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Abstract: We establish the behavior of the energy of minimizers of non-local Ginz-
burg-Landau energies with Coulomb repulsion in two space dimensions near the onset
of multi-droplet patterns. Under suitable scaling of the background charge density with
vanishing surface tension the non-local Ginzburg-Landau energy becomes asymptoti-
cally equivalent to a sharp interface energy with screened Coulomb interaction. Near
the onset the minimizers of the sharp interface energy consist of nearly identical circular
droplets of small size separated by large distances. In the limit the droplets become
uniformly distributed throughout the domain. The precise asymptotic limits of the bifur-
cation threshold, the minimal energy, the droplet radii, and the droplet density are
obtained.

1. Introduction

Spatial patterns are often a result of the competition between thermodynamic forces
operating on different length scales. When short-range attractive interactions are pres-
ent in a system, phase separation phenomena can be observed, resulting in aggregation of
particles or formation of droplets of new phase, which evolve into macroscopically large
domains via coarsening or nucleation and growth (see e.g. [1]). This process, however,
can be frustrated in the presence of long-range repulsive forces. As the droplets grow,
the contribution of the long-range interaction may overcome the short-range forces,
whereby suppressing further growth. This mechanism was identified in many energy-
driven pattern forming systems of different physical nature, such as various types of
ferromagnetic systems, type-I superconductors, Langmuir layers, multiple polymer sys-
tems, etc., just to name a few [2–11]. Remarkably, these systems often exhibit very
similar pattern formation behaviors [10,12].

One important class of systems with competing interactions are systems in which
the long-range repulsive forces are of Coulomb type (for an overview, see [13,14] and
references therein). The nature of the Coulombic forces may be very different from
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system to system. For example, these forces may arise when particles undergoing phase
separation carry net electric charge [15–18], or they may be a consequence of entropic
effects associated with chain conformations in polymer systems [19–23]. Coulomb inter-
actions may also arise indirectly as a result of diffusion-mediated processes [4,24,25].
All this makes systems with repulsive Coulombic interactions a ubiquitous example of
pattern forming systems.

Studies of systems with competing short-range attractive interactions and long-range
repulsive Coulomb interactions go back to the work of Ohta and Kawasaki, who pro-
posed a non-local extension of the Ginzburg-Landau energy in the context of diblock
copolymer systems [19]. Even though its validity for diblock copolymer systems may
be questioned [21,26–28], the Ohta-Kawasaki model is applicable to a great number
of physical problems of different origin [14]. On the other hand, mathematically the
Ohta-Kawasaki model presents a paradigm of energy-driven pattern forming systems
which has been receiving a growing degree of attention [9,29–37].

The Ohta-Kawasaki energy is a functional of the form [13,14,19,24,38]:

E[u] =
∫

Ω

(
ε2

2
|∇u|2 + W (u)

)
dx

+
1

2

∫
Ω

∫
Ω

(u(x) − ū)G0(x, y)(u(y) − ū)dx dy. (1.1)

Here, u : Ω → R is a scalar quantity denoting the “order parameter” in a bounded
domain Ω ⊂ R

d . Different terms of the energy are as follows: the first term penalizes
spatial variations of u on the scales shorter than ε, the second term, in which W is a
symmetric double-well potential drives local phase separation towards the minima of
W at u = ±1, and the last term is the long-range interaction, whose Coulombic nature
comes from the fact that the kernel G0 solves the Neumann problem for

− ΔG0(x, y) = δ(x − y) − 1

|Ω| ,
∫

Ω

G0(x, y)dx = 0, (1.2)

where Δ is the Laplacian in x and δ(x) is the Dirac delta-function. The parameter ū
denotes the prescribed uniform background charge, and the overall “charge neutrality”
is ensured via the constraint

1

|Ω|
∫

u dx = ū. (1.3)

It is important to note that the kernel G0 solves (1.2) in the space of the same dimen-
sionality as the order parameter u (not to be confused with the case in which the kernel
solves Laplace’s equation in the space of higher spatial dimensionality, as is common in
many other systems with competing interactions, see e.g. [7,16]).

The parameter ε > 0 in (1.1) determines both the scale of the short-range interaction
and the magnitude of the interfacial energy between the regions with different values
of u when ε is sufficiently small. In fact, it is known that no patterns can form in the
system if ε is sufficiently large [13,14,39]. On the other hand, when ε � 1, the first term
in the functional E becomes a singular perturbation, giving rise to “domain structures”
(see Fig. 1), which are of particular physical interest. These patterns consist of extended
regions in which u is close to one of the minima of the potential W , separated by narrow
domain walls. In this situation one can reduce the energy functional appearing in (1.1)
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Fig. 1. A multi-droplet pattern: density plot of u in a local minimizer of E[u] with W (u) = 1
4 (1−u2)2 obtained

numerically for ū = −0.5, ε = 0.025, and Ω = [0, 11.5) × [0, 10), with periodic boundary conditions. Dark
regions correspond to u ≈ −1, and light regions correspond to u ≈ 1 (from [14])

to an expression in terms of the interfaces alone. In [13,14], such a reduction was per-
formed for E using formal asymptotic techniques (see also [30,35,40,41]) and leads to
the following reduced energy (for simplicity of notation, we choose the normalizations in
such a way that the parameter ε is, in fact, the domain wall energy, see Sec. 4 for details):

E[u] = ε

2

∫
Ω

|∇u| dx +
1

2

∫
Ω

∫
Ω

(u(x) − ū)G(x, y)(u(y) − ū) dx dy. (1.4)

Here the function u takes on values ±1 throughout Ω , and the kernel G is the screened
Coulomb kernel, i.e., it solves the Neumann problem for

− ΔG(x, y) + κ2G(x, y) = δ(x − y), (1.5)

with some κ > 0. The constant κ has the physical meaning of the inverse of the Debye
screening length [13,14]. Note that the sharp interface energy E with the unscreened
Coulomb kernel (i.e. with κ = 0) was derived by Ren and Wei as the Γ -limit of the
diffuse interface energy E under assumptions of weak non-local coupling (i.e., with an
extra factor of ε in front of the Coulomb kernel) and ū ∈ (−1, 1) independent of ε, as
ε → 0 [30] (see also [35,37]; note that this case is also equivalent to considering E on
the domain of size O(ε1/3)). At the same time, screening becomes important near the
transition between the uniform and the patterned states which occurs near |ū| = 1,
the case of interest in the present paper [13,14]. Note that in the presence of screening
the neutrality condition in (1.3) is relaxed.

In this paper, we rigorously establish the relation between the sharp interface energy
E and the diffuse interface energy E , and analyze the precise behavior of minimizers
of the sharp interface energy E for ε � 1 in the vicinity of the transition from the
trivial minimizer to patterned states occurring near |ū| = 1. We note that despite the
apparent simplicity of the expression for E , the minimizers of E exhibit quite an intri-
cate dependence on the parameters for ε � 1 and |ū| � 1. Our analysis in this paper
will be restricted to the case d = 2. While a number of our results can be extended
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to arbitrary space dimensions, our methods to obtain sharp estimates for the energy of
minimizers rely critically on the properties of minimal curves in two dimensions and the
logarithmic behavior of the Green’s function of the two-dimensional Laplacian near the
singularity. Therefore, they cannot be readily extended to other spatial dimensionalities,
and, indeed, one would expect certain important differences between these cases and the
case of two space dimensions. At the same time, we will show that in the case d = 2 it
is possible to obtain rather detailed information about the structure of the transition near
|ū| = 1 in terms of energy. Let us note that, since the case d = 1 is now well-understood
[29–31,42], the remaining open case of physical interest is that of d = 3.

Before turning to the analysis, let us briefly mention a perfect example of an exper-
imental system in which the regimes studied by us could be easily realized, which is
inspired by the beautiful Nobel Lecture of Prof. G. Ertl [43,44]. Consider molecules
which undergo adsorption and desorption to and from a crystalline surface. On the sur-
face, the atoms may hop around and reversibly stick to each other to form monolayer
aggregates [45]. Then, within the framework of phase field models, this process may be
described by the following evolution equation for the adsorbate density fraction φ [25]:

φt = MΔ(W ′(φ) − gΔφ) + k+(1 − φ) − k−φ, (1.6)

where W is a double-well potential with two minima between φ = 0 and φ = 1, g is
the short-range coupling constant, M is a kinetic coefficient, and k± are the adsorption
and desorption rates, respectively. Note that this equation can be rewritten as

φt = MΔ{W ′(φ) − gΔφ + kG0 ∗ (φ − φ̄)}, (1.7)

where k = (k+ + k−)/M , φ̄ = k+/(k+ + k−), and “∗” denotes convolution in space,
with G0 given by (1.2), provided the spatial average of the initial data is φ̄. Upon suit-
able rescaling, this is precisely the H−1 gradient flow for the energy E , i.e., we have
ut = Δ(δE/δu), where u is a rescaling of φ. In particular, minimizers of E are ground
states of the considered system in equilibrium in the mean-field limit. We note that the
adsorption and desorption rates k± can be quite small compared to the hopping rate,
resulting in very small values of ε ∼ k1/2. Therefore, one can achieve a very good scale
separation between the interfacial thickness (atomic scales) and the size of adsorbate
clusters (micro-scale) in this experimental setup.

Our paper is organized as follows. In Sec. 2, we present heuristic arguments and give
the statements of main results, in Sec. 3, we perform a detailed analysis of the sharp
interface energy E , in Sec. 4 we establish a connection between the sharp interface
energy E and the diffuse interface energy E . Finally, in Sec. 5 we conclude the proofs
of the theorems.

Throughout the paper, the symbols L p , Hk , W k,p, Ck,α , BV denote the usual function
spaces, | · | denotes the d-dimensional Lebesgue measure or the (d − 1)-dimensional
Hausdorff measure of a set, depending on the context, and C , c, etc., denote generic
positive constants that can change from line to line. The symbols O(1) and o(1) denote,
as usual, uniformly bounded and uniformly small quantities, respectively, in the limit
ε → 0, etc. Finally, we will say that a statement holds for ε � 1, etc., if there exists
ε0 > 0 such that that statement is true for all 0 < ε ≤ ε0. For simplicity of notation, the
subscript ε is omitted for all quantities depending on ε.
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2. Heuristics and Main Results

Let us begin our investigation by setting d = 2 and making a simplifying assumption
that the domain Ω is a torus1: Ω = [0, 1)2. Let us also specify the domains of definition
for the functionals E and E . Formally, the diffuse interface energy E[u] will be defined
for all u ∈ H1(Ω) subject to

∫
Ω

u dx = ū, whereas the sharp interface energy E[u] will
be defined for all u ∈ BV (Ω; {−1, 1}).

The assumption that Ω is a torus, which is common in the considered class of prob-
lems, eliminates the need to deal with the boundary effects and, even more importantly,
restores the translational invariance inherent in the problem on the whole of R

d (note
that the choice of the size of Ω is inconsequential, the obtained energy of the minimiz-
ers scales linearly with |Ω|). As a result, the kernel of the non-local part of the energy
becomes a function of x − y only. With a slight abuse of notation, in the following we
will, therefore, replace G(x, y) with G(x − y) everywhere below.

On heuristic grounds one would expect that the minimizers of E at ε � 1 would
be periodic with period R ∼ ε1/3, whenever |ū| < 1 and |ū| is not too close to 1
[9,13,14,19]. A simple scaling analysis shows that in this case E ∼ ε2/3 as ε → 0 with
ū fixed. Our first result gives a justification for this energy scaling without any assump-
tions about the minimizers (for statements about existence and regularity of minimizers,
see the following sections).

Theorem 2.1. Let W satisfy the assumptions (i)–(iv) at the beginning of Sec. 4, and let
ū ∈ (−1, 1) be fixed. Then there exist ε0 > 0 and C > c > 0, such that

cε2/3 ≤ min E, min E ≤ Cε2/3 (2.1)

for all ε ≤ ε0.

Observe also that for E this result still holds when Ω = [0, 1)d for any d, while for E
it holds at least for d < 6 (see Sec. 4). We note that for ū = 0 and |u| ≤ 1 such a result
was obtained by Choksi, using somewhat different techniques [9]. On the level of E
(with κ = 0), Alberti, Choksi and Otto recently proved, among many other interesting
results, a stronger statement that in the limit ε → 0, the constants in the upper and lower
bounds in (2.1) can be chosen to be arbitrarily close to each other [36]. We note that the
case κ = 0 and ū ∈ (−1, 1) fixed can be treated as the limit of energy E considered by
us as κ → 0, when the constraint

∫
Ω

u dx = ū gets automatically enforced (see (5.2)).
Thus, when ū ∈ (−1, 1) is fixed, the energy E admits a non-trivial minimizer, whose

energy scales as in (2.1) when ε � 1. What about the case |ū| > 1? Here, in fact, it
is easy to see that the only minimizers admitted by E are the trivial ones. Consider, for
example, the case ū < −1, the other case is equivalent by symmetry. In this case the
problem admits the unique global minimizer u = −1. To see this, let us introduce the
characteristic function χΩ+ of the set Ω+ = {u = +1} for a given u ∈ BV (Ω; {−1, 1}).
Then u = 2χΩ+ − 1, and by a straightforward computation

E[u] ≥ 1

2

∫
Ω

∫
Ω

(2χΩ+(x) − 1 − ū)G(x − y)(2χΩ+(y) − 1 − ū)dxdy

≥ (1 + ū)2

2κ2 − 2(1 + ū)

κ2 |Ω+|. (2.2)

1 Throughout the paper, [0, �)d will always denote a d-dimensional rectangle with size � and periodic
boundary conditions, identified with a d-dimensional torus.
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Thus, when ū < −1, the second term in the last inequality in (2.2) is positive, hence, is
minimized by |Ω+| = 0. But in this case u = −1 attains equality in (2.2), so u = −1
is the minimizer. Thus, when |ū| > 1, non-trivial minimizers of E do not exist, and,
therefore, at |ū| = 1 a bifurcation occurs in the limit ε → 0.

The main purpose of this paper is to investigate the transition between the trivial and
the non-trivial minimizers of E and E that occurs in the neighborhood of |ū| = 1 for
ε � 1. The energy E captures most of the difficulty associated with the considered
problem. Therefore, we will spend most of our effort in this paper to the studies of
E (see Sec. 3). At the same time, as we show later (see Sec. 4), the statements about
the behavior of min E also extend to that of min E for ε � 1 (the correspondence of
minimizers of the two energies will be a subject of future study).

