid drop, with the ambient
fluid a perfect dielectric.

Notice that every charge in the liquid drop strongly attracts a cluster of liq-
uid (solvent) molecules forming a solvation shell around the charge (ion). We
model this effect by requiring that the liquid drop contains a ball of radius r0,
called the solvation radius, around each charge [25], i.e., we have Br0(xi ) ⊂ � for
each i = 1, . . . , N , with Br0(xi ) mutually disjoint. The solvation radius of simple
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monoatomic ions in polar solvents like water usually measures to fractions of a
nanometer.

To assess the relative strengths of the two terms in the energy and to carry out
an appropriate non-dimensionalization, we introduce the molecular length scale

rσ :=
√
kBT

σ
, (2.6)

where kBT is the temperature in the energy units, above which the interface may
be considered as sharp and well defined in the presence of thermal noise. For low
molecular weight liquids at room temperature, rσ is on the order of a fraction of a
nanometer. This scale may be compared with the Bjerrum length

rB := e2

4πε0εdkBT
, (2.7)

which measures the scale at which the Coulombic energy of a pair of elementary
charges in a dielectric liquid is comparable to the thermal energy. In polar solvents at
room temperature, this length is on the order of a few nanometers. Rescaling lengths
with rσ and measuring the energy in the units of kBT then yields EN (rσ �, rσ X) =
kBT Eρ,λ,N (�, X), where

Eρ,λ,N (�, X) := P(�) + λ

N−1∑
i=1

N∑
j=i+1

1

|xi − x j | , (2.8)

now with Bρ(xi ) ⊂ � disjoint, where we introduced the dimensionless parameters

ρ := r0

rσ
, λ := rB

rσ
. (2.9)

From the basic physical considerations already mentioned, for typical liquids at
room temperature both ρ and λ are expected to be of order one [25]. For example,
for small monovalent ions in ethanol (a common solvent for electrospray) we have
ρ ≈ 1 and λ ≈ 5. In contrast, for liquid helium at T = 2 K, for which rσ ≈ 0.3 nm
and rB ≈ 8 μm we get ρ ∼ 1 and λ ∼ 106 
 1. As a point of reference, let us note
that for the parameters of liquid helium above our Theorem 3.6 yields existence of
an equilibrium configuration only for droplets whose volume corresponds to a ball
of radius greater than ∼ 10 μm even with just two point charges.

The case of the main physical interest corresponds to that of the volume of
the charged drop becoming macroscopically large (m → ∞), while the number of
charges N simultaneously tends to infinity with a suitable rate. To study this regime,
we can carry out another rescaling in which the volume is instead normalized to a
constant while the radius of the solvation sphere vanishes. Introducing the parameter
ε > 0 that will eventually be sent to zero, we have Eρ,λ,N (ε−1ρ�, ε−1ρX) =
ε−2ρ2Eε(�, X), where

Eε(�, X) := P(�) + γ ε3
Nε−1∑
i=1

Nε∑
j=i+1

1

|xi − x j | , (2.10)
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Fig. 1. Schematics of an admissible configuration consisting of N = 4 charges indicated
with “+” when � is a ball

Bε(xi ) ⊂ � are disjoint for all 1 ≤ i ≤ Nε, and γ := λ/ρ3 is a single dimensionless
parameter that characterizes the physical properties of the liquid and is kept fixed
throughout the analysis. The considerations following (2.9) motivate us to focus on
the physically most relevant regime of γ � 1. The assumptions on the dependence
of Nε → ∞ on ε → 0 that yield information about the equilibrium shape of the
charged drops turn out to be non-trivial and will be specified in the ensuing sections.

3. Main Results

We now state the main results of our paper concerning the minimizers of the
energy Eρ,λ,N and its rescaled version Eε. We begin by defining the admissible
class Am,N ,ρ of configurations consisting of a set of finite perimeter � ⊂ R

3 of
volume m > 0 and N ∈ N non-overlapping charges of radius ρ > 0 contained in
�, whose centers are collected into a discrete set X ⊂ R

3:

Am,N ,ρ := {(�, X) :
� ⊂ R

3 measurable, |�| = m, P(�) < ∞,

X = ∪N
i=1{xi }, (xi )

N
i=1 ∈ R

3,

|� ∩ Bρ(xi )| = |Bρ(0)| for all 1 ≤ i ≤ N ,

Bρ(xi ) ∩ Bρ(x j ) = ∅ for all 1 ≤ i < j ≤ N }. (3.1)

An example of an admissible configuration is shown in Fig. 1. Notice that the set
∪N
i=1Bρ(xi ) representing the charges is assumed to be contained inside the set �

in the measure theoretic sense.
We would like to investigate under which conditions the energy Eρ,λ,N admits

a minimizer in the class Am,N ,ρ . Notice that the question of existence of such
minimizers is far from obvious because of the possibility of splitting of the set �

into disjoint pieces that carry the charges apart to lower the Coulombic energy at the
expense of increasing the interfacial energy. This issue is well known in the studies



Arch. Rational Mech. Anal.          (2024) 248:76 Page 7 of 53    76 

Fig. 2. A schematic of a classical minimizer for N = 7

of geometric variational problems with competing interactions [6]. In the context
of Gamow’s liquid drop model, it was shown that an appropriate extension of the
notion of minimizers for this kind of problems is given by generalized minimizers
[27]. In our problem, these are defined as follows:

Definition 3.1. Let ρ, λ > 0, N ∈ N and m ≥ 4π
3 Nρ3. Suppose there exists

K ∈ N, mk > 0 and Nk ∈ N ∪ {0} with m = ∑K
k=1 mk , N = ∑K

k=1 Nk , and a
family of minimizers (�k, Xk) ∈ Amk ,Nk ,ρ of Eρ,λ,Nk which satisfies

K∑
k=1

Eρ,λ,Nk (�k, Xk) = inf
(�,X)∈Am,N ,ρ

Eρ,λ,N (�, X). (3.2)

Then the family of (�k, Xk) is called a generalized minimizer of Eρ,λ,N over
Am,N ,ρ .

Intuitively, a generalized minimizer can be thought of as a finite collection of
droplets containing all the charges, with each droplet being a minimizer for the
charge it contains and different droplets being “infinitely far apart” and thus not
interacting. Each set �k in a generalized minimizer is referred to as a component.
Notice that a generalized minimizer is simply a minimizer if and only if it has only
one component. An illustration of a classical minimizer of Eρ,λ,N with N = 7 is
presented in Fig. 2, while a possible generalized minimizer is shown in Fig. 3. Our
first result establishes existence of generalized minimizers for all nontrivial values
of the parameters.

Theorem 3.2. Let ρ, λ > 0, N ∈ N and m ≥ 4π
3 Nρ3. Then there exists a gener-

alized minimizer of Eρ,λ,N over Am,N ,ρ . Moreover, each component of the gener-
alized minimizer has boundary of class C1,1, is bounded and connected, and away
from the set of charges is smooth and has constant mean curvature that is the same
for all the components.

In view of the regularity of the components of generalized minimizers, in the
following we always refer to the regular representatives when talking about the
energy minimizing sets. In particular, we can choose these sets to be open.
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Fig. 3. A schematic of a generalized minimizer with K = 3 for N = 7

We next establish a parameter regime in which the generalized minimizers are
also classical, i.e., when there is a minimizer of Eρ,λ,N over Am,N ,ρ . Naturally, as
the most interesting case to consider is that of many charges, we will instead work
with the energy Eε defined in (2.10) and minimize it over the class Aε obtained as
a suitable modification of the definition in (3.1) corresponding to sets of volume
m = 4π

3 of a unit ball (without loss of generality) containing Nε 
 1 charges of
radius ε � 1:

Aε := A 4π
3 ,Nε,ε

. (3.3)

Notice that existence vs. non-existence of classical minimizers in the class Aε

for ε � 1 must clearly depend on the rate of Nε → ∞ as ε → 0. To begin with,
due to the constraint Bε(xi ) ∩ Bε(x j ) = ∅ for i �= j we must have Nε � ε−3

in order for the admissible class Aε to be non-empty, limiting the possible growth
rate of Nε. On the other hand, for � fixed and ε sufficiently small depending on
Nε 
 1, one would be able to approximate infX⊂� Eε(�, X) by

E0(�) := P(�) + q2

2
inf

μ(�)=1

∫
�

∫
�

dμ(x) dμ(y)

|x − y| , (3.4)

with q = γ
1
2 ε

3
2 Nε, which is nothing but the dimensionless continuum energy in

(2.1). Nevertheless, this energy is known to give inf |�|= 4π
3
E0(�) = 4π for all

q ≥ 0, thus failing to yield a minimizer for any q > 0 [18]. Therefore, it would be

natural to expect existence of minimizers of Eε over Aε only for Nε � γ − 1
2 ε− 3

2 .
Still, the threshold Nε for existence of minimizers in this regime is far from obvious.

We begin with the following existence result, which shows that for γ � 1
classical minimizers exist as soon as Nε � γ −1ε−1 and all ε > 0 sufficiently small
universal:

Theorem 3.3. There exist universal constants ε0 > 0, γ0 > 0 and C > 0 such that
for all γ > γ0 and 1 < Nε < C

εγ
there exists a minimizer of Eε over Aε for all
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ε ∈ (0, ε0). Furthermore, if (�, X) ∈ Aε is aminimizer of Eε thendist(xi , ∂�) = ε

and dist(xi , X\xi ) ≥ cγ ε for all xi ∈ X with 1 ≤ i ≤ Nε and c > 0 universal.

We note that one of the conclusions of the above theorem is that all the balls
Bε(xi ) containing the charges xi ∈ X in a minimizer touch the drop boundary ∂�.
This is consistent with the expectation at the level of the continuum that the measure
μ minimizing the Coulombic energy in (3.4) is supported on ∂�. Furthermore, we
find that in this regime the charges are uniformly separated from one another at
scale O(γ ε) which exceeds that imposed by the constraint Bε(xi ) ∩ Bε(x j ) = ∅

for i �= j .
Surprisingly, the existence threshold in Theorem 3.3 is considerably lower than

Nε ∼ γ − 1
2 ε− 3

2 for which the Coulombic energy matches the perimeter in the
continuum as ε → 0, see (3.4). Nevertheless, this is not simply a limitation of
our analysis, as we demonstrate with our next non-existence result. To give some
heuristics for the threshold appearing in Theorem 3.3, consider the basic mechanism
in which a drop may lose its energy minimizing property by evaporating a single
charge [11,25,26,28]. If (�, X) is a minimizer of Eε, then (�′, X ′) with �′ =
(�\Bε(xi )) ∪ Bε(Re1) and X ′ = (X\{xi }) ∪ {Re1}, obtained by cutting a single
ball Bε(xi ) with a charge in its center and sending it far off, is an admissible
configuration. Here e1 is the unit vector along the first coordinate direction, xi ∈ X
with 1 ≤ i ≤ Nε arbitrary, and R > 0 is sufficiently large. Letting R → ∞, we
then conclude that

Eε(�, X) ≤ Eε(�
′, X ′) ≤ Eε(�, X) + 8πε2 − γ ε3

∑
j �=i

1

|xi − x j | , (3.5)

which implies that

diam(�) ≥ Cγ εNε, (3.6)

for some C > 0 universal and all Nε > 1.
We would expect that at least whenever the perimeter is not overwhelmed by

the Coulombic energy the diameter of a minimizer of Eε, if it exists, should not
greatly exceed that of a unit ball corresponding to the mass constraint. From this
and (3.6), we immediately get a contradiction if Nε 
 γ −1ε−1, suggesting that
in this regime the existence should fail, provided that the perimeter term indeed
dominates the Coulombic energy. For the latter, we can consider a competitor of
the form (�, X), where � = Br (0) ∪Nε

i=1 Bε(i Re1) and X = ∪Nε

i=1{i Re1}, for
r3 + ε3Nε = 1 with ε � 1 and R 
 1, corresponding to all charges evaporated
from the drop. This yields infAε

Eε ≤ 4π(r2 + ε2Nε) by sending R → ∞. Thus,
we have infAε

Eε � 1 whenever Nε � ε−2 and ε � 1 independently of γ , and the
isoperimetric deficit becomes small when Nε � ε−2.

Under the condition of smallness of ε2Nε, we now get our non-existence result
that yields a sharp scaling for the threshold value of Nε with γ � 1 for ε � 1.

Theorem 3.4. Let γ > γ0, where γ0 is as in Theorem 3.3. Then there exists a
universal constant C > 0 and constants ε0, δ0 > 0 depending only on γ such that
if ε ∈ (0, ε0) and

C
γ ε

< Nε < δ0
ε2 then Eε does not attain its infimum in Aε.
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We note that by (3.6) the minimizer is expected to be highly elongated for
Nε � ε−2, if it exists. Thus, although we do not believe minimizers could exist
in this Coulombic dominated regime far beyond Rayleigh instability, i.e., for all

Nε 
 γ − 1
2 ε− 3

2 , a different approach would be needed to rule out existence of
minimizers in this regime.

We now turn to the asymptotic behavior of the minimizers in the range of
existence given by Theorem 3.3. In the next theorem, we show that when the
minimizers of Eε exist for ε � 1, they are always nearly spherical with a uniformly
distributed charge over the boundary, as one would have expected on physical
grounds. Notice that as was already mentioned, in the regime of Theorem 3.3 the
isoperimetric deficit for minimizers vanishes as ε → 0, which by the quantitative
isoperimetric inequality implies that the minimizers converge to balls in the L1

topology after suitable translations [14]. Nevertheless, a stronger control on the
deviation of the minimizer � from a ball is necessary to establish convergence of
the Coulombic energy and, as a result, of the charge density, which is given by the
following theorem:

Theorem 3.5. Let εn > 0 and Nn ∈ N be such that εn → 0 and Nn → ∞ as
n → ∞, and Nn < C

γ εn
for γ > γ0, where C and γ0 are as in Theorem 3.3. Then

if (�n, Xn) ∈ Aεn are minimizers of Eεn and Xn = ∪Nn
i=1{xi,n}, we have, up to

translations, �n ⊂ B1+δ(0) for all δ > 0 and all n ∈ N large enough, and

1

Nn

Nn∑
i=1

δxi,n ⇀
1

4π
H2�∂B1(0), (3.7)

in the sense of measures, as n → ∞.

Lastly, we present an asymptotically sharp existence result for the minimization
problem in the special case of Nε = 2 charges and ε � 1. Actually, in this case the
minimization problem admits and explicit solution in terms of the unduloid surfaces
that span the space between the two charges. We present the rather technical details
of these solutions in Sect. 6. Here instead we summarize our existence results for
minimizers of Eε with Nε = 2 for ε � 1.

Theorem 3.6. Let Nε = 2 and c > 0. Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0) we have:

(i) if c < 8π and γ < c
ε
then there exists a unique, up to translations and rotations,

minimizer of Eε in Aε.
(ii) if c > 8π and γ > c

ε
then there is no minimizer of Eε in Aε.

