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Pattern formation in developing organisms can be
regulated at a variety of levels, from gene sequence

to anatomy. At this level of complexity, mechanistic
models of development become essential for integrat-

ing data, guiding future experiments, and predicting
the effects of genetic and physical perturbations. How-

ever, the formulation and analysis of quantitative
models of development are limited by high levels of

uncertainty in experimental measurements, a large
number of both known and unknown system compo-

nents, and the multiscale nature of development. At
the same time, an expanding arsenal of experimental

tools can constrain models and directly test their pre-
dictions, making the modeling efforts not only neces-

sary, but feasible. Using a number of problems in fruit
fly development, we discuss how models can be used

to test the feasibility of proposed patterning mecha-
nisms and characterize their systems-level properties.

Introduction

One of the intellectual challenges in the analysis of
developmental pattern formation is to synthesize the in-
formation from genetic, cellular, and biochemical stud-
ies into quantitative models that can be used to summa-
rize existing results and guide future experiments. In
addition to providing compact summaries of experimen-
tal data, models of patterning mechanisms are essential
for exploring their systems-level properties, such as ro-
bustness and evolvability (Kirschner and Gerhart, 1998;
Freeman and Gurdon, 2002; Eldar et al., 2004). Early
models of development were based on the idea that
complex patterns self-organize naturally when simple
patterns lose their stability. Such a phenomenon can
be realized in a variety of ways, e.g., by nonlinear inter-
actions of diffusion and chemistry (Turing, 1952; Gierer
and Meinhardt, 1972; Meinhardt, 1982; Murray, 1993;
Pismen, 2006). The formulation of these models has
long predated the molecular studies of development.
As a result, they were phenomenological in nature,
invoking hypothetical species and interactions rather
than molecules and processes involved in specific pat-
terning events. Phenomenological models can generate
elaborate patterns with striking similarities to the ones
observed in real embryos, but they are not well-suited
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for predicting the effects of specific genetic and bio-
chemical perturbations. For example, mutant alleles of
the gene leopard induce transitions from striped (wild-
type) to spotted skin pattern in zebrafish (Johnson
et al., 1995). All of the transitions can be reproduced
by varying just a single parameter in a two-variable reac-
tion-diffusion model, a clear success of a phenomeno-
logical description (Asai et al., 1999). At the same time,
it is unclear how to use this model in order to understand
how leopard, which encodes a connexin protein, con-
trols the interactions between the pigment cells respon-
sible for the striped skin pattern, or how these patterns
evolve (Maderspacher and Nusslein-Volhard, 2003;
Quigley et al., 2005; Watanabe et al., 2006). As molecular
studies uncover increasingly detailed descriptions of
development, mechanistic models will become both
more feasible and preferable.

Any attempt to establish quantitative models of pat-
tern formation is confronted by the high level of experi-
mental uncertainty, a large number of components,
and the multiscale nature of development (Longabaugh
et al., 2005; Stathopoulos and Levine, 2005). As we learn
more about developing systems, at least the structural
uncertainty (i.e., uncertainty regarding the parts list of
a patterning module and its connectivity) will be gradu-
ally reduced. Furthermore, while handling the size of
a large modeled system and its associated parametric
uncertainty (e.g., the lack of kinetic information about
any given process) is nontrivial, there are systematic
modeling and algorithmic approaches, such as sensitiv-
ity analysis and uncertainty propagation, to address
these problems (Ghanem and Wojtkiewicz, 2004; Saltelli
et al., 2005; El-Samad et al., 2006). On the other hand,
the coupling between different processes and scales
in the system—transcriptional regulation, signal trans-
duction, and tissue-level patterning—will continue to
present conceptual challenges for modeling, even after
a ‘‘complete parts list’’ of pattern formation systems is
compiled and their monitoring in space and time be-
comes commonplace.

By their structure and methods of analysis, current
mathematical models of developmental patterning are
similar to those of chemically reacting systems. Both
the structural complexity of biological patterning net-
works and the current level of experimental uncertainty
associated with their analysis are much greater than in
purely chemical systems like combustion or heteroge-
neous catalysis. At the same time, as a consequence
of their higher organizational complexity, biological sys-
tems can be manipulated and analyzed at a greater
number of levels than their chemical analogs. Indeed,
tools like site-directed mutagenesis, targeted expres-
sion systems, allelic series, and phylogenetic analysis do
not have direct parallels in chemical systems. This higher
manipulability of natural patterning systems makes it
possible to design a very large number of tests that can
be used to constrain and refine mechanistic models.

According to the 1994 perspective by Wolpert, the
embryo should be computable ‘‘if a level of complexity
of description of cell behavior can be chosen that is
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adequate to account for development but that does not
require each cell’s detailed behavior to be taken into ac-
count’’ (Wolpert, 1994). The choice of an adequate level
of description can emerge only from iterations between
the construction of abstract models, their computational
analysis, and model-driven experiments. Here we dis-
cuss the current status of mechanistic modeling of de-
velopmental pattern formation. The review is organized
as follows. In the next section, using long-range pattern-
ing of the fruit fly wing as an example, we discuss meth-
odological issues and requirements for model formula-
tion. Next, we discuss techniques for model analysis,
emphasizing the power of dimensional analysis and
simple scaling arguments. Finally, we provide a number
of examples that illustrate how models can be used
to test the feasibility of proposed pattern formation
mechanisms and provide access to their systems-level
properties.