When Ω = [0, 1)2, the kernel G has an explicit representation

G(x) = 1

2π

∑
n∈Z2

K0(κ|x − n|), (2.3)

where K0 is the modified Bessel function of the first kind. In particular, G > 0 and we
have the following asymptotic expansion from the power series representation of K0
[46]:

G(x) = − 1

2π
ln(κ̄|x |) + O(|x |), (2.4)

where

κ̄ = 1
2κ exp

⎛
⎝γ −

∑
n∈Z2\{0}

K0(κ|n|)
⎞
⎠ , (2.5)

and γ ≈ 0.5772 is Euler’s constant. We also have G(x) bounded whenever |x | > δ, for
any δ > 0, and (2.4) can be used to estimate derivatives of G to O(|x | ln |x |) as well.

Consider the case in which the value of ū approaches ū = −1 from above, with ε � 1
fixed. Clearly, for large enough deviations there exists a non-trivial minimizer. As can
be seen from the arguments in the proof of Theorem 2.1, the size of the set where u = 1
on the minimizer goes to zero as ū → −1. Heuristically, one would, therefore, expect
that in this situation the minimizer will consist of a number of isolated droplets where
u = +1 of small size in the background where u = −1. Moreover, since on the scale
of a droplet the interfacial energy will give a dominant contribution, these droplets are
expected to be nearly circular. This motivates an introduction of the following reduced
energy:

EN ({ri }, {xi }) =
N∑

i=1

(
2πεri − 2π(1 + ū)κ−2r2

i − πr4
i (ln κ̄ri − 1

4 )
)

+4π2
N−1∑
i=1

N∑
j=i+1

G(xi − x j )r
2
i r2

j , (2.6)

which describes the energy of interaction of N well separated disk-shaped droplets of
radius ri centered at xi , to the leading order. More precisely, the first term (2.6) stands
for the interfacial energy of all the droplets, the second term is the energy of interactions
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between the droplets and the background, the third term is the self-interaction energy of
each droplet, and the last term is the interaction energy of each droplet pair (for the case
of a single droplet in R

2, see [14]).
We can use the reduced energy in (2.6) to obtain the leading order scaling of various

quantities for ε � 1 by balancing different terms. From the balance of interfacial energy
and the self-interaction energy, one should have ri = O(ε1/3| ln ε|−1/3). Balancing this
with the second term leads, in turn, to

δ̄ = ε−2/3| ln ε|−1/3(1 + ū) (2.7)

being an O(1) quantity. Similarly, balancing the last term with the first three leads to
N = O(| ln ε|), and the expected behavior of min EN = O(ε4/3| ln ε|2/3). One would
also expect that, since the droplets repel each other, in a minimum energy configuration
they would become uniformly distributed throughout Ω .

Our main result proves and further quantifies this heuristic picture on the level of the
sharp interface energy E .

Theorem 2.2. Let ū = −1 + ε2/3| ln ε|1/3δ̄, with some δ̄ > 0 fixed. Then for any σ > 0
sufficiently small there exists ε0 > 0 such that for all ε ≤ ε0:

(i) If δ̄ < 1
2

3
√

9 κ2, then u = −1 is the unique global minimizer of E, with ε−4/3

| ln ε|−2/3 min E = 1
2κ−2δ̄2.

(ii) If δ̄ > 1
2

3
√

9 κ2, there exists a non-trivial minimizer of E. The minimizer is

u(x) = −1 + 2
N∑

i=1

χΩ+
i
(x), (2.8)

where χΩ+
i

are characteristic functions of N disjoint simply connected sets Ω+
i ⊂

Ω with boundary of class C3, and N = O(| ln ε|). The boundary of each set Ω+
i

is O(ε2/3−σ )-close (in the Hausdorff sense) to a circle of radius ri centered at xi .
Furthermore,

min E = 1
2ε4/3| ln ε|2/3κ−2δ̄2 + EN ({ri }, {xi }) + O(ε5/3−σ ), (2.9)

with EN = O(ε4/3| ln ε|2/3), ri = O(ε1/3| ln ε|−1/3), and

|xi − x j | > εσ , ∀ j �= i. (2.10)

(iii) If δ̄ > 1
2

3
√

9 κ2, in the limit ε → 0 we have

ε−1/3| ln ε|1/3ri → 3
√

3 (2.11)

uniformly,

1

| ln ε|
N∑

i=1

δ(x − xi ) → 1

2π
3
√

9

(
δ̄ −

3
√

9

2
κ2

)
, (2.12)

weakly in the sense of measures, and

ε−4/3| ln ε|−2/3 min E →
3
√

9

2

(
δ̄ −

3
√

9

4
κ2

)
. (2.13)
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Fig. 2. “Coulombic dice”: Minimizers of EN with ri = 3√3 ε1/3| ln ε|−1/3 for κ = 2 and N = 2, 3, 4, 5,
obtained using a random search algorithm

Note that a more detailed result on the structure of the transition occurring near
δ̄ = 1

2
3
√

9 κ2 is presented in Proposition 3.11.
Let us make a few remarks related to the statements of Theorem 2.2. For small, but

finite values of ε this theorem establishes an equivalence between the sharp interface
energy E and the energy of N interacting droplets EN , in the sense that the minimizers
of E are close to “almost” minimizers of EN , i.e., we have EN < min EN + O(ε5/3−σ ).
Nevertheless, to prove closeness of minimizers of E to those of EN we also need some
coercivity of the energy EN . This problem has to do with the properties of the minimiz-
ers of the pairwise interaction of the droplets, i.e. the choice of xi which minimize EN
with fixed ri . This becomes a difficult problem in the case of interest, since we generally
expect N � 1 (for a numerical solution at a few values of N and κ = 2 see Fig. 2).
It would be natural to conjecture that at small enough ε the minimizing droplets will
arrange themselves into a periodic lattice close to a hexagonal (close-packed) lattice.
Proving this kind of result, however, is a major challenge (see [47] for a recent proof for
a certain class of pair interactions), which is one of the open questions also in many other
problems, such as the problem of characterizing Abrikosov vortex lattices, for example
[48]. Let us mention here a recent result by Chen and Oshita, who proved that in the
case κ = 0 the hexagonal arrangement of disks is energetically the best among simple
periodic lattices [49]. Yet, it is not known if the same result also holds for more general
arrangements of droplets. Here we prove a weaker result that the number density of
droplets becomes asymptotically uniform as ε → 0, leading also to uniform distribution
of energy (compare with [36]). Moreover, we identify the precise asymptotic behavior
of the minimal energy and show that the size of the minimizing droplets becomes the
same as ε → 0.

Lastly, we establish the asymptotic behavior of the minimal value of the diffuse
interface energy E .

Theorem 2.3. Let W satisfy assumptions (i)–(iv) at the beginning of Sec. 4, let ū =
−1 + ε2/3| ln ε|1/3δ̄, with some δ̄ > 0 fixed, and let κ be given by (4.10). Then

(i) If δ̄ ≤ 1
2

3
√

9 κ2, then ε−4/3| ln ε|−2/3 min E → 1
2κ−2δ̄2,

(ii) If δ̄ > 1
2

3
√

9 κ2, then ε−4/3| ln ε|−2/3 min E → 3√9
2

(
δ̄ − 3√9

4 κ2
)

,

as ε → 0.

Theorem 2.3 says that the energy of the minimizers of the diffuse interface energy
E behaves asymptotically the same as that of the sharp interface energy E in the limit
ε → 0. In particular, the transition to non-trivial minimizers occurs asymptotically at
the same values of ū for ε � 1.

The proofs of Theorems 2.1–2.3 are based on a number of propositions established
in Secs. 3 and 4, and are completed in Sec. 5.
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3. Analysis of the Sharp Interface Problem

Our plan for the analysis of the sharp interface problem consists of a number of steps
which we list below:

1. Introduce a suitably rescaled energy Ē and domain Ω̄ .
2. Establish existence and regularity of the minimizers of Ē (subsets of Ω̄ where

u = 1).
3. Establish some a priori estimates for the geometry of the minimizers of Ē and

uniform bounds on the induced long-range potential.
4. Establish that different connected components of minimizers of Ē are separated by

large distances in Ω̄ .
5. Establish that each connected component of a minimizer of Ē is close to a disk

(hence the term “droplet”).
6. Establish equivalence between min Ē and min ĒN (the suitably rescaled version of

EN ).
7. Improve the estimate for the separation distance between different droplets.
8. Prove uniform convergence of the rescaled droplet radii to a universal constant.
9. Prove convergence of min Ē to a limit and convergence of the normalized droplet

density in the original, unscaled domain Ω to a limit, as ε → 0.

This plan is carried out in the rest of this section via a series of lemmas and propositions.

3.1. Scaling. We begin by introducing a suitable rescaling, in which the main quantities
of interest become O(1) quantities in the limit ε → 0. Motivated by the discussion of
Sec. 2, we define the rescaled energy Ē (with the energy of the uniform state u = −1
subtracted) and a new coordinate x̄ ∈ Ω̄ = [0, ε−1/3| ln ε|1/3)2, where Ω̄ is a two-
dimensional torus with period ε−1/3| ln ε|1/3:

E = ε4/3| ln ε|2/3 ( 1
2κ−2δ̄2 + Ē), x = ε1/3

| ln ε|1/3 x̄ . (3.1)

The energy Ē can be conveniently expressed in terms of the set Ω̄+ ⊂ Ω̄ in which
u = 1:

Ē = | ln ε|−1
(
|∂Ω̄+| − 2δ̄κ−2|Ω̄+|

)

+2| ln ε|−2
∫

Ω̄+

∫
Ω̄+

G
(
ε1/3| ln ε|−1/3(x̄ − ȳ)

)
dx̄ d ȳ. (3.2)

We also need an expression for the rescaled energy ĒN of a system of interacting
droplets. With the help of (3.1), we can write the rescaling of (2.6) as

ĒN = 2π

| ln ε|
N∑

i=1

{
r̄i − δ̄κ−2 r̄2

i − 1
2 | ln ε|−1r̄4

i

(
ln(ε1/3| ln ε|−1/3κ̄ r̄i ) − 1

4

)}

+
4π2

| ln ε|2
N−1∑
i=1

N∑
j=i+1

G(ε1/3| ln ε|−1/3(x̄i − x̄ j ))r̄
2
i r̄2

j , (3.3)

where r̄i and x̄i are the radii and the centers of the droplets, respectively.



54 C. B. Muratov

3.2. Properties of minimizers. Let us begin with the statement of a result on the exis-
tence and regularity of minimizers of Ē (or, equivalently, of E), which is obtained by
straightforwardly adapting the results of [50] for sets of prescribed mean curvature.

Proposition 3.1. There exists a set Ω̄+ of finite perimeter which minimizes Ē in (3.2).
The boundary ∂Ω̄+ of this set is a curve of class C1,α for some α ∈ (0, 1).

In view of this, in the following we will always assume that minimizers Ω̄+ of Ē are
closed sets. We also note that

v(x̄) = | ln ε|−1
∫

Ω̄+
G(ε1/3| ln ε|−1/3(x̄ − ȳ)) d ȳ (3.4)

is in W 2,p(Ω̄), with any p > 1, and, hence, in C1,α(Ω̄) for any α ∈ (0, 1). Indeed, v̄

solves the equation

− Δv + ε2/3| ln ε|−2/3κ2v = | ln ε|−1χΩ̄+ , (3.5)

where χΩ̄+ is the characteristic function of Ω̄+, in Ω̄ , and so the result follows by stan-
dard elliptic regularity theory [51]. As a consequence, we have a higher regularity for
the boundary of the minimizer Ω̄+ of Ē [52]:

Corollary 3.1. The boundary ∂Ω̄+ of a minimizer Ω̄+ of Ē is of class C3,α .

Note that this regularity result also holds more generally for local minimizers of Ē in
dimensions d ≤ 7 [50] (see also [35,53,54]), hence, in particular, the expressions for
the first and second variation of Ē in d ≤ 3 obtained in [14] are justified (see also [55]
for the case of arbitrary dimensions). If ρ ∈ C1(∂Ω̄), a > 0, and Ω̄a is the set obtained
by displacing ∂Ω̄+ by aρ in the outward normal direction, then a �→ Ē(Ω̄+

a ) is twice
continuously differentiable at a = 0, and we have [14] (for the reader’s convenience,
the computation is reproduced in Appendix C):

| ln ε| d Ē(Ω̄+
a )

da

∣∣∣∣
a=0

=
∫

∂Ω̄+
(K (x̄) − 2δ̄κ−2 + 4v(x̄))ρ(x̄) dH1(x̄), (3.6)

| ln ε| d2 Ē(Ω̄+
a )

da2

∣∣∣∣
a=0

=
∫

∂Ω̄+

(
|∇ρ(x̄)|2 + 4ν(x̄) · ∇v(x̄) ρ2(x̄)

)
dH1(x̄)

+
∫

∂Ω̄+
(4v(x̄) − 2δ̄κ−2)K (x̄)ρ2(x̄) dH1(x̄)

+4| ln ε|−1
∫

∂Ω̄+

∫
∂Ω̄+

G(ε1/3| ln ε|−1/3(x̄ − ȳ))ρ(x̄)ρ(ȳ) dH1(x̄)dH1(ȳ), (3.7)

where K (x̄) is the curvature at point x̄ ∈ ∂Ω̄+, with the sign convention that K > 0 if
Ω̄+ is convex, and ν(x̄) is the outward unit normal to ∂Ω̄+ at that point. The associated
Euler-Lagrange equation for ∂Ω̄+ reads

K (x̄) = 2δ̄κ−2 − 4v(x̄), (3.8)

which also allows to simplify the expression in (3.7) evaluated on a minimizer to

| ln ε| d2 Ē(Ω̄+
a )

da2

∣∣∣∣
a=0

=
∫

∂Ω̄+

(
|∇ρ(x̄)|2 + 4ν(x̄) · ∇v(x̄) ρ2(x̄) − K 2(x̄)ρ2(x̄)

)
dH1(x̄)

+4| ln ε|−1
∫

∂Ω̄+

∫
∂Ω̄+

G(ε1/3| ln ε|−1/3(x̄ − ȳ))ρ(x̄)ρ(ȳ) dH1(x̄)dH1(ȳ). (3.9)
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We will use these equations later on to establish some properties of the minimizers
for ε � 1. Meanwhile, let us begin our analysis with some basic estimates.

Lemma 3.1. Let Ω̄+ be a minimizer of Ē . Then there exists C > 0 such that

|Ω̄+| ≤ C | ln ε|, (3.10)

|∂Ω̄+| ≤ C | ln ε| (3.11)

for ε � 1.