Note that the threshold for existence in the above theorem is consistent with
the one found in Theorems 3.3 and 3.4, but without an a priori assumption on γ .
A further quantitative characterization of these minimizers is presented in Theo-
rem 6.15, with all the necessary notations defined in Sect. 6. The proof of the latter
is rather technical and involves a careful asymptotic analysis of the exact global
minimizers constructed in that case. Finally, we note that in the case Nε = 1 the
minimizers are trivially balls, so in the following we can always assume Nε ≥ 2
without loss of generality.
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3.1. Structure of the Proof

Our starting point is establishing existence of generalized minimizers in The-
orem 3.2, which is done with the help of the standard concentration compactness
argument that exploits uniform regularity for volume-constrained minimizers of the
perimeter in Lemma 4.3, a result which could be of independent interest in itself.

Our next result is existence of classical minimizers of Eε when γ is sufficiently
large universal, ε is sufficiently small and the number of charges Nε is not too
large. Here, arguing by contradiction, we assume that no classical minimizer exists
and first show that in the considered parameter regime all generalized minimizers
consist of only one large component and one or more balls of radius ε each con-
taining one charge, see Lemma 5.10. Once this result is established, the proof of
Theorem 3.3 follows from a sharp quantitative estimate of the Coulombic energy
of a finite number of charges on a unit ball, together with an estimate of the en-
ergy gain resulting from suitably merging one small component of the generalized
minimizer with the large component, which leads to a contradiction. Conversely,
for the number of charges exceeding the existence threshold for Nε in Theorem 3.3
we obtain a contradiction to the existence of a classical minimizer in Theorem
3.4 by combining the characterization of minimizers in Lemma 5.8 with a sharp
lower bound on the Coulombic energy of finitely many charges confined to a ball.
Furthermore, within the regime of validity of Theorem 3.3 we are able to pass to
the limit ε → 0 and Nε → ∞ with a suitable rate in Theorem 3.5 by combining
the well-known 
-convergence results for the Coulombic energy of many point
charges with the asymptotic characterization of minimizers in Lemma 5.8.

The key technical result used in the proofs is contained in Lemma 5.8, whose
proof with some minor modifications is also used to obtain the diameter bounds for
the components of generalized minimizers in Lemma 5.9 and, as a consequence, a
characterization of generalized minimizers in Lemma 5.10. Lemma 5.8 states that
any classical minimizer of Eε is close to a ball in a certain sense, at least for Nε

not too large. The proof utilizes an upper bound on the total mass of the minimizer
contained outside a ball of radius slightly greater than 1 in Lemma 5.7 with the
uniform density estimate from Lemma 5.5 and uses careful cutting arguments,
together with a cutting estimate on the perimeter in Lemma 5.6 and the connectivity
of minimizers to show that every classical minimizer of Eε in the considered range
of Nε is contained in some ball of radius arbitrarily close to 1. The rest of the
lemmas of Sect. 5 establish the basic estimates on generalized minimizers that are
used throughout the rest of the proofs.

Finally, in Sect. 6 we prove the result in Theorem 3.6 by first establishing
existence of minimizers from the results of Sect. 5 and then showing that any
minimizer of Eε with N = 2 is an axisymmetric set, see Lemma 6.4, that for small
ε is close in a certain sense to a unit ball, see Lemma 6.2. From that we conclude,
in Lemma 6.5, that the free surface of the minimizer is a single section of an
unduloid, which is quantified in several subsequent lemmas. The proof is concluded
by enumerating the possibilities of joining the free surface with the obstacles and
comparing their energies, based on careful expansions of the different contributions
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to the energy for ε small. The conclusion is then given in Theorem 6.15 that provides
a sharp asymptotic characterization of the minimizer in the considered regime.

4. Existence of Generalized Minimizers

Following [7], we first derive a uniform density estimate for volume constrained
minimizers of the perimeter in the presence of spherical obstacles. The starting point
of our analysis is an Almgren type lemma that provides existence of a diffeomor-
phism whose constants depend only on the volume and the perimeter of the set, but
not on the set itself, which is then used to compensate the changes of volume under
small perturbations of the set.

Lemma 4.1. For every P > 0 there exists γ > 0 such that if � ⊂ B̊c
R(0) for some

R > 0 and
|�| ≥ 1, P(�) ≤ P, (4.1)

then there exists a vector field η ∈ C1
c (B̊

c
R(0)) with ‖η‖C1(B̊c

R(0))
≤ 1 such that

∫
�

div η dx ≥ γ. (4.2)

Proof. We reason as in [7, Lemma 3.5] and assume by contradiction that there exist
a sequence of radii Rk > 0 and a sequence of sets �k satisfying (4.1) such that

lim
k→∞ sup

η∈Ak

∫
�k

div η dx = 0, (4.3)

where Ak := {η ∈ C1
c (B̊

c
Rk

(0)) such that ‖η‖C1(B̊c
Rk

(0))
≤ 1}. By [30, Remark

29.11] for all k ∈ N there exists xk ∈ R
3 such that

|�k ∩ B1(xk)| ≥ δ̄, (4.4)

with δ̄ = δ̄(P) > 0. Letting Fk = �k − xk , up to a subsequence we have that
Rk → R ∈ [0,+∞], Fk → F ⊂ R

3 in L1
loc(R

3), with P(F) ≤ P . We only deal
with the case R < +∞ and xk → x ∈ R

3, since the other cases can be treated
analogously and are easier.

Passing to the limit in (4.4), we get that |F ∩ B1(0)| ≥ δ̄. In particular, by
Almgren lemma [7, Lemma 3.4] (see also [3,30]) there exists ηF ∈ C1

c (B̊
c
R(−x))

with ‖ηF‖C1(B̊c
R(−x)) ≤ 1 such that

∫
F

div ηF dx ≥ γF , (4.5)

for some γF > 0. Letting now ηk := ηF (· + xk), which belongs to C1
c (B̊

c
Rk

(0)) for
k large enough, we have that

lim
k→∞

∫
�k

div ηk dx ≥ γF > 0, (4.6)

thus contradicting (4.3). ��
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Remark 4.2. It is not difficult to see that the conclusion of Lemma 4.1 in fact holds
for general sets � ⊂ R

n of finite perimeter and supported on a complement of a
bounded open set U ⊂ R

n , with the constant γ depending only on the perimeter
of � and n.

From Lemma 4.1, we derive the following uniform density estimate:

Lemma 4.3. For every η, δ > 0 there exist a c0 > 0 depending only on η such that
if � ⊂ R

3 is a minimizer of

min
{
P(E, Bc

R(0)) : E ∩ BR(0) = � ∩ BR(0), |E | = |�|}, (4.7)

with P(� ∩ Bc
R(0)) < η|� ∩ Bc

R(0)|2/3 and |� ∩ Bc
R(0)| > δ, then

|� ∩ Br (x)| ≥ cr3, (4.8)

for all x ∈ �\BR(0) and r ∈ (0, c0δ
1
3 ) such that Br (x) ⊂ Bc

R(0), where the
constant c > 0 is universal and � is understood in the measure theoretic sense.

Proof. Up to a rescaling, we can assume that δ = 1. Notice that by a projection
argument we have

P(�, Bc
R(0)) + H2(� ∩ ∂BR(0)) = P(� ∩ Bc

R(0)) ≥ 2H2(� ∩ ∂BR(0)).

(4.9)

Then reasoning as in [7, Proposition 4.4] and applying Lemma 4.1 to the set � ∩
Bc
R(0), we get that � is a (�, r0)-minimizer of the perimeter in Bc

R(0), where
�, r0 are positive constants depending only on P . The result then follows by [30,
Theorem 21.11]. ��
Proof of Theorem 3.2. Let (�n, Xn) be a minimizing sequence and let Xn = ∪N

i=1{xi,n}. As the total number of charges is fixed, up to extraction of a subsequence (not
relabeled) the charges segregate into 1 ≤ K ≤ N clusters moving apart as n → ∞.
More precisely, for each k ∈ {1, 2, . . . , K } there exist Nk ∈ N and an index set
Ik = {i k1 , i k2 , . . . , i kNk

} such that ∪K
k=1 Ik forms a disjoint partition of {1, . . . , N } for

each n ∈ N and

lim sup
n→∞

∣∣xi,n − x j,n
∣∣ < ∞ ∀i ∈ Ik and ∀ j ∈ Ik, (4.10)

lim inf
n→∞

∣∣xi,n − x j,n
∣∣ = ∞ ∀i ∈ Ik and ∀ j �∈ Ik . (4.11)

Consider now �k
n := �n − xik1 ,n and Xk

n := ∪i∈Ik {xi,n − xik1 ,n}. By (4.10) and
(4.11), there exists R0 ≥ 1 such that Bρ(xi,n) ⊂ BR0(xik1 ,n) for all i ∈ Ik and all

1 ≤ k ≤ K , and for every R̃ > 0 we have Bρ(xi,n) ⊂ Bc
R̃
(xik1 ,n) for all i �∈ I kn and

all n large enough. Then, for R0 < R < R̃ and L > 0 we define a competitor set

�̃R,L
n :=

(
K⋃

k=1

(�k
n ∩ BR(0)) + e1kL)

)⋃
�0

n, (4.12)
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where for r :=
(

3
4π

|�n\(∪K
k=1BR(xik1 ,n))|

)1/3
we have �0

n := ∅ if r = 0 or

�0
n := Br (0) if r > 0, together with

X̃ R,L
n =

K⋃
k=1

(Xk
n + e1kL). (4.13)

By construction, (�̃
R,L
n , X̃ R,L

n ) ∈ Am,N ,ρ for all n and L large enough inde-
pendent of R. Notice that

P(�̃R,L
n ) =

K∑
k=1

P(�k
n, BR(0)) +

K∑
k=1

H2(�k
n ∩ ∂BR(0)) + 4πr2, (4.14)

for almost all R0 < R < R̃, and

∑
i �= j

1

|xi,n − x j,n| ≥
K∑

k=1

∑
i, j∈Ik
i �= j

1

|x̃i,n − x̃ j,n| , (4.15)

where X̃ R,L
n = ∪N

i=1{x̃ R,L
i,n }. Thus, by the isoperimetric inequality we have

Eρ,λ,N (�̃R,L
n , X̃ R,L

n ) ≤ Eρ,λ,N (�n, Xn) + 2
K∑

k=1

H2(�k
n ∩ ∂BR(0)) + C

L
,

(4.16)

for some C > 0 independent of n, L and R. Furthermore, since

K∑
k=1

|�k
n ∩ (BR̃(0)\BR0(0))| =

K∑
k=1

∫ R̃

R0

H2(�k
n ∩ ∂BR(0)) dR ≤ m, (4.17)

for every R̃ ≥ 2R0 it is possible to choose R ∈ (R̃/2, R̃) ⊂ (R0, R̃) such that

K∑
k=1

H2(�k
n ∩ ∂BR(0)) ≤ 2m

R̃
. (4.18)

Therefore, up to a subsequence (again, not relabeled) we can choose R̃ = R̃n → ∞
and R = Rn → ∞ such that (4.18) holds, as well as L = Ln → ∞ sufficiently fast,
so that by (4.16) we have that (�̃n, X̃n) := (�̃

Rn ,Ln
n , X̃ Rn ,Ln

n ) is also a minimizing
sequence.

We now modify the sets �̃n as follows to further reduce the energy: For each
1 ≤ k ≤ K , we replace the set (�̃n − x̃i k1 ,n)∩BRn (0), where X̃n = ∪N

i=1{̃xi,n}, with

the minimizer �̃k
n of the perimeter among all sets supported in BRn (0), containing

∪x̃∈X̃ k
n
Bρ(x̃), and satisfying |�̃k

n| = |�k
n ∩ BRn (0)|. Existence of such a minimizer

follows from the direct method of calculus of variations (see, e.g., [30, Section
12.5]). We may also assume that each set �̃k

n∪BR0(0) is connected, since otherwise
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all the mass of the disconnected pieces of �̃k
n\BR0(0) may be absorbed into the

ball �0
n at the origin, producing a new set �̃0

n without increasing the perimeter
while conserving the total mass. We denote by �n the set obtained by replacing �k

n
with �̃k

n in the definition of �̃n . By construction we have (�n, X̃n) ∈ Am,N ,ρ and
Eρ,λ,N (�n, X̃n) ≤ Eρ,λ,N (�̃n, X̃n), so (�n, X̃n) is again a minimizing sequence.

Notice that if we compare the perimeter of �̃k
n with the one of (�̃k

n∩Br (0))∪B,
where B ⊂ Bc

Rn
(0) is a ball of volume v(r) := |�̃k

n\Br (0)|, after some simple
calculations we get that

P(�̃k
n \ Br (0)) ≤ c̄v

2
3 (r) − 2

dv(r)

dr
(4.19)

for a.e. r ∈ (R0, Rn), where c̄ = (36π)
1
3 . It follows that if v(R0 + 1) > 0, then for

all large enough n we have
∫ R0+1

R0

P(�̃k
n \ Br (0))

v
2
3 (r)

dr ≤ c̄ + 6v
1
3 (R0) ≤ c̄ + 6m

1
3 . (4.20)

In particular, there exists R′
0 ∈ (R0, R0 + 1), depending on n and k, such that

P(�̃k
n \ BR′

0
(0))

|�̃k
n \ BR′

0
(0)| 2

3

≤ c̄ + 6m
1
3 . (4.21)

Then, by Lemma 4.3 applied with � = �̃k
n and R = R′

0, the minimizer �̃k
n satisfies

a uniform density estimate of the form

|�̃k
n ∩ Br (x)| ≥ cr3, (4.22)

for some universal c > 0 and for all x ∈ �̃k
n\BR′

0
(0) and 0 < r ≤ r0 :=

c(m)|�̃k
n\BR′

0
(0)|1/3. Moreover, we claim that �̃k

n ⊂ BR∞(0) for some R∞ > 0

independent of n. Indeed, if |�̃k
n\BR0+1(0)| = 0, there is nothing to prove. At

the same time, in view of the connectedness of �̃k
n ∪ BR0(0), the claim follows

easily by applying the density estimate in (4.22) with r = r0 to a sequence of
x = xl ∈ �̃k

n ∩ (∂BR0+1+(3 l−1)r0(0)\BR0+1+(3 l−2)r0(0)
)
, for l ∈ N, and the fact

that |�̃k
n\BR0(0)| is bounded by m.