Formulating Models

In this section, we discuss the prerequisites for model
formulation. Before a developmental system can be
modeled, one must first have at least a basic under-
standing of the interactions of the major players, as
well as the tissue geometry. In addition to this, the multi-
scale nature of development, and biological systems in
general, adds another requirement to basic model for-
mulation, as a connection must be made between gene
transcription, a highly stochastic process, and other cel-
lular or tissue-level events. Here we focus on pattern for-
mation by morphogen gradients (Gurdon and Bourillot,
2001; Tabata and Takei, 2004), an area where a number
of experimental breakthroughs have recently been made
and where the application of modeling approaches ap-
pears both necessary and feasible.

In the past years, convincing evidence has shown that
ligands of the BMP, Hh, Wnt, and FGF families can act as
morphogens in the development of a variety of tissues
across species (Tabata and Takei, 2004). Thus, the
question about the existence of morphogen gradients,
which was one of the central questions of 20th century
developmental biology, gave way to questions related
to gradient formation, robustness, and interpretation
(Wolpert, 1996; Gurdon and Bourillot, 2001; Eldar et al.,
2004; Tabata and Takei, 2004; Ashe and Briscoe,
2006). Resolution of these questions requires quantita-
tive measurements at a number of levels, including sub-
cellular distributions of ligands along the trafficking
pathway (Vincent and Dubois, 2002), receptor occu-
pancy across the patterned field (Wang and Ferguson,
2005), and affinities of binding sites in gene regulatory
sequences (Wharton et al., 2004).

To discuss just one example, Dpp (Decapentaplegic),
a Drosophila homolog of mammalian Bone Morphoge-
netic Protein, acts as a morphogen in multiple stages
of fruit fly development (Parker et al., 2004). In the larval
wing imaginal disc, Dpp forms a long-range gradient of
signaling activity that controls tissue patterning, growth,
and morphogenesis (Figure 1A). This gradient is estab-
lished by the combination of localized secretion of
Dpp at the anterior-posterior compartment boundary,
its endocytic degradation by cells in the wing disc, and
ligand transport (Figure 1D). In three of the proposed
transport mechanisms, Dpp moves either through the
extracellular space; through the cell, by planar transcy-
tosis; or along the cell surfaces, assisted by cell surface
proteoglycans (Entchev et al., 2000; Lander et al., 2002;
Belenkaya et al., 2004). Until the end of the 90s, these
gradients could be monitored only indirectly, through
their effects on target genes and resulting wing mor-
phology (Lecuit et al., 1996; Nellen et al., 1996; Lecuit
and Cohen, 1998). Recently, however, several groups
have directly visualized Dpp gradients in the wing imag-
inal disc (Entchev et al., 2000; Teleman and Cohen, 2000;
Belenkaya et al., 2004). As a result, it has been estimated
that the diffusivity of Dpp is orders of magnitude lower
than that of a similarly sized protein in water, that the
time scale for the Dpp degradation in the wing disc is
less than 3–4 hr, and that the gradient of Dpp can be
considered to be in steady state (on the time scales of
tissue growth and patterning).

These conclusions about the spatial pattern of Dpp in
the wing are based on the observed changes in the
ligand gradient (or the gradient of activity) in response
to genetic perturbations of the system. For example,
overexpression of receptor shrinks the activity gradient,
suggesting that Dpp receptors not only transduce but
also shape the spatial distribution of secreted Dpp (Le-
cuit and Cohen, 1998). Major advances in the descrip-
tion of the Dpp gradient in the wing have relied on exper-
iments using GFP-tagged Dpp expressed from the AP
compartment boundary and visualized in a number of
genetic backgrounds (Entchev et al., 2000; Teleman
and Cohen, 2000; Belenkaya et al., 2004). However, in
most of these experiments, the GFP-tagged Dpp had
been expressed in addition to the endogenous ligand,
and indirect measurements indicate that the wing discs
in these studies were exposed to approximately twice
the level of ligand (Entchev et al., 2000). Thus, labeled
ligand is hardly an inert tracer of the gradient in this sys-
tem and may affect the wild-type concentration field of
the ligand. This could pose a considerable problem in
the quantitative measurements and should be carefully
evaluated in each case.

Overall, the development and implementation of ex-
perimental assays to monitor Dpp and other morpho-
gens is highly nontrivial at this time. As a result, the in-
terpretation of results of such assays stimulated the
formulation of the first generation of mechanistic models
(Lander et al., 2002; Kruse et al., 2004). The first step in
the formulation of such models is to provide a reason-
able specification of tissue anatomy. In the case of the
Wingless (and also likely Dpp) gradient in the wing imag-
inal disc, the ligand can be secreted from both apical
and basolateral sides of columnar cells (Marois et al.,
2006). Depending on the direction of secretion, the mor-
phogen may be exposed to different extracellular envi-
ronments. Since the apical and basolateral surfaces
of columnar epithelial cells represent discrete mem-
brane compartments, the apically secreted ligand may
encounter different cell surface molecules than the
basolaterally secreted ligand (Figures 1B and 1C). In
addition, the extracellular space next to the apical and
basolateral surfaces of columnar cells differ dramati-
cally in morphology (Gibson and Schubiger, 2001; Pal-
lavi and Shashidhara, 2005). The resulting differences
in the geometries and boundary conditions for the api-
cally and basolaterally secreted ligands can generate
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Figure 1. Dpp Gradient and Geometry in the Wing Disc

(A) Visualization of GFP-labeled Dpp in a third larval instar wing disc.