Proof. First of all, by representation (2.3) we have G(x − y) ≥ c > 0 for all x, y ∈ Ω .
Therefore, in view of the fact that min Ē ≤ 0 (since Ē = 0 if Ω̄+ = ∅), from (3.2) we
have

0 ≥ | ln ε| min Ē ≥ 2| ln ε|−1
∫

Ω̄+

∫
Ω̄+

G
(
ε1/3| ln ε|−1/3(x̄ − ȳ)

)
dx̄ − 2δ̄κ−2|Ω̄+|

≥ 2c| ln ε|−1 |Ω̄+|2 − 2δ̄κ−2|Ω̄+|, (3.12)

which gives (3.10). On the other hand, we also have

|∂Ω̄+| ≤ 2δ̄κ−2|Ω̄+|. (3.13)

Therefore, from (3.10) we immediately obtain (3.11). ��
As a corollary, it follows from (3.11) that the diameter of each connected subset Ω̄+

i
of Ω̄+ is bounded by O(| ln ε|)

diam(Ω̄+
i ) ≤ C | ln ε|, (3.14)

for some C > 0 independent of ε � 1.
Our next step is to show that the area of each connected component of Ω̄+ �= ∅ is

uniformly bounded above and below independently of ε.

Lemma 3.2. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then, there exist C > c > 0 such that

c ≤ |Ω̄+
i |, |∂Ω̄+

i | ≤ C, diam(Ω̄+
i ) ≤ C, (3.15)

for ε � 1.

Proof. First, note that since by Corollary 3.1 the set ∂Ω̄+ is of class C3,α we have
N < ∞. To see that (3.15) holds, we first write Ē as

| ln ε| Ē =
N∑

i=1

(
|∂Ω̄+

i | − 2δ̄κ−2|Ω̄+
i |

+2| ln ε|−1
∫

Ω̄+
i

∫
Ω̄+

i

G(ε1/3| ln ε|−1/3(x̄ − ȳ)) dx̄d ȳ

+2| ln ε|−1
∑
j �=i

∫
Ω̄+

i

∫
Ω̄+

j

G(ε1/3| ln ε|−1/3(x̄ − ȳ)) dx̄d ȳ

⎞
⎠ . (3.16)
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Fig. 3. The graph of V0(r̄) from (3.18) for different values of δ̄

In view of (3.14) and (2.4), the integral in the second line in (3.16) is bounded from
below by 1

6π
(1 − δ)| ln ε| |Ω̄+

i |2 for any δ > 0, provided ε is small enough. Therefore,
removing the set Ω̄+

i from Ω̄+ will result in the change of energy ΔĒ estimated as

| ln ε| ΔĒ ≤ −
(
|∂Ω̄+

i | − 2δ̄κ−2|Ω̄+
i | + 1

3π
(1 − δ)|Ω̄+

i |2
)

≤ −
(

2
√

π |Ω̄+
i |1/2 − 2δ̄κ−2|Ω̄+

i | + 1
3π

(1 − δ)|Ω̄+
i |2

)
, (3.17)

where in the first line we took into account that G > 0 and in the second line used the
isoperimetric inequality. Then, by direct inspection (see also Fig. 3) we have ΔĒ < 0,
contradicting minimality of Ē on Ω̄+, unless c ≤ |Ω̄+

i | ≤ C for some C > c > 0, inde-
pendently of ε � 1. Finally, the lower bound for |∂Ω̄+

i | follows from the isoperimetric
inequality, and the upper bound is obtained by applying the previous argument to the
first line in (3.17). ��

Following the same arguments, we also immediately arrive at the following non-exis-
tence result:

Proposition 3.2. Let δ̄ < 1
2

3
√

9 κ2 be fixed. Then the unique minimizer of Ē is Ω̄+ = ∅

for ε � 1.

Proof. Let us introduce the function Vv : [0,∞) → R, defined as

Vv(r̄) = 2π
(

r̄ + (2v − δ̄κ−2)r̄2 + 1
6 r̄4

)
, (3.18)

whose graph at v = 0 and several values of δ̄ is shown in Fig. 3. If Ω̄+
i is a connected com-

ponent of Ω̄+ and r̄i = ( 1
π
|Ω̄+

i |)1/2, then by the same arguments as in Lemma 3.2, the
energy gained by removing Ω̄+

i from Ω̄+ is bounded below by | ln ε|−1(V0(r̄i )+o(1)), as
long as ε � 1. Then, by direct inspection V0(r̄) is always positive under the assumptions
of the proposition, making Ω̄+ = ∅ energetically preferred.



Droplet Phases in Non-local Ginzburg-Landau Models 57

Note that the asymptotic value of the threshold of δ̄ in Proposition 3.2 below which no
non-trivial minimizers are present was computed in [14]. Another simple corollary to
Proposition 3.2 is the following

Lemma 3.3. Let Ω̄+ be a non-trivial minimizer of Ē and let N be the number of disjoint
connected components of Ω̄+. Then there exists C > 0 such that

N ≤ C | ln ε|, (3.19)

for ε � 1.

Let us now establish a uniform bound on the potential v. Note that a version of this
result is also an important component in the proofs of [36].

Lemma 3.4. Let Ω̄+ be a non-trivial minimizer of Ē . Then for any α ∈ (0, 1) we have

0 < v ≤ C, ||v||C1,α(Ω̄) ≤ C, (3.20)

where v is given by (3.4), for some C > 0 independent of ε � 1.

Proof. We start by noting that v > 0 in view of positivity of G. Let us now estimate the
gradient of v. Using (2.4) and Lemmas 3.2 and 3.3, we get

|∇v(x̄)| ≤ | ln ε|−1
∫

Ω̄+
|∇G(ε1/3| ln ε|−1/3|x̄ − ȳ|)| d ȳ

≤ | ln ε|−1
∫

Br̄ (x̄)

|∇G(ε1/3| ln ε|−1/3|x̄ − ȳ|)| d ȳ

+| ln ε|−1
∫

Ω̄+\Br̄ (x̄)

|∇G(ε1/3| ln ε|−1/3|x̄ − ȳ|)| d ȳ

≤ C(| ln ε|−1r̄ + r̄−1) ≤ 2C | ln ε|−1/2, (3.21)

for some C > 0, where Br̄ (x̄) is a disk of radius r̄ centered at x̄ , and the last inequality
is obtained by choosing r̄ = | ln ε|1/2. Therefore, by the results of Lemma 3.2, we see
that

osc
x̄∈Ω̄+

i

v(x̄) = o(1), (3.22)

for each connected component Ω̄+
i of Ω̄+. To see that this implies the conclusion of

the lemma, suppose that, to the contrary, we have max v = M � 1. Since by (3.5) the
function v is subharmonic in Ω̄\Ω̄+, it achieves its maximum in the closure of some
Ω̄+

i . Therefore, in view of (3.22) we have v ≥ 1
2 M in Ω̄+

i . Then, following the same
arguments as in the proof of Lemma 3.2, for large enough M we can lower the energy
by removing Ω̄+

i from Ω̄+.
Finally, by [51, Theorem 9.11] we have ||v||W 2,p(B1(x̄)) ≤ C , where B1(x̄) is the disk

of radius 1 centered at x̄ ∈ Ω̄ , for some C > 0 and any p > 2, independently of x̄
and ε � 1. Hence, the uniform Hölder estimate on the gradient follows by Sobolev
imbedding [51, Theorem 7.17]. ��

We can also immediately conclude from (3.8) and (3.22) that the curvature of ∂Ω̄+

is uniformly bounded both from above and below by positive constants, implying that
each Ω̄+

i is convex. Note that this result justifies the terminology “droplet” for each Ω̄+
i

which we will be using from now on.
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Lemma 3.5. Let ∂Ω̄+ be the boundary of a minimizer Ω̄+ of Ē . Then we have

c ≤ K (x̄) ≤ C, (3.23)

for all x̄ ∈ ∂Ω̄+, with some C > c > 0 independent of ε � 1. In particular, when
ε � 1, each connected component Ω̄+

i of Ω̄+ is convex and simply connected.

Proof. The upper bound is an immediate consequence of (3.8) and positivity of v. To
obtain the lower bound, let us note that by the results of Lemma 3.2, for every connected
component Ω̄+

i there exists a disk Br̄i (x̄i ), with r̄i = O(1), such that Ω̄+
i ⊂ Br̄i (x̄i ).

Therefore, translating Br̄i (x̄i ) until its boundary touches ∂Ω̄+
i , we obtain a point x̄ ′

i ∈
∂Ω̄+

i , such that K (x̄ ′
i ) ≥ r̄−1

i ≥ 2c, for some c > 0 independent of ε � 1. Now,
by (3.8) we have v(x̄ ′

i ) ≤ 1
2 (δ̄κ−2 − c). At the same time, by (3.22) this implies that

v(x̄) ≤ 1
4 (2δ̄κ−2 − c) for all x̄ ∈ ∂Ω̄+

i , which, again, by (3.8) gives the statement.

We now show that different connected components of Ω̄+ cannot come too close to
each other when ε � 1.

Lemma 3.6. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+, and let N ≥ 2. Then, there exists C > 0 such
that

dist(Ω̄+
i , Ω̄+

j ) ≥ C ∀i �= j, (3.24)

for ε � 1.

Proof. Let x̄i ∈ Ω̄+
i and x̄ j ∈ Ω̄+

j be such that r = |x̄i − x̄ j | = dist(Ω̄+
i , Ω̄+

j ) > 0.

Consider the disk B centered at 1
2 (x̄i + x̄ j ) with radius R = 2r and the rectangle Q

inscribed into B which is shown by the thick solid lines in Fig. 4. In view of the uniform
bound on the curvature of ∂Ω̄+ obtained in Lemma 3.5, the curve segments ∂Ω̄+

i ∩ Q
and ∂Ω̄+

j ∩ Q passing through x̄i and x̄ j , respectively, intersect ∂ Q transversally as in

Fig. 4 when r � 1. Furthermore, we have dist(∂Ω̄+
i ∩ ∂ Q+, ∂Ω̄+

j ∩ ∂ Q+) ≤ 2r and

dist(∂Ω̄+
i ∩ ∂ Q−, ∂Ω̄+

j ∩ ∂ Q−) ≤ 2r , where ∂ Q+ and ∂ Q− are the right and the left
side of the boundary of the rectangle relative to the line through x̄i and x̄ j , respectively,
for sufficiently small r independent of ε � 1 (see Fig. 4). At the same time, we have
|∂Ω̄+

i ∩ Q| + |∂Ω̄+
j ∩ Q| ≥ 4r

√
3. Therefore, reconnecting the points ∂Ω̄+

i ∩ ∂ Q+ with

∂Ω̄+
j ∩∂ Q+, and ∂Ω̄+

i ∩∂ Q− with ∂Ω̄+
j ∩∂ Q− by straight lines and including the region

between them into Ω̄ , we will decrease |∂Ω̄+| by at least 4(
√

3 − 1)r . Thus, the change
ΔĒ in the total energy is estimated to be

| ln ε|ΔĒ ≤ −4(
√

3 − 1)r + 4
∫

Q
v(x̄) dx̄

+2| ln ε|−1
∫

Q

∫
Q

G(ε1/3| ln ε|−1/3(x̄ − ȳ)) dx̄d ȳ. (3.25)

Finally, in view of Lemma 3.4 and (2.4), the right-hand side of (3.25) is bounded above
by −C1r + C2r2, with C1,2 > 0 independent of ε � 1. Hence, the energy of such a
rearrangement will be lower if r is sufficiently small, for all ε � 1. ��
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(a) (b)

r

r

r   3
r

2r

Fig. 4. Schematics of the rearrangement argument of Lemma 3.6. In (a), the set Ω̄+ is shown in gray, solid
arcs show the bounds on the location of ∂Ω̄+, the thick solid lines show the rectangle Q. In (b), the gray region
shows the rearranged Ω̄+

As our next step, we establish that different droplets must, in fact, be sufficiently far
from each other. We note that this result is a manifestation of the “repumping” insta-
bility, which does not allow two droplets to approach each other sufficiently closely.
Dynamically, this instability results in the growth of one droplet at the expense of its
neighbor shrinking. This instability mechanism for reaction-diffusion systems was first
pointed out in [56] (see also [4]) and further studied in the context of two-dimensional
periodic structures in [13,14,57].

Lemma 3.7. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+, and let N ≥ 2. Then there exists α > 0 such that

dist(Ω̄+
i , Ω̄+

j ) > ε−α ∀i �= j, (3.26)

for ε � 1.

Proof. Consider the second variation of Ē with respect to the perturbation, in which the
boundary of each connected component Ω̄+

i is expanded uniformly by a distance aci in
the normal direction, i.e., we have ρ(x̄) = ci for all x̄ ∈ ∂Ω̄+

i . By (3.9), we have

d2 Ē(Ω̄+
a )

da2

∣∣∣∣
a=0

= | ln ε|−1
∑
i, j

Qi j ci c j , (3.27)

where the coefficients Qi j of the quadratic form Q can be estimated as

Qii = −
∫

∂Ω̄+
i

K 2(x̄) dH1(x̄) +
2

3π
|∂Ω̄+

i |2 + o(1), (3.28)

where we took into account that by (3.5) and Gauss’s theorem
∫
∂Ω̄+

i
ν(x̄)·∇v(x̄) dH1(x̄)=

−| ln ε|−1|Ω̄+
i | + O(ε2/3| ln ε|−2/3) and used the expansion in (2.4) together with Lem-

mas 3.5, 3.4 and 3.2, for ε � 1. Furthermore, since by convexity of Ω̄+
i (see Lemma

3.5) the boundary of each Ω̄+
i is a closed curve, by the Cauchy-Schwarz inequality we

have

4π2 =
(∫

∂Ω̄+
i

K (x̄) dH1(x̄)

)2

≤ |∂Ω̄+
i |

∫
∂Ω̄+

i

K 2(x̄) dH1(x̄). (3.29)
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Therefore, the diagonal elements of Q can be further estimated as

Qii ≤ 2

3π
|∂Ω̄+

i |2 − 4π2

|∂Ω̄+
i | + o(1). (3.30)

On the other hand, define αi j = | ln ε|−1 ln(dist(Ω̄+
i , Ω̄+

j )), and suppose, to the contrary
of the statement of the proposition, that αi j → 0 for some pair of indices on a sequence
of ε → 0. Then, with the help of Lemma 3.6 and (2.4) we can estimate

Qi j = 2

3π
(1 − 3αi j ) |∂Ω̄+

i | |∂Ω̄+
j | + o(1). (3.31)

Now, for the index pair (i, j) above let us choose ci = |∂Ω̄+
j |, c j = −|∂Ω̄+

i |, and
let us set ck = 0 for all other indices k. A simple calculation of the sum in (3.27) then
shows that for this choice of c’s we have

| ln ε| d2 Ē(Ω̄+
a )

da2

∣∣∣∣
a=0

≤ 4|∂Ω̄+
i |2|∂Ω̄+

j |2
π

(
αi j − π3

|∂Ω̄+
i |3 − π3

|∂Ω̄+
j |3

)
+ o(1),

(3.32)

where we took into account Lemma 3.2. This expression is negative as soon as

αi j < 2π3 min{|∂Ω̄+
i |−3, |∂Ω̄+

j |−3}, (3.33)

which, in view of Lemma 3.2, contradicts minimality of Ē for small enough ε. ��
Let us also point out that the proof of Lemma 3.7 gives a universal lower bound for

the perimeter of the connected portions of the minimizers. Indeed, the quadratic form Q
has a negative eigenvalue, if 2

3π
|∂Ω̄+

i |2 − 4π2|∂Ω̄+
i |−1 < 0 and ε � 1, which implies

the following result:

Proposition 3.3. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then, for every δ > 0,

|∂Ω̄+
i | ≥ π

3
√

6 − δ, (3.34)

for ε � 1.