We now send n → ∞. By compactness in BV (BR∞(0)), upon extraction of
a subsequence we have �̃k

n → �k∞ in the L1-topology for all 1 ≤ k ≤ K . Also,
since by construction �̃0

n are balls containing the excess mass or are empty, we
likewise have �̃0

n → �0∞ in L1(R3) and P(�̃0
n) → P(�0∞). Then, by the lower-

semicontinuity of the perimeter we have lim infn→∞ P(�̃k
n) ≥ P(�k∞) for all

1 ≤ k ≤ K . Upon a further extraction of a subsequence we may also assume that
xi,n − xik1 ,n → xki,∞ for all i ∈ Ik , and by continuity of the Coulombic energy we
have

lim
n→∞

∑
i, j∈Ik
i �= j

1

|xi,n − x j,n| =
∑
i, j∈Ik
i �= j

1

|x̃ ki,∞ − x̃ kj,∞| . (4.23)
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Thus, letting Xk∞ := ∪i∈Ik {xki } we have

inf
(�,X)∈Am,N ,ρ

Eρ,λ,N = lim inf
n→∞ Eρ,λ,N (�n, Xn) ≥ lim inf

n→∞ Eρ,λ,N (�n, X̃n)

≥ P
(
�0∞
)

+
K∑

k=1

⎛
⎜⎜⎝P
(
�k∞
)

+ λ

2

∑
i, j∈Ik
i �= j

1

|x̃ ki,∞ − x̃ kj,∞|

⎞
⎟⎟⎠

= P(�0∞) +
K∑

k=1

Eρ,λ,Nk (�
k∞, Xk∞). (4.24)

Moreover, (�k∞, Xk∞) minimize Eρ,λ,Nk over Amk ,Nk ,ρ , where mk := |�k∞|, and
by construction �0∞ minimizes the perimeter among all sets with mass m0 = m −∑K

k=1 mk . Indeed, otherwise it would be possible to construct a test configuration
of the form of (4.12) from those in Amk ,Nk ,ρ such that (4.24) is violated. Finally,
using (�k∞, Xk∞) to form a test function of the form of (4.12) and sending L → ∞
yields equality in (4.24).

Finally, the regularity of ∂� j follows by standard regularity theory for minimal
surfaces with smooth obstacles (see for instance [30, Theorem 21.8]). Regularity,
in turn, implies connectedness, as otherwise the energy of two pieces that both
contain charges can be decreased by moving them far apart, while any two pieces
such that at least one piece does not contain any charges (and hence is a ball) can be
made to touch without changing energy, contradicting the regularity of minimizers.
Finally, the same constant mean curvature for all the components away from the
set of charges follows from the arguments of [30, Section 17.3]. ��

5. Case of Many Charges

5.1. Preliminaries

From here on we are concerned with minimizing the energy given in (2.10)
among (�, X) ∈ Aε. Note that since by Theorem 3.2 generalized minimizers
always exist whenever Aε is non-empty, it is convenient to formulate our energy
estimates in terms of the energy of such minimizers. Furthermore, as competitors
we may consider finite collections of pairs (�i , Xi ), where �i ⊂ R

3 are open sets
with sufficiently smooth boundaries and Xi ⊂ R

3 are finite discrete sets satisfying
∑
i

|�i | = 4π

3
,

∑
i

|Xi | = Nε. (5.1)

With some abuse of notation, we will denote k copies of the component (�i , Xi ) of
a competitor as (�i , Xi )

k , with the obvious convention that (�i , Xi )
0 = (∅, ∅).

We also define the Coulombic interaction energy Vε(X) as

Vε(X) := γ ε3
Nε−1∑
i=1

Nε∑
j=i+1

1

|xi − x j | . (5.2)



Arch. Rational Mech. Anal.          (2024) 248:76 Page 17 of 53    76 

Lastly, we note that in the statements and proofs that follow we sometimes utilize
explicit constants in the estimates, which, however, are not intended to be optimal.

As a starting point, we have the following basic upper bound on the minimal
energy, which is obtained by considering a non-interacting configuration of one
large ball and Nε − 1 individual discrete charges. In particular, it gives a universal
upper bound on the minimal energy for Nε ≤ 1

ε2 .

Lemma 5.1. If {(�1, X1), . . . , (�k, Xk)} is a generalized minimizer then

k∑
i=1

Eε(�i , Xi ) < 4π(1 + ε2Nε). (5.3)

Proof. Testing the energy with the configuration of one charge in the center of
a large ball and Nε − 1 single charges in balls of radius ε, namely, taking as a
candidate
{(Br1(0), {0}), (Bε(0), {0})Nε−1}, where r1 = 3

√
1 − (Nε − 1)ε3 ≤ 1, we have

k∑
i=1

Eε(�i , Xi ) ≤ 4πr2
1 + 4πε2(Nε − 1), (5.4)

which yields the desired inequality. ��
Note that as a convention from here on we order the elements of a generalized

minimizer {(�1, X1), (�2, X2), . . . , (�k, Xk)} in terms of the decreasing magni-
tude of |�i |.
Lemma 5.2. There exists a universal constant C > 0 such that if

{(�1, X1), . . . , (�k, Xk)} is a generalized minimizer then |�1| ≥ 4π
3 − Cε3N

3
2
ε .

Proof. Without loss of generality let k > 1. Let ri := ( 3
4π

|�i |
) 1

3 , then by the
isoperimetric inequality and positivity of Vε we have

k∑
i=1

Eε(�i ) ≥
k∑

i=1

4πr2
i . (5.5)

Eliminating r1 via the volume constraint
∑k

i=1 r
3
i = 1 and using the fact that t

2
3 > t

for t ∈ (0, 1), we obtain

k∑
i=1

Eε(�i ) ≥
k∑

i=2

4πr2
i + 4π

(
1 −

k∑
i=2

r3
i

) 2
3

≥ 4π +
k∑

i=2

4πr2
i (1 − ri ). (5.6)

On the other hand, note that since r2 ≤ 1
3√2

, for all 1 < i ≤ k we have

r2
i (1 − ri ) ≥

(
1 − 1

3
√

2

)
r2
i . (5.7)
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Therefore, by Lemma 5.1 we obtain

4π(1 + Nεε
2) >

k∑
i=1

Eε(�i ) ≥ 4π +
k∑

i=2

4πr2
i (1 − ri ) ≥ 4π + C

k∑
i=2

r2
i , (5.8)

for some universalC > 0. Finally, by monotonicity of the l p-norm in p, this implies

3

√√√√ k∑
i=2

r3
i ≤
√√√√ k∑

i=2

r2
i ≤ C ′ε

√
Nε, (5.9)

for some C ′ > 0 universal, yielding the claim. ��
Our next lemma provides further information about the volume of the small

components of generalized minimizers. Notice that the conditions on Nε throughout
the rest of this section tacitly imply that ε is small.

Lemma 5.3. There exist universal constants C, δ > 0 such that for 1 < Nε <
δ
ε2 , if {(�1, X1), (�2, X2), . . . , (�k, Xk)} is a generalized minimizer then |�i | ≤
C |Xi | 3

2 ε3 for all i > 1.

Proof. For i > 1 create a minimizing candidate
{(c�1, cX1), . . . , (c�i−1, cXi−1), (c�i+1, cXi+1), . . . , (c�k, cXk),

(Bε(0), {0})|Xi |}, which is obtained by deleting the i-th component, transferring
its charges into |Xi | non-interacting balls of radius ε and rescaling the remaining
components to adjust for the volume change. Here

c = 3

√√√√ 4π
3 − 4π

3 |Xi |ε3

4π
3 − |�i |

= 3

√√√√1 + |�i | − 4π
3 |Xi |ε3

4π
3 − |�i |

≤ 3

√
1 + 3

2π

(
|�i | − 4π

3
|Xi |ε3

)
(5.10)

≤ 1 + 1

2π

(
|�i | − 4π

3
|Xi |ε3

)
, (5.11)

where we used that |�i | ≤ 2π
3 for all i > 1. Furthermore, from Lemma 5.2,

|�i | ≤ Cε3N
3
2
ε ≤ Cδ

3
2 for some universal constant C > 0. Thus, we can pick

δ > 0 so that |�i | ≤ 1, which gives us

k∑
j=1

Eε(� j , X j ) ≤ 4π |Xi |ε2 +
∑
j �=i

(
c2P(� j ) + Vε(X j )

)

≤ 4π |Xi |ε2 +
(

1 + 2

(
|�i | − 4π

3
|Xi |ε3

))∑
j �=i

P(� j ) +
∑
j �=i

Vε(X j ).

(5.12)

From Lemma 5.1, we can pick C ′ > 0 so that
∑k

j=1 P(� j ) ≤ 4π + 4πε2Nε ≤
4π(1 + δ) ≤ C ′. This gives us that

k∑
j=1

Eε(� j , X j ) ≤ 4π |Xi |ε2−P(�i )+2C ′
(

|�i | − 4π

3
|Xi |ε3

)
+

k∑
j=1

Eε(� j , X j ).

(5.13)
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Thus, with the help of the isoperimetric inequality for �i we have

3
√

36π |�i | 2
3 − 2C ′|�i | ≤ 3

√
36π |�i | 2

3 − 2C ′
(

|�i | − 4π

3
|Xi |ε3

)
≤ 4π |Xi |ε2.

(5.14)
Finally, since |�i | ≤ Cδ

3
2 , possibly decreasing δ we can ensure that |�i | 1

3 < 1
C ′ ,

yielding the desired inequality. ��
Next we rule out the case where our generalized minimizer

{(�1, X1), . . . , (�k, Xk)} contains Xi ’s that are null, which means that each com-
ponent of the generalized minimizer has to contain at least one charge, provided
that Nε is not too large and ε is sufficiently small. In this case, if a small component
contains only one charge then it is a ball of radius ε.

Lemma 5.4. There exist a universal constant δ > 0 such that for 1 < Nε < δ
ε2 ,

if {(�1, X1), . . . , (�k, Xk)} is a generalized minimizer then k ≤ Nε, and each Xi

for 1 ≤ i ≤ k is non-empty. Furthermore, if |Xi | = 1 for some 1 < i ≤ k, then
|�i | = 4π

3 ε3.

Proof. First note that if Xi is empty, then Lemma 5.3 implies that |�i | = 0, a
contradiction. Thus, all that remains, is to show that if |Xi | = 1 for some 1 < i ≤ k,
then |�i | = 4π

3 ε3. To do this, note that when |Xi | = 1, rearranging (5.14) provides

3
√

36π |�i | 2
3 − 4πε2 ≤ 2C ′

(
|�i | − 4π

3
ε3
)

, (5.15)

which implies that |�i | = 4π
3 ε3 whenever δ is chosen to ensure that |�i | 1

3 < 1
C ′ .

To see this, note that if 4π
3 ε3 < |�i | < 1

(C ′)3 , then

∫ |�i |
4π
3 ε3

C ′dt <

∫ |�i |
4π
3 ε3

t−
1
3 dt <

(
4π

3

) 1
3
∫ |�i |

4π
3 ε3

t−
1
3 dt, (5.16)

which implies

C ′
(

|�i | − 4π

3
ε3
)

<
1

2

(
3
√

36π |�i | 2
3 − 4πε2

)
. (5.17)

Thus, (5.17) contradicts (5.15), and we conclude that |�i | = 4π
3 ε3. ��

Lastly, we state a lower density estimate for generalized minimizers which will
be useful for both the Nε = 2 and the Nε 
 1 cases.

Lemma 5.5. There exists a universal constant C > 0 such that for any M > 0, if
Nε < M

ε2 , {(�1, X1), . . . , (�k, Xk)} is a generalizedminimizer, x0 ∈ �i\ ⋃
x∈Xi

Bε(x)

for some 1 ≤ i ≤ k, and r < min

(
R, min

x∈Xi
|x0 − x | − ε

)
, where R > 0 depends

only on M, then
|�i ∩ Br (x0)| > Cr3. (5.18)
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Proof. We may assume for convenience that R < 1
2 and that BR+ε(x0) ∩ Xi = ∅.

Consider {(c�1, cX1), . . . , (c(�i\Br (x0)), cXi ), . . . , (c�k, cXk)}, where c > 1
is defined as

c := 3

√√√√ 4π
3

4π
3 − |�i ∩ Br (x0)|

≤ 1 + |�i ∩ Br (x0)|, (5.19)

as a possible minimizing candidate. Then

P(c(�i \ Br (x0))) +
∑
j �=i

P(c� j )

≤ (1 + |�i ∩ Br (x0)|)2

⎛
⎝P(�i \ Br (x0)) +

∑
j �=i

P(� j )

⎞
⎠

≤ (1 + 3|�i ∩ Br (x0)|)
⎛
⎝P(�i \ Br (x0)) +

∑
j �=i

P(� j )

⎞
⎠ . (5.20)

Furthermore, applying the isoperimetric inequality to the set �i ∩ Br (x0) we have
that

P(�i \ Br (x0)) ≤ P(�i ) + 2H2(�i ∩ ∂Br (x0)) − 3
√

36π |�i ∩ Br (x0)| 2
3 . (5.21)

Thus combining (5.20) and (5.21) and using Lemma 5.1, we get

P(c(�i \ Br (x0))) +
∑
j �=i

P(c� j )

≤ (1 + 3|�i ∩ Br (x0)|)
⎛
⎝2H2(�i ∩ ∂Br (x0)) − 3

√
36π |�i ∩ Br (x0)| 2

3 +
k∑
j=1

P(� j )

⎞
⎠

≤
⎛
⎝− 3

√
36π + 3|�i ∩ Br (x0)| 1

3

k∑
j=1

P(� j )

⎞
⎠ |�i ∩ Br (x0)| 2

3 + C1H2(�i ∩ ∂Br (x0)) +
k∑
j=1

P(� j )

≤ C1H2(�i ∩ ∂Br (x0)) − C2|�i ∩ Br (x0)| 2
3 +

k∑
j=1

P(� j ), (5.22)

for some universal constants C1, C2 > 0 whenever r < R is small enough depend-
ing only on M .

By (5.22) we have

k∑
j=1

Eε(� j , X j ) ≤ Eε (c(�i \ Br (x0)), cXi ) +
∑
j �=i

Eε(c� j , cX j )

≤ C1H2(�i ∩ ∂Br (x0)) − C2|�i ∩ Br (x0)| 2
3 +

k∑
j=1

Eε(� j , X j ), (5.23)

which implies

C1H2(�i ∩ ∂Br (x0)) ≥ C2|�i ∩ Br (x0)| 2
3 . (5.24)
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Finally, by letting U (r) := |�i ∩ Br (x0)| > 0 and applying Fubini’s theorem with
the co-area formula to obtain dU (r)

dr = H2(�i ∩ ∂Br (x0)) for a.e. r ∈ (0, R), we
arrive at

dU (r)

dr
≥ CU

2
3 , (5.25)

for some universal constant C > 0. Integrating this inequality yields the claim. ��

5.2. Localizing the Minimizers

In this subsection we perform a suitable localization of minimizers, which
leads to outer convergence of minimizers to a unit ball as ε → 0. For x0 ∈ R

3

and r > 0, we define the spherical cut of a set-charge pair (�, X) ∈ Am,N ,ε by
the ball Br (x0) to be the two set-charge pairs (�±

x0,r , X
±
x0,r ) defined as follows: If

H2
(
∂Br (x0) ∩ ( ∪x∈X Bε(x)

)) = 0, then

�+
x0,r = � ∩ Br (x0), (5.26)

X+
x0,r = {x ∈ X Bε(x) ⊂ �+

x0,r }, (5.27)

�−
x0,r = � \ �+

x0,r , (5.28)

and
X−
x0,r = X \ X+

x0,r . (5.29)

If, on the contrary, H2
(
∂Br (x0) ∩ ( ∪x∈X Bε(x)

))
> 0, then we set

X+
x0,r =

{
x ∈ X H2(∂Bε(x) ∩ Br (x0)) > H2(∂Bε(x) ∩ Bc

r (x0))
}

, (5.30)

X−
x0,r = X \ X+

x0,r , (5.31)

�+
x0,r =

(
(Br (x0) ∩ �) ∪

(
∪x∈X+

x0,r
Bε(x)

))
\
(
∪x∈X−

x0,r
Bε(x)

)
(5.32)

�−
x0,r = � \ �+

x0,r . (5.33)

For these spherical cuts we have the following result.