The overall distribution of GFP-Dpp protein, as shown by the auto-

fluoresence of the GFP tag (green), is highly peaked near the ante-

rior-posterior compartment boundary. In contrast, the gradient of

purely extracellular Dpp (blue) is broad across the entire wing

disc. Reprinted from Belenkaya et al. (2004), copyright 2004, with

permission from Elsevier.

(B and C) Schematics of cross-sections through a Drosophila wing

disc. These schematics illustrate different cell types and different

tissue compartments. In the vertical cross-section (B), large peripo-

dial cells cover the surface of the imaginal disc proper, which con-

sists of tall columnar cells in a tight epithelium. Between these two

types of cells is the lumen of the imaginal disc. Ligand secreted

from the apical side of the columnar cells enters the lumen and

quickly forms a flat gradient across the imaginal disc. The dotted

plane depicts the horizontal cross-section shown in (C). This cross-

section depicts the extracellular space between the tall columnar

cells. Ligands secreted from the lateral portion of the columnar cells

encounter narrow, tortuous geometry, perhaps crowded by cell

surface proteins to further impede transport. Due to tight junctions

near the apical portion of the columnar cells, ligand secreted in the
pronounced differences in the length scales of secreted
signals. This might reconcile the experimentally ob-
served ‘‘flat’’ profile of Dpp in the lumen and a pro-
nounced gradient of basolateral Dpp (Entchev et al.,
2000; Gibson et al., 2002; Belenkaya et al., 2004).

Following the specification of tissue structure, models
of morphogen gradients require quantitative descrip-
tions of intracellular signaling. Indeed, most of the quan-
titative conclusions about the extracellular distribution
and transport of Dpp are based on the observations of
the pattern of phosphorylated SMAD (Entchev et al.,
2000; Dorfman and Shilo, 2001; Lander et al., 2002; Be-
lenkaya et al., 2004; Wang and Ferguson, 2005). Thus,
models should explicitly describe the connection be-
tween the extracellular and intracellular compartments
of the system. All of the published models of Dpp trans-
port in the wing and in the embryo account for extracel-
lular diffusion, ligand-receptor binding, and receptor-
mediated internalization (Lander et al., 2002; Kruse
et al., 2004; Umulis et al., 2006). In the future, these
models can be interfaced with quantitative descriptions
of receptor trafficking and nucleocytoplasmic SMAD
shuttling (Schmierer and Hill, 2005; Dudu et al., 2006;
Vilar et al., 2006). Eventually, quantitative understanding
of morphogenetic patterning will require models of
gradient interpretation (Ashe and Briscoe, 2006). For
Dpp-mediated wing patterning, gradient interpretation
relies on the Dpp-mediated expression of Brinker, a
sequence-specific repressor of Dpp signaling (Saller
and Bienz, 2001; Pyrowolakis et al., 2004; Gao et al.,
2005; Moser and Campbell, 2005). The emerging model
of transcriptional repression by Brinker and the visuali-
zation of the Brinker gradient in the wing can be linked
to the kinetic models of nucleocytoplasmic SMAD dy-
namics, and through that to models of ligand/receptor
dynamics and ligand transport.

Analyzing Models

The use of mechanistic models requires the analysis of
their dynamics over a wide range of parameters, most
of which have not been constrained by direct measure-
ments. Indeed, quantitative biochemical measurements
of ligand/receptor or transcription factors/binding site
interactions are available for just a few developmental
systems (Klein et al., 2004; Rentzsch et al., 2006), and
cellular and tissue parameters, such as levels of protein
expression, have not been characterized at all in vivo.
In the absence of this information, one can start by using
the data from studies with cultured cells and test
how these data perform in a developmental setting (Lai
et al., 2004; Saha and Schaffer, 2006). Alternatively,
one can search the parameter space for parameter
sets consistent with wild-type and mutant phenotypes

lumenal compartment cannot mix with that secreted in the columnar

compartment. The schematic in (B) was reprinted with permission

from Company of Biologists Ltd. (Pallavi and Shashidhara, 2005).

(D) Tissue-level description of BMP-mediated patterning in a one-

dimensional system. Morphogen enters the tissue at the AP com-

partment boundary with a constant flux of Q. The ligand is free to dif-

fuse, with effective diffusivity D. Binding to cell surface receptors is

characterized by the rate constants kon and koff. The ligand/receptor

complex undergoes endocytosis with rate constant ke. The internal-

ized ligand/receptor complex is degraded in a first order process

with rate constant kd.
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Figure 2. Quantitative Analysis of the Bicoid

Morphogen in the Drosophila Embryo

(A) Plot of Bcd fluorescent immunostaining

intensity versus egg antero-posterior coordi-

nate, x. Note that the Bicoid gradient can be

accurately approximated by an exponential

profile. Reprinted by permission from Mac-

millan Publishers Ltd: Nature (Houchmand-

zadeh et al., 2002), copyright 2002.