Note that this condition in the radially-symmetric case was obtained in [13,14,58] and
is also applicable to all local minimizers (for global minimizers, a better bound will be
obtained below). We also derive another quantitative estimate on v and the geometry of
Ω̄+

i that remains valid for local minimizers of low energy.

Proposition 3.4. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then

0 < v <
δ̄

2κ2 , |Ω̄+
i | <

3πδ̄

κ2 , (3.35)

for ε � 1.
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Proof. Let x̄ ∈ ∂Ω̄+
i . Then, using Lemma 3.5, (3.8), (2.4), and positivity of G, for some

c > 0 independent of ε � 1 we obtain

0 < c ≤ K (x̄) = 2δ̄κ−2 − 4v(x̄)

≤
(

2δ̄κ−2 − 4| ln ε|−1
∫

Ω̄+
i

G(ε1/3| ln ε|−1/3(x̄ − ȳ))d ȳ

)

≤ 2δ̄κ−2 − 2

3π
|Ω̄+

i | + o(1), (3.36)

which, together with (3.22) and the fact that v reaches its maximum in the closure of
Ω̄+, yields the statement. ��

We now prove that for ε � 1 each droplet in a minimizer is, in fact, close to a disk.
The basic idea of the proof is that because of the logarithmic behavior of G at small
distances the potential v inside each droplet is approximately constant. Therefore, the
shape of the droplet approximately minimizes the usual isoperimetric problem, and the
size of the droplet is determined by the balance of surface tension and the pressure due
to non-local forces inside the droplet [13,14].

If the droplet Ω̄+
i were exactly the disk Br̄i (x̄i ) of radius r̄i centered at x̄i , then the

potential v would be given by

v∗(x̄) = v∗
i (x̄) + vi (x̄), (3.37)

where

v∗
i (x̄) = | ln ε|−1

∑
n∈Z2

vB(|x̄ − x̄i − n|, r̄i , ε
1/3| ln ε|−1/3κ), (3.38)

with the function vB(ρ, r, κ) being the solution of −ΔvB + κ2vB = χBr (0) in R
2, given

explicitly in terms of the modified Bessel functions:

vB(ρ, r, κ) =
{

κ−2 − κ−1r K1(κr)I0(κρ), ρ ≤ r,
κ−1r I1(κr)K0(κρ), ρ ≥ r,

(3.39)

and

vi (x̄) = | ln ε|−1
∑
j �=i

∫
Ω̄+

j

G(ε1/3| ln ε|−1/3(x̄ − ȳ)) d ȳ. (3.40)

Note that in view of Lemmas 3.7 and 3.2, and (2.4), we have

|∇vi | ≤ Cεα, (3.41)

for some C > 0 and α > 0, in any disk of O(1) radius containing Ω̄+
i for ε � 1.

Therefore, if x̄ ∈ ∂ Br̄i (x̄i ), by Taylor-expanding the Bessel functions [46] we have for
any α < 1

3 ,

v∗(x̄) = v̄i + O(εα), |∇v∗(x̄)| = O(| ln ε|−1), (3.42)



62 C. B. Muratov

where the constant v̄i is given by

v̄i = − 1
2 | ln ε|−1r̄2

i ln(ε1/3| ln ε|−1/3κ̄ r̄i )

+π | ln ε|−1
∑
j �=i

r̄2
j G(ε1/3| ln ε|−1/3κ(x̄i − x̄ j )), r̄ j = ( 1

π
|Ω̄+

j |)1/2. (3.43)

In the following, we will show that v(x̄) on ∂Ω̄+
i also coincides with v̄i to O(εα), giving

the balance of forces at the interface. We are now ready to state our result:

Proposition 3.5. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then there exists a constant α > 0 such that for
all ε � 1:

(i) For each Ω̄+
i there exists a point x̄i ∈ Ω̄+

i , such that

Br̄i −εα (x̄i ) ⊂ Ω̄+
i ⊂ Br̄i +εα (x̄i ), (3.44)

where r̄i = ( 1
π
|Ω̄+

i |)1/2 and Br̄ (x̄) is the disk of radius r̄ centered at x̄;
(ii) The values of r̄i satisfy

r̄−1
i − 2δ̄κ−2 + 4v̄i = O(εα), (3.45)

where v̄i are given by (3.43).

Proof. Let us pick a point x̄ ′
i ∈ Ω̄+

i , then Ω̄+
i ⊂ B|∂Ω̄+

i |(x̄ ′
i ). Let us then replace Ω̄+

i with

the disk of the same area centered at x̄ ′
i . By Lemmas 3.7 and 3.2, the resulting set Br̄i (x̄ ′)

still satisfies the bound in (3.26), and the change of energy ΔĒ under this rearrangement
can be estimated as

| ln ε|ΔĒ = 2
√

π |Ω̄+
i |1/2 − |∂Ω̄+

i | + O
(
| ln ε|−1

)
, (3.46)

where we used (2.4), (3.41) and Lemma 3.2. Thus, the energy will decrease under this
rearrangement, contradicting minimality of Ē , unless for some C > 0 the isoperimetric
deficit of Ω̄+

i ,

D(Ω̄+
i ) = |∂Ω̄+

i |
2
√

π |Ω̄+
i |1/2

− 1 ≤ C | ln ε|−1, (3.47)

for ε � 1. Choosing x̄i ∈ B|∂Ω̄+
i |(x̄ ′

i ) to minimize |Ω̄+
i ΔBr̄i (x̄i )|, where Ω̄+

i ΔBr̄i (x̄i )

denotes the symmetric difference of sets Ω̄+
i and Br̄i (x̄i ), by the results of [59] we have

|Ω̄+
i ΔBr̄i (x̄i )| ≤ C ′| ln ε|−1/2, and C ′ > 0 is a constant independent of ε � 1. In

fact, x̄i ∈ Ω̄+
i , since otherwise by convexity of Ω̄+

i we would have |Ω̄+
i ΔBr̄i (x̄i )| ≥

1
2 |Br̄i (x̄i )|). Therefore, by Lemma 3.5 the set ∂Ω̄+

i is uniformly close to ∂ Br̄i (x̄i ), giving
(i) to o(1).

To obtain the O(εα) bound in (i), let ρ : ∂ Br̄i (x̄i ) → R be the signed distance from
a given point on ∂ Br̄i (x̄i ) to ∂Ω̄+

i along the outward normal to ∂ Br̄i (x̄i ). Note that by
convexity of Ω̄+

i the function ρ defines a one-to-one map between ∂Ω̄+
i and ∂ Br̄i (x̄i ).

Furthermore, if ||ρ||L∞(∂ Br̄i (x̄i )) = δ, we have ||∇ρ||L∞(∂ Br̄i (x̄i )) ≤ Cδ1/2 for some
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C > 0 and ε � 1 in view of Lemma 3.5, and δ → 0, as ε → 0. Also, by Corollary 3.1
we have ρ ∈ C3(∂ Br̄i (x̄i )).

Treating Ω̄+ as a perturbation of the set Ω̄∗ = Br̄i (x̄i ) ∪ (Ω̄+\Ω̄+
i ) and expanding

as in Lemma C.1, we can write

| ln ε|(Ē(Ω̄+) − Ē(Ω̄∗)) =
∫

∂ Br̄i (x̄i )

(
r̄−1

i − 2δ̄κ−2 + 4v∗(x̄)
)

ρ(x̄) dH1(x̄)

+
1

2

∫
∂ Br̄i (x̄i )

(
|∇ρ(x̄)|2 + 4ν(x̄) · ∇v∗(x̄) ρ2(x̄)

)
dH1(x̄)

+
1

2r̄i

∫
∂ Br̄i (x̄i )

(4v∗(x̄) − 2δ̄κ−2)ρ2(x̄) dH1(x̄)

+
2

| ln ε|
∫

∂ Br̄i (x̄i )

∫
∂ Br̄i (x̄i )

G(ε1/3| ln ε|−1/3(x̄ − ȳ) ρ(x̄)ρ(ȳ) dH1(x̄)dH1(ȳ)

+O(δ2+α), (3.48)

for any α ∈ (0, 1). Moreover, in view of Lemmas 3.4 and 3.5, the error term in (3.48) is
uniform in ε � 1.

On the other hand, since |Ω̄+
i | = |Br̄i (x̄i )|, we have

0 =
∫

∂ Br̄i (x̄i )

∫ ρ(x̄)

0
(1 + r̄−1

i r) dr dH1(x̄)

=
∫

∂ Br̄i (x̄i )

ρ(x̄) dH1(x̄) +
1

2r̄i

∫
∂ Br̄i (x̄i )

ρ2(x̄) dH1(x̄). (3.49)

Therefore, using the estimate in (3.42) we can rewrite (3.48) as

| ln ε|(Ē(Ω̄+) − Ē(Ω̄∗)) = 1

2

∫
∂ Br̄i (x̄i )

(
|∇ρ|2 − r̄−2

i ρ2(x̄)
)

dH1(x̄)

+
2

| ln ε|
∫

∂ Br̄i (x̄i )

∫
∂ Br̄i (x̄i )

G(ε1/3| ln ε|−1/3(x̄ − ȳ) ρ(x̄)ρ(ȳ) dH1(x̄)dH1(ȳ)

+O(| ln ε|−1||ρ||2
L2

Br̄i
(x̄i )

) + O(εα||ρ||L2
Br̄i

(x̄i )
) + O(δα||ρ||2

H1
Br̄i

(x̄i )
), (3.50)

where we took into account that δ ≤ C ||ρ||H1
Br̄i

(x̄i )
for some C > 0. Further estimating

the double integral in (3.50), using

∣∣∣∣∣
∫

∂ Br̄i (x̄i )

(
1

| ln ε|G(ε1/3| ln ε|−1/3(x̄ − ȳ)) − 1

6π

)
ρ(ȳ) dH1(ȳ)

∣∣∣∣∣
≤ Cδ ln | ln ε|

| ln ε| , (3.51)
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we have

| ln ε|(Ē(Ω̄+) − Ē(Ω̄∗))

= 1

2

∫
∂ Br̄i (x̄i )

(
|∇ρ|2 − r̄−2

i ρ2(x̄)
)

dH1(x̄) +
1

3π

(∫
∂ Br̄i (x̄i )

ρ(x̄) dH1(x̄)

)2

+O(εα||ρ||L2
Br̄i

(x̄i )
) + o(||ρ||2

L2
Br̄i

(x̄i )
) + o(||ρ||2

H1
Br̄i

(x̄i )
). (3.52)

Now, write ρ as ρ = ρ0 + ρ1 + ρ2, where ρ0 = 1
2π r̄i

∫
∂ Br̄i (x̄i )

ρ(x̄) dH1(x̄), ρ1(x̄) =
x̄−x̄i|x̄−x̄i | · b, for some vector b ∈ R

2, and ρ2 orthogonal to ρ0 and ρ1 in L2(∂ Br̄i (x̄i )). By

(3.49) we have |ρ0| = O(||ρ||2
L2(∂ Br̄i (x̄i ))

), which is, therefore, negligibly small com-

pared to |b| and ||ρ2||L2(∂ Br̄i (x̄i ))
in all the arguments below. Then, using Poincaré’s

inequality, we find that

| ln ε|Ē(Ω̄+) ≥ | ln ε|Ē(Ω̄∗)

+
1

4

∫
∂ Br̄i (x̄i )

|∇ρ2(x̄)|2 dH1(x̄) − Cεα||ρ||L2
Br̄i

(x̄i )
− c|b|2, (3.53)

for some C > 0 and 0 < c � 1, whenever ε � 1. This implies that

||ρ2||2H1
Br̄i

(x̄i )
≤ C ′εα||ρ||L2

Br̄i
(x̄i )

+ c′|b|2, (3.54)

for some C ′ > 0 and 0 < c′ � 1, for ε � 1, otherwise replacing Ω̄+
i with Br̄i (x̄i )

lowers the energy. On the other hand, we also have |b| = O(||ρ2||H1
Br̄i

(x̄i )
). If not, then

∂Ω̄+
i will be o(|b|) close to ∂ Br̄i (x̄i +b) for ε � 1. This, however, contradicts the choice

of x̄i to minimize |Ω̄+
i ΔBr̄i (x̄i )|. Therefore, we have

||ρ||2
H1

Br̄i
(x̄i )

≤ C ′′εα||ρ||H1
Br̄i

(x̄i )
+ c′′||ρ||2

H1
Br̄i

(x̄i )
, (3.55)

for some C ′′ > 0 and 0 < c′′ � 1, implying ||ρ||H1
Br̄i

(x̄i )
= O(εα) and, hence, δ =

O(εα). This gives part (i) of the statement of the proposition.
Finally, to prove part (ii) of the statement, let Ω̄+

a be obtained from Ω̄+ by expanding
Ω̄+

i by an amount a > 0, i.e., let us change ρ(x̄) → ρ(x̄) + a for every x̄ ∈ ∂ Br̄i (x̄i ).
By (3.48), the change of energy can be estimated as

| ln ε|(Ē(Ω̄+
a ) − Ē(Ω̄+)) = 2πar̄i (r̄

−1
i − 2δ̄κ−2 + 4v̄i ) + O(aδ) + O(a2), (3.56)

where we took into account (3.42). Then, since Ω̄+ is a minimizer, the right-hand side of
(3.56) should vanish to O(a). Therefore, by the previous result we obtain the statement.

��
Also, from the proof of Proposition 3.5 we obtain the following universal lower bound

on |Ω̄+
i |:
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Proposition 3.6. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then, for every δ > 0,

|Ω̄+
i | ≥ π

3
√

9 − δ, (3.57)

for ε � 1.