Lemma 5.6. Let ε,m > 0, N ∈ N, and let (�, X) be a classical minimizer of Eε

over Am,N ,ε. Then if x0 ∈ R
3 and r > 0, we have

P(�+
x0,r ) + P(�−

x0,r ) ≤ P(�) + 4H2(� ∩ ∂Br (x0)). (5.34)

Proof. By construction, we have

P(�+
x0,r ) = H2(∂� ∩ Br (x0)) + H2(∂Br (x0) ∩ �) −

∑
x∈X

H2(∂Br (x0) ∩ Bε(x))

+
∑

x∈X+
x0,r

H2(∂Bε(x) ∩ Bc
r (x0)) +

∑
x∈X−

x0,r

H2(∂Bε(x) ∩ Br (x0)),

(5.35)
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and

P(�−
x0,r ) = H2(∂� ∩ Bc

r (x0)) + H2(∂Br (x0) ∩ �) −
∑
x∈X

H2(∂Br (x0) ∩ Bε(x))

+
∑

x∈X+
x0,r

H2(∂Bε(x) ∩ Bc
r (x0)) +

∑
x∈X−

x0,r

H2(∂Bε(x) ∩ Br (x0)).

(5.36)

Observe that for each x ∈ X+
x0,r the set ∂Bε(x) ∩ Bc

r (x0) is either empty or a
spherical cap with the base radius ax ∈ (0, ε] and height hx ∈ (0, ε]. Therefore, we
have H2(∂Bε(x) ∩ Bc

r (x0)) = 2πεhx and H2(∂Br (x0) ∩ Bε(x)) ≥ πa2
x . Noting

that (ε − hx )2 + a2
x = ε2, we then conclude that

H2(∂Bε(x) ∩ Bc
r (x0))

H2(∂Br (x0) ∩ Bε(x))
≤ 2ε

2ε − hx
≤ 2. (5.37)

By a similar argument, for every x ∈ X−
x0,r we also have

H2(∂Bε(x) ∩ Br (x0))

H2(∂Br (x0) ∩ Bε(x))
≤ 2. (5.38)

Thus, we obtain

P(�+
x0,r ) + P(�−

x0,r ) ≤ P(�) + 2H2(∂Br (x0) ∩ �) + 2
∑
x∈X

H2(∂Br (x0) ∩ Bε(x))

≤ P(�) + 4H2(∂Br (x0) ∩ �), (5.39)

which is the desired inequality. ��
Next we obtain an estimate for the L1 convergence of classical minimizers to a

ball as ε → 0.

Lemma 5.7. There exist universal constants C,C ′, δ0 such that if δ < δ0, 1 <

Nε < δ
ε2 , and (�, X) is a classical minimizer, then

|� ∩ Bc
r∗(x0)| < CN

3
2
ε ε3, (5.40)

for some 1 ≤ r∗ ≤ 1 + C ′δ 1
6 and some x0 ∈ R

3.

Proof. First note that Lemma 5.1 provides an upper bound on the isoperimetric
deficit of �, which is given by

P(�) − 4π

4π
≤ Nεε

2. (5.41)

In turn, by the quantitative isoperimetric inequality [14] this gives us an upper
bound on the Fraenkel asymmetry of �, which tells us that there exists x0 ∈ R

3

and a universal constant C0 > 0 such that

|��B1(x0)| ≤ C0

√
Nεε < C0

√
δ. (5.42)
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Arguing by contradiction, assume that

|� ∩ Bc
r (x0)| ≥ CN

3
2
ε ε3 (5.43)

for all 1 ≤ r ≤ 1 + C ′δ 1
6 and C,C ′, δ > 0 arbitrary, provided that 1 < Nε < δ

ε2 .

Picking C ′ = 15C
1
3 , for 1 ≤ r ≤ 1 + 15(C

√
δ)

1
3 we then have that

|�−
x0,r | ≥ CN

3
2
ε ε3 − 4π

3
Nεε

3 >
C

2
N

3
2
ε ε3, (5.44)

provided that C is sufficiently large universal. To construct a minimizing candidate
we first cut (�, X) into (�+

x0,r , X
+
x0,r ) and (�−

x0,r , X
−
x0,r ) and then split off the indi-

vidual charges from (�−
x0,r , X

−
x0,r ) and move any remaining mass into �+

x0,r . More
precisely, this minimizing candidate is

{
(c�+

x0,r , cX
+
x0,r ), (Bε(0), {0})k}, where

c = 3

√
|�+

x0,r | + |�−
x0,r | − 4π

3 kε3

|�+
x0,r |

, (5.45)

and k = |X−
x0,r |. Letting δ < δ0 < 1

C2
0

, from (5.42) we get that |�+
x0,r | ≥ 4π

3 − 1 −
4π
3 Nεε

3 > 2 for all ε sufficiently small universal, which gives

c ≤ 3

√
1 + |�−

x0,r |
2

≤ 1 + 1

6
|�−

x0,r |. (5.46)

Now, by cutting and re-scaling in this way we have that

Eε(c(�
+
x0,r , X

+
x0,r )) + 4πkε2 ≤ Vε(X

+
x0,r ) + c2P(�+

x0,r ) + 4πkε2

≤ Vε(X) + P(�+
x0,r ) + |�−

x0,r |P(�+
x0,r ) + 4πkε2. (5.47)

Furthermore, from Lemma 5.6 we have that

P(�+
x0,r ) ≤ P(�) + 4H2(� ∩ ∂Br (x0)) − P(�−

x0,r ), (5.48)

which together with the isoperimetric inequality applied to �−
x0,r gives

P(�+
x0,r ) ≤ P(�) + 4H2(� ∩ ∂Br (x0)) − 3

√
36π |�−

x0,r |
2
3 . (5.49)

Thus, combining (5.47) and (5.49) and using Lemma 5.1 we get that

Eε

(
c(�+

x0,r , X
+
x0,r )
)+ 4πkε2 ≤

≤ Eε(�, X) + 4H2(� ∩ ∂Br (x0)) − 3
√

36π |�−
x0,r |

2
3 + 4πNεε

2

+|�−
x0,r |
(
P(�) + 4H2(� ∩ ∂Br (x0))

)

≤ Eε(�, X) + 5H2(� ∩ ∂Br (x0)) − 3|�−
x0,r |

2
3 + 4πNεε

2, (5.50)

provided that δ0 and, hence, |�−
x0,r | is sufficiently small universal (see (5.42)).
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Finally, by (5.44) we can pick C large enough so that |�−
x0,r |

2
3 ≥ 4πNεε

2.
Hence from (5.50) and the minimality of (�, X) we obtain

Eε(�, X) ≤ Eε(c(�
+
x0,r , X

+
x0,r ))+4πkε2 ≤ Eε(�, X)+5H2(�∩∂Br (x0))−2|�−

x0,r |
2
3 , (5.51)

which with the help of (5.43) gives us

H2(� ∩ ∂Br (x0)) ≥ 2

5
|�−

x0,r |
2
3 ≥ 2

5
|� ∩ Bc

r (x0)| 2
3 − 8π

15
Nεε

3 ≥ 1

5
|� ∩ Bc

r (x0)| 2
3 ,

(5.52)

whenever 1 ≤ r ≤ 1 + 15(C
√

δ)
1
3 and C large enough. Now, letting U (r)

:= |� ∩ Bc
r (x0)| and applying Fubini’s theorem and the co-area formula, from

(5.52) we get that

U
2
3 (r) ≤ −5

dU (r)

dr
(5.53)

for a.e. 1 ≤ r ≤ 1 + 15(C
√

δ)
1
3 . Integrating over this interval gives us

0 ≤ U
1
3

(
1 + 15(C

√
δ)

1
3

)
≤ U

1
3 (1) −

(
C

√
δ
) 1

3
. (5.54)

But this is a contradiction for C large enough, since from (5.42) we know that
U (1) < C0

√
δ. ��

Using the L1 convergence from Lemma 5.7 and the density estimate from
Lemma 5.5, we have that classical minimizers converge to a ball from the outside.

Lemma 5.8. For δ > 0 there exists δ0 depending only on δ and γ such that if
1 < Nε < δ0

ε2 , and (�, X) is a classical minimizer then � ⊂ B1+δ(x̂) for some

x̂ ∈ R
3.

Proof. Without loss of generality, we may assume that δ is sufficiently small uni-
versal. From Lemma 5.7, the constant δ0 > 0 can be picked so that |� ∩ Bc

1+ δ
2
(x̂)|

< CN
3
2
ε ε3 < Cδ

3
2
0 , where C > 0 is a universal constant and x̂ ∈ R

3. Now
let L = 1

6

(
supx∈� |x − x̂ | − 1 − δ

2

)
, and, arguing by contradiction, assume that

L > δ
12 .

For r > 0 and y ∈ R
3, define ky(r) to be the number of charges inside of

�+
y,r . We claim that there exists x0 ∈ ∂� such that BL(x0) ∩ B1+ δ

2
(x̂) = ∅ and

kx0(L) ≤ Nε

3 . Indeed, let x�
4 ∈ ∂� satisfy |x�

4 − x̂ | = supx∈� |x − x̂ | = 1+6 L + δ
2

(from the definition of L). Now pick x�
0 ∈ ∂B1+ δ

2
(x̂) to satisfy

|x�
0 − x�

4 | = inf
x∈B

1+ δ
2
(x̂)

|x − x�
4 | = 6L , (5.55)

and for x ∈ R
3 define a family of parallel planes P(x) passing through x orthogo-

nally to x�
4 − x�

0. Finally, define the three points

x�
i := x�

0 + x�
4 − x�

0

6
+ (i − 1)

x�
4 − x�

0

3
, (5.56)
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for i = 1, 2, 3. Note that for i, j = 1, 2, 3 with i �= j we have that

dist(P(x�
i ), P(x�

j )) ≥
∣∣∣∣ x

�
4 − x�

0

3

∣∣∣∣ = 2L , (5.57)

and

dist(P(x�
i ), B1+ δ

2
(x̂)) ≥ dist(x�

i , B1+ δ
2
(x̂)) ≥

∣∣∣∣ x
�
4 − x�

0

6

∣∣∣∣ = L . (5.58)

Since� is bounded and connected, there exist x̂i ∈ P(x�
i )∩∂� for i = 1, 2, 3. Thus,

from (5.57) we have that BL(x̂i ) are pairwise disjoint for i = 1, 2, 3, which implies
that �+

x̂i ,L
are pairwise disjoint. It follows that kL(x̂i� ) ≤ Nε

3 for some i� = 1, 2, 3.
Lastly, with x0 = x̂i� , and taking into account that BL(x0) ∩ B1+ δ

2
(x̂) = ∅ by

(5.58), the claim is proved.
Now, define U (r) := |� ∩ Br (x0)|. Then since U (r) is a continuous mono-

tone increasing function and kx0(r) is a lower semi-continuous piecewise-constant

function with a finite number of jumps, we have that S :=
{
r ∈ [0, L] : U (r)

≥ (4πkx0(r)ε
2)

3
2

}
= [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [aq , bq ]. By cutting and rescaling

we will show that the set S is small whenever δ is small. Let r ∈ S. Create a
minimizing candidate

{(
c�−

x0,r , cX
−
x0,r

)
, (B1

ε (0), {0})kx0 (r)
}

, where

c = 3

√√√√ 4π
3 − 4π

3 kx0(r)ε
3

4π
3 − |�+

x0,r |
≤ 3

√√√√ 4π
3

4π
3 − |�+

x0,r |
≤ 1 + 3

2π
|�+

x0,r |, (5.59)

where from Lemma 5.7, δ0 is chosen so that |�+
x0,r | < Cδ

3
2
0 is small universal. Then

by the minimality of (�, X) we have

P(� ∩ Br (x0)) + P(� ∩ Bc
r (x0)) − 2H2(∂Br (x0) ∩ �) + Vε(X) ≤ P(�) + Vε(X) = Eε(�, X)

≤ c2P(�−
x0,r ) + 4πkx0 (r)ε2 + Vε(X). (5.60)

Furthermore, from the argument in the proof of Lemma 5.6 we have that P(�−
x0,r )

< P(� ∩ Bc
r (x0)) + 2H2(� ∩ ∂Br (x0)), and from (5.60) and (5.59) we get that

P(� ∩ Br (x0)) + P(� ∩ Bc
r (x0)) − 2H2(� ∩ ∂Br (x0))

≤
(

1 + 3

2π
|�+

x0,r |
)2 (

P(� ∩ Bc
r (x0)) + 2H2(� ∩ ∂Br (x0))

)
+ 4πkx0(r)ε

2

≤ (1 + 2|�+
x0,r |
) (

P(� ∩ Bc
r (x0)) + 2H2(� ∩ ∂Br (x0))

)
+ 4πkx0(r)ε

2.