(B) Plot of dynamic length scale, l, versus egg

length, L, for three different species. Note

that L/l, the ratio of the geometric and dy-

namic length scales for the Bicoid gradient,

is conserved across these species. Red, D.

melanogaster; green, D. Busckii; blue,

L. sericata. Reprinted from Gregor et al.

(2005), copyright 2005, National Academy of

Sciences, USA.

(C) Simplified model of Bicoid spreading in

the early Drosophila embryo. Equation 1 de-

scribes the diffusion, with diffusivity D, and

first-order decay, with rate constant k, of

Bicoid concentration, C. After scaling (Equa-

tion 2), the Thiele modulus, 4, naturally

arises as the only free parameter, with 4 =

L/l (Equation 3). In Equation 2, c is the Bicoid

concentration scaled by its maximum value, and x is anteroposterior coordinate scaled by egg length, L.

(D) L/l can not be very different from unity for efficient patterning. In plots of c versus percentage egg length for different values of 4 = L/l, the

gradient is significant across the whole egg only for 4 = 5 (solid black curve). For 4 = 0.5 (dot-dashed curve) and 4 = 50 (dashed curve), the gra-

dient is essentially flat for most of the egg. Neither too sharp a gradient (4 = 50), nor too shallow (4 = 0.5), can be responsible for efficient pattering.
(von Dassow et al., 2000; Eldar et al., 2002). Choice of
parameter acceptance criteria and how densely to sam-
ple the parameter space are key questions in imple-
menting such computational screens. Given the fact
that, at least until now, the computational cost of devel-
opmental pattern formation models is quite modest, one
can devise systematic computational approaches for
the location and acceptance of suitable parameter
sets (Flann et al., 2005). Two modeling studies of the pla-
nar cell polarity and sensory organ precursor systems in
Drosophila show how the wild-type and mutant gene ex-
pression patterns can be used as constraints in the
computational searches for the ‘‘right’’ parameter sets
(Amonlirdviman et al., 2005; Hsu et al., 2006).

One way of dealing with multiple parameters in phys-
icochemical problems relies on dimensional analysis
and scaling. Dimensional analysis identifies competing
processes and reduces the number of free parameters
by combining the original parameters into new, dimen-
sionless groups. Subsequently, scaling arguments can
provide order of magnitude estimates for the values of
the dimensionless groups even before the model equa-
tions are solved. As an example, consider a hypothetical
morphogen with diffusivity D and first-order degradation
rate constant k; the steady-state profile of the signal pat-
terns a field of size L. This setup may be used to model
the gradient of Bicoid, the first morphogen that has been
experimentally observed, and one of the few morpho-
gens for which accurate measurements of the gradient
are available (Driever and Nusslein-Volhard, 1988a,
1988b). The Bicoid gradient, visualized by antibody
staining, can be fit with high accuracy to the solution
of the model with localized production, diffusion, and
degradation (see Figure 2A). One can easily show that
the shape of the steady-state gradient depends on a sin-
gle dimensionless number: 4 = L=

ffiffiffiffiffiffiffiffiffi
D=k

p
(Equations (2)

and (3) in Figure 2C). This parameter, known as the
Thiele modulus in the engineering literature, can be
viewed as the ratio of the size of the system (L) and
the spatial scale for the signal decay (l =

ffiffiffiffiffiffiffiffiffi
D=k

p
) (Weisz,

1973).
The L/l ratio is of key importance for all morphoge-

netic patterning mechanisms. To constrain its value,
we can use a simple scaling argument. When L/l� 1,
the morphogen will not vary appreciably across the sys-
tem, and the whole field will be exposed to essentially
the same value of the inductive signal. On the other
hand, when L/l [ 1, the morphogen should decay very
rapidly, and most of the field will again be exposed to the
same (but now low) value of the patterning signal. From
these arguments, it is clear that L/l cannot be very differ-
ent from unity for efficient patterning (Figure 2D). At this
time, quantitative measurements of L/l are available
only for the Bicoid morphogen in the Drosophila embryo
(Houchmandzadeh et al., 2002; Gregor et al., 2005),
where it was established that L/l z 5 (see Figures 2B
and 2D). Recent measurements show that L/l is con-
served for Bicoid gradients across species (see Fig-
ure 2B), suggesting the importance of the quantitative
control of the Thiele modulus for embryonic pattern for-
mation (Gregor et al., 2005). In the future, it will be impor-
tant to compare the magnitudes of this dimensionless
group for other morphogenetic patterning systems. In
the meantime, note that the use of dimensional analysis
and a simple scaling argument not only reduced the
number of free parameters by combining several bio-
physical parameters into a single dimensionless group,
but also identified constraints on this group that would
otherwise have been difficult to impose on the original
parameters in isolation.

For morphogen gradients that are either difficult or im-
possible to visualize directly at this time, nondimension-
alization of the mechanistic model can reduce the prob-
lem of characterizing the entire concentration field to the
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Figure 3. Model-Based Analysis of the

Gurken Morphogen Gradient in Drosophila

Oogenesis

(A) In situ hybridization of a stage 10 egg

chamber against gurken mRNA. The tran-

script appears localized to the dorso-anterior

cortex of the oocyte.