Proof. Let r̄i = ( 1
π
|Ω̄+

i |)1/2 and let Vvi (x̄i )(r̄i ) be the fourth degree polynomial in r̄i

defined in (3.18). First of all, observe that 2v̄i (x̄i ) − δ̄κ−2 ≤ − 1
2

3
√

9 + o(1), so that
Vvi (x̄i )(r̄i ) ≤ o(1) for ε � 1. If not, then arguing as in Lemma 3.2, we can reduce
the energy by removing Ω̄+

i from Ω̄+. Therefore, Vvi (x̄i ) has exactly two critical points:
a strict local maximum and a strict local minimum (see Fig. 3). Furthermore, since
Vvi (x̄i )(r̄i ) ≤ o(1) and since the left-hand side of (3.45) in Proposition 3.5 is equal to
dVvi (x̄i )(r̄i )/dr̄i , each value of r̄i is close to the local minimum of Vvi (x̄i ). By inspection,
in this situation r̄i ≥ 3

√
3 − δ, for any δ > 0, provided ε is sufficiently small, hence, the

claim.

The results of Proposition 3.5 just obtained immediately allow to establish an asymp-
totic equivalence of the energy Ē and the reduced energy ĒN on the minimizers for
ε � 1.

Proposition 3.7. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+, and let r̄i and x̄i be as in Proposition 3.5. Then

min Ē = O(1), min Ē = min ĒN + O(εα), (3.58)

for some α > 0 independent of ε � 1.

Proof. The first equation in (3.58) is a direct consequence of the definition of Ē in (3.2),
according to which 0 ≤ 1

2 δ̄2κ−2 + min Ē ≤ ε−4/3| ln ε|2/3 E[−1] = 1
2 δ̄2κ−2. The upper

bound for min Ē in the second equation follows by choosing a trial function for Ē in the
form of disks of radius r̄i centered at x̄i which minimize ĒN and taking into consider-
ation Lemmas 3.2 and 3.7 and (2.4). On the other hand, by Proposition 3.5(i), we have
Ω̄+

i ⊃ Br̄i −εα (x̄i ) for ε � 1, hence, |∂Ω̄+
i | > 2π(r̄i − εα) and |Ω̄+

i | > π(r̄i − εα)2.
This controls from below all the terms of min Ē , except the one involving δ̄, by the
corresponding terms of ĒN . The latter, however, is controlled by the second inclusion
in Proposition 3.5(i). ��

To summarize, for 0 < ε � 1 the non-trivial minimizers of Ē have the form of
well-separated nearly circular droplets. In fact, from Proposition 3.7 one should expect
that the droplet-droplet interaction part of the energy, which is given by the last term
in the expression (3.3) for ĒN , should be close to the minimum for fixed droplet sizes.
Proving this, however, generally requires information about coercivity of the interaction
energy, which becomes difficult to establish when N � 1, the asymptotic case of inter-
est. Nevertheless, with the help of Lemma 3.4 we can prove that in the original scaling
the droplets stay away from each other a distance O(εβ) in Ω , with an arbitrary β > 0
for ε � 1, i.e., that the statement of Lemma 3.7 actually holds for any α ∈ (0, 1

3 ),
provided that ε is small enough.

Proposition 3.8. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+, and let x̄i be as in Proposition 3.5. Then, for any
α ∈ (0, 1

3 ) we have |x̄i − x̄ j | > ε−α , for all i �= j , as long as ε � 1.
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Proof. First of all, note that by Lemma 3.7 the statement of the proposition holds for
some α > 0. To prove that α could be chosen arbitrarily close to 1

3 , suppose that, to the
contrary, there exists a sequence of ε → 0 and a pair of indices (i, j), depending on ε,
such that |x̄i − x̄ j | ≤ ε−α with some 0 < α < 1

3 . Let us denote by I1 the set of indices
of those droplets whose centers are contained in the disk B1 centered at x̄0 = 1

2 (x̄i + x̄ j )

with radius ε−α . By assumption we have |I1| ≥ 2, where | · | denotes the counting
measure. Also, we have |I1| < M for some M ∈ N independent of ε � 1. Indeed, by
Lemmas 3.2 and 3.4, and by (2.4) we have for some c > 0,

C ≥ v(x̄0) ≥ | ln ε|−1
∑
k∈I1

∫
Ω̄+

k

G(ε1/3| ln ε|−1/3(x̄i − ȳ)) d ȳ

≥ ( 1
3 − α + o(1)

)
c|I1|, (3.59)

for ε � 1.
Now, fix σ > 0 sufficiently small independently of ε, and consider a sequence of

nested disks Bk of radii ε−α(1+kσ) centered at x̄0. By repeating the argument above,
we also have |IM | ≤ M , as long as ε � 1, where |Ik | is the counting measure of the
set Ik of indices such that x̄l ∈ Bk for all l ∈ Ik . Therefore, in view of the fact that
|I1| > 1, we must have |Ik+1| − |Ik | = 0 for some 1 ≤ k ≤ M − 1, implying that
Bk+1\Bk ∩ Ω̄+ = ∅. Thus, there exists a cluster of droplets, whose indices are denoted
by Ik , which are within O(ε−α(1+kσ)) distance of x̄0 and are separated from all other
droplets by O(ε−α(1+σ+kσ)) distance.

Let us show that this contradicts the minimality of Ē for small enough ε. Indeed, let
us displace the droplets in Bk to the new locations x̄ ′

l = x̄l + λ(x̄l − x̄i ), with l ∈ Ik ,
which represents a dilation of Bk by a factor of 1 + λ relative to x̄i , keeping all r̄i fixed.
For 0 < λ � 1 the resulting change ΔĒ of energy satisfies

| ln ε|2ΔĒ ≤ −cλ + Cλεσα| ln ε|, (3.60)

for some C, c > 0 independent of ε � 1, where we used Lemmas 3.1 and 3.2, and the
estimate (2.4), arguing as in the derivation of (3.41). Thus, the considered rearrangement
lowers the energy. ��

As a simple corollary to this result, we actually have the following universal (δ̄-inde-
pendent) upper bound on |Ω̄+

i | and, hence, on r̄i :

Corollary 3.2. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+. Then, for any δ > 0,

|Ω̄+
i | ≤ π

(
12(

√
2 − 1)

)2/3
+ δ, (3.61)

when ε � 1.

Proof. If |Ω̄+
i | is bigger, split Ω̄+

i into two disks of equal area and move them apart a
distance d = ε−β , with 0 < β < α < 1

3 . Arguing as before, the energy change ΔĒ
upon this manipulation is given by

| ln ε| ΔĒ ≤ 2(
√

2 − 1)
√

π |Ω̄+
i |1/2 − β

2π
|Ω̄+

i |2 + o(1). (3.62)

In view of the arbitrary closeness of β to 1
3 , the energy change is, therefore, negative for

ε � 1. ��
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Finally, we note that the argument of Proposition 3.8 still holds for local minimizers
of low energy; the result can be obtained by sending λ → 0 in the proof.

3.3. Limiting behavior. We now investigate the limiting behavior of the minimizers
of Ē as ε → 0, with δ̄ > 1

2
3
√

9 κ2 fixed, i.e., the situation in which minimizers are
non-trivial. As the value of ε is decreased, the number of droplets in a minimizer are
expected to grow. What we will show below is that in the limit ε → 0 the droplet sizes
become asymptotically the same, and that the droplets become uniformly distributed
throughout Ω .

Let us first study the behavior of each droplet as ε → 0. We have the following result.

Proposition 3.9. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē , where Ω̄+

i are the
disjoint connected components of Ω̄+, and let r̄i be as in Proposition 3.5. Then r̄i → 3

√
3

uniformly as ε → 0.

Proof. First of all, by Proposition 3.6 we already know that r̄i ≥ 3
√

3 − δ for any δ > 0,
provided that ε � 1. Let us prove that the matching upper bound also holds for ε � 1.
Indeed, for any β ∈ (0, 1

3 ) let Bε−β (x̄i ) ∈ Ω̄ be the disk of radius ε−β centered at x̄i

defined in Proposition 3.5, and consider Ω̄β = Ω̄\ ∪N
i=1 Bε−β (x̄i ). Note that by Propo-

sition 3.8 the disks Bε−β (x̄i ) do not intersect for ε � 1. In fact, by Proposition 3.8, for
any α ∈ (β, 1

3 ) we have dist (Bε−β (x̄i ), Bε−β (x̄ j )) > ε−α for ε � 1.
Let us show that the minimum of v defined in (3.4) is attained in Ω̄β for ε � 1. Let

x̄ be such that v(x̄) = min and let x̄i be the center of a droplet which is closest to x̄ .
Recalling the definition in (3.40) and Proposition 3.5, we can write

v(x̄) = vi (x̄) − r̄2
i

2| ln ε| ln(ε1/3(1 + |x̄ − x̄i |)) + o(1), (3.63)

where we used (2.4). In particular, for any δ > 0 we have v(x̄) > vi (x̄i )+ 1
6 r̄2

i (1−3β)−δ,
if |x̄ − x̄i | ≤ ε−β and ε � 1, in view of (3.41), where according to Proposition 3.8,
we can use α defined above, whenever ε � 1. On the other hand, choosing γ ∈ (β, α)

and picking any x̄ ′ such that |x̄ ′ − x̄i | = ε−γ , we see that for any δ > 0 we have
v(x̄ ′) < vi (x̄i ) + 1

6 r̄2
i (1 − 3γ ) + δ for ε � 1. However, with δ sufficiently small this

implies that v(x̄ ′) < v(x̄) for small enough ε, contradicting minimality of v at x̄ .
Now, we demonstrate that v(x̄) > 1

2 δ̄κ−2 − 1
4

3
√

9 − δ, for any δ > 0, provided that
ε � 1. Indeed, suppose the opposite inequality holds for some δ > 0 and a sequence of
ε → 0. Then, inserting a new droplet in the form of a disk of radius r̄ = O(1) centered
at x̄ results in the change ΔĒ of energy

| ln ε|ΔĒ = Vv(x̄)(r̄) + o(1), (3.64)

where V is given by (3.18), and we used (2.4) and (3.41). Since by assumption 2v(x̄) −
δ̄κ−2 < 1

2
3
√

9, it is easy to verify that Vv(x̄) attains a minimum at some r̄ = r̄0 >
3
√

3,
with Vv(x̄)(r̄0) < 0. Therefore, inserting a droplet with radius r̄0 and center at x̄ would
reduce energy for some ε � 1, contradicting minimality of Ē .

This, in turn, implies that vi (x̄i ) > 1
2 δ̄κ−2 − 1

4
3
√

9−δ for all i . Indeed, since x̄ ∈ Ω̄β ,
from (3.63) we have vi (x̄ ′) > 1

2 δ̄κ−2− 1
4

3
√

9− 1
6π

(1−3β)+o(1), for any x̄ ′ ∈ ∂ Bε−β (x̄i ),
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for ε � 1. On the other hand, by (3.41) the same inequality holds for x̄ ′ = x̄i . The esti-
mate then follows in view of arbitrariness of β < 1

3 .
Finally, since v̄i (x̄i ) > 1

2 δ̄κ−2 − 1
4

3
√

9−δ when ε � 1, and by Proposition 3.5(ii) the
values of r̄i are close to the minimizers of Vvi (x̄i )(r̄) for r̄ >

3
√

3−δ, by direct inspection
we have r̄i <

3
√

3 + δ as well, for any δ > 0 and ε � 1. ��
Let us point out that by (3.45) the uniform convergence of the droplet radii in Prop-

osition 3.9 also implies uniform convergence of vi (x̄i ) to a space-independent constant
as ε → 0:

vi (x̄i ) → 1

2κ2

(
δ̄ −

3
√

9

2
κ2

)
. (3.65)

In fact, from the proof of Proposition 3.9 we can conclude that v stays close to the con-
stant in (3.65) in Ω̄β for β arbitrarily close to 1

3 , provided ε � 1. This, in turn, implies
that the droplets become uniformly distributed in Ω̄ , or, equivalently, in Ω as ε → 0.
Below we prove this fact, which also gives the leading order behavior of energy in the
limit.

Let us rewrite the energy ĒN for the system of interacting droplets, using (3.18):

ĒN = 1

| ln ε|
N∑

i=1

(
Vvi (x̄i )(r̄i ) − 4πvi (x̄i )r̄

2
i

)

+
4π2

| ln ε|2
N−1∑
i=1

N∑
j=i+1

G(ε1/3| ln ε|−1/3(x̄i − x̄ j ))r̄
2
i r̄2

j + o(1). (3.66)

To proceed, let us go back to the original scaling in x and introduce xi = ε1/3| ln ε|−1/3 x̄i .
Also, for any 0 < σ � 1 define (our method is reminiscent of the Ewald summation
technique [60])

Gσ (x) = 1

4π2ε2σ

∑
n∈Z2

∫
R2

e
− |x−y|2

2ε2σ K0(κ|y − n|) dy. (3.67)

Here Gσ is a mollified version of G, with Fourier transform

Ĝσ (q) =
∫

Ω

eiq·x Gσ (x) dx = e− 1
2 ε2σ |q|2

κ2 + |q|2 , (3.68)

and which can, e.g., be estimated as

Gσ (x) = G(x) + o(εσ/4), |x | > εσ/2, (3.69)

and

Gσ (x) = O(σ | ln ε|), |x | < εσ . (3.70)
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Therefore, in view of Lemmas 3.2 and 3.3 we can write

ĒN = 1

| ln ε|
N∑

i=1

(
Vvi (x̄i )(r̄i ) − 4πvi (x̄i )r̄

2
i

)

+
2π2

| ln ε|2
N∑

i=1

N∑
j=1

Gσ (xi − x j )r̄
2
i r̄2

j + O(σ ). (3.71)

Now, let us introduce the quantity

ρ(x) = 1

| ln ε|
N∑

i=1

δ(x − xi ). (3.72)

Note that by Lemma 3.3 we have
∫
Ω

ρ(x) dx = O(1). In view of Proposition 3.9 and
(3.65), we can further rewrite ĒN as

ĒN = 1

| ln ε|
N∑

i=1

Vvi (x̄i )(r̄i ) − 2π
3
√

9

κ2

(
δ̄ −

3
√

9

2
κ2

) ∫
Ω

ρ(x)dx

+6π2 3
√

3
∫

Ω

∫
Ω

ρ(x)Gσ (x − y)ρ(y) dx dy + O(σ ). (3.73)

In fact, by Proposition 3.9 and (3.65), the first term in (3.73) goes to zero. Therefore, in
terms of the Fourier coefficients,

ρ̂q =
∫

Ω

eiq·xρ(x) dx, (3.74)

we can write

ĒN = −2π
3
√

9

κ2

(
δ̄ −

3
√

9

2
κ2

)
ρ̂0 +

6π2 3
√

3

κ2 ρ̂2
0

+6π2 3
√

3
∑

q∈2πZ2\{0}

e− 1
2 ε2σ |q|2 |ρ̂q |2
κ2 + |q|2 + O(σ ). (3.75)

Minimizing this with respect to ρ̂0, we obtain

ĒN ≥ − 1

2κ2

(
δ̄ −

3
√

9

2
κ2

)2

+ 6π2 3
√

3
∑

q∈2πZ2\{0}

e− 1
2 ε2σ |q|2 |ρ̂q |2
κ2 + |q|2 + O(σ ). (3.76)

Finally, from Lemma A.2 one can see that min ĒN ≤ − 1
2κ2

(
δ̄ − 1

2
3
√

9 κ2
)2

+ o(1)

for ε � 1. Hence, in view of arbitrariness of σ the constant in (3.76) is the limit of ĒN
and, by Proposition 3.7, also of Ē , as ε → 0. In addition, this implies that ρ̂q → 0 as
ε → 0 for every q �= 0. Thus, we just proved
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Proposition 3.10. Let δ̄ > 1
2

3
√

9 κ2, and let ρ be defined in (3.72), with xi = ε1/3

| ln ε|−1/3 x̄i , where x̄i are as in Proposition 3.5. Then

min Ē → − 1

2κ2

(
δ̄ −

3
√

9

2
κ2

)2

, (3.77)

and

ρ → 1

2π
3
√

3

(
δ̄ −

3
√

9

2
κ2

)
(3.78)

weakly in the sense of measures, as ε → 0.