(5.61)

Since |�+
x0,r | ≤ U (r) + 4π

3 kx0(r)ε
3, we get that

P(� ∩ Br (x0)) + P(� ∩ Bc
r (x0)) − 2H2(� ∩ ∂Br (x0))

≤
(

1 + 2U (r) + 8π

3
kx0 (r)ε3

)(
P(� ∩ Bc

r (x0)) + 2H2(� ∩ ∂Br (x0))
)

+ 4πkx0 (r)ε2,

(5.62)



   76 Page 26 of 53 Arch. Rational Mech. Anal.          (2024) 248:76 

and using the assumption that r ∈ S gives

P(� ∩ Br (x0)) + P(� ∩ Bc
r (x0)) − 2H2(� ∩ ∂Br (x0))

≤ (1 + 3U (r))
(
P(� ∩ Bc

r (x0)) + 2H2(� ∩ ∂Br (x0))
)

+ 4πkx0 (r)ε2

≤ P(� ∩ Bc
r (x0)) + 2H2(∂Br (x0) ∩ �) + 3U (r)P(�) + 9U (r)H2(� ∩ ∂Br (x0)) + 4πkx0 (r)ε2

≤ P(� ∩ Bc
r (x0)) + 3H2(� ∩ ∂Br (x0)) + 15πU (r) + 4πkx0 (r)ε2, (5.63)

after possibly decreasing the value of δ0.
We now apply the isoperimetric inequality to � ∩ Br (x0) in (5.63) to obtain

3
√

36πU
2
3 (r) − 15πU (r) − 4πkx0(r)ε

2 ≤ 5H2(� ∩ ∂Br (x0)). (5.64)

Since U (r) < Cδ
3
2
0 , we can pick δ0 to give

3
√

36π

2
U

2
3 (r) − 4πkx0(r)ε

2 ≤ 5H2(� ∩ ∂Br (x0)). (5.65)

Finally, since r ∈ S we have that
3√36π

4 U
2
3 (r) ≥ U

2
3 (r) ≥ 4πkx0(r)ε

2. Thus

U
2
3 (r) ≤ 5H2(� ∩ ∂Br (x0)) ∀r ∈ S. (5.66)

Noting that dU (r)/dr = H2(�∩∂Br (x0)) for a.e. r and integrating this expression
for r ∈ [ai , bi ] then gives us that

U
1
3 (bi ) −U

1
3 (ai ) ≥ 1

15
(bi − ai ). (5.67)

However, since by monotonicity of U (r) we have U (ai ) ≥ U (bi−1), it holds that

U
1
3 (bq) ≥ 1

15

q∑
i=1

(bi − ai ). (5.68)

At the same time, since we also have U
1
3 (bq) < C

√
δ0 for some C > 0 universal,

we obtain that
q∑

i=1

(bi − ai ) ≤ 15C
√

δ0 ≤ δ

24
<

L

2
, (5.69)

whenever δ0 ≤ ( δ
360C

)2
, where C > 0 is a universal constant. In particular, the set

S has a small measure controlled by δ, as claimed.
Now let r < L and r ∈ Sc. Then from Lemma 5.6 and a comparison of the

energy of (�, X) with that of {(�+
x0,r , X

+
x0,r ), (�

−
x0,r , X

−
x0,r )} we get

P(�+
x0,r ) + P(�−

x0,r ) − 4H2(� ∩ ∂Br (x0)) + Vε(X) ≤ P(�) + Vε(X) = Eε(�, X)

≤ P(�+
x0,r ) + P(�−

x0,r ) + Vε(X) − γ ε3

(3 + 12L)
kx0 (r)(Nε − kx0 (r)), (5.70)
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since from the definition of L the diameter of � is less or equal than 2+ δ +12L <

3 + 12L . Thus, (5.70) implies that

γ ε3

(3 + 12L)
kx0(r)(Nε − kx0(r)) ≤ 4H2(� ∩ ∂Br (x0)). (5.71)

However, we chose x0 and L so that kx0(L) ≤ Nε

3 , which gives us that

γ ε3Nε

1 + L
kx0(r) ≤ C ′H2(� ∩ ∂Br (x0)). (5.72)

for some new universal constant C ′ > 0 that will change from line to line in the

remainder of the proof. Furthermore, since r ∈ Sc, U (r) <
(
4πkx0(r)ε

2
) 3

2 , which

implies that U
2
3 (r)

4πε2 ≤ kx0(r). Thus

γ εNεU
2
3 (r)

1 + L
≤ C ′H2(� ∩ ∂Br (x0)). (5.73)

Integrating this expression from [bi , ai+1], with aq+1 := L , gives us that

C ′ (U 1
3 (ai+1) −U

1
3 (bi )

)
≥ γ εNε

1 + L
(ai+1 − bi ), (5.74)

which again by monotonicity of U (r) implies that

U
1
3 (L) ≥ γ εNε

C ′(1 + L)

q∑
i=1

(ai+1 − bi ). (5.75)

From (5.69), we have that
∑q

i=1(ai+1 − bi ) ≥ L
2 , which gives that

U
1
3 (L) ≥ γ εNεL

C ′(1 + L)
. (5.76)

However, from Lemma 5.7 we have that U (L) < CN
3
2
ε ε3, which implies that

Nε ≤ C ′
(

1 + L

γ L

)2

. (5.77)

Since L > δ
12 , this gives that Nε ≤ C ′

δ2γ 2 . Then by Lemma 5.7 we have

|� ∩ Bc
1+ δ

2
(x̂)| ≤ C ′ε3

δ3γ 3 (5.78)

Finally, to arrive at a contradiction observe that the set � ∩ Bc
r (x̂) must have

a connected component whose diameter exceeds 1
2δ. A slicing argument at scale ε

then gives
|� ∩ Bc

1+ δ
2
(x̂)| ≥ Cε2δ, (5.79)

for some universal constant C > 0. Indeed, if a slice contains a charge then it
trivially contains a volume of at least of order ε3. If, however, the slice does not
contain any charges, then it still contains at least that much volume by Lemma
5.5. Together, the above two inequalities give a contradiction for ε < Cδ4γ 3, with
C > 0 universal. ��
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5.3. Existence Results

We now proceed to proving our existence and non-existence results for ε � 1.
We begin by adapting the arguments in the proof of Lemma 5.8 to show that for not
too large values of Nε the diameter of all but the first component of a generalized
minimizer must be small.

Lemma 5.9. There exist universal constants C, δ > 0 such that for 1 < Nε < δ
ε2 ,

if {(�1, X1), . . . (�k, Xk)} is a generalized minimizer and i > 1, then diam(�i ) ≤
C max

(
ri ,

ε
γ 3

)
, where ri := ( 3

4π
|�i |
) 1

3 .

Proof. Let i > 1. First note that Lemma 5.3 provides an upper bound on |�i |, which
implies smallness of |�i | for δ sufficiently small universal. If Li := diam(�i ), then

arguing by contradiction we may assume that Li > C max
(
ri ,

ε
γ 3

)
, where C > 0

is arbitrary. Arguing exactly as in the proof of Lemma 5.8 for the components �i ,
we may then obtain the estimate

Li <
C ′ε
γ 3 , (5.80)

for some C ′ > 0 universal: we can first find a point x0 ∈ ∂�i such that (�i )
+
x0,r

contains only a universally small fraction of the total number of charges |Xi |, then
by cutting and rescaling we get an analog of the estimate in (5.69) in which the

right-hand side is instead bounded by a universal multiple of |�i | 1
3 , and finally by

cutting and separating the pieces we get an analog of the estimate in (5.75) with
C ′γ ε|Xi |/Li multiplying the sum in the right-hand side instead. This provides a
contradiction by choosing C > C ′. ��

Our next lemma gives a precise characterization of the generalized minimizers
when γ is sufficiently large universal.

Lemma 5.10. There exist universal constants δ, γ0 > 0 such that for 1 < Nε < δ
ε2

and γ > γ0, if {(�1, X1), . . . (�k, Xk)} is a generalized minimizer then up to
translations it has the form {(�1, X1), (Bε(0), {0})k−1}.
Proof. Without loss of generality, assume that k > 1 and consider (�i , Xi ) for
i > 1. Arguing by contradiction, assume that |Xi | > 1 (the case of |Xi | ≤ 1 is taken
care by Lemma 5.4). First note that from the definition of generalized minimizers

and Lemma 5.3 we have that cε3 < |�i | < C |Xi | 3
2 ε3 for some universal c,C >

0. Therefore, from Lemma 5.9 there exists γ0 > 0 such that if γ > γ0 then
diam(�i ) ≤ C |�i | 1

3 for some universal C > 0. Thus

diam(�i ) ≤ Cε
√|Xi |. (5.81)

Now construct a minimizing candidate by cutting one charge at x0 ∈ Xi together
with the ball Bε(x0) from �i and adding a new component (Bε(0), {0}), i.e., con-
sider a competitor {(�1, X1), . . . , (�i\Bε(x0), Xi\x0), . . . , (�k, Xk), (Bε(0), {0})}.
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Comparing the energies then yields

8πε2 − ε2γ (|Xi | − 1)

C
√|Xi | ≥ 8πε2 − ε3γ (|Xi | − 1)

diam(�i )

≥ Eε(�i\Bε(x0), Xi\x0) + Eε(Bε(0), {0}) − Eε(�i , Xi ) ≥ 0. (5.82)

Since |Xi | ≥ 2, this gives γ ≤ 16πC , contradicting the assumption on γ . Thus,
for i > 1 we have that |Xi | = 1. ��
Proof of Theorem 3.3. First note that from Lemma 5.10, without loss of generality
we may assume that our generalized minimizer takes the form
{(�1, X1), (Bε(0), {0})k−1}. Arguing by contradiction, assume that k > 1. We
will construct a competitor by bringing one of the isolated charges into (�1, X1)

and reducing the total energy. Since (�1, X1) is a classical minimizer of Eε in
the admissible class A|�1|,|X1|,ε, by considering a ball with |X1| approximately
hexagonally packed charges, from [40, Theorem C] we obtain

Eε(�1, X1) ≤ 3
√

36π |�1| 2
3 + γ ε3

2

(
3
√

3
4π

|�1| − ε

) |X1|2. (5.83)

Note that in view of Lemma 5.2 the distance between the charges in this construction
is at least of order 1√

Nε
>

√
γ ε 
 ε, for Nε < 1

γ ε
, γ > 1 and ε small enough

universal. Thus, letting X1 = {x1, x2, . . . , x|X1|}, by isoperimetric inequality we
get that

Vε(X1) = γ ε3

2

|X1|∑
i=1

∑
j �=i

1

|xi − x j | ≤ γ ε3

2

(
3
√

3
4π

|�1| − ε

) |X1|2 ≤ γ ε3|X1|2,

(5.84)
in view of

3

√
3

4π
|�1| − ε ≥ 1

2
, (5.85)

for all ε sufficiently small universal. This implies that there exists xi∗ ∈ X1 such
that ∑

j �=i∗

1

|xi∗ − x j | ≤ 2|X1|. (5.86)

Consider d := 1
2 min

j �=i∗
|xi∗ − x j |. First note that arguing as in (3.5) we have that

γ ε3

2d
≤ γ ε3

∑
j �=i∗

1

|xi∗ − x j | ≤ 8πε2, (5.87)

which implies that

d ≥ γ ε

16π
≥ 4ε, (5.88)
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whenever γ0 ≥ 64π . In addition, (3.5) implies |xi − x j | > cγ ε for i �= j and some
universal c > 0, which proves the statement about charge separation.

Let x0 ∈ �1 ∩ ∂Bd(xi∗), which exists since by Theorem 3.2 the set �1 is
connected. Now our hope is to place a charge inside of �1 at x0 and lower the
energy. Using (5.88), we have that x0 is sufficiently far away from all the charges:

|x0 − x j | ≥ 4ε ∀x j ∈ X1. (5.89)

Therefore, by Lemma 5.5 we have that

4π

3
ε3 ≥ |�1 ∩ Bε(x0)| > Cε3, (5.90)

for some universal constant C > 0. Thus, for ε small enough universal we can
create a new minimizing candidate {c(�1 ∪ Bε(x0), X1 ∪ {x0}), (Bε(0), {0})k−2},
where

c = 3

√√√√ |�1| + 4π
3 ε3

|�1| − |�1 ∩ Bε(x0)| + 4π
3 ε3

≤ 3

√
1

1 − 8ε3 < 1 + 3ε3, (5.91)

in which the first inequality is due to (5.85). Thus, (5.90) with the isoperimetric
inequality and (5.91) gives us the following upper bound on the perimeter of c(�1∪
Bε(x0)):

P(c(�1 ∪ Bε(x0))) = c2P(�1 ∪ Bε(x0)) ≤ c2
(
P(�1) + 4πε2 − P(�1 ∩ Bε(x0))

)

≤ (1 + 10ε3)
(
P(�1) + 4πε2 − 3

√
36πC2ε2

)

≤ P(�1) + 4πε2 − 3
√

36πC2ε2 + 40πε3(1 + Nεε
2)

≤ P(�1) + 4πε2 − C ′ε2, (5.92)

for ε small enough universal, where C ′ > 0 is a universal constant and in the third
inequality we used Lemma 5.1.

Lastly, we will obtain an upper bound on Vε(c(X1 ∪ {x0})) ≤ Vε(X1 ∪ {x0}).
To do this, first note that from the definition of d we have

|x0 − x j | ≥ 1

2
|xi∗ − x j | (5.93)

for all j �= i∗, while

|x0 − xi∗ | = 1

2
|x j∗ − xi∗ | (5.94)

for some j∗ �= i∗. This gives us that

Vε(X1 ∪ {x0}) = Vε(X1) + γ ε3
∑
x j∈X1

1

|x0 − x j |

≤ Vε(X1) + 2γ ε3

|x j∗ − xi∗ | + 2γ ε3
∑
j �=i∗

1

|xi∗ − x j |

≤ Vε(X1) + 4γ ε3
∑
j �=i∗

1

|xi∗ − x j | . (5.95)
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Now using (5.86), this gives that

Vε(X1 ∪ {x0}) ≤ Vε(X1) + 8γ ε3|X1|. (5.96)

Finally, combining the bound on the perimeter of c(�1 ∪ Bε(x0)) given in (5.92)
with the bound on Vε(c(X1 ∪ {x0}) given in (5.96), we obtain

Eε (c(�1 ∪ Bε(x0)), c(X1 ∪ {x0})) + 4π(k − 2)ε2

≤ P(�1) + 4π(k − 1)ε2 − C ′ε2 + Vε(X1) + 8γ ε3|X1|

= Eε(�1, X1) + 4π(k − 1)ε2 − C ′ε2 + 8γ ε3|X1| <

k∑
j=1

Eε(� j , X j )

(5.97)

whenever |X1| < Nε < C ′
8γ ε

, a contradiction. Thus, generalized minimizers that
are not classical minimizers cannot exist for these values of Nε, with ε sufficiently
small and γ sufficiently large universal, and the existence statement of the theorem
holds.

To conclude the proof of Theorem 3.3, let X = ∪Nε

i=1{xi } be the minimizing set
of the positions of the charges.