(B) Schematic of downstream targets of

Gurken. Based on the results of genetic ex-

periments, it was proposed that dorsally

secreted Gurken acts as a long-ranged mor-

phogen to pattern the follicular epithelium.

Blue, kekkon; red, pipe.

(C) Illustration of biophysical model of the

Gurken morphogen. This model accounts

for its localized secretion from the oocyte

(at rate V) and interactions with Egf receptors

in the follicle cells (kon, koff, and ke). Dimen-

sional analysis of the model revealed that

the shape of the Gurken gradient is controlled

by a single dimensionless parameter, the

Thiele modulus (F), which compares the rela-

tive strengths of Gurken diffusion and recep-

tor-mediated degradation.

(D) Plot of anterior Gurken concentration

along the dorsal-ventral coordinate of the

egg chamber. A parameter estimation strat-

egy provided a quantitative estimate for the

Thiele modulus, enabling the inference of

the wild-type Gurken gradient.

Illustrations in (B–D) reprinted from Goentoro

et al. (2006), copyright 2006, with permission

from Elsevier.
problem of estimating just a few parameters. Such an
approach has been recently implemented for the Gurken
morphogen gradient in Drosophila oogenesis (Figure 3).
Gurken, a TGFa-like ligand of the fruit fly EGF receptor,
is secreted from the dorsal anterior cortex of the oocyte
and acts a morphogen that controls a large number of
genes in the overlying follicular epithelium (Nilson and
Schupbach, 1999). This morphogen model was put for-
ward on the basis of genetic experiments, but all at-
tempts to visualize the Gurken gradient directly have
been so far unsuccessful (Pai et al., 2000; James et al.,
2002; Peri et al., 2002). The tissue architecture and the
tissue-level distribution of the key signaling compo-
nents of the EGFR system in the ovary are relatively
well understood. Based on this information, Goentoro
et al. formulated a mechanistic model of the Gurken
morphogen (Goentoro et al., 2006). According to their
model, the profile of the Gurken gradient depends on
the anatomical parameters of the egg, the cellular levels
of expression of multiple components, and the strengths
as well as the rates of their interaction (Figure 3C).

Out of all model parameters, only the geometry of the
developing egg chamber can be characterized in a rela-
tively straightforward way. However, analysis of the
model shows that in order to characterize the shape of
the Gurken gradient it is not important to know the
values of all of these parameters independently. What
matters is their dimensionless combination, which com-
pares the relative strengths of ligand diffusion and deg-
radation, again the Thiele modulus of the problem
(Goentoro et al., 2006). Thus, within the framework of
this model, the problem of quantifying the shape of the
Gurken gradient was reduced to the problem of estimat-
ing the Thiele modulus. To extract this parameter, the
authors have formulated a parameter estimation method
that relies on quantitative measurements of the domain
of the expression of pipe, one of the targets of Gurken/
EGFR signaling in the follicle cells (Pai et al., 2000). By
implementing this parameter approach, the authors
found that, for the Gurken gradient, L/lz3 (Figure 3D).
This work provides a direct quantitative characterization
of the key patterning input in Drosophila oogenesis and
demonstrates how parameter estimation techniques
can be used to quantify morphogen gradients.

In more complex examples, analysis of the scaled
equations can identify limiting cases in which key di-
mensionless groups are either very small or very large.
This simplifies the equations, as terms containing the
small dimensionless groups, or the reciprocals of large
dimensionless groups, can be neglected. Often, the in-
vestigation of such asymptotic (i.e., limiting) regimes
opens the model to a more direct analysis (Muratov
and Shvartsman, 2003; Berezhkovskii et al., 2004;
Reeves et al., 2005). For example, a nondimensionalized
model of the Dpp gradient in wing imaginal disc pattern-
ing contains two parameters: the Thiele modulus and a
dimensionless group that quantifies the extent of Dpp
receptor saturation (Lander et al., 2002). In the ligand
limited regime (where the second dimensionless group
is close to zero), the problem becomes linear and can
be solved analytically (Merkin and Sleeman, 2005). Solu-
tions derived in various limiting cases are often valid in
a reasonably wide domain of parameters and can thus
provide an accurate approximation of the full problem.

Using Models
Modeling can be used to test the feasibility and suffi-
ciency of patterning mechanisms (e.g., Lander et al.,
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Figure 4. Modeling of Dorsoventral Pattern Formation in the Neurogenic Ectoderm

(A) Regulatory interactions between Dorsal (Dl), Snail (Sna), and Twist (Twi) expression in the neurogenic ectoderm (left) and quantified spatial

distributions of Dl, Sna, and Twi during cycle 14 in the Drosophila embryo (right).

(B) Experimental dissection of the vnd enhancer established that vnd expression is controlled by Dl, Twi, and Sna.

(C) Dorsal, Twist, and Snail binding sites in the vnd enhancer (top). Equilibrium occupancy model links the probability (p) of achieving a successful

transcriptional state as a function of local concentrations of Dl, Twi, and Sna (bottom).

(D) Model fit of vnd expression.