We end by noting that the homogenization approach to multi-droplet patterns in a
related context was first discussed in [61]. Also, let us mention that in a related class of
problems existence of limiting density for the ground states of particle systems inter-
acting via potentials like our G as the number of particles goes to infinity was proved
in [62]. The difference with our result, however, is that in [62] the limit is taken at fixed
positive temperature, while in our case the system’s temperature (in the usual thermody-
namic sense) is strictly zero. Yet, as was pointed out in [62], the “effective” temperature
of the system considered actually goes to zero as the number of particles goes to infinity,
making these results closely related to ours.

3.4. Fine structure of the transition point. Finally, we briefly discuss the appearance of
non-trivial minimizers in the vicinity of the point δ̄m = 1

2
3
√

9 κ2 (this transition point
was identified in [13,14]). First, we note that by the results just obtained the transition
from trivial to non-trivial minimizers appears to be quite abrupt in the limit ε → 0.
In fact, in this limit one goes immediately from no droplets to infinitely many droplets
upon crossing the point δ̄ = δ̄m from below.

Observe that the energy Ē[u] (and, equivalently, E[u] − E[−1]) is a monotonically
decreasing function of δ̄. Therefore, a passage through the neighborhood of δ̄ = δ̄m
at small but finite ε will result in a monotonic increase of the number of droplets in a
minimizer. This number will quickly get large as one moves away from the transition
point. Therefore, in order to analyze droplet creation at the transition, we need to further
zoom in on the parameter region around δ̄ = δ̄m . Let us introduce the renormalized
distance to the transition (with the transition point shifted appropriately):

τ = | ln ε|
κ2

(
δ̄ −

3
√

9

2
κ2 − ln | ln ε|

2 3
√

3 | ln ε| κ2

)
, (3.79)

and consider the behavior of energy Ē in the limit ε → 0 for τ = O(1). As can be easily
seen, all the estimates obtained previously remain valid in this case, and minimizers are
close to a collection of N disks separated by large distances, whose energy is given by
ĒN to O(εα). We can also write the energy ĒN in the form

ĒN =
N∑

i=1

Ē1(r̄i ) + 4π2| ln ε|−2
N−1∑
i=1

N∑
j=i+1

G(xi − x j )r̄
2
i r̄2

j , (3.80)
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where

| ln ε|Ē1(r̄) = 2π
(

r̄ − 1
2

3
√

9 r̄2 + 1
6 r̄4

)

+ 1
3π | ln ε|−1 ln | ln ε| (r̄2 − 3

√
9)r̄2

−π | ln ε|−1(r̄2(ln κ̄ r̄ − 1
4 ) + 2τ)r̄2 (3.81)

is the energy of one disk-shaped droplet of radius r̄ .
It is easy to see that in the limit ε → 0 we have Ē1(r̄) ≥ 0 for all r̄ > 0, and Ē1(r̄) = 0

if and only of r̄ = 3
√

3. Therefore, r̄i → 3
√

3 uniformly in a minimizer as ε → 0 with τ

fixed. In fact, by convexity of Ē1 near r̄ = 3
√

3 we have r̄i − 3
√

3 = O(| ln ε|−1 ln | ln ε|)
in the limit ε → 0. Therefore, we obtain (the summation is absent in the formula, if
N = 1)

ĒN = 12 3
√

3 π2| ln ε|−2

⎧⎨
⎩

N−1∑
i=1

N∑
j=i+1

G(xi − x j )

− N

4π

(
ln κ̄ +

1

3
ln 3 − 1

4
+

2τ
3
√

9

)⎫⎬
⎭ + o(| ln ε|−2). (3.82)

From this expression it is easy to see that N = O(1) quantity. Thus, in this case the
problem reduces to minimizing the pair interaction potential given by the sum in (3.82).
We summarize the above discussion by stating the following result.

Proposition 3.11. Let δ̄ be given by (3.79) with τ fixed. Then, there exists a strictly
monotonically increasing sequence of numbers (τn), with τn → ∞ as n → ∞, such
that, provided that ε � 1:

(i) If τ < τ1 = 1
24

3
√

9 (3 − 4 ln 3 − 12 ln κ̄), then there are no non-trivial minimizers
of E.

(ii) If τ1 < τ < τ2, with τ2 = τ1 + 2π
3
√

9 min G, the minimizer of E is a single
droplet.

(iii) If τn < τ < τn+1, all minimizers of E consist of precisely n droplets. The droplet

centers {xi } nearly minimize V =
n−1∑
i=1

n∑
j=i+1

G(xi − x j ).

Let us mention that local minimizers of E without screening (i.e. with κ → 0) which
are close to disks of the same radius centered at the minimizers of V were constructed
perturbatively in a recent work of Ren and Wei [32,33]. We note that when τ = O(1),
existence of these solutions easily follows from our analysis, if one notices that in the
considered regime the excess energy of a minimizing sequence controls the isoperi-
metric deficit of each droplet and enforces O(1) distance between them. Therefore,
solutions with a prescribed number of droplets may be obtained by minimizing over
all u ∈ BV (Ω; {−1, 1}), such that the support of 1 + u has a fixed number of disjoint
components. In turn, by Proposition 3.11 the global minimizers of E belong to this class.

Let us also mention another related recent work of Choksi and Peletier, where a
version of E was considered in the regime, in which the minimizers consist of a finite
number of droplets [37]. There it was shown, using the language of Γ -convergence,
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that in the limit of small volume fraction the droplets concentrate into point masses
interacting via a pairwise potential, both in d = 2 and d = 3. Morover, similarly to the
conclusions of Sec. 3.4, in d = 2 all limiting masses were found to be equal to each
other.

4. Connection to the Diffuse Interface Energy

We now turn to the study of the relationship between the sharp interface energy E and
the diffuse interface energy E . Since most of our analysis here does not rely on any
particular assumptions on the dimensionality of space, we will treat the general case of
Ω being a d-dimensional torus: Ω = [0, 1)d . We assume that W is a symmetric dou-
ble-well potential with non-degenerate minima at u = ±1, together with some natural
technical assumptions:

(i) W ∈ C3(R), W (u) = W (−u), and W ≥ 0.

(ii) W (+1) = W (−1) = 0 and W ′′(+1) = W ′′(−1) > 0.
(iii) W ′′(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞ W ′′(u) = +∞, and

|W ′(u)| ≤ C(1 + |u|q), for some C > 0 and q > 1, with q < d+2
d−2 if d > 2.

Since we are setting the surface tension to ε, we need to additionally normalize W as
follows:

(iv) We have
∫ 1

−1

√
2W (u) du = 1. (4.1)

Note that these assumptions are satisfied for, e.g., the rescaled version of the classical
Ginzburg-Landau energy: W (u) = 9

32 (1 − u2)2 for d ≤ 3. Also note that this assump-
tion is not restrictive, since it is always possible to make (4.1) hold by an appropriate
rescaling.

Let us begin our analysis with a few general observations. First of all, by the direct
method of calculus of variations (see e.g. [63]) there exists a minimizer u ∈ H1(Ω) of
E satisfying

∫
Ω

u dx = ū for every ε > 0. Note that any critical point u of E , includ-
ing minimizers, is a weak solution of the Euler-Lagrange equation (here and below G0
solves (1.2) with periodic boundary conditions and has zero mean)

ε2Δu − W ′(u) − v + μ = 0, v(x) =
∫

Ω

G0(x − y)(u(y) − ū)dy, (4.2)

where

μ =
∫

Ω

W ′(u) dx (4.3)

is the Lagrange multiplier. Furthermore, from the Sobolev imbedding theorem we have
u ∈ L p(Ω) for p = 2d

d−2 , and hence v ∈ W 2,p(Ω) ⊂ C0,α(Ω), for some α ∈ (0, 1),
if d < 6. Applying the Moser iteration technique [63, see App. B], we then find that
u ∈ L p(Ω), for any p < ∞. Therefore, by standard elliptic regularity theory [51], we
also have u ∈ W 2,p(Ω), so u ∈ L∞(Ω) and is, in fact, a classical solution of (4.2).

We now show that u is uniformly bounded and that |u| cannot much exceed 1 when-
ever E[u] is sufficiently small, at least for d not too high.
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Proposition 4.1. Let d < 6 and let u be a critical point of E . Then, for every δ > 0 we
have |u| < 1 + δ and |v| < δ in Ω , whenever E[u] is sufficiently small.

Proof. Observe first that for every δ > 0 and E[u] small enough we have |{|u| > 1+δ}| <
1
2 . Now, suppose that the maximum value um of |u| is greater than 1 + δ. Without a loss
of generality, we may assume that um = max u. By the preceding observation, we have
μ ≤ C + 1

2 W ′(um), for some C > 0 independent of um . Therefore, in view of the mono-
tonic increase to infinity of W ′(u) due to hypothesis (iii) on W , we have μ ≤ 3

4 W ′(um)

for um sufficiently large. Now, taking into account that v ≥ −C ′um for some C ′ > 0
and large enough um , from (4.2) we find that ε2Δu ≥ 1

4 W ′(um) − C ′um > 0 at the
point where u = um , in view of assumption (iii) on W , contradicting the maximality of
u. Finally, to see that |u| < 1 + δ with any δ > 0, when E[u] � 1, note that u → ±1
a.e. when E[u] → 0. Hence, in view of the uniform bound on u obtained earlier, we
have μ → 0. Furthermore, since the non-local term in the energy can be written as
1
2

∫
Ω

|∇v|2dx , and v is uniformly bounded in W 2,p(Ω) for any p < ∞, we also have
v → 0 uniformly in Ω in this limit. Therefore, in view of positivity of W ′(1 + δ), we
can apply the same argument as above to complete the proof of the statement. ��

We note that while the arguments above hold for every critical point E with small
energy, it is generally possible for a local minimizer of E to strongly deviate from ±1 in
most of Ω: take, for instance, one-dimensional periodic solutions of (4.2) with period
O(1) [4,64,65]. Of course, these critical points will have O(1) energy when ε → 0, as
opposed to minimizers of E whose energy vanishes in this limit. Let us also mention that
numerical evidence shows that generally max |u| > 1, even for minimizers and ε � 1.

We now turn to estimating the minimal energy of E from below by the minimal
energy of E . For u ∈ H1(Ω) with

∫
u dx = ū, let us separate the domain Ω into three

pairwise-disjoint subdomains:

Ω = Ωδ
+ ∪ Ωδ− ∪ Ωδ

0 , (4.4)

where

Ωδ
+ = {x ∈ Ω : u(x) ≥ 1 − δ}, (4.5)

Ωδ− = {x ∈ Ω : u(x) ≤ −1 + δ}, (4.6)

Ωδ
0 = {x ∈ Ω : −1 + δ < u(x) < 1 − δ}. (4.7)

Next, let us introduce the following three auxiliary functionals (for simplicity of notation,
we will suppress the index δ in the definition of each functional):

E1[u] =
∫

Ωδ
0

(
ε2

2
|∇u|2 + W (u)

)
dx, (4.8)

E2[u] = 1

2κ2

∫
Ωδ

+∪Ωδ−
(u − u0)

2dx

+
1

2

∫
Ω

∫
Ω

(u(x) − ū)G0(x − y)(u(y) − ū)dxdy, (4.9)

where u0(x) = ±1 whenever x ∈ Ωδ±, respectively, with

κ = 1√
W ′′(1)

, (4.10)
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and

E3[u] =
∫

Ωδ
+∪Ωδ−

(
W (u) − 1

2κ2 (u − u0)
2
)

dx . (4.11)

It is clear that the energy E can be estimated from below as

E ≥ E1 + E2 + E3. (4.12)

Hence, we are going to establish a lower bound for E by considering the lower bounds
for each term in the sum above.

We start with the part of energy that is associated with the interfaces:

Lemma 4.1. Let δ > 0 be sufficiently small, let u ∈ H1(Ω) and suppose that |Ωδ− ∪
Ωδ

+| > 0. Then there exists u0 ∈ BV (Ω; {−1, 1}) such that u0(x) = ±1 whenever
x ∈ Ωδ±, and

E1[u] ≥ ε

2
(1 − a1δ

2)

∫
Ω

|∇u0|dx (4.13)

for some a1 > 0 independent of δ and ε.

Proof. First of all, if either |Ωδ
+| or |Ωδ−| is zero, we can simply choose u0 to be constant

(e.g. u0 = −1 when |Ωδ
+| = 0). So, let us assume that both |Ωδ±| > 0, and approximate

u in H1(Ω) by a piecewise linear function ũ with ∇ũ �= 0 almost everywhere in Ω .
Then, using the Modica-Mortola trick [66,67] and the co-area formula [68], we find

E1[ũ] ≥ ε

∫
|ũ|<1−δ

√
2W (ũ) |∇ũ| dx = ε

∫ 1−δ

−1+δ

√
2W (t) |{ũ = t}| dt. (4.14)

Since the function |{ũ = t}| is continuous for all t ∈ [−1 + δ, 1 − δ], there exists a
constant c ∈ [−1 + δ, 1 − δ] such that the right-hand side of (4.14) equals |{ũ = c}|∫ 1−δ

−1+δ

√
2W (t) dt ≥ (1 − a1δ

2)|{ũ = c}|, for some a1 > 0 and all δ small enough.
Now, define ũ0 ∈ BV (Ω; {−1, 1}) as

ũ0(x) =
{

+1, ũ(x) > c,
−1, ũ(x) ≤ c.