To prove that each Bε(xi ) touches ∂�, suppose that, to the contrary, there exists
1 ≤ i∗ ≤ Nε such that Bε(xi∗) � �. Therefore, xi∗ is a local minimizer of
vi∗(x) := ∑ j �=i∗ |x − x j |−1, since otherwise it would be possible to lower the
energy by slightly displacing the ball Bε(xi∗) ⊂ � without touching the other balls
Bε(x j ) with j �= i∗. However, vi∗ is a harmonic function in some neighborhood
of xi∗ and must, therefore, be constant there, which is impossible as vi∗ is a real
analytic function in R

3\{X\xi∗} that goes to infinity at X\xi∗ . ��

Proof of Theorem 3.4. Assume that (�, X) is a classical minimizer. First note that
for a fixed γ > 0, from Lemma 5.8 we have that ε0, δ > 0 can be chosen to make
� ⊂ B2(x) for some x ∈ R, and by the same argument as above the Coulom-
bic energy may be estimated from below by assuming that X ⊂ ∂B2(x). Thus,
Lemma 5.1, and [39, Theorem 2] imply that there exists a universal constantC0 > 0
such that

4π + 4πNεε
2 ≥ Eε(�, X) ≥ 4π + γ ε3

2

(
N 2

ε

2
− C0N

3
2
ε

)
≥ 4π + 1

8
γ N 2

ε ε3,

(5.98)
whenever Nε > C

γ ε
is large enough universal. Thus

Nε ≤ 32π

εγ
, (5.99)

a contradiction. ��
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5.4. Convergence

Proof of Theorem 3.5. The fact that �n ⊂ B1+δ(0) for any δ > 0 and all n ∈ N

large enough, after suitable translations, follows from Lemma 5.8. Now, for N
distinct points xi ∈ R

3 define

FN (μ) :=

⎧⎪⎨
⎪⎩

2
N2

N−1∑
i=1

N∑
j=i+1

1
|xi−x j | if μ = 1

N

N∑
i=1

δxi ,

+∞ otherwise,

(5.100)

Then by [36, Proposition 2.8] we have that 
 − limN→∞ FN = F∞ with respect
to the weak convergence of probability measures in R

3, where

F∞(μ) :=
∫
R3

∫
R3

dμ(x) dμ(y)

|x − y| . (5.101)

Therefore, for μn := 1
Nn

∑
xi∈Xn

δxi we have that, upon suitable translations and
extraction of subsequences, μn → μ∞ in the sense of measures as n → ∞, where
μ∞ is a probability measure supported on B1(0), and lim infn→∞ FNn (μn) ≥
F∞(μ∞). At the same time, testing the energy with � = B1(0) and uniformly dis-
tributed Nn points supported on ∂B1−εn (0) (the existence of the latter follows from
the construction of the recovery sequence for the above 
-convergence, together
with a scaling argument and the fact that Nn � ε−2

n , or an explicit construction in
[40]), with the help of the isoperimetric inequality we obtain

4π + 1
2γ ε3

nN
2
n

(
F∞( 1

4π
H2�∂�) + on(1)

)
≥ Eεn (�n, Xn)

≥ 4π + 1
2γ ε3

nN
2
n (F∞(μ∞) − on(1)) . (5.102)

Thus F∞( 1
4π

H2�∂�) ≥ F∞(μ∞). However, μ = 1
4π

H2�∂� is the unique mini-
mizer of F∞ among all probability measures supported on B1(0). Hence μ∞ =

1
4π

H2�∂� and the limit is in fact a full limit. ��

6. Case of Two Charges

In this section, we give an explicit characterization of the minimizers in the
simplest non-trivial case of N = 2 point charges. Note that when N = 1, the
minimizer of Eε is always a unit ball with the charge located anywhere inside.

6.1. Existence Results

For N = 2 and X = {x1, x2}, the energy in (2.10) becomes simply

Eε(�, X) = P(�) + γ ε3

|x2 − x1| . (6.1)

In this case, the energy of a generalized minimizer that is not classical is known
explicitly and satisfies the estimate below.
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Lemma 6.1. There exists a universal constant ε0 > 0 such that if ε < ε0 and
a classical minimizer of the energy in (6.1) does not exist, then the generalized
minimizer has the form {(�1, {x1}), (�2, {x2})} with x1, x2 ∈ R

3, and

4π
(

1 + ε2 − ε3
)

< Eε (�1, {x1}) + Eε (�2, {x2}) < 4π
(

1 + ε2
)

. (6.2)

Proof. From Lemma 5.4, we have that all the components of a generalized min-
imizer have at least one charge. Hence in the absence of classical minimizers the
generalized minimizer consists of precisely two components, each of which has
exactly one charge. Thus each component of the generalized minimizer is a ball,
and again by Lemma 5.4 we have |�2| = 4π

3 ε3. Then

Eε (�1, {x1}) + Eε (�2, {x2}) = 4π

(
ε2 +

(
1 − ε3

) 2
3
)

, (6.3)

and the statement follows. ��
Using the density estimates from Lemma 5.5, we have that if (�, X) is a minimizer
to (6.1) then it is contained inside a ball of radius close to one.

Lemma 6.2. There exist universal constants ε0,C > 0 such that if ε < ε0 and
(�, X) is a minimizer to (6.1) then � ⊂ B1+C 3√ε(x0) for some x0 ∈ R

3.

Proof. Let (�, X) be a minimizer. Then from Lemma 6.1 we have that

P(�) < Eε(�, X) < 4π
(

1 + ε2
)

. (6.4)

By quantitative isoperimetric inequality [14], this gives us a bound on the Fraenkel
asymmetry of �, namely, that there exists x0 ∈ R

3 and a universal constant C0 > 0
such that

|��B1(x0)| < C0ε. (6.5)

Now assume that the claim of the lemma is false, i.e., that � is not contained in
B1+C 3√ε(x0) for arbitrary C > 0 and ε small enough. Then Lemma 5.5 tells us that
there exist universal constants C1 > 0 and ε0 > 0 such that when ε < ε0 we have

|��B1(x0)| > C1C
3ε, (6.6)

which contradicts (6.5) for a suitable choice of C . ��
From the above lemmas, we have the following existence/non-existence result

for classical minimizers.

Lemma 6.3. There exist universal constants ε0,C > 0 such that if ε < ε0 and
γ < 8π

ε
− C then there exists a minimizer (�, X) to (6.1) among all (�, X)

admissible, and if γ > 8π
ε

+ C

ε
2
3
then there is no minimizer.
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Proof. If γ < 8π
ε

− C and ε � 1, then consider an admissible test configura-
tion in the form of a ball with two charges at the opposite extremes, (�, X) =(
B1(0), {−(1 − ε)e1, (1 − ε)e1}

)
, for which we have

Eε(�, X) = 4π + γ ε3

2 − 2ε
< 4π + 8πε2 − Cε3

2 − 2ε
. (6.7)

Picking C > 16π , from (6.7) we then get that

Eε(�, X) < 4π + 4πε2 − 8πε3

2 − 2ε
< 4π + 4πε2 − 4πε3. (6.8)

Thus from Theorem 3.2 and Lemma 6.1, we have that the energy in (6.1) must have
a classical minimizer.

To prove non-existence, note that when γ > 8π
ε

+ C

ε
2
3

, from Lemma 6.2 we

have that for (�, X) admissible and ε � 1 there exists a universal constant C0 > 0
such that

Eε(�, X) ≥ 4π + γ ε3

2 + C0
3
√

ε
> 4π + 8πε2 + Cε

7
3

2 + C0
3
√

ε
> 4π + 4πε2, (6.9)

whenever C > 4πC0 and ε is sufficiently small. However, Lemma 6.1 implies that
(�, X) cannot be a minimizer and the Lemma is proved. ��

In the case N = 2, we can use rotational symmetry of the problem about the
axis passing through the two charges to explicitly solve for global minimizers.
Without loss of generality, let X = {x1, x2}, with x1 and x2 located on the x-axis.
Furthermore, let T � denote the Schwarz symmetrization of � with respect to the
x-axis, i.e. let

T � = {(x, y, z) ∈ R
3 : (y, z) ∈ A∗

x }, (6.10)

where Ax = {(y, z) ∈ R
2 : (x, y, z) ∈ �} and A∗

x = Br (0) ∈ R
2 such that

L2(A∗
x ) = L2(Ax ) denotes the two dimensional symmetric rearrangement of Ax .

Lemma 6.4. Let N = 2, let x1, x2 ∈ R × (0, 0) and let (�, {x1, x2}) ∈ Am,N ,ρ be
a minimizer of Eρ,λ,N . Then � = T �.

Proof. Note that from Fubini’s theorem we have that |T �| = |�| = m. Fur-
thermore, |T � ∩ Bρ(x1)| = |T � ∩ Bρ(x2)| = |Bρ(0)|. To see this, note that
|� ∩ Bρ(x1)| = |Bρ(x1)| implies that L2(Ax ) ≥ L2({(y, z) ∈ R

2 : (x, y, z) ∈
Bρ(x1)}) for almost every x ∈ R. Since {(y, z) ∈ R

2 : (x, y, z) ∈ Bρ(x1)} is also a
ball in R

2, we have that {(y, z) ∈ R
2 : (x, y, z) ∈ Bρ(x1)} ⊂ A∗

x for almost every
x ∈ R. Thus, by Fubini’s theorem |T � ∩ Bρ(x1)| = |Bρ(x1)|, which gives that
(T �, {x1, x2}) is also admissible.

By [4, Theorem 1.1], we have that P(T �) ≤ P(�), so T � is also a minimizer,
and by minimality of the energy this inequality is in fact an equality. Therefore, by
[4, Theorem 1.2] the sets � andT � are equal up to a translation in the yz-plane. The
latter follows from the fact that as a minimizer the setT � is open and connected, and
away from Bρ(x1) and Bρ(x2) the set � is a local volume-constrained minimizer of
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the perimeter, implying that ∂� is analytic [30] and, hence, that the non-degeneracy
assumptions of [4, Theorem 1.2] are satisfied.

Finally, assume by contradiction that � = T � + v for some vector v �= 0
contained in the yz-plane. Since T � contains the two balls Bρ(x1,2), it follows that
� also contains the translated balls Bρ(x1,2) + λv, for all λ ∈ [−1, 1]. Therefore,
each ∂Bρ(x1,2) could touch ∂(T �) only at a point lying on the x-axis. But that is
also impossible, since in that case ∂� would be flat near those points, contradicting
once again the analyticity of ∂�. Thus, Bρ(x1,2) are both strictly contained in T �.
However, the latter contradicts the minimizing property of (T �, {x1, x2}), since
one could reduce the energy by moving Bρ(x1,2) slightly further apart while still
keeping them in T �. ��

Since, according to Lemma 6.4, every minimizer to (6.1) coincides with its
Schwarz symmetrization around the axis connecting the two charges, it can be
defined with the help of a profile function ϕ : R → [0,∞), defining �, up to a
rotation, as

� =
{
(x, y, z) ∈ R

3 : 0 <

√
y2 + z2 < ϕ(x)

}
. (6.11)

By Theorem 3.2, the function ϕ is of class C1,1 on the set {x ∈ R : ϕ(x) > 0}.
Furthermore, the support of ϕ is a single bounded interval, and ϕ is smooth and
solves the constant mean curvature equation outside the set of charges [8,35, Section
3.6]:

− ϕ′′(x)
(1 + ϕ′2(x))3/2

+ 1

ϕ(x)(1 + ϕ′2(x))1/2
= 2H if (x − x1,2)

2 + ϕ2(x) > ε2.

(6.12)

Here H ∈ R is the mean curvature of ∂�\(∂Bε(x1) ∪ ∂Bε(x2)) defined as the
average of the principal curvatures, positive if � is convex.

Lemma 6.5. There exists a universal constant ε0 > 0 such that if ε < ε0, N = 2,
(�, {x1, x2}) ∈ A 4π

3 ,N ,ε, and (�, {x1, x2}) is a minimizer to (6.1), then its free

surface ∂�\(∂Bε(x1) ∪ ∂Bε(x2)) is a single section of an unduloid.

Proof. By Lemma 6.4, every minimizer (�, {x1, x2}) to (6.1) is rotationally sym-
metric, and away from the obstacles ∂Bε(x1,2) the surface ∂� satisfies (6.12) as
a local minimizer of the perimeter [30]. Since by the volume constraint we have
ϕ(x0) > ε for all ε small enough universal, where x0 is the point of maximum
of ϕ, there holds H > 0. Furthermore, we have H ≤ M for all ε small enough
universal and some universal constant M > 0. To see the latter, suppose to the
contrary that H > M for any M > 0 and some ε sufficiently small. Then for all
ϕ(x) ≥ 1/M > ε in a neighborhood of x0 we have by (6.12):

− ϕ′′(x)
(1 + ϕ′2(x))3/2

≥ M. (6.13)
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In particular, ϕ takes the value ϕ(x1) = 1/M > ε at some x1 < x0 for ε sufficiently
small and is concave on [x1, x0]. We now multiply (6.13) by ϕ′(x) ≥ 0 and integrate
over [x1, x0] to obtain

1 − 1√
1 + ϕ′2(x1)

≥ Mϕ(x0) − 1, (6.14)

which yields ϕ(x0) ≤ 2/M , again contradicting the volume constraint for large
enough M .

In view of H > 0, the profile function ϕ must satisfy [8,35, Section 3.6]

ϕ′ = ±
√

ϕ2

(Hϕ2 + C0)2 − 1 (6.15)

for some C0 ∈ R away from the set of charges. Furthermore, when the free surface
∂�\(∂Bε(x1) ∪ ∂Bε(x2)) touches the obstacle, say, ∂Bε(x1) at height h (distance
from the x-axis), then from the C1,1 regularity of the minimizers the tangency
condition at the point of contact gives

C0 = ±1 − Hε

ε
h2. (6.16)

Rewriting this equation by solving for the positive height of contact h, gives that h
is unique for fixed C0, H , and ε, whenever ε small enough universal. This tells us
that a segment of ϕ satisfying (6.15) must leave and connect to the obstacles at the
same height.

If C0 < 0, then (6.15) gives that the graph of ϕ is an arc of a nodary curve.
However, this is impossible. To see why, first notice that a nodary curve can only
touch the upper hemisphere of Bε(x1). Hence the value of ϕ at which the nodary
has a vertical slope satisfies ϕ2 = −C0/H < h2. At the same time, since H is
uniformly bounded, from (6.16) with C0 < 0 and all ε sufficiently small universal
we obtain

h2 = − εC0

1 + εH
< −C0

H
, (6.17)

a contradiction. Thus, C0 ≥ 0.
If C0 = 0, we get that � is a ball of radius one, which is the limit case of

C0 > 0 and for which the charges would touch the boundary of the ball from inside
at the diametrically opposite points. However, it is not difficult to see that this is
impossible, using a first variation type argument by displacing the charges further
away by distance 0 < δ � 1 and gaining O(δ) in the Coulombic energy, while
losing only O(δ2) in the perimeter. Hence C0 > 0, and we get that the graph of
ϕ is an arc of an elliptic catenary creating a corresponding unduloid section as
its surface of revolution. Up to translations we will characterize an unduloid by
its minimum height a and its maximum height c. Thus, � is the graph of ϕ that
consists of arcs of elliptic catenary curves.
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To show that ϕ contains only one section of an elliptic catenary arc, note that
the maximum height c1 of at least one elliptic catenary arc contained in ϕ satisfies

c1 = 1 + o(1), (6.18)

where o(1) is with respect to ε � 1. This follows directly from our volume con-
straint and Lemma 6.2. Furthermore, let a1 ≤ ε denote the minimum height of this
elliptic catenary. Thus, the mean curvature of the unduloid formed by this elliptic
catenary arc is given by

H1 = 1

a1 + c1
. (6.19)

Since the mean curvature of the free surface is constant, this implies that

H = 1 + o(1). (6.20)

Assume that the graph of ϕ contains more than one elliptic catenary arc, then
at least one arc must contact the same charge at two distinct points. Furthermore,
(6.16) implies that both contact points happen at the same height 0 < h < ε. Now
let a2 and c2 denote the minimum and maximum of this elliptic catenary, then for
ε sufficiently small (6.20) gives us that c2 = 1 + o(1). However, for sufficiently
small ε this is impossible, since the elliptic catenary contacts the same charge at
two distinct points. ��

Here we state the following parametrization for an elliptic catenary, which is
obtained from [24].