Reprinted from Zinzen et al. (2006), copyright 2006, with permission from Elsevier.
2002; Esser et al., 2006). In a direct example of this
approach, Zinzen et al. have recently shown that equilib-
rium models of transcription factor binding site
occupancy are sufficient to quantitatively describe neu-
rogenic pattern formation in the Drosophila blastoderm
(Bintu et al., 2005a, 2005b; Siggia, 2005; Zinzen et al.,
2006). By fitting the spatial expression patterns of three
genes with previously dissected enhancers (vnd, rho,
and vn) to the concentration profiles of three transcrip-
tion factors (Dorsal, Snail, and Twist), this work demon-
strated that simple thermodynamic models provide an
adequate quantitative framework for one of the best
studied pattern formation systems (Stathopoulos et al.,
2002; Markstein et al., 2004). The authors have also
shown that their approach has predictive power: com-
putational predictions of the effects of mutagenesis of
binding sites in the vnd enhancer were in quantitative
agreement with the expression patterns obtained with
genetically engineered vnd-LacZ reporter constructs
(Figures 4B and 4D). In the near future, it should be
possible to explore both the capabilities and the limita-
tions of this approach in other patterning contexts. For
instance, similar correlation between transcription fac-
tor binding affinity and expression was demonstrated
for the dorsoventral embryonic patterning by Dpp, a
system where both the quantitative measurements
of the patterning input and the sequence-specific
information about the regulatory sequences are avail-
able (Raftery and Sutherland, 2003; Wharton et al.,
2004).
Computationally, the work of Zinzen et al. involves
fitting of a single algebraic equation with a handful of
parameters. With the rapid increase in the computa-
tional power, it should be possible to handle more
complex mathematical structures, such as systems of
nonlinear partial differential equations. This has been
demonstrated by the recent computational analysis of
planar cell polarity (PCP) (Amonlirdviman et al., 2005;
Le Garrec et al., 2006). PCP is a phenomenon of long-
range cell polarization within the plane of the epithelium
(Klein and Mlodzik, 2005; Strutt and Strutt, 2005). In the
fruit fly wing, PCP manifests itself in the long-range
alignment of actin-rich hair spikes which are secreted
from the distal side of the cells and point toward the dis-
tal side of the wing (see Figure 5B). The high fidelity of
polarization of hundreds of cells is controlled by a mech-
anism that depends on both long-range positional infor-
mation and short-range intercellular signaling (Klein and
Mlodzik, 2005; Strutt and Strutt, 2005). In the emerging
model of PCP patterning in the wing, the long-range sig-
naling, which depends on genes four-jointed (fj), dachs-
ous (ds), and fat (ft), provides an initial bias for proximo-
distal cell polarization. This initial polarization, which is
believed to be transient, is amplified and maintained
by the intercellular feedback circuit formed by flamingo
(fmi), frizzled (fz), disheveled (dsh), van gogh (vang),
diego (dgo), and prickle-spiny-legs (pk) (Figure 5A).
The cellular basis of coupling between the biasing and
feedback circuits is unclear, but it is established that
both systems are essential for robust polarization of
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Figure 5. Quantitative Analysis of the Planar Cell Polarity System in the Drosophila Wing

(A and B) Pattern formation and cellular response. Asymmetric subcellular localization of proteins in the core PCP network (A) precedes the for-

mation of actin rich prehair structures on the distal side of the cells (B). Illustration in (A) reprinted from Strutt and Strutt (2005) with permission

from Wiley.

(C and D) Models of the PCP system are constrained by observations in clonal analysis experiments. (C) Experiments with pk2 cells (marked by

yellow dots) show that the wild-type cells accumulate Pk on their proximal sides. Red arrows show enriched proximal signal, and blue arrows

show lack of distal signal in the affected cells. pk2 cells (marked by yellow dots) do not affect Pk protein distribution in the neighboring cells.

(D) Computational prediction of the effect of pk2 cells. The model-derived intracellular distribution of Dsh is used to determine the direction

of the prehair. The illustration in (D) is from Amonlirdviman et al. (2005). Reprinted with permission from AAAS.
individual cells and of the entire epithelium (Ma et al.,
2003).

Proposed on the basis of genetic interaction and pro-
tein colocalization studies, mathematical models of the
intercellular feedback focus on the formation and trans-
port of multiprotein complexes in the fz/dsh/pk/dgo/
vang system (Amonlirdviman et al., 2005; Le Garrec
et al., 2006). The genes in this network work together
as a module: in the wild-type wing, the polarization of
individual components is highly coordinated, e.g., Fz is
localized to the distal boundary and Pk is localized to
the proximal cell boundary. In addition, removal of any
one component completely abolishes asymmetrical dis-
tribution of other components. Rigorous biochemical
analysis of most of the interactions is yet to be per-
formed, but this does not prevent the formulation of sys-
tems-level questions about the operation of the intercel-
lular feedback loop (Strutt, 2005). For example, what is
the time scale on which the feedback operates? What
is the minimal amount of initial asymmetry that leads
to robust intracellular polarization? What is the size of
spatial imperfections in the input system that can still be
corrected? Questions like these would be hard enough
to answer even we had a complete parts list of mole-
cules in the PCP patterning system. Nevertheless, under
a well-defined set of assumptions, the feasibility of pro-
posed pattern formation mechanisms can be tested
computationally, paving the way for their systems-level
analysis.