(4.15)

The preceding arguments imply the desired inequality for ũ. Passing to the limit in the
approximation, we obtain the result, with u0 = lim ũ0 in L1(Ω) upon extraction of a
subsequence. ��
Lemma 4.2. Let u and u0 be as in Lemma 4.1, let u satisfy

∫
Ω

u dx = ū, and let
|u| ≤ 1 + δ3 and

∣∣∫
Ω

G0(x − y)(u(y) − ū) dy
∣∣ ≤ δ3 in Ω , for δ > 0 sufficiently small.

Then

E2[u] ≥ 1

2

∫
Ω

∫
Ω

(u0(x) − ū)G(x − y)(u0(y) − ū) dxdy − a2δ E[u], (4.16)

for some a2 ≥ 0 independent of δ and ε, whenever E[u] ≤ δ
3
2 (d+6).
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Proof. Let us write u as follows:

u = u0 + u1 + u2, u1(x) = −κ2
∫

Ω

G0(x − y)(u(y) − ū)dy. (4.17)

Note that by assumption, ||u1||L∞(Ω) ≤ Cδ3 and ||u2||L∞(Ω) ≤ C , for some C > 0.
Now, observe that u1 solves

− Δu1 + κ2u1 = −κ2(u0 + u2 − ū), (4.18)

and, therefore, we also have

u1(x) = −κ2
∫

Ω

G(x − y)(u0(y) + u2(y) − ū)dy. (4.19)

Substituting u in the form (4.17) into (4.9), we obtain

E2(u0 + u1 + u2) = 12κ2
∫

Ωδ
+∪Ωδ−

(u1 + u2)
2 dx

+
1

2

∫
Ω

∫
Ω

(u0(x) + u1(x) + u2(x) − ū)G(x − y)(u0(y) + u2(y) − ū)dydx

= − 1

2κ2

∫
Ωδ

0

u2
1 dx − 1

κ2

∫
Ωδ

0

u1u2 dx − 1

2

∫
Ω

∫
Ω

u2(x)G(x − y)u2(y)dydx

+
1

2

∫
Ω

∫
Ω

(u0(x) − ū)G(x − y)(u0(y) − ū)dydx +
1

2κ2

∫
Ωδ

+∪Ωδ−
u2

2 dx

≥ 1

2

∫
Ω

∫
Ω

(u0(x) − ū)G(x − y)(u0(y) − ū)dydx − 1

2κ2

∫
Ωδ

0

u2
1 dx

+
∫

Ωδ
0

∫
Ω

u2(x)G(x − y)(u0(y) − ū) dydx

+
1

2κ2

∫
Ωδ

+∪Ωδ−

(
u2

2(x) − κ2u2(x)

∫
Ωδ

+∪Ωδ−
G(x − y)u2(y)dy

)
dx . (4.20)

In fact, the last line in (4.20) is non-negative. Indeed, writing the integral in the last line
of (4.20) with the help of the Fourier Transform âq of ũ = u2χΩδ

+∪Ωδ− , where χΩδ
+∪Ωδ−

is the characteristic function of Ωδ
+ ∪ Ωδ−:

âq =
∫

Ωδ
+∪Ωδ−

eiq·x u2(x) dx, (4.21)

we obtain

∫
Ωδ

+∪Ωδ−

(
u2

2(x) − κ2u2(x)

∫
Ωδ

+∪Ωδ−
G(x − y)u2(y)dy

)
dx

=
∑

q∈2πZd

|q|2|âq |2
κ2 + |q|2 ≥ 0. (4.22)



76 C. B. Muratov

To estimate the remaining terms in (4.20), we note that∣∣∣∣∣
1

κ2

∫
Ωδ

0

u1u2 dx +
∫

Ωδ
0

∫
Ω

u2(x)G(x − y)(u0(y) − ū) dydx

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ωδ
0

∫
Ω

u2(x)G(x − y)u2(y) dydx

∣∣∣∣∣
≤

∫
Ωδ

0

∫
{|u|≥1−δ3}

|u2(x)|G(x − y)|u2(y)| dydx

+
∫

Ωδ
0

∫
{|u|<1−δ3}

|u2(x)|G(x − y)|u2(y)| dydx . (4.23)

Since G ∈ L p(Ω) for all p < d
d−2 (any p < ∞ in d = 2), by Hölder inequality we can

see that for any Ω̃ ⊆ Ω

∫
Ω̃

G(x − y)|u2(y)| dy ≤ C

(∫
Ω̃

|u2|q dx

)1/q

≤ C ||u2||L∞(Ω̃)|Ω̃|1/q , (4.24)

for any q > d
2 . Therefore, continuing the estimates in (4.23), we obtain∣∣∣∣∣

∫
Ωδ

0

∫
Ω

u2(x)G(x − y)u2(y) dydx

∣∣∣∣∣
≤ C

(
δ3 + δ−6/qE1/q [u]

)
|Ωδ

0 | ≤ 2Cδ3|Ωδ
0 |, (4.25)

whenever E[u] ≤ δ3(q+2), where we took into account that by the assumptions of
the lemma |u2| ≤ |u − u0| + |u1| ≤ Cδ3 in {|u| > 1 − δ3}, and that E[u] ≥∫
{|u|<1−δ3} W (u) dx ≥ cδ6|{|u| < 1 − δ3}| for some c > 0.

Similarly, we have ∣∣∣∣∣
∫

Ωδ
0

u2
1 dx

∣∣∣∣∣ +

∣∣∣∣∣
∫

Ωδ
0

u1u2 dx

∣∣∣∣∣ ≤ Cδ3|Ωδ
0 |. (4.26)

The statement of the lemma then follows from the fact that E[u] ≥ ∫
Ωδ

0
W (u)dx ≥

cδ2|Ωδ
0 |, for some c > 0, by choosing q = 1

2 (d + 2). ��
Lemma 4.3. Let u and u0 be as in Lemma 4.1. Then

E3[u] ≥ −a3δ E[u] (4.27)

for some a3 ≥ 0 independent of δ and ε, for sufficiently small δ > 0.

Proof. By assumption (iii) on W , we have W (u) ≥ 1
2κ2 (u − u0)

2 whenever |u| > 1.
Hence

E3[u] ≥
∫

{1−δ≤|u|≤1}

(
W (u) − 1

2κ2 (u − u0)
2
)

dx

≥ −Cδ

∫
{1−δ≤|u|≤1}

(u − u0)
2dx ≥ −a3δ E[u], (4.28)

for some a3 ≥ 0. ��
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Combining all the results above with an observation that |Ωδ
+ ∪ Ωδ−| > 0 for E[u]

small enough, we obtain

Proposition 4.2. Let δ > 0 be sufficiently small, let u ∈ H1(Ω) satisfy
∫
Ω

u dx = ū,

let |u| ≤ 1 + δ3 and
∣∣∫

Ω
G0(x − y)(u(y) − ū) dy

∣∣ ≤ δ3 in Ω , and let E ≤ δ
3
2 (d+6). Then

there exists a function u0 ∈ BV (Ω; {−1, 1}) such that E[u] ≥ (1 − δ1/2)E[u0], with κ

given by (4.10).

Importantly, the lower bound in Proposition 4.2 is sharp in the limit ε → 0 for all func-
tions u0 ∈ BV (Ω; {−1, 1}) obeying suitable bounds (satisfied by minimizers of E in
d = 2):

Proposition 4.3. Let u0 ∈ BV (Ω; {−1, 1}), with the jump set of class C2, let the prin-
cipal curvatures of the jump set of u0 be bounded by ε−α for some α ∈ [0, 1), let the
distance between different connected portions of the jump set be bounded by εα , and
let

∣∣∫
Ω

G(x − y)(u0(y) − ū) dy
∣∣ ≤ δ for some δ > 0 small enough. Then there exists a

function u ∈ H1(Ω) with
∫
Ω

u dx = ū, such that E[u] ≤ (1 + δ1/2)E[u0], with κ given

by (4.10), whenever E[u0] ≤ δ
1
2 (d+3) and ε � 1.

Proof. For simplicity of presentation, we only give the proof in the case d = 2. With
minor modifications, the proof remains valid for all d.

Here we adapt the standard construction of a trial function for the local part of the
Ginzburg-Landau energy. Let U (ρ) be the solution of the ordinary differential equation

d2U

dρ2 − W ′(U ) = 0, U (−∞) = 1, U (+∞) = −1, U (0) = 0, (4.29)

where the last condition fixes translations. As is well-known (see e.g. [69]), this solution
exists, is unique and is a strictly monotonically decreasing odd function, approach-
ing the equilibria at ρ = ±∞ exponentially fast. Therefore, for any δ > 0 we have
|U (ρ)| ≤ 1 − δ, if and only if |ρ| ≤ l, with some positive l = O(| ln δ|). Also note that
by hypothesis (iv) on W,

∫ l

−l

{
1

2

∣∣∣∣dU

dρ

∣∣∣∣
2

+ W (U )

}
dρ =

∫ 1−δ

−1+δ

√
2W (s) ds = 1 + O(δ2). (4.30)

Now, introduce the signed distance function r(x) = ±dist(x,Ω±), where Ω± =
{u0 = ±1}, whenever x ∈ Ω∓, and define a regularized version uε

0 of u0:

uε
0(x) =

⎧⎪⎨
⎪⎩

U (ε−1r(x)), |r(x)| ≤ εl,
(1 − δ + ε−1δ(|r(x)| − εl))u0(x), εl ≤ |r(x)| ≤ ε(l + 1),

u0(x), |r(x)| ≥ ε(l + 1).

(4.31)

Then, it is easy to see that the function

u(x) = uε
0(x) − κ2

∫
Ω

G(x − y)(uε
0(y) − ū)dy (4.32)
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is in H1(Ω), with
∫
Ω

u dx = ū. Moreover, we have for any q > 1,

|u(x) − uε
0(x)| ≤ κ2

∣∣∣∣
∫

Ω

G(x − y)(u0(y) − ū) dy

∣∣∣∣
+κ2

∫
Ωl

G(x − y)|uε
0(y) − u0(y)| dy

≤ C(δ + |Ωl |1/q) ≤ C ′(δ + | ln δ|1/q E1/q [u0]) ≤ C ′′δ, (4.33)

where we defined Ωl = {|r | ≤ ε(l + 1)}, estimated
∫
Ωl

G(x − y)(uε
0(y) − u0(y)) dy as

in Lemma 4.2, and used the curvature bound and the assumption on E with d = 2 and
q = 2. On the other hand, after a few integrations by parts, from (4.32) we also obtain∫

Ω

|∇(u − uε
0)|2 dx = −κ2

∫
Ω

(u − uε
0)(u − ū) dx

= κ4
∫

Ω

∫
Ω

(u(x) − ū)G0(x − y)(u(y) − ū) dydx ≤ 2κ4E[u]. (4.34)

To estimate E[u], let us introduce a system of curvilinear coordinates (ρ, ξ) consist-
ing of the signed distance ρ to the jump set of u0 and the projection ξ onto the jump set.
By our assumptions this is possible whenever |r(x)| < εα . Therefore, for ε � 1 we can
write

E[u] =
∫ ε(l+1)

−ε(l+1)

∫
∂Ω+

(
ε2

2

∣∣∣∣∂u

∂ρ

∣∣∣∣
2

+
ε2

2
(1 + ρK )−2

∣∣∣∣∂u

∂ξ

∣∣∣∣
2

+ W (u)

)

× (1 + ρK ) dH1(ξ) dρ +
∫

Ω\Ωl

(
ε2

2
|∇u|2 + W (u)

)
dx

+
1

2

∫
Ω

∫
Ω

(u(x) − ū)G0(x − y)(u(y) − ū) dydx, (4.35)

where K = K (ξ) is the curvature at point ξ on the jump set of u0. Substituting the ansatz
of (4.32) into (4.35), taking into account that |∇(u − uε

0)| ≤ C in Ωl for some C > 0
independent of ε (we have u − uε

0 uniformly bounded in W 2,p(Ω), for any p < ∞) and
that ∇u = ∇(u − u0) = ∇(u − uε

0) in Ω\Ωl , and using (4.33) and (4.34), we obtain
(estimating each line in (4.35) separately)

E[u] = ε

2

(
1 + O(ε1−α| ln δ|) + O(δ| ln δ|)

) ∫
Ω

|∇u0| dx

+
1

2κ2

∫
Ω\Ωl

(u − u0)
2 dx + O(ε2E[u]) + O(δ E[u])

+
1

2

∫
Ω

∫
Ω

(u(x) − ū)G0(x − y)(u(y) − ū) dydx . (4.36)

Now, using the identity∫
Ω

∫
Ω

(u(x) − ū)G0(x − y)(u(y) − ū) dydx + κ−2
∫

Ω

(u − uε
0)

2dx

=
∫

Ω

∫
Ω

(uε
0(x) − ū)G(x − y)(uε

0(y) − ū) dydx, (4.37)
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we can further write (4.36) as

E[u] = E[u0] + O(δ| ln δ| E[u0]) + O(δ E[u]) − 1

2κ2

∫
Ωl

(u − uε
0)

2 dx

+
∫

Ωl

∫
Ω

(uε
0(x) − u0(x))G(x − y)(uε

0(y) − ū) dydx

+
1

2

∫
Ωl

∫
Ωl

(uε
0(x) − u0(x))G(x − y)(uε

0(y) − u0(y)) dydx, (4.38)

for ε � 1. Finally, using the same estimates as in (4.33), we obtain

(1 + O(δ))E[u] = (1 + O(δ| ln δ|))E[u0] + O(δ|Ωl |) + O(|Ωl |3/2)

= (1 + O(δ| ln δ|))E[u0], (4.39)

from which the result follows immediately. ��
The last two propositions show asymptotic equivalence of the diffuse interface energy

E with the sharp interface energy E for sufficiently well-behaved critical points and
ε � 1. In particular, the energies of minimizers of both E and E are asymptotically
the same in the limit ε → 0 (see also [70,71] for recent related studies). It would also
be natural to think that the minimizers (even local, with low energy) of E are, in some
sense, close to minimizers of E when ε � 1 (this will be a subject of future study).

5. Proof of the Theorems

Here we complete the proofs of Theorems 2.1–2.3.

Proof of Theorem 2.1. The main point of the proof is the lower bound in (2.1), since the
upper bound is easily obtained by constructing a suitable trial function (as in Lemma
A.1). The basic tool for the lower bound is a kind of interpolation inequality obtained in
Lemma B.1. Note that the proof for E works in any space dimension.

To prove the lower bound, let us denote by u a minimizer of E . Introducing

âq =
∫

Ω

eiq·x (u(x) − ū) dx, (5.1)

where q ∈ 2πZ
d , we can estimate the energy of the minimizer as follows:

min E ≥ 1

2

∫
Ω

∫
Ω

(u(x) − ū)G(x − y)(u(y) − ū) dxdy

= 1

2

∑
q

|âq |2
κ2 + |q|2 ≥ |â0|2

2κ2

= 1

2κ2

(∫
Ω

(u − ū) dx

)2

= 2

κ2

(
|Ω+| − 1 + ū

2

)2

, (5.2)

where we introduced the set Ω+ = {u = +1}.
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In view of the upper bound in (2.1), it follows from (5.2) that |Ω+| = 1
2 (1 + ū) +

O(ε2/3), implying that |Ω+| is bounded away from 0 or 1 for ε � 1. Hence, by the
isoperimetric inequality there exists p > 0 such that

P =
∫

Ω

|∇u| dx ≥ p, (5.3)

whenever ε � 1. Applying Lemma B.1 to u − ū, we conclude that

min E ≥ εP +
C

P2 , (5.4)

for some C > 0 independent of ε, for ε � 1. The result then follows from an application
of the Young Inequality and Propositions 4.1 and 4.2. ��
Proof of Theorem 2.2. This theorem combines a number of results proved in Sec. 3 in
the original, unscaled variables. Part (i) of the theorem is the statement of Proposition
3.2. Part (ii) of the theorem is the collection of results from Lemma A.1 (taking into
account that E[uk] < E[−1] = 1

2ε4/3| ln ε|2/3κ−2δ̄2 for δ̄ > 1
2

3
√

9 κ2), Corollary 3.1,
Lemma 3.3, and Propositions 3.5, 3.7, and 3.8 with α = 1

3 − σ . Part (iii) of the theorem
is contained in the statements of Propositions 3.9 and 3.10. ��
Proof of Theorem 2.3. First of all, we have min E � 1 when ε � 1 and ū = −1 +
O(ε2/3| ln ε|1/3), since min E ≤ E(ū) = O(ε4/3| ln ε|2/3) in that case. Then, from
Proposition 4.1 and Lemma 3.5 we conclude that the assumptions of Propositions 4.2
and 4.3 are satisfied for the minimizers of E . Therefore, the energies E and E are asymp-
totically the same in the considered limit, and the conclusion follows from Theorem 2.2
(the case δ̄ = 1

2
3
√

9 κ2 is included by a monotone decrease of Ē with δ̄). ��

Acknowledgments. The author would like to acknowledge valuable discussions with M. Kiessling, H. Knüp-
fer, V. Moroz, M. Novaga and G. Orlandi. This work was supported, in part, by NSF via grants DMS-0718027
and DMS-0908279.

A. Upper Bound

Here we construct a trial function that achieves the lower bound for the energy of the
non-trivial minimizers of E .

Lemma A.1. Let ū = −1 + ε2/3| ln ε|1/3δ̄, with δ̄ > 1
2

3
√

9 κ2 fixed. Then there exists
u ∈ BV (Ω; {−1, 1}), such that

E[u] = ε4/3| ln ε|2/3

{
3
√

9

2

(
δ̄ − 1

4
3
√

9 κ2
)

+ O

(
ln | ln ε|
| ln ε|

)}
, (A.1)

for ε � 1.

Proof. First, consider u1(x) = −1 + 2χBr (0)(x), where χBr (0) is the characteristic func-
tion of the disk of radius r centered at the origin. If v1(x) = ∫

Ω
G(x − y)(u1(y)− ū) dy,

then by using (2.3) we explicitly have (see (3.39))

v1(x) = −1 + ū

κ2 +
2

κ2 (1 − κr K1(κr)I0(κ|x |)), (A.2)

+
2

κ

∑
n∈Z2\{0}

r I1(κr)K0(κ|x + n|)), |x | ≤ r, (A.3)
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where Kn and In are the modified Bessel functions of the first and second kind. Therefore,
expanding the Bessel functions for r � 1 [46], we can write for |x | ≤ r,

v1(x) = −1 + ū

κ2 − r2

2
(2 ln κr + 2γ − ln 4 − 1) − |x |2

2

+r2
∑

n∈Z2\{0}
K0(κ|x + n|) + O(r4| ln r |), (A.4)

where γ ≈ 0.5772 is Euler’s constant. Substituting this expression into the definition
of E , after integration we get

E[u1] = 2πεr + 1
2 (1 + ū)2κ−2 − 2π(1 + ū)κ−2r2

−πr4(ln κr + γ − ln 2 − 1
4 ) + πr4

∑
n∈Z2\{0}

K0(κ|n|) + O(r6| ln r |). (A.5)

Now, consider a new test function

uk(x) = −1 + 2
k∑

k1=1

k∑
k2=1

χBr (e1(k1− 1
2 )+e2(k2− 1

2 ))(x), (A.6)

consisting of k2 disks of radius r arranged periodically in Ω (here e1 and e2 are the unit
vectors along the coordinate axes). We have

E[uk] = 1
2 (1 + ū)2κ−2 + πk2

(
2εr − 2(1 + ū)κ−2r2

−r4(ln κr + γ − ln 2 − 1
4 ) + r4

∑
n∈Z2\{0}

K0(κk−1|n|)
)

+ O(k2r6| ln r |).

(A.7)

Approximating the sum in (A.7) by an integral:

k−2
∑

n∈Z2\{0}
K0(κk−1|n|) =

∫
R2

K0(κ|x |)dx + O(k−2 ln k)

= 2πκ−2 + O(k−2 ln k), (A.8)

and expanding for r � 1, we can further write

E[uk] = 1
2 (1 + ū)2κ−2 + πk2

(
2εr − 2(1 + ū)κ−2r2

−r4 ln r + 2πκ−2r4k2
)

+ O(k2r4 ln k). (A.9)

We now substitute r = ε1/3| ln ε|−1/3 3
√

3 into the expression above. Using also the
definition in (2.7), we can write

E[uk] = ε4/3| ln ε|2/3
(

1
2κ−2δ̄2 − 2π

3
√

9| ln ε|−1κ−2
(
δ̄ − 1

2
3
√

9 κ2
)

k2

+6π2 3
√

3κ−2| ln ε|−2k4
)

+ O(ε4/3| ln ε|−4/3k2 ln k). (A.10)
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Finally, setting

k2 = | ln ε|
2π

3
√

9

(
δ̄ −

3
√

9

2
κ2

)
+ O(1), (A.11)

we obtain (A.1) with u = uk . ��
Let us also quote without proof a similar result concerning the upper bound for the

reduced energy EN .

Lemma A.2. Let ū = −1 + ε2/3| ln ε|1/3δ̄, with δ̄ > 1
2

2
√

9 κ2 fixed. Then

min EN ≤ − 1

2κ2 ε4/3| ln ε|2/3

(
δ̄ −

3
√

9

2
κ2

)2

+ O

(
ε4/3 ln | ln ε|

| ln ε|1/3

)
. (A.12)

B. Interpolation Inequality

Here we present the lemma that connects the non-local part of the energy with the inter-
facial energy via a kind of an interpolation inequality between BV (Ω), H−1(Ω) and
L∞(Ω), for functions bounded away from zero.

Lemma B.1. Let u ∈ BV (Ω), where Ω = [0, 1)d is a torus, and assume that m ≤
|u| ≤ M in Ω for some M ≥ m > 0. Let also

∫
Ω

|∇u| dx ≥ p > 0, and let G
solve (1.5) in Ω with periodic boundary conditions. Then there exists a constant C =
C(d, κ/p, m2/M) > 0 such that

∫
Ω

∫
Ω

u(x)G(x − y)u(y) dx dy ≥ C

(∫
Ω

|∇u| dx

)−2

. (B.1)

Proof. First, extend u periodically to the whole of R
d . Then, introducing χδ(x) =

δ−d |B1|−1χ(δ−1x), where χ is the characteristic function of the unit ball B1 centered
at the origin, we have

∫
Ω

∫
Rd

u(x)χδ(x − y)u(y) dy dx = 1

|B1|
∫

Ω

∫
B1

u(x)u(x + δy) dy dx

≥ m2 − Mδ

|B1|
∫

Ω

∫
B1

∫ 1

0
|∇u(x + δt y)| dt dy dx ≥ m2 − Mδ

∫
Ω

|∇u| dx, (B.2)

where the inequality is obtained by approximating u by C1 functions and passing to the
limit. Therefore, choosing

δ =
(

2M

m2

∫
Ω

|∇u| dx

)−1

, (B.3)

we obtain

m2

2
≤

∫
Ω

∫
Rd

u(x)χδ(x − y)u(y) dx dy =
∑

q

χ̂δ(q)|ûq |2, (B.4)
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where we introduced the Fourier transform ûq of u:

ûq =
∫

Ω

eiq·x u(x) dx, (B.5)

with q ∈ 2πZ
d . The Fourier transform χ̂δ of χδ is, in turn, explicitly given by

χ̂δ(q) =
(

2

δ|q|
)d/2

Γ

(
d

2
+ 1

)
Jd/2(δ|q|), (B.6)

where Jd/2(x) is the Bessel function of the first kind and Γ (x) is the gamma-function.
Now, applying the Cauchy-Schwarz Inequality, we obtain

m4

4
≤

(∑
q

|ûq |2
κ2 + |q|2

) (∑
q

χ̂2
δ (q)(κ2 + |q|2)|ûq |2

)

≤ sup
q

{
χ̂2

δ (q)(κ2 + |q|2)
}∑

q

|ûq |2

×
∫

Ω

∫
Ω

u(x)G(x − y)u(y) dx dy. (B.7)

Taking into account that
∑

q |ûq |2 = ||u||2
L2(Ω)

≤ M2 and that [46]

δ2χ̂2
δ (q)(κ2 + |q|2) ≤

{
C1(κ

2m4 M−2 p−2 + 1), |q|δ ≤ 1,

C2(κ
2m4 M−2 p−2 + |q|2δ2)(|q|δ)−d−1, |q|δ > 1,

(B.8)

for some C1,2 > 0 depending only on d, we conclude that

Cδ2 ≤
∫

Ω

∫
Ω

u(x)G(x − y)u(y) dx dy (B.9)

for some C > 0 depending only on d, κ/p, and m2/M . The result then follows imme-
diately from (B.3). ��

Let us also make some remarks regarding a few extensions of these arguments. First,
the same estimate holds true in the case where G is the Green’s function of the Lapla-
cian in Ω and u has zero mean. Note that in this case the constant C in (B.1) becomes
independent on p. The proof easily follows by passing to the limit κ → 0 in the lemma.
Another observation is that, actually, for the considered class of functions a stronger
interpolation inequality involving negative Sobolev norms holds. We give only the state-
ment of the result, the proof follows easily by modifying a few steps in the arguments
above

Proposition B.1. Let u be as in Lemma B.1. Then

∫
Ω

u (1 − Δ)−
d+1

2 u dx ≥ C

(∫
Ω

|∇u| dx

)−d−1

, (B.10)

for some C = C(d, p, m, M) > 0.
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C. First and Second Variation

Here we present the derivation of the first and second variation of Ē in d = 2, adapted
from [14].

Lemma C.1. Let Ω̄+ ⊂ Ω̄ be a set with boundary of class C2 and v be given by (3.4).
Then, the functional Ē is twice continuously Gâteaux-differentiable with respect to C1-
perturbations of ∂Ω̄+. Furthermore, the first and second Gâteaux derivatives of Ē are
given by (3.6) and (3.7).

Proof. Let a > 0, let ρ ∈ C1(∂Ω̄+), and let Ω̄+
a be the set obtained from Ω̄+ by trans-

porting each point of ∂Ω̄+ by aρ in the direction of the outward normal. Note that for
sufficiently small a the set ∂Ω̄+

a is of class C1, in view of regularity of ∂Ω̄+. Then, if
Ēa = Ē(Ω̄+

a ) and Ē = Ē(Ω̄+), from (3.2) we have explicitly

| ln ε|(Ēa − Ē) =
∫

∂Ω̄+

(√
(1 + aK (x̄)ρ(x̄))2 + a2|∇ρ(x̄)|2 − 1

)
dH1(x̄)

+
∫

∂Ω̄+

∫ aρ(x̄)

0
(4v(x̄ + rν(x̄)) − 2δ̄κ−2)(1 + K (x̄)r) dr dH1(x̄)

+2| ln ε|−1
∫

∂Ω̄+

∫
∂Ω̄+

∫ aρ(x̄)

0

∫ aρ(ȳ)

0
(1 + K (x̄)r)(1 + K (ȳ)r ′)

×G
(
ε1/3| ln ε|−1/3(x̄ + rν(x̄) − ȳ − r ′ν(ȳ))

)
dr ′dr dH1(ȳ)dH1(x̄),

(C.1)

where K (x̄) is curvature, ν(x̄) is the outward unit normal at x̄ ∈ ∂Ω̄+, and we rewrote the
integrals in terms of the curvilinear coordinates consisting of the projection x̄ of a point
x ∈ Ω̄ to ∂Ω̄+ and signed distance r = ν(x̄) · (x − x̄), which is possible for sufficiently
small a. Now, Taylor-expanding the integrands in the powers of r and integrating over
r and r ′, after some tedious algebra we obtain that for any α ∈ (0, 1),

Ēa = Ē + a
d Ēa

da

∣∣∣∣
a=0

+
a2

2

d2 Ēa

da2

∣∣∣∣
a=0

+ O(a2+α) holds, (C.2)

where the derivatives are given by (3.6) and (3.7). In estimating the remainder term in
(C.2) we took into account that v ∈ C1,α(Ω̄) and the following estimate of the terms
involving the convolution integral:

∣∣∣∣∣
∫

∂Ω̄+

∫ aρ(ȳ)

0

(
G(ε1/3| ln ε|−1/3(x̄ + ν(x̄)r − ȳ − ν(ȳ)r ′))

−G(ε1/3| ln ε|−1/3(x̄ − ȳ))
)

dr ′dH1(ȳ)

∣∣∣
≤ C

∫
∂Ω̄+

∫ aρ(ȳ)

0

(
a +

∣∣∣∣ln |x̄ − ȳ + ν(x̄)r − ν(ȳ)r ′|
|x̄ − ȳ|

∣∣∣∣
)

dr ′dH1(ȳ)

≤ C

(
a2 +

∫
∂Ω̄+∩|x̄−ȳ|≥Ma

∫ aρ(ȳ)

0

|ν(x̄)r − ν(ȳ)r ′|
|x̄ − ȳ| dr ′dH1(ȳ)

)

≤ Ca2
∫

∂Ω̄+∩|x̄−ȳ|≥Ma

dH1(ȳ)

|x̄ − ȳ| ≤ C ′a2| ln a|, (C.3)
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for a � 1, where M > 0 is sufficiently large, and we used the series expansion of G
[46].

Finally, for every sufficiently small C1-perturbation ∂Ω̄+
a of ∂Ω̄+ the distance from

a point x̄ ∈ ∂Ω̄+ to ∂Ω̄+
a is a C1-function, hence the formulas obtained above apply to

all such perturbations. ��
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