Lemma 6.6. Up to translations, one period of an elliptic catenary with minimum
height a and maximum height c has the following parametrization:

x(t) = aF

(
t

2
− π

4
,
c2 − a2

c2

)
+ cE

(
t

2
− π

4
,
c2 − a2

c2

)
, (6.21)

and

z(t) =
√
c2 − a2

2
sin (t) + c2 + a2

2
, (6.22)

where −π
2 ≤ t ≤ 3π

2 , F(u, k) is the elliptic integral of the first kind, and E(u, k)
is the elliptic integral of the second kind which are defined as,

F(u, k) :=
∫ u

0

1√
1 − k sin2(θ)

dθ, (6.23)

and

E(u, k) :=
∫ u

0

√
1 − k sin2(θ)dθ. (6.24)

From the parametrization given in Lemma 6.6 and Lemmas 6.5 and 6.2 we have
the following result.
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Lemma 6.7. There exists a universal constant ε0 > 0 such that if ε < ε0 and if
(�, {x1, x2}) is a minimizer to (6.1), then the profile function of the free surface
∂�\(∂Bε(x1) ∪ ∂Bε(x2)) is a graph of a single arc of an elliptic catenary that has
exactly one maximum.

Proof. Let ϕ be the profile function defined in (6.11). Then by Lemma 6.5 the graph
of ϕ must consist of a single arc of an elliptic catenary. Thus, we must show that
ϕ has exactly one maximum. To do this, define M to be the number of maximum
points of ϕ. First, note that M is nonzero, since if M = 0 then Lemma 6.2 implies
that we cannot satisfy our volume constraint.

Now assume that M > 1, and let h be the height of contact between ϕ and the
charges. Using the parametrization given in Lemma 6.6, we can find a lower bound
on the distance between the two contact points, which gives us that

diam(�) ≥ 2

(
aF

(
t0
2

− π

4
,
c2 − a2

c2

)
+ cE

(
t0
2

− π

4
,
c2 − a2

c2

))

+ 2(M − 1)

(
aF

(
π

2
,
c2 − a2

c2

)
+ cE

(
π

2
,
c2 − a2

c2

))
, (6.25)

where

t0 = π − arcsin

(
2h2 − (c2 + a2)

c2 − a2

)
. (6.26)

However, as ε −→ 0 we have that a −→ 0 and c −→ 1. Thus, (6.25) implies that

diam(�) ≥ 2M − o(1), (6.27)

and we have that ε0 can be chosen small enough universal to provide a contradiction
to Lemma 6.2. ��
Lastly, we state some expansions for elliptic integrals.

Lemma 6.8. Let F(u, k) and E(u, k) be the incomplete elliptic integrals of the first
and second kind as defined in (6.23) and (6.24), then

F
(π

2
, z
)

= −1

2
log (1 − z) + O (1) , (6.28)

E
(π

2
, z
)

= 1 + z − 1

4
log (1 − z) + O ((z − 1)) , (6.29)

F(arcsin (u), z) = arctanh (u) − O

(
z − 1

u − 1

)
, (6.30)

E(arcsin (u), z) = u − z − 1

2
arctanh (u) + O

(
z − 1,

(z − 1)2

u − 1

)
, (6.31)

F(arcsin (u), z) = −1

2
log (1 − z) + O

(
1,

√
1 − u√
1 − z

)
, (6.32)

and

E(arcsin (u), z) = 1 + z − 1

4
log (1 − z) + O

(
(z − 1),

√
(1 − u)(1 − zu2)

)
.

(6.33)
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Fig. 4. Three possibilities of the energy minimizing candidates for N = 2: a case 1, b case
2, c case 3

Here and below we are using the notation O (a, b), etc., to denote the quantities
that are bounded by universal multiples of max(|a|, |b|) for |a|, |b| � 1.

6.2. Classification of Cases

Let (�∗, X) ∈ A 4π
3 ,2,ε be a minimizer to (6.1), then from Lemma 6.7, we have

that �∗ falls into one of three cases. In case 1, we have that the free surface of �∗
has the profile function whose graph is an arc of an elliptic catenary that does not
attain its minimum value a. In case 2, we have that this elliptic catenary arc attains
its minimum value a at exactly one point. Lastly, in case 3, this elliptic catenary
arc obtains its minimum value a at exactly two points. These three alternatives are
illustrated in Fig. 4. Thus, from here on we only need to consider test configurations
(�, X) ∈ A 4π

3 ,2,ε, which fall into one of the three cases defined above. Furthermore,
without loss of generality we define the maximum of the profile function to be
located at (0, c), which is consistent with the parametrization given in Lemma 6.6
and fixes translations along the x-axis.

In case 1, the unduloid arc joining the two charges does not attain its minimum
and the minimizer is symmetric about the z-axis. In this case, we have that our
minimizer is of the form

(
�∗, {(− L

2 , 0, 0), ( L2 , 0, 0)}), where L is the distance
between the charges. For a case 1 test configuration we have the following lemma,
which implicitly expresses the energy as a function of the contact height h (see
Fig. 5 for a schematic of a case 1 test configuration).

Lemma 6.9. Let (�, X) ∈ A 4π
3 ,2,ε be a case 1 test configuration with contact

height h. Then

Eε (�, X) = Êε(h) = 4π

(
(a + c)cE

(
t0
2

− π

4
,
c2 − a2

c2

)
+ ε
(
ε −
√

ε2 − h2
))

+ γ ε3

2
(
aF
(
t0
2 − π

4 , c2−a2

c2

)
+ cE

(
t0
2 − π

4 , c2−a2

c2

)
− √

ε2 − h2
) , (6.34)

where

a = ch2 − εh2

cε − h2 , (6.35)

t0 = π − arcsin

(
2h2 − (c2 + a2

)
c2 − a2

)
, (6.36)
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Fig. 5. The schematics of the cross-section of the case 1 candidate for a minimizer

and c is given implicitly by

2 = 2ε3 −
√

ε2 − h2
(

2ε2 + h2
)

+ h(c2 − a2)

2

√
1 −
(

2h2 − c2 − a2

c2 − a2

)2

− a2cF

(
t0
2

− π

4
,
c2 − a2

c2

)
+ (2c(a2 + c2) + 3ac2)E

(
t0
2

− π

4
,
c2 − a2

c2

)
.

(6.37)

Proof. Let the unduloid section that joins the two charges have minimum height a
and maximum height c. Since the charges contact the unduloid section at height h,
we can use the parameterization given in (6.22) to find that the contact between the
unduloid and the right charge happens when t = t0, with t0 defined in (6.36). Then
from (6.21) we obtain that

L = 2

(
aF

(
t0
2

− π

4
,
c2 − a2

c2

)
+ cE

(
t0
2

− π

4
,
c2 − a2

c2

)
−
√

ε2 − h2

)
,

(6.38)
where L is the distance between the charges. Now, since our unduloid has mean
curvature H = 1

a+c , from (6.15) we have that each monotone arc of our elliptic
catenary is given by the equation,

ϕ′ = ±
√

(a + c)2ϕ2

(ϕ2 + ac)2 − 1. (6.39)

Thus, our tangency condition between the charges and the elliptic catenary implies
(6.35). In addition, calculating the volume of the unduloid section, which is given
in [24], and accounting for the volume of the excess charges gives (6.37). Finally,
(6.38) explains the interaction energy given in (6.34), and the perimeter term is
derived directly from accounting for the surface area of the unduloid section (given
in [24]) and the surface area over the charges. ��

We now proceed to cases 2 and 3.
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Lemma 6.10. Let (�, X) ∈ A 4π
3 ,2,ε be a case 2 test configuration with contact

height h. Then

Eε (�, X) = Êε(h) = 4πc(a + c)E

(
π

2
,
c2 − a2

c2

)
+ 4πε2

+ λε3
(

2aF

(
π

2
,
c2 − a2

c2

)
+ 2cE

(
π

2
,
c2 − a2

c2

))−1

, (6.40)

where a is given by (6.35) and c is given implicitly by

2 =
(

2
(
a2 + c2

)
c + 3ac2

)
E

(
π

2
,
c2 − a2

c2

)
− a2cF

(
π

2
,
c2 − a2

c2

)
+ 2ε3.

(6.41)

Proof. Note that the equation for a comes from the tangency condition, as in
Lemma 6.9. Furthermore, (6.40) and (6.41) follow directly from [24]. ��
Lemma 6.11. Let (�, X) ∈ A 4π

3 ,2,ε be a case 3 test configuration with contact

height h. Then

Eε (�, X)

= Êε(h) = 8πc(a + c)E

(
π

2
,
c2 − a2

c2

)

−4πc(a + c)E

(
t0
2

− π

4
,
c2 − a2

c2

)
+ 4πε(ε +

√
ε2 − h2)

+λε3
(

2

(√
ε2 − h2 + 2aF

(
π

2
,
c2 − a2

c2

)
+ 2cE

(
π

2
,
c2 − a2

c2

)

−aF

(
t0
2

− π

4
,
c2 − a2

c2

)
− cE

(
t0
2

− π

4
,
c2 − a2

c2

)))−1

, (6.42)

where the equations for a and t0 are given by (6.35) and (6.36), respectively, and
c is given implicitly by

2 = (2(a2 + c2)c + 3ac2)

(
2E

(
π

2
,
c2 − a2

c2

)
− E

(
t0
2

− π

4
,
c2 − a2

c2

))

− a2c

(
2F

(
π

2
,
c2 − a2

c2

)
− F

(
t0
2

− π

4
,
c2 − a2

c2

))

− (c2 − a2)h

2

√
1 −
(

2h2 − c2 − a2

c2 − a2

)2

+ 2ε3 +
√

ε2 − h2
(

2ε2 + h2
)

.

(6.43)

Proof. Note that for case 3 candidates our tangency condition between the charges
and the elliptic catenary remains unchanged. Furthermore, the distance between
charges and the volume and surface area of the unduloid section follow directly
from [24]. ��
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In the remainder of the paper we carry out an asymptotic expansion of the energy
for the three cases considered above and characterize the global energy minimizers
for ε small.

Proposition 6.12. There exists a universal ε0 > 0 such that if ε < ε0 and (�, X) ∈
A 4π

3 ,2,ε is a case 1 test configuration with contact height h ≤ ε then

Eε (�, X) > 4π − 2πh4

ε2 log

(
h2

ε

)
+ O

(
ε2
)

, (6.44)

whenever h > ε
2 . Furthermore, we have

Eε (�, X) = 4π + γ ε3

2
(1 + ε + ε2) −

(
2πh4

ε2 − γ h2ε2

2

)
log (h) + O

(
γ ε6, (γ + 1)h2ε2,

h4

ε2

)
,

(6.45)
whenever h ≤ ε

2 .

Proof. Let (�, X) be a case 1 test configuration with contact height h. Now we
will expand the expressions for the energy of (�, X) and volume of � given in
Lemma 6.9 in terms of ε and the contact height 0 < h ≤ ε. To do this, first we will
obtain a lower bound on the energy in the regime where h > ε

2 .
Let h > ε

2 .
Using the notation from Lemma 6.9, we have that the minimuma of the extended

unduloid section of � is given by,

a = ch2 − εh2

cε − h2 = h2

ε
− h2

c
+ h4

cε2 + O

(
h4

ε

)
. (6.46)

This gives us that

t0
2

− π

4
= π

4
− 1

2
arcsin

(
2h2 − (c2 + a2)

c2 − a2

)
= arcsin

⎛
⎝
√
c2 − h2

c2 − a2

⎞
⎠

= arcsin

(
1 − h2

2c2 + h4

2c2ε2 + O

(
h4

ε
,
h6

ε3

))
. (6.47)

Since h > ε
2 , from (6.46), (6.47), and (6.32) we get that

F

(
t0
2

− π

4
,
c2 − a2

c2

)
= F

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.48)

and from (6.46), (6.47), and (6.33) we get

E

(
t0
2

− π

4
,
c2 − a2

c2

)
= E

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))

= 1 − h4

2c2ε2 log

(
h2

εc

)
+ O

(
h2
)

. (6.49)
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Expanding our volume constraint given in (6.37) we obtain

2 = 2c3 + 3h2c2

ε
+ O

(
ε2
)

. (6.50)

Thus, (6.50) implies

c > 1 − h2

2ε
+ O

(
ε2
)

. (6.51)

Lastly, using (6.48), (6.49), and (6.51) to expand the contribution of the perimeter
to our energy given in (6.34), we obtain

Eε (�, X) > 4πc2 + 4π
h2c

ε
− 2πh4

ε2 log

(
h2

cε

)
+ O

(
ε2
)

> 4π − 2πh4

ε2 log

(
h2

cε

)
+ O

(
ε2
)

, (6.52)

for ε < ε0 with ε0 small enough. This proves (6.44).
Now we move on to the case where

h ≤ ε

2
. (6.53)

First note that from (6.30), (6.46), (6.47), and (6.53) we get that

F

(
t0
2

− π

4
,
c2 − a2

c2

)
= F

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))

= arctanh

(
1 + h2

2c2

(
−1 + h2

ε2

))
+ O (1) , (6.54)

and from (6.31), (6.46), (6.47), and (6.53) we also have that

E

(
t0
2

− π

4
,
c2 − a2

c2

)
= E

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))

= 1 + h2

2c2

(
−1 + h2

ε2

(
1 + arctanh

(
1 + h2

2c2

(
−1 + h2

ε2

))))
+ O

(
h4

ε2

)
. (6.55)

Thus, from (6.54), (6.55), and (6.34) we get that

Eε (�, X) = 4πc2 + 4π
h2c

ε
− 4πh2 + 2πh4

ε2 arctanh

(
1 − h2

2c2

(
1 − h2

ε2

))
+ O

(
h4

ε2

)

+ γ ε3
(

1

2c
− h2

2c2ε
arctanh

(
1 − h2

2c2

(
1 − h2

ε2

))

+
√

ε2 − h2

2c2 + ε2

2c3 + O

(
ε3,

h2

ε

))
. (6.56)

Furthermore, from expanding our volume constraint given in (6.37) we get that

2 = 2c3 + 3h2c2

ε
− 3h2c + O

(
h4

ε2

)
. (6.57)
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Expanding (6.57) we get that

h =
√

2ε

3

(
1

c2 − c

)(
1 + ε

c
+ ε2

c2 + O

(
h2

ε
, ε3

))
. (6.58)

Now we introduce the new variable α, which is defined via

c = 1 − αε. (6.59)

Thus, (6.58) allows us to express h in terms of α,

h =
√

2αε2 + 2αε3 + 2αε4 + O
(
αε5, α2ε3, αεh2

)
(6.60)

Finally, plugging (6.60) into (6.56) we obtain the following leading order equation
for the energy:

Eε (�, X) = 4π + 8πα2ε2 arctanh (1 − αε2) + O
(
αε4, α2ε2, αh2

)

+ γ ε3
(

1

2
− αε arctanh (1 − αε2) + ε

2
+ ε2

2
+ O

(
ε3, αε

))
.