Leaving the analysis of the initial biasing system for
future studies, mathematical models of PCP patterning
focus on the feedback system and the experiments
with mosaic wing discs (Strutt, 2005). In both studies,
the feasibility of the mechanism was identified with the
existence of a set of parameters, such as intracellular
concentrations and rate constants, which lead to solu-
tions that resemble wild-type asymmetric patterns in lo-
calization of Dsh and other components of the feedback
circuit. Thus, analysis of mechanism feasibility is re-
duced to the problem of identifying parameters that
lead to solutions consistent with the maximal set of ex-
perimental observations. Amonlirdviman et al. present
a systematic computational approach for solving this
problem (Amonlirdviman et al., 2005). Specifically, they
define an objective function which quantifies the mis-
match between model predictions and experimental ob-
servations in a number of genetic backgrounds and then
minimize this function over the space of w30 parameters
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Figure 6. Model-Based Inference of the Dro-

sophila Gap Gene Network

(A) Quantified spatiotemporal distributions of

Bcd, Cad, and Tll, which serve as inputs for

the expression of gap genes.

(B and C) Spatiotemporal patterns of Hb, Kr,

Kni, and Gt: (B), observed; (C), predicted by

the Gene Circuit reaction diffusion model

that is based on the combination of linear dif-

fusion and degradation terms and nonlinear

production terms for Hb, Kr, Kni, and Gt.

(D) The updated summary of regulatory inter-

actions is derived from the analysis of the

production terms fitted on the basis of the

wild-type expression patterns.

Graphs and illustrations reprinted from Per-

kins et al. (2006) with permission from the

authors.
of the model that consists of 10 coupled reaction-diffu-
sion equations.

While locating parameter sets consistent with data
completes the feasibility analysis, it is only the first step
in the systems-level analysis of the patterning mecha-
nism. Using a feasible set of model parameters as a
base value, it is possible to examine the robustness of
the underlying mechanism. In this way, Amonlirdviman
et al. used their model to examine how their form of in-
tercellular feedback copes with spatial imperfections
in the biasing system, consistent with the elegant exper-
iments by Ma et al. (Ma et al., 2003; Amonlirdviman et al.,
2005). Similarly, Le Garrec et al. have shown that their
form of intercellular feedback can convert transient bi-
asing signals into persistent cell polarization patterns
(Le Garrec et al., 2006). The underlying assumptions of
both models are likely to be revised in the future. This
is particularly true in light of the recent live imaging stud-
ies, which revealed the critical role of microtubules and
vesicular transport in the proximodistal distribution of Fz
and Fmi, an important effect which is yet to be incorpo-
rated into the mathematical models (Shimada et al.,
2006).

In addition to testing the consistency of proposed
mechanisms, models can provide access to properties
that are either difficult or impossible to extract from
direct measurements. For example, one approach to
extracting the intracellular diffusivities relies on direct
microscopic observations of molecular motion (Bacia
and Schwille, 2003). Alternatively, one can derive intra-
cellular diffusivities from data by fitting the macroscopic
observations of intracellular concentration fields to
models which contain diffusivities as their parameters;
see (Gregor et al., 2005) for an example. A similar ap-
proach has been developed to infer regulatory inter-
actions in the Drosophila gap gene network (Jaeger
et al., 2004a, 2004b; Perkins et al., 2006).

Induced by the gradients of maternal transcription
factors Bicoid (Bcd) and Caudal (Cad) and an early
zygotic gene Tailless (tll), the four gap genes, hunchback
(hb), Krüppel (Kr), knirps (kni), and giant (gt), engage
a complex set of interactions that lead to their final ex-
pression patterns (Figure 6). Together with Bcd and
Cad, the gap genes drive the expression of pair rule
genes. Much of the knowledge about the architecture
of the gap gene network was derived from experiments
with mutants and the analysis of regulatory DNA of gap
genes (Gaul and Jackle, 1990). The resulting picture rep-
resents an enormous advance in the understanding of
gene regulation in development, but it must be viewed
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as a working model for the following reasons. While
proving the sufficiency of regulatory interactions, most
of the experiments with reporters can not be quantita-
tively compared with wild-type expression patterns. At
the same time, information derived from overexpression
studies and mutants can be indirect. Finally, even in the
gap gene network, which has ‘‘only’’ three inputs and
four outputs, regulatory interactions were inferred on
the basis of a relatively small number genetic perturba-
tions (Gaul and Jackle, 1990).

To address these methodological issues, Reinitz and
colleagues developed an approach that uses time series
measurements of gene expression in the wild-type
background and does not rely on genetic perturbations
and reporter constructs (Jaeger et al., 2004a). The first
step of their approach was to establish a database of
spatiotemporal expression patterns of the three inputs
to the gap gene network as well as the four gap genes
during 1 hr before the onset of cellularization (Figures
6A and 6B). These data were then used to fit a reaction-
diffusion model that describes the diffusion, degrada-
tion, and production of gap gene products (Figure 6C).
Diffusion and degradation were modeled by simple lin-
ear terms, but production terms were highly nonlinear,
allowing all inputs and every gap gene to potentially in-
fluence the production of any other gap gene. As with
conventional approaches, the goal of the model-based
approach is to derive the structure (i.e., the diagram) of
the gap gene network (Figure 6D). At the end of the fit-
ting procedure, the network structure is obtained from
the fitted rates of production of gap genes as a function
other gap genes and input factors.