(6.61)

Simplifying further gives

Eε (�, X) = 4π + γ ε3

2
(1 + ε + ε2) + (8πα2ε2 − γαε4) arctanh (1 − αε2)

+ O
(
γ ε6, (γ + 1)αε4, α2ε2, αh2

)
, (6.62)

which gives us

Eε (�, X) = 4π + γ ε3

2
(1 + ε + ε2) − (4πα2ε2 − γαε4

2
) log (αε2) + O

(
γ ε6, (γ + 1)αε4, α2ε2, αh2) .

(6.63)
Furthermore, we use (6.60) to convert (6.63) into

Eε (�, X) = 4π + γ ε3

2
(1 + ε + ε2)−

(
2πh4

ε2 − γ h2ε2

2

)
log (h)+ O

(
γ ε6, (γ + 1)h2ε2,

h4

ε2

)
, (6.64)

which completes the proof. ��
Proposition 6.13. There exists a universal ε0 > 0 such that if ε < ε0 and (�, X) ∈
A 4π

3 ,2,ε is a case 2 test configuration then (�, X) cannot be a minimizer to (6.1).

Proof. We will argue by contradiction. Thus, first assume that (�, X) is a case
2 minimizer with contact height h. Now we will expand the expressions for the
energy of (�, X) and volume of � given in Lemma 6.10 in terms of ε and the
contact height 0 < h ≤ ε. To do this, first note that from (6.28) and (6.35) we have

F

(
π

2
,
c2 − a2

c2

)
= F

(
π

2
, 1 − h4

ε2c2 + O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) ,

(6.65)
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and from (6.29) and (6.35) we get

E

(
π

2
,
c2 − a2

c2

)
= E

(
π

2
, 1 − h4

ε2c2 + O

(
h4

ε

))
= 1 − h4

2ε2c2 log

(
h2

εc

)
+ O

(
h4

ε2

)
. (6.66)

Expanding the the volume constraint given in (6.41) gives us

2 = 2c3 + 3c2h2

ε
+ O

(
h2, ε3

)
. (6.67)

Using (6.65) and (6.66) we expand the energy given in (6.40), to obtain

Eε (�, X) > 4πc2 + 4πch2

ε
− 2πh4

ε2 log

(
h2

εc

)
+ 4πε2 + γ ε3

2
+ O

(
h2, γ ε2h2 log

(
h2

εc

))
.

(6.68)
Furthermore, (6.67) implies that

c > 1 − c2h2

2ε
+ O

(
h2, ε3

)
, (6.69)

and from (6.68) and (6.69) we get

Eε (�, X) > 4π−2πh4

ε2 log

(
h2

εc

)
+4πε2+γ ε3

2
+O

(
ε3, h2, γ ε2h2 log

(
h2

εc

))
.

(6.70)
Lastly, since we assumed that (�, X) is a minimizer, from considering the test
configuration given by

(
B1(0, 0, 0), {(ε − 1, 0, 0), (1 − ε, 0, 0)}) we obtain

4π + γ ε3

2(1 − ε)
≥ Eε (�, X) = 4π − 2πh4

ε2 log

(
h2

εc

)

+ 4πε2 + γ ε3

2
+ O

(
ε3, h2, γ ε2h2 log

(
h2

εc

))
. (6.71)

Thus, for ε < ε0 small enough, (6.71) implies that

γ ε4 ≥ 2πε2 + O

(
γ ε2h2 log

(
h2

εc

))
. (6.72)

However, this implies that γ > − c0
ε2 log(ε)

, where c0 > 0 is a universal constant,
which contradicts Lemma 6.3 for ε < ε0 small enough. Thus, (�, X) cannot be a
minimizer. ��

Proposition 6.14. There exists a universal ε0 > 0 such that if ε < ε0 and (�, X) ∈
A 4π

3 ,2,ε is a case 3 test configuration then (�, X) cannot be a minimizer to (6.1).
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Proof. Assume that (�, X) is a case 3 minimizer with contact height h. Now we
will expand the expressions for the energy of (�, X) and volume of � given in
Lemma 6.11 in terms of ε and the contact height 0 < h ≤ ε.

However, first we will eliminate the regime where h > ε
2 . To do this, assume

that h > ε
2 , then from (6.28) and (6.35) we get

F

(
π

2
,
c2 − a2

c2

)
= F

(
π

2
, 1 − h4

ε2c2 + O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) ,

(6.73)
and from (6.29) and (6.35) we get

E

(
π

2
,
c2 − a2

c2

)
= E

(
π

2
, 1 − h4

ε2c2 + O

(
h4

ε

))

= 1 − h4

2ε2c2 log

(
h2

εc

)
+ O

(
h4

ε2

)
. (6.74)

Since by assumption h > ε
2 , from (6.32), (6.35) and (6.36) we get that

F

(
t0
2

− π

4
,
c2 − a2

c2

)
= F

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.75)

and from (6.33), (6.35) and (6.36) we get

E

(
t0
2

− π

4
,
c2 − a2

c2

)
= E

(
t0
2

− π

4
, 1 − h4

ε2c2 + O

(
h4

ε

))

= 1 − h4

2c2ε2 log

(
h2

εc

)
+ O

(
h2
)

. (6.76)

Thus, using (6.73), (6.74), (6.75), and (6.76) to expand the contribution of the
perimeter to (6.42), we obtain

Eε (�, X) > 4πc2 + 4πch2

ε
− 2πh4

ε2 log

(
h2

εc

)
+ O

(
ε2
)

, (6.77)

and from our volume constraint given in (6.43) we obtain

2 = 2c3 + 3h2c2

ε
+ O

(
ε2
)

, (6.78)

which implies that

c > 1 − c2h2

2ε
+ O

(
ε2
)

. (6.79)

Thus, from (6.77) and (6.79) we get that

Eε (�, X) > 4π − 2πh4

ε2 log

(
h2

εc

)
+ O

(
ε2
)

, (6.80)

which contradicts Lemma 6.1 whenever ε < ε0 with ε0 small, and we conclude
that (6.53) holds.
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Now from (6.30), (6.31), (6.35), (6.36) and (6.53) we obtain

F

(
t0
2

− π

4
,
c2 − a2

c2

)
= −1

2
log

(
h2

2c2

(
1 − h2

ε2

))
+ O (1) , (6.81)

and

E

(
t0
2

− π

4
,
c2 − a2

c2

)
= 1 − h2

2c2 − h4

4c2ε2 log

(
h2

2c2

(
1 − h2

ε2

))
+ O

(
h4

ε2

)
.

(6.82)
Using (6.73), (6.74), (6.81), and (6.82) to expand the contribution of perimeter to
(6.42) we obtain

Eε (�, X) > 4πc2 + 4πc
h2

ε
− 2πh2 + πh4

ε2 log

(
ε4c2

2h6

(
1 − h2

ε2

))

+ 4πε2 + 4πε
√

ε2 − h2 + O

(
h4

ε2 , h2
)

. (6.83)

and from our volume constraint given in (6.43) we obtain

2 = 2c3 + 3h2c2

ε
+ O

(
ε3, h2

)
. (6.84)

Thus, from (6.84) we have

c ≥ 1 − h2c2

2ε
+ O

(
ε3, h2

)
. (6.85)

Lastly, from (6.85), (6.53), and (6.83) we obtain

Eε (�, X) > 4π + πh4

ε2 log

(
ε4c2

2h6

(
1 − h2

ε2

))

+ 4πε2 + 4πε
√

ε2 − h2 + O

(
ε3, h2,

h4

ε2

)
(6.86)

≥ 4π + 4πε2, (6.87)

for ε < ε0 with ε0 small. Thus, from Lemma 6.1 we conclude that (�, X) cannot
be a minimizer. ��
Theorem 6.15. There exist universal constants C, C1, ε0 > 0 such that if ε < ε0
and γ < 8π

ε
− C then there exists a unique, up to translations and rotations,

minimizer (�∗, {(− L∗
2 , 0, 0), ( L

∗
2 , 0, 0)}) to (6.1). Furthermore, it is a case 1 con-

figuration, and if C1
log ε−1 < γ < 8π

ε
− C, then

Eε

(
�∗,

{(
− L∗

2
, 0, 0

)
,

(
L∗
2

, 0, 0

)})

= 4π + γ ε3

2
(1 + ε + ε2) + γ 2ε6

64π
log (γ ε4) + O

(
ε6γ

7
4 (1 + γ )

1
4 (log ε−1)

3
4

)
, (6.88)

L∗ = 2 − 2ε − γ ε3

8π
log (γ ε4) + O

(
γ

3
4 (1 + γ )

1
4 ε3(log ε−1)

3
4

)
, (6.89)
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and (�∗, {(− L∗
2 , 0, 0), ( L

∗
2 , 0, 0)}) has contact height h∗ satisfying

h∗ =
√

γ ε4

8π
+ O

⎛
⎝ε2γ (γ + 1)

log ε−1

1
4

⎞
⎠ . (6.90)

Proof. First note that the existence and rotational symmetry of a minimizer follows
directly from Theorem 3.2, Lemma 6.3 and Lemma 6.4. Furthermore, Lemma 6.7
implies that this minimizer is either a case 1, case 2, or case 3 configuration. Thus,
Propositions 6.13 and 6.14 rule out all but a case 1 minimizer
(�∗, {(− L∗

2 , 0, 0), ( L
∗

2 , 0, 0)}).
Let h∗ be the contact height of the minimizer above. Then from (6.44) and

Lemma 6.1 we conclude that
h∗ ≤ ε

2
. (6.91)

Thus, from (6.45) we conclude that

Eε

(
�∗,
{(

− L∗

2
, 0, 0

)
,

(
L∗

2
, 0, 0

)})

= 4π + γ ε3

2
(1 + ε + ε2) −

(
2πh∗4

ε2 − γ h∗2ε2

2

)
log (h∗)

+ O

(
γ ε6, (γ + 1)h∗2

ε2,
h∗4

ε2

)
. (6.92)

Now let
(
�,
{(− L

2 , 0, 0
)
,
( L

2 , 0, 0
)})

be a case 1 candidate minimizer with a
contact height h given by

h =
√

γ ε4

8π
. (6.93)

From the minimality of
(
�∗,
{(

− L∗
2 , 0, 0

)
,
(
L∗
2 , 0, 0

)})
and from (6.45) and

(6.92) we obtain

4π + γ ε3

2
(1 + ε + ε2) −

(
2πh∗4

ε2 − γ h∗2ε2

2

)
log (h∗) + O

(
γ ε6, (γ + 1)h∗2

ε2,
h∗4

ε2

)

≤ 4π + γ ε3

2
(1 + ε + ε2) + γ 2ε6

32π
log

⎛
⎝
√

γ ε4

8π

⎞
⎠+ O

(
γ (γ + 1)ε6

)
.

(6.94)
Thus

−
(

2πh∗4

ε2 − γ h∗2ε2

2

)
log (h∗) + O

(
γ (γ + 1)ε6, (γ + 1)h∗2

ε2,
h∗4

ε2

)
≤ γ 2ε6

32π
log

⎛
⎝
√

γ ε4

8π

⎞
⎠.

(6.95)
Now note that (6.95) implies that

h∗ ≥
√

γ ε4

8
, (6.96)
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since otherwise (6.95) implies

γ 2ε6

128
log

(√
γ ε4

8

)
+ O

(
γ (γ + 1)ε6

)
≤ γ 2ε6

32π
log

⎛
⎝
√

γ ε4

8π

⎞
⎠. (6.97)

However, this implies

γ 2ε6

256
log
(
γ ε4
)

+ O
(
γ (γ + 1)ε6

)
≤ γ 2ε6

64π
log
(
γ ε4
)
. (6.98)

Now pick ε0 > 0 so that | log (γ ε4)| > O
(

γ+1
γ

)
, then (6.98) provides a contra-

diction. Thus, (6.96) holds.
Finally, let

h∗ =
√

γ ε4

8π
+ he, (6.99)

then from (6.95) we obtain

−
(

γ ε2h2
e +√8πγ h3

e + 2π

ε2 h4
e

)
log h∗

≤ −γ 2ε6

32π
log

(
1 +
√

8π

γ ε4 he

)
+ O

(
γ (γ + 1)ε6, (γ + 1)h∗2

ε2,
h∗4

ε2

)
(6.100)

If he > 0, then (6.99) implies h∗ >

√
γ ε4

8π
, and (6.100) gives

−2π

ε2 h4
e log h∗ ≤ O

(
h∗4(γ + 1)

γ ε2

)
. (6.101)

Thus,

he ≤ O

⎛
⎝h∗

(
γ + 1

γ log
(
h∗−1

)
) 1

4
⎞
⎠ . (6.102)

Now (6.102) and (6.99) imply that

h∗ ≤
√

γ ε4

8π

(
1 + O

((
γ + 1

γ log (h∗−1)

) 1
4
))

, (6.103)

whenever h∗ ≤ ε < ε0 is sufficiently small.

If he < 0, then from (6.99) we have 0 < h∗ <

√
γ ε4

8π
and (6.100) implies

−2π

ε2 h4
e log h∗ ≤ −γ 2ε6

32π
log

(
1 +
√

8π

γ ε4 he

)
+ O

(
γ (γ + 1)ε6

)
. (6.104)
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Furthermore, (6.96) implies that he ≥
√

γ ε4

8 −
√

γ ε4√
8π

. Thus, from (6.104) we obtain

he ≥ O

(
ε2
(

γ (γ + 1)

log (h∗−1)

) 1
4
)

. (6.105)

Hence, (6.103) and (6.105) imply that

h∗ =
√

γ ε4

8π
+ O

(
ε2
(

γ (γ + 1)

log ε−1

) 1
4
)

. (6.106)

Thus, from (6.92) and (6.106) we obtain

Eε

(
�∗,

{(
− L∗

2
, 0, 0

)
,

(
L∗
2

, 0, 0

)})

= 4π + γ ε3

2
(1 + ε + ε2) + γ 2ε6

64π
log (γ ε4) + O

(
ε6γ

7
4 (1 + γ )

1
4 (log ε−1)

3
4

)
. (6.107)

Lastly, from (6.54), (6.55), and (6.34) we obtain

L∗ = 2 − 2ε − γ ε3

8π
log (γ ε4) + O

(
γ

3
4 (1 + γ )

1
4 ε3(log ε−1)

3
4

)
. (6.108)

To conclude the proof, observe that (�∗, {(− L∗
2 , 0, 0), ( L

∗
2 , 0, 0)}) is unique,

since expanding the second derivative of (6.34) gives

Ê ′′
ε (h) =

(
24πh2

ε2 − γ ε2
)

log h−1 + O

(
h2

ε2 , γ ε2
)

, (6.109)

which implies that Êε(h) is strictly convex in the neighborhood of the minimum. ��
Proof of Theorem 3.6. The proof is obtained by combining the statements of Propo-
sitions 6.13 and 6.14 with that of Theorem 6.15. ��
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