The original implementation of this approach was
quite expensive, with the results reported in 2004 requir-
ing almost 2 years of computer time (Jaeger et al.,
2004a). Recent algorithmic advances reduced run times
to just a couple of hours, enabling the comparison of
a number of different modeling assumptions (Perkins
et al., 2006). The derived network architecture was
largely consistent with the one that was established on
the basis of experiments with mutants and reporters.
However, the model-based approach had also identified
a number of new regulatory links and suggested that
some of the previous regulatory interactions are not es-
sential. For example, among the additions for hb are the
requirement of Tailless for posterior hb expression and
repression of hb by Kni (in addition to the established re-
pression by Kr). Ultimately, it should be possible to test
the new regulatory interactions proposed by the model.
One way of doing so can rely on mutational analysis of
enhancers in the AP patterning network, similar to the
tests of the binding site occupancy models of neuroge-
neic patterning (Zinzen et al., 2006). Given the advanced
state of experimental and bionformatics studies of the
embryonic AP patterning, this goal is within the reach
of current experiments (Berman et al., 2002; Rajewsky
et al., 2002; Sinha et al., 2004).

Conclusions

Models of embryonic pattern formation can summarize
large amounts of experiments, compute properties that
are difficult to measure, and evaluate the relative feasi-
bility of competing patterning mechanisms. The devel-
opment and validation of productive modeling frame-
works and computational approaches will definitely
take time. However, already now, it is reasonable to de-
mand that quantitative descriptions of pattern formation
describe mutant phenotypes and predict the effects of
specific genetic and physical manipulations. For model
genetic organisms, mechanistic modeling is enabled
by a large arsenal of genetic tools that can be used to
directly challenge model predictions and assumptions.
The need to validate models experimentally emphasizes
the need for experimental tools to perturb patterning
events at multiple levels and to quantify both the re-
sponses and perturbations. For instance, a number of
recent experiments motivated by the model-based anal-
ysis of robustness relied on targeted gene expression
systems and heterozygous mutants (Eldar et al., 2002;
Mizutani et al., 2005). However, the magnitude of pertur-
bations, e.g., fold-change in the expression level of a
particular molecule, was rarely quantified, making the
interpretation of patterning processes in perturbed ge-
netic backgrounds rather nontrivial. Along the same
lines, model-based analysis of robustness requires
quantitative information about the natural variations in
the inputs and outputs in the patterning networks; again,
such measurements are extremely rare (Houchmandza-
deh et al., 2002; Crauk and Dostatni, 2005).

Most of the models developed to date focus only on a
single level of description. For example, different models
of the embryonic patterning by Dpp emphasized regula-
tion by extracellular proteases, ligand dimerization, and
positive feedback (Eldar et al., 2002; Mizutani et al.,
2005; Shimmi et al., 2005; Umulis et al., 2006). In putting
all of these pieces together for Dpp in the embryo and
other patterning systems, one can use simple input/out-
put maps to describe coupling between different parts
of the system (Pribyl et al., 2003; Giurumescu et al.,
2006). For example, a sharp boundary in the expression
of a transcriptional target of a signaling pathway sug-
gests that there is a clear threshold in its expression
as a function of the activity of the upstream signaling
event. This can be modeled using a sharp nonlinearity,
with the only parameters being the location of the
threshold and the maximal level of expression (Reeves
et al., 2005; Goentoro et al., 2006). The elucidation of
such input/output maps between various parts of sig-
naling systems or between signaling levels and cellular
responses, such as proliferation or migration, is one
of most important activities for the formulation of realis-
tic models of development (Janes et al., 2005; Melen
et al., 2005; Shraiman, 2005).

While modeling helps to explore what can happen
under a given set of assumptions about the cell biology
and biochemistry, ruling something out is much more
challenging. For instance, it has been suggested that
transport by planar transcytosis is too slow to be consis-
tent with the experimentally observed rates of ligand
spreading (Lander et al., 2002). A different study argues
that a model with purely diffusive extracellular transport
of Dpp is inconsistent with clonal analysis experiments
(Kruse et al., 2004). Neither study makes a completely
convincing argument, since invalidating a model, i.e.,
showing that it is inconsistent with a particular set of
data, is extremely difficult to achieve computationally
at this time, in particular for nonlinear and spatially dis-
tributed models. In the future, new algorithms for model
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invalidation which are being developed now for small
systems of nonlinear differential equations can be used
for the analysis of patterning mechanisms (El-Samad
et al., 2006; Prajna, 2006).

In addition to advancing our understanding of devel-
opment, models can be used to design new experiments
aimed at testing the regulatory interactions. For exam-
ple, optimization-based algorithms can suggest realiz-
able genetic perturbations and assays that would be
most informative in discriminating between alternative
network diagrams. Similar approaches have been suc-
cessful in the identification and discrimination of chem-
ical reaction mechanisms (Marquardt, 2005; Ross et al.,
2006). It will be interesting to try them in developmental
contexts where multiple competing mechanisms have
been proposed, e.g., for the gap gene network. In the
future, models can guide the design of new patterns
and morphologies. Recently, the first successes of syn-
thetic pattern designs have been reported for in vitro
and bacterial systems, and we expect that in the future
it should be possible to extend this paradigm to multi-
cellular organisms as well (Basu et al., 2005; Isalan
et al., 2005).